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Abstract

In this paper, we study zeroth-order algorithms for minimax optimization problems that
are nonconvex in one variable and strongly-concave in the other variable. Such minimax
optimization problems have attracted significant attention lately due to their applications in
modern machine learning tasks. We first consider a deterministic version of the problem.
We design and analyze the Zeroth-Order Gradient Descent Ascent (ZO-GDA) algorithm, and
provide improved results compared to existing works, in terms of oracle complexity. We
also propose the Zeroth-Order Gradient Descent Multi-Step Ascent (ZO-GDMSA) algorithm
that significantly improves the oracle complexity of ZO-GDA. We then consider stochastic
versions of ZO-GDA and ZO-GDMSA, to handle stochastic nonconvex minimax problems.
For this case, we provide oracle complexity results under two assumptions on the stochastic
gradient: (i) the uniformly bounded variance assumption, which is common in traditional
stochastic optimization, and (ii) the Strong Growth Condition (SGC), which has been known
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to be satisfied by modern over-parameterized machine learning models. We establish that
under the SGC assumption, the complexities of the stochastic algorithms match that of
deterministic algorithms. Numerical experiments are presented to support our theoretical
results.

Keywords Minimax problem - Zeroth-order algorithms - Oracle complexity - Gradient
descent ascent - Stochastic algorithms

1 Introduction

Algorithms for solving optimization problems with only access to (noisy) evaluations of the
objective function are called zeroth-order algorithms. These algorithms have been studied for
decades in the optimization literature; see, for example, Conn et al. [14], Rios and Sahinidis
[48] and Audet and Hare [4] for a detailed overview of the existing approaches. Recently,
the study of zeroth-order optimization algorithms has gained significant attention also in the
machine learning literature, due to several motivating applications, for example, in designing
black-box attacks to deep neural networks [13], hyperparameter tuning [53], reinforcement
learning [36, 51] and bandit convex optimization [11]. However, a majority of the zeroth-order
optimization algorithms in the literature has been developed for minimization problems.

In this work, we study zeroth-order optimization algorithms for solving nonconvex mini-
max problems (aka saddle-point problems). Specifically, we consider both the deterministic
setting:

min max f(x,y), (1)
xeR41 yey
and the stochastic setting:
min max f(x,y) = Ez~pF(x,y,§). 2)
xeR4l yey

Here, F(x, y, £) and hence f(x, y) are assumed to be sufficiently smooth functions, Y C R
is a closed and convex constraint set,' and P is a distribution characterizing the stochasticity
in the problem. We allow for the function f (-, y) to be nonconvex for all y € R% but require
f(x,-) to be strongly-concave for all x € R?. One of our main motivations for studying
zeroth-order algorithms for nonconvex minimax problems is their application in designing
black-box attacks to deep neural networks. By now, it is well established that care must be
taken when designing and training deep neural networks as it is possible to design adversarial
examples that would make the deep network to misclassity, easily. Since the intriguing works
of [28, 55], the problem of designing such adversarial examples that transfer across multiple
deep neural networks models has also been studied extensively. As the model architecture
is unknown to the adversary, the problem could naturally be formulated to solve a minimax
optimization problem under the availability of only (noisy) objective function evaluation.
We refer the reader to [27] for details regarding such formulations. Apart from the above
applications, we also note that zeroth-order minimax optimization problems also arise in
multi-agent reinforcement learning with bandit feedback [61, 67], robotics [10, 60] and
distributionally robust optimization [37].

Recently, there has been an ever-growing interest in analyzing first-order algorithms for
the case of nonconvex—concave and nonconvex—nonconcave minimax problems, motivated

1 One of our algorithms works also in the unconstrained setting. See Remark 5 for more details.
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by its applications to training generative adversarial networks [22], AUC maximization [65],
designing fair classifiers [1], robust learning systems [32] fair machine learning [5, 62,
66], and reinforcement learning [15, 19, 41, 44]. Specifically, Lu et al. [29], Rafique et
al. [47], Nouiehed et al. [42], Sanjabi et al. [52], Lin et al. [26] and Thekumparampil et
al. [56] proposed and analyzed variants of gradient descent ascent for nonconvex—concave
objectives. Very recently, under a stronger mean-squared Lipschitz gradient assumption [30]
obtained improved complexities for stochastic nonconvex—concave objectives. Furthermore,
Daskalakis et al. [16], Daskalakis and Panageas [17], Hsieh et al. [23], Mertikopoulos et al.
[35], Piliouras and Schulman [46], Gidel et al. [21], Oliehoek et al. [43], Jin et al. [25] and
Vlatakis-Gkaragkounis et al. [59] studied general nonconvex—nonconcave objectives.
Compared to first-order algorithms, zeroth-order algorithms for minimax optimiza-
tion problems are underdeveloped. Motivated by the need for robustness in optimization,
Menickelly and Wild [34] proposed derivative-free algorithms for saddle-point optimization.
However, they do not provide non-asymptotic oracle complexity analysis. Bayesian optimiza-
tion algorithms and evolutionary algorithms were proposed in [10, 45] and [2, 9] respectively
for minimax optimization, targeting robust optimization and learning applications. The above
works do not provide any oracle complexity analysis. Recently, Roy et al. [50] studied
zeroth-order Frank-Wolfe algorithms for strongly-convex and strongly-concave constrained
saddle-point optimization problems and provided non-asymptotic oracle complexity anal-
ysis. Furthermore, Liu et al. [27] studied zeroth-order algorithms for nonconvex—concave
minimax problems, similar to our setting. More recently, Anagnostidis et al. [3] proposed
a stochastic direct search method for (2) under the assumption of the Polyak—t.ojasiewicz
(PL) condition. Xu et al. [63] and Huang et al. [24] also studied zeorth-order methods for
(2), where they required mean-squared smoothnesss assumption, which is stronger than our
assumptions.
Our contributions In this work, we consider both deterministic and stochastic minimax prob-
lems in the form of (1) and (2), respectively. A detailed comparison of our algorithms and
existing methods is given in Table 1. Our contributions lie in several folds.

(1) For deterministic minimax problem (1), we design a zeroth-order gradient descent
ascent (ZO-GDA) algorithm, whose oracle complexity improves the currently best
known one in [27] under the same assumptions. Notably, for this algorithm, the set
Y could be constrained or unconstrained (i.e., the entire Euclidean space R%).

(i) For deterministic minimax problem (1), we propose a novel zeroth-order gradient
descent multi-step ascent (ZO-GDMSA) algorithm, which is motivated by [42]. This
algorithm performs multiple steps of gradient ascent followed by one single step of
gradient descent in each iteration. Its oracle complexity is significantly better than that
of ZO-GDA in terms of the condition number dependency. To the best of our knowledge,
this is the best complexity result for zeroth-order algorithms for solving deterministic
minimax problems so far under the assumptions in Sect. 2.

(iii) We desgin and analyze the stochastic counterparts of ZO-GDA and ZO-GDMSA and
establish their oracle complexity under two settings: (i) uniformly bounded variance
assumption on the stochastic gradient, which is standard in stochastic optimization,
and (ii) the Strong Growth Condition (SGC) [57], which is satisfied by modern
over-parameterized machine learning models. Notably, under SGC, we show that the
complexities of the stochastic algorithms are the same as their deterministic counter-
parts.

The rest of this paper is organized as follows. In Sect. 2 we provide some preliminaries
and introduce our zeroth-order gradient estimator. In Sect. 3 we present our ZO-GDA and
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ZO-GDMSA for solving the deterministic minimax problem (1), and analyze their oracle
complexities. In Sect. 4 we present the stochastic algorithms ZO-SGDA and ZO-SGDMSA for
solving the stochastic minimax problem (2), and analyze their oracle complexities. In Sect. 5
we provide some numerical results to our stochastic algorithms ZO-SGDA and ZO-SGDMSA
for solving a distributionally robust optimization problem. We draw some conclusions in
Sect. 6. Proofs of all theorems are provided in the “Appendix”.

2 Preliminaries
Assumption 1 is made throughout the paper.

Assumption 1 The objective function f(x, y) and the constraint set ) have the following
properties:

— f(x,y) is continuously differentiable in x and y, and f (-, ¥) could be potentially non-
convex forall y € Y and f(x, -) is z-strongly concave for all x € R%'.

— When viewed as a function in R%1+42| f(x, y) is £-gradient Lipschitz. That is, there exists
constant £ > 0 such that Vxi, x, € R91, yi,y2 € V.

IV fx1, y1) = Vf(x2, y2)ll2 < €ll(x1, y1) — (x2, y2)l2, (3)

We use « := £/t to denote the problem condition number throughout this paper.

— The function g(x) := maxycy f(x, y) is lower bounded. Moreover, we assume that
function g is Lg-smooth, i.e., [Vg(x) — Vg < Lgllx — yll2, forallx, y € R4, As
will be shown later in Lemma 3, this is indeed true with L, = (1 + «)<{.

— The constraint set Y C R? is bounded and convex, with diameter D > 0. The bound-
edness assumption can be relaxed (see Remark 5).

The following assumption, which is standard in the literature [7, 20, 40], will also be used
in our paper.

Assumption 2 (Uniformly Bounded Variance) For any x € R% and y e Y, the
stochastic zeroth-order oracle outputs an estimator F (x,y,&) of f (x,y) such that
Ec[F (x,y,8)] = f(x,y) and Eg[V,F (x,y,6)] = Vif(x,y), E[VyF(x,y,8)] =
Vo f (6, ), Es(IVx F(x, y, €)= Vo f(x, Y)II3) < of,and E¢ (IIVy F(x, y, £) = Vy £ (x, »)13)
<o5.

In addition to Assumptions 1 and 2, motivated by over-parameterized models arising in
modern machine learning problems [57], we also consider the following SGC assumption
on the stochastic gradient.

Assumption 3 (Strong Growth Condition [57]) There exist p1, po > 1 such that the following
is true for the stochastic gradients:

Es(IVeF(x, v, ©)13) < p1ll Ve f(x, W3, and B (| Vy F(x, y, £)13) < p2ll Vy £ (x, D)3

This condition is widely observed to be satisfied in modern over-parameterized models
(e.g., deep neural networks) and has been used extensively for minimization problems recently
[8, 31,33, 49, 58].

@ Springer



Journal of Global Optimization

2.1 Zeroth-order gradient estimator

We now discuss the idea of zeroth-order gradient estimator based on Gaussian smoothing
technique [40]. For the deterministic case, we denote u; ~ N(0,14), uo ~ N(0, 14),
where 1,4, and 1,4, denote identity matrices with sizes di x di and d» x d», respectively. The
notion of the Gaussian smoothed functions is defined as follows:

S, y) =By f(x + pauy, y),
f/LQ(X’ )’) = Euzf(x’y +M’2u2)7 (4)

and the zeroth-order gradient estimators [40] are defined as

fx 4+ g, y) — f(x,Y)u

Gy (x,y,up) = ,
1 y 0 1
X,y + pouz) — f(x,y)
Hy (v, y.uz) = £02 “Z; ALZP )

where 1 > 0 and pp > 0 are smoothing parameters.

Asnoted in [6], the Gaussian smoothing technique proposed by [40] is based on the Stein’s
identity [54], for characterizing Gaussian random vectors. Specifically, Stein’s identity states
that a random vector u € RY, is standard Gaussian if and only if, E [u h(u)] = E[Vh(u)], for
all absolutely continuous functions / : RY — R. Note that Stein’s identity, naturally relates
function queries to gradients and thus is naturally suited for zeroth-order optimization. If we
let i1 (u) to be the Gaussian smoothed functions (as in (4)), it is easy to see that the zeroth-order
gradients (as in (5)) follow by simply evaluating the Gaussian Stein’s identity.

It should be noted following the arguments in [7, 40] that E, G, (x,y,u1) =
Vi fu (x,y), and By, G, (x, y, u2) = V,y fyu, (x, ). Hence, the zeroth-order gradient esti-
mators in (5) provide unbiased estimates of the gradient of Gaussian smoothed functions
fu sy ) == f(x 4wy, y) and fi, (x, y, u2) := f(x,y + pouz). Similarly, for the
stochastic case, the Gaussian smoothed functions are defined as:

fu.l(xv )’) = Eul,fEF(x +M]u1s Vs 5)5
fua(x,y) == Euy e F(x, y + pouz, &), (6)

and the zeroth-order stochastic gradient estimators are defined as:

F(x+.u“1ul7y9$)_F(x7y’$)u

Gy (x,y,u1,8) = ,
Hi
F(x,y+ pouz, &) — F(x,y,§)
Hyy(x, y uy, &) = — 2 - LIS )

One can also show that the zeroth-order gradient estimators provide unbiased estimates to the
gradients of the Gaussian smoothed functions, i.e., Ey, ¢ G, (x, y, u1,8) = Vi fi, (x, ),
and Eu2,§H1L2 (x,y,u2,8) = V)‘fuz (x, y).

In our algorithms, we also need to use mini-batch zeroth-order gradient estimators, which
can reduce the variance of stochastic gradient estimators. To this end, we define the following
notation. For integer ¢ > 0, we denote [¢] := {1,..., q}. In the deterministic case, for
integers g1 > 0, g2 > 0 we denote

| &
G (x, y, u1q) = o ZGM(X, y.ui,

i=1
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| &
Hy, (x, y, u2,1q) = - > Hpuy(x, v, u2). ®)
i=1

For indices sets M| and M», in the stochastic case we denote

Guy (6, v umy s 6m) = o 2 Gy (8, v, i, &),

. ieM; (9)
H[Lz(xsyauMzs%:/\/lz) = W Z H;Lz(xv y, u2,i7§l’)’
ieM>

It is easy to see that we have the following unbiasedness properties:

Eur oG (X5 Y, w1 1g11) = Vi fuy (x, y) and Buy  Hy, (x, y, u2,1g5) = Vy fu, (%, ¥)

and

EMIESM] GMI()C, Yy, uMlvEMl) = foul(xv y)
EquEMz H/LQ(X! Y, UM, st) = vyf/iz(-xs )’)

2.2 Complexity measure

Following [26], the e-stationary point of problems (1) and (2) and is defined as follows.

Definition 1 A point (x, y) is called an e-stationary point of problem (1) and (2) if it satisfies
the following conditions: E(||Vy f(x, y)||§) < €2 and E(IVy f(x, }7)||%) < €2. Here, the
expectation is over u; and u; sequence for problem (1), and over the uj, uy and & sequence
for problem (2). The uy, up and & are randomness generated in the algorithm when (x, y) is

produced.

Note that the minimax problems (1) and (2) are equivalent to the following minimization
problem:

min{g(x) := max f(x, y) = f(x, y"(x))}, (10
X yey

where y*(x) = argmaxyeyf(x, y). Due to our Assumption 1, that f(x,-) is strongly-
concave for any fixed x € R?, the maximization problem maxy f(x, y) can be solved
efficiently and its optimal solution is unique. Note that the e-stationary point for (10) is
defined as follows.

Definition 2 We call x an e-stationary point of a differentiable function g if E(]| Vg (x) ||§) <

€.

In this paper, we focus on analyzing the oracle complexity of algorithms for obtaining
an e-stationary point of g as defined in Definition 2. This is because optimality in the sense
of Definition 2 in turn implies optimality in the sense of Definition 1, as we discuss in the
following proposition.

Proposition 1 Under Assumption 1, if a point x satisfies E(||Vg(x) II%) < €2, by using extra
O(kdy log(e_l)) calls to the zeroth order oracle in the deterministic setting or by using
extra O(dy/ €2) calls to the zeroth order oracle in the stochastic setting, a point (X, y) can
be obtained such that it is an €-stationary solution of the minimax problem as defined in
Definition 1.

The proof of this proposition is the same as the proof of Proposition 4.11 in [26]. We thus
omit it for succinctness.
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3 Zeroth-order algorithms for deterministic minimax problems

We now present our algorithms for the deterministic minimax problem (1).

3.1 Zeroth-order gradient descent ascent

Our zeroth-order gradient descent ascent (ZO-GDA) algorithm for solving problem (1) is
described in Algorithm 1. The algorithm is similar to the deterministic first-order approach
analyzed in [26] with some crucial differences. Specifically, we require a mini-batch gradient
estimator with the choices of the batch size depending on the dimensionality of the problem.
The complexity result for ZO-GDA (Algorithm 1) is provided in Theorem 1.

Algorithm 1 Zeroth-Order Gradient Descent Ascent (ZO-GDA2)

Initialization: (xq, yg), stepsizes (1, 72), iteration limit § > 0, parameters 1 and uy. Setq; = 2(dy +6),
@ = 2(dy +6).
fors =0,...,5S—1do
X1 < x5 — M1 Gy (xs, ys, uy [gy]) withuy; ~ N0, 14)), i € [q1]
Ys+1 < Projylys + maHy, (xs, ys, 42 [g,)1 withup j ~ N(0,14,), i € [g2]
end for
Return (x1, y1). ... (xs. ys)-

Theorem 1 Under Assumption 1, by setting
1

M= Ak 2 0D (b

and
S:=0’?), p=0Cd; ), o= 0(ed,*c7?), (12)
ZO-GDA (Algorithm 1) returns iterates (x1, y1), - - ., (xs, ys) such that there exists an iterate

which is an e-stationary point of g(x) = maxycy f(x, y). That is, ZO-GDA (Algorithm 1)
returns iterates that satisfy minge(1,.... sy E(| Vg (xy) ||%) < €2. Moreover; the total number of
calls to the (deterministic) zeroth-order oracle is given by K zo = S(q1 + q2) = Ok (d; +
dr)e?).

Remark 1 We see that the total number of calls to the (deterministic) zeroth-order oracle
depends linearly on the dimension of the problem. The dependence on € is the same as that
of the corresponding first-order methods [26]. But, the dependence on the condition number
k is increased from k2 to &> (assuming dj and d» are of constant order). This is due to the
choice of balancing the various tuning parameters in the zeroth-order setting, in particular
w1 and o which are absent in the first-order setting.

3.2 Zeroth-order gradient descent multi-step ascent

We now present our ZO-GDMSA algorithm in Algorithm 2. This algorithm runs 7" ascent
steps, for every descent step. The main idea behind running multiple ascent steps is to bet-
ter approximate the maximum of the stongly-concave function in each step. Subsequently,
picking the number of inner iterations 7 appropriately helps us obtain improved dependence
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on « while still maintaining the same dependency on €. We emphasize that [42] used the
multi-step ascent approach to handle certain non-convex minimax optimization problems
that satisfy the PL condition in the first-order setting.

Algorithm 2 Zeroth-Order Gradient Descent Multi-Step Ascent (ZO-GDMSA)

Initialization: (x, yq), step sizes (11, n2), iteration limit for outer loop S > 0, iteration limit for inner loop
T > 0, parameters p1 and po. Set g1 = 2(dy + 6) and g = 2(da + 6).
fors =0,...,S—1do
Set yo(xs) < ys
forr=1,...,T do
Vi (xs) <= Projy (vr—1(xs) + 2 Hyy (x5, yr—1(xs), u2,[¢,1)) Withup ; ~ N(0,14,),i € [g2]
end for
Ys+1 < 1 (Xs) )
X1 < X5 = N1 Gy (xs, Y541, U1, [g]) Withuy ; ~ N(0,14,),i € [q1]
end for
Return (x1, y1), ..., (x5, ys)-

Theorem 2 Under Assumption 1, by setting

m=1/(12L,) = m m=1/(60), T = Ok log(e ")), 13)

and
S =O0(e?), 1 = 0ed; ), 1z = 0~ 12d; P e), (14)
ZO-GDMSA (Algorithm 2) returns iterates (x1, y1), ..., (xs, ys) such that there exists an

iterate which is an e-stationary point for g(x) = maxyey f(x,y). That is, ZO-GDMSA
(Algorithm 2) returns iterates that satisfy minge(1, .. s) E(||Vg(xx)||%) < €2. Moreover, the
total number of calls to the (deterministic) zeroth-order oracle is given by Kzo = Sq1 +

TSqr = O(Ké’z(d] +xds 1og(e*1))).

Remark 2 Compared to Algorithm 1, the oracle complexity of Algorithm 2 has improved
dependence on « while maintaining the same dependence on €.

4 Zeroth-order algorithms for stochastic minimax problems

We now consider the stochastic minimax problem (2), under the availability of a stochastic
zeroth-order oracle satisfying Assumption 2 or Assumption 3. This scenario is more practical
in the context of zeroth-order optimization, as often times, we are able to only observe noisy
evaluations of the function [4, 14]. Motivated by our analysis of the deterministic case, we
now design and analyze the stochastic versions of ZO-GDA and ZO-GDMSA.

We first consider stochastic version of ZO-GDA, which is named ZO-SGDA and presented
in Algorithm 3. Under Assumption 2, the main difference between Algorithm 3 and its
deterministic counterpart (Algorithm 1) is in the choice of mini-batch size in the zeroth-
order gradient estimator. As opposed to the deterministic case, where the mini-batch size is
independent of ¢, in this case, we require a mini-batch size that depends on €. Furthermore,
due to the stochastic nature of the problem, the mini-batch size also depends on the noise
variance parameter 2. However, under Assumption 3, it suffices to have the batch size to be
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the same as in the deterministic case—this leads to the rate improvement. The complexity
result corresponding to Algorithm 3 is provided in Theorem 3.

Algorithm 3 Zeroth-Order Stochastic Gradient Descent Ascent (ZO-SGDA)

Initialization: (xq, y), step sizes (1, 172), iteration limit § > 0, smoothing parameters 1 and 17. Indices
sets M and M.
fors =0,...,S—1do

X1 < Xs — 11 Wll‘ ZieMl Gy (XSs Vs> Ulis Et) withuy; ~ N0, 14))

Ys+1 < Projy [ys + nzﬁ YieMy Huy (s, vs, w24, Si)} with uy ; ~ N(0,1g4,)
end for
Return (x1, y1), ..., (x5, ¥s)-

Theorem 3 Lete € (0, 1). Then

1. Under Assumptions 1 and 2, by setting the parameters ny, N as in (11), setting S, i1, 2
as in (12), and setting | M| = 4(dy + 6)(c} + e 2, [Ma| = 4(d2 + 6)(05 + 1)e 2,
Z0O-SGDA (Algorithm 3) returns iterates (x1, y1), - .., (xs, ys) such that there exists an
iterate which is an e-stationary point for g(x) = maxyey f(x, y). That is, ZO-SGDA
(Algorithm 3) returns iterates that satisfy minge(1, . s) E(||Vg(x5)||%) < €2. Moreover,
the total number of calls to the stochastic zeroth-order oracle is given by Kszp =
S(IMi| + IMa]) = O (d1of + droy)e™).

2. Under Assumptions 1, 2 (only the unbiased part) and 3, by setting |M1| = p1(d; + 6),
IMa2| = pa(dy + 6) and setting 1 = O(plﬂd]_3/2) and )y = O(p2Ed2_3/2), with other
parameters remaining the same, the conclusion in Part 1 holds. In this case, the total
number of calls to the stochastic zeroth-order oracle is given by Kszp = S(|M1]| +
IMa]) = O (prdy + pada)e ).

Remark 3 Under Assumption 2, the e-dependence of Algorithm 3 is the same as the first-
order counterpart considered in [26]. However, under Assumption 3, the e-dependence is
improved and is the same as the deterministic case.

The stochastic version of Algorithm 2 is named ZO-SGDMSA and presented in Algo-
rithm 4. Its oracle complexity result is provided in Theorem 4.

Algorithm 4 Zeroth-Order Stochastic Gradient Multi-Step Descent (ZO-SGDMSA)

Initialization: (xq, yo), step sizes (11, 12), iteration limit for outer loop S > 0, iteration limit for inner loop
T > 0, smoothing parameters j+1 and p5. Indices sets M| and M.
fors=1,...,S—1do
Set yo(xs) < ys
fort=1,...,T do
(i) < Projy [ 3r—1(xs) + 12 (1l ety Hug (e i1 (i), i, )] with iz ~ N0, 1gy)
end for
Ys+1 < y1(Xs)
Kol < X5 = 1] Liem, Cuy (s Va1, uni &) with g ; ~ N(0, 1gy)
end for
Return (x1, y1), ..., (x5, ¥s).
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Table 2 Details of the datasets

(18] Dataset Samples Features T/F ratio
A9A 200 123 1:3
Mushroom 100 22 1:3
W8A 100 300 1:3
Colon-cancer 200 500 1:3

Theorem 4 Let e € (0, 1). Then,

1. Under Assumptions 1 and 2, by setting n1,n2 as in (13), S, 1, no2 as in (14), and
setting [IMi| = 4(dy + 6)(0f + De 2, [Ma| = 4(d> + 6)(05 + 1)e 2, Z0-SGDMSA
(Algorithm 4 ) returns iterates (x1, y1), . . . , (X5, ys) such that there exists an iterate which
is an e-stationary point for g(x) = maxycy f(x, y). Thatis, ZO~-SGDMSA (Algorithm 4)
returns iterates that satisfy minge(1,... sy E(|V g (xs) ||%) < €2, Moreover, the total number
of calls to the stochastic zeroth-order oracle is given by, Kszo = S|IM1|+ T S|M»| =
O(K6_4(d10'12 + Kd20'22 log(e_l))).

2. Under Assumptions 1, 2 (only the unbiased part) and 3, by setting |M1| = p1(d) + 6),
IMa| = pa(dy + 6) and setting | = O(p1€d;3/2) and py = O(pzﬁd;yz), with other
parameters remaining the same, the conclusion in Part 1 holds. In this case, the total
number of calls to the stochastic zeroth-order oracle is given by, Kszp = S|M1| +
TS| Ma| = Olic(prdy + kpada log(e~1))e2).

Remark 4 Similar to the deterministic case, we improve the dependence of the oracle com-
plexity on «. The dependence on € and dimensionality remains the same. We emphasize that
the use of multiple steps in the ascent part, leads to the improved dependency on k over
Algorithm 3.

5 Numerical results

We now compare ZO-SGDA and ZO-SGDMSA with their first-order counterparts (i.e., SGDA
and SGDMSA) on the distributionally robust optimization problem [37]. For simplicity, we
present the formulation of the problem in the finite-sum setting as:

n
min max Zyi&(X) —r(),
i=1

whereY = {y e R" | Y_'_, yi = 1, y; > O} isthe probability simplex; r(y) = 10 Y"/_; (yi—
1/n)? is a divergence measure regularizing derivations from uniform distribution; ¢; (x) =
Fi(fax, 51, 20)) where f1(x) = log(14x), f>(x) = log(1 +exp[—z; (xs1)1), (51, 2;) is the
feature and label pair of a sample i in the dataset. It is easy to see that the above problem is a
nonconvex-strongly concave minimax problem of the from (1) with d; = d, d» = n. For the
tuning parameters, motivated by our theoretical results, we set the batch size | M| = d; /€>
and (M| = a’z/e2 with € = 0.01. For ZO-SGDA, we choose n1 = 7, = 0.01, and
for ZO-SGDMSA, we choose 1 = 0.001 and 1, = 0.01. For zO-GDA and ZO-SGDA,
according to Theroems 1 and 3, we chose

= 1.56d1_3/216_2 Uy = 1.5€d2_3/2K_2.
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Fig.1 Performance of ZO-SGDA and ZO-SGDMSA in comparison to their first-order counterparts. The results
in the four rows respectively correpond to the following datasets: A9A dataset, Mushroom dataset, W8A dataset
and Colon Cancer dataset. The results correspond to average over 500 trails
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For ZO-GDMSA and ZO-SGDMSA, according to Theorems 2 and 4, we chose

32

i = 1.5ed; > py = 1.5¢712d; e,

For our tested problems, we have 3 = 10 (see, for example [64]). The n and w» in the
above equations are usually at the order of 107> to 10~°. For SGDA and SGDMSA, we choose
the same stepsize as ZO-SGDA and ZO-SGDMSA and set | M| = 1/€% and [M>| = 1/€2.
We stop the iteration when ||[Vg(xs)|l2 < €, based on our theoretical analysis. We test
our algorithms on the following datasets from UCI ML-repository [18] and LIBSVM [12]:
A9A,> Mushroom,> W8A* and Colon-cancer gene expression dataset.” In order to perform
distributionally robust optimization, we sample the dataset such that the positive and negative
label ratio is 1:3. Details of these datasets are provided in Table 2. All the experiments were run
on Google Colab Python 3.5 Notebook. We also remark that we cannot compare empirically
to [27] as they consider constrained minimax problems. In Fig. 1, we plot the value of the
objective versus iteration number and the value of gradient size versus iteration number. We
find that the proposed zeroth-order methods perform favorably to their respective first-order
counterparts in terms of both the objective value and the norm of the gradient of the function
g, as measured by iteration count. It should be noted that to obtain this comparable behavior,
the zeroth-order method uses a mini-batch of samples that is proportional to the dimension
(recall our choice of |[M || and |M3|) above) in each iteration, which results in the number
of calls to the zeroth-order oracle of the order as illustrated in our theoretical results.

6 Conclusions

In this paper, we designed and analyzed zeroth-order algorithms for deterministic and stochas-
tic nonconvex minimax problems. Specifically, we considered two types of algorithms:
zeroth-order gradient descent ascent algorithm and a modified version of it with multiple
ascent steps following each descent step. We obtained oracle complexities for both algo-
rithms that match the performance of comparable first-order algorithms, up to unavoidable
dimensionality factors. Our orcale complexities are better than that of existing methods
under the same assumptions. Future works include to explore lower bounds for zeroth-order
nonconvex minimax optimization problems, and to explore structural constraints to obtain
improved dimensionality dependence in our results.

Data availibility The datasets analysed during the current study are available in the UCI and LIBSVM reposito-
ries, [https://archive.ics.uci.edu/ml/datasets.php, https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/].
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A Technical preparations

In this section we present some technical results that will be used in our subsequent conver-
gence analysis. First, we need the follow elementary results regarding random variables.

Lemmal - For i.i.d. random (vector) variables X;, i = 1,..., N with zero mean, we
have E(| % SN Xi13) = ~E(1X113).
— For random (vector) variable X, we have E(|X — EX|3) = E(IX|3) — (IEX|3) <
E(I1X13) and |IEX |3 < E(| X13).

The following results regarding Lipschitz and strongly convex functions are also useful.
Lemma2 (Lemma 1.2.3, Theorem 2.1.8, Theorem 2.1.10 in [38])

— Suppose a function h is Ly, gradient-Lipschitz and has a unique maximizer x*. Then, for
any x, we have:

1 Ly
mnwu)n% < h(x*) —h(x) < 7||x—x*||%. (15)

— Suppose a function h is tj, strongly concave and has a unique maximizer x*. Then, for
any x, we have:

T 1
=l = x* 13 < h(x*) — h(x) < =— VA3 (16)
2 27y,

The following lemmas are from existing literature and we omit their proofs.

Lemma3 (Lemma 4.3 in [26]) The function g(-) := maxyey f(-,y) is Ly := (£ 4 «{)-
smooth with Vg(x) = Vi f(x, y*(x)). Moreover, y*(x) = argmaxyeyf(-, y) is k-Lipschitz.

Lemma4 [40] f.(x) = Ey f (x + pu) is a convex function, if f(x) is convex.

Lemma5 (Theorem 1 in [40]) Under Assumption 1, it holds that

2
"
| fun (X, ) — f(x, )] < 72&12, Vx e RNy e ).

Lemma 6 (Lemma 3 in [40]) Under Assumption 1, it holds that

IV fu, (s 9) = Ve Fx, I3

IA

“T%e%dl +3° 1Yy fun (2, y) = Vy £ (x93
< %%ez(dz +3)%.
Lemma 7 (Lemma 4 in [40]) Under Assumption 1, it holds that
IV £ Geo D5 < 201V fuy Ge W5 + i (dr +3)3 /2.

Lemma 8 (Theorem 4 in [40]) Under Assumptions 1 and 2, we have

Eu IIG iy (x, vy, w3 < 2(dy + DI Vi f(x, WIS+ uie?(dr +6)°/2,
Eur | Hyy (x, v, w2) 13 < 2(da + DIV £ (x, )13 + 136%(da + 6)* /2.
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Lemma 9 [6] Under Assumptions 1 and 2, we have

ue?
Eu el Gy vy, w1 O3 = (1 +6)° +2[ IV . )1 + of | + 4.

1294
Eun | Hp (v, v, w2 )15 < == “+ 6 +2[ IV, £ (e 1B + 03| (@ +4).

We now bound the size of the mini-batch zeroth-order gradient estimator (8).

Lemma 10 Under Assumption 1 and choosing q1 = 2(d1 + 6), g2 = 2(d, + 6). For any
X € Rdl,y € ), we have

Euy o Gy (x, v, uy, [q1])||2 < 3IVa f @, M5 + 1l (dr +6)°,

17
Eun o | Hyo (5, v, 2o 13 = 31V, £ (e W2 + 12€2(ds + 6)°. an

Proof Since Ey, , Gy, (x, y, u1,1q;)) = Vi fyu, (x, y), we have

Eul[ql]”GHl(x Y, Ul,[q] )”2
= Eul[ql]”Gul(x Vi u1g) — Va fu, (x, y)||2 + I Vi fu, (x, y)||2
" u|||GM|(x y,u1)—fom(x Y)||2+||fou1(x )’)”2

< % Eu Gy (5. v, )1+ 20V £ VI3 20V iy (5 3) = Vi £ 1B
Cpdi+3° | ple(d+6)°
< WI*‘” 1V £ G DI + 20V G )3 + SELGED 107,

where the second equality is due to Lemma 1, and the last inequality is due to Lemma 8.
Thus, the first inequality in (17) is obtained by noting g1 = 2(d; + 6). The other inequality
can be proved similarly and we omit the details for succinctness. O

A similar result can be obtained for the stochastic zeroth-order gradient estimator (9).

Lemma 11 Under Assumptions 1 and 2, for given tolerance € € (0, 1), by choosing |M| =
4(dy + 6) (07 + 1)e ™2, IMa| = 4(da + 6)(05 + 1)e 2, for any x € RY, y € V), we have:

Eupny iaa, 1G s (, y,uM.,SMI)Ib 3V f(x, y)||2+91(6 1),

18
Eungy eng, 1 Hia (. s trys En) I3 < 31V, Fra )3+ 02(e, ). )

where 01(€, 1) = €2/2 + p32(dy + 3)%/2 + p3e%(dy + 6)%€?/8, and 01 (e, j12) =
€2/2 4 3 (dy + 3)3 /2 + 303 (dy + 6)%€?/8.

Proof Since Eng,uMl G, (x, y,upmy, Ermy) = Vi fu, (x, y), we have

Een, e, 1Gpu 6, vs tatys €13
= Bty g, 1G e 6 vty €)= Vi frg 6 DG + Vs fiy O, 113
= mnrBeLun G (3, w1, O3 + Vi fiuy (o, 913
< [ @+ o +2[||v Fe B +of @+ 4]
2V, fO I + 170 +3)°)2
< ALV f G0 + 20V f (v, y)n2

2(d+4
“‘Ml)‘“‘ 2R +3)32+ 2‘M”(dl +6)3,

where the second equality is due to Lemma 1, the first inequality is due to Lemmas 9 and
6. Substituting | M| = 4(d; + 6) (012 + De2 proves the first inequality in (18). The other
inequality can be proved similarly and we omit the details for succinctness. O
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The following result shows that V, f,, (x, y) is Lipschitz continuous with respect to y.

Lemma 12 Under Assumption 1, for any x € R, yi, v, € Y, it holds that

IV fruy (6, y1) = Vi fuy (e, y2)ll2 < €yt = y2ll2.
Proof Following the definition of f,,, Assumption 1, and Jensen’s inequality, it holds that
IV fruy (5 y1) = Vi fuy (x, y2) 12
= [|Bu; Vi f (x + prmr, y1) — Euy Vi f (X + p1u, y2) |2

< B IV f(x + g, y1) — Vo f(x + wrug, y2)ll2
< Ly1 — y2ll2,

which proves the desired result. O

We now present the corresponding results with the Strong Growth Condition in Assump-
tion 3.

Lemma 13 The variance of the mini-batch stochastic gradient under strong growth condition
is bounded by

2
| = IV f @ 0IE < plVaf o B,

{ [Mil
E| o X VaF(xv.6)
iV ) (19)
| = IV @I < VS e IB.

{ [Mo]
fder £ VoF @y &)

Proof Using Cauchy Schwartz inequality we have:

| M| 2
e X Vs 0| = MBIV G 01
= EIVef (v, ©)13
< IV F I3 < prlI Ve f e I3,

where the last inequality is based on [ M| > 1. The other inequality can be proved similarly.
]

Lemma 14 (ZO Gradient Under Strong Growth Condition) Under SGC, by choosing | M| =
p1(d1 + 6) and | Ma| = pa(da + 6), we have

Een, upa, |Gy O, ystiany s Em) 5 < 31V £, 0I5 + 01 (1, p1)

20
Eepayina, | oo (60 9, 0t Er) 12 < 31V, £ 0IE + 0202, 020, )

- Ml 2 22 3 13
with 01 (i1, p1) = ZHE(dy + 6) + uil*(dy + 3)°/2 and 02(u2, p2) = J24°(d2 + 6) +
130%(dx +3)%/2.

Proof Since Eng,uMl Gu (x,y, upy, Epmy) = Vi fu, (x, y), we have

EEMl,uMl ”G/u (X, Y, UMM, EM|)”%
= Eepg, g, Gy 6 Vs tadys 64) = Vi fiy 06 5 + 1V fy (6, 0113

< i Eeran 1G ey (6, v, w1, )3+ 1Vx fuy (6, 9113
#}L2(d, +6)

< RNV f (v, O3 + P +2||v2x2f<x,y>||2+ulez<d1 +3)%/2
02(d+6
< 2D 1Y, £, ) + 20V, £ I + GG 4 202 4332,
where the last inequality follows from Assumption 3. By using M| = p1(d1 + 6), we
proved the first inequality of (20). The other inequality can be proved similarly. O
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B Convergence analysis of Z0-GDA (Algorithm 1)

We first show the following lemma.

Lemma 15 Assume {(xs, ys)} is the sequence generated by Algorithm 1. By setting 1y =
1/(62), the following inequality holds:

Ely* (o) = wl3 = (1= 170120 )Ely (o) = woil3 + 0w, @D
where 0(12) = pu3d>/6 + 3 (dr + 6)3/36.

Proof According to the updates in Algorithm 1, we have

17 = IProjy (ys—1 + m2 Hyuy (K51, Ys—1, #2,1g1) — ¥* (s—1)) 13

< Ny Ges—1) — Ys—1 12 4 22 (Hyuy (X5— 1, Ys—1, U2 (go])s Ys—1 — ¥*(Xs—1))
+7)% ”H/tz (X5—1, Ys—1, u2,[q2]) ”%

y* (xs—1) = ¥s

For a given s, we use E to denote the expectation with respect to random samples u2, (4,
conditioned on all previous iterations. By taking expectation to both sides of the above
inequality, we obtain

Elly* (xs—1) — ys1?

< Elly* (x5—1) — ys—1 ”2 - 27}2<_Vyfu2(xs71, Vs—1), Ys—1 — ¥ (x5-1))
F03EN Hyuy (s—1, Ys—1, u2,1o) 13
= E”y*(xs—l) — Ys—1 ”2 - 27}2[fu2 (x5-1, y*(xs—l)) - f/Lz(xs—la Ys—1)]
+03 (31, £ (o1, vo-D) 1B + 132 + 6)°)
< Elly*(rs—1) — ys—1lI> = 2m(f (s—1, Y* (Xs—1)) — f(Xs—1, Ys—1)) + p3damat
+03(6(f (xs—1, y*(x5-1)) — f (51, Ys—1)) + n3u3€(ds + 6)°
= Elly* (xs—1) = Ys—111? — (f (rs—1, y*(x51)) — f (=1, ¥5—1))/(66) + 0(142)
< Elly G0 = vt 1P(1 = 157 + ek,

where the second inequality is due to the concavity of f,, (x;—1, -) (see Lemma4) and Lemma
10, the third inequality is due to Lemmas 2 and 5, the equality is due to > = 1/(6£), and the
last inequality is due to Lemma 2. This completes the proof. O

We now prove the following upper bound of E||y; — y*(xy) ||%.

Lemma 16 Consider ZO-GDA (Algorithm 1). Use the same notation and the same assump-

tions as in Lemma 15. Denote &5 = ||ys — y*(x5)||% and set ny as in (11), and
yi=1- ﬁ + 14402307 < 1 — T < 1 (22)
1t holds that
s—1 s—1
Ess < y*ESo+a1 Yy ' TEIVeGi DIz +60 Yy v, (23)
i=0 i=0
where
9 5 3 1
= e DA 2 0 T i+ 07+ 20(ma). @2 = emag e
24
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Proof Define the filtration F, = {xs,ys,xsfl,ysfl,...,X1,y1}~ Let &5 = (uiierqs

uielqr)), Cs1 = (81, &2, - . ., &). Denote by E taking expectation w.r.t 5] conditioned on F
and then taking expectation over Fy. Since k > 1, using the Young’s inequality, we have

ESs = Elly*(xs) — ys3

< (1+ sty JEIY G = w3 4 (120126 = D)LY () = y* (o013

< (1= 50— BBy (xe—1) — ysl3 + 24kEy* (x5) — y* (e 13 + 20(112)

< (1= 50)Elly* (xs-1) = ys—113 + 243Ellxg — x-1 13 + 20(12)

= (1~ ) B8y + 243 FEN Gy (r— 1, Y- 1. w11 DI3 + 20(12)

= (1 — 5 )E8—1 4+ LENG, (xg—1, ys—1. ur1g,DII3 + 20(12),

(25)

where the second inequality is due to (21), the third inequality is due to Lemma 3. From
Lemma 10, we have

Bur o 1G g (es—1, Ys—1, u g3
< 3EVi £ (xs—1, ys—DII3 + n32(d +6)° (26)
< 6E[IVg(xs— )13 + 6€2E[y* (xs—1) — ys—1 115 + n3€2(d; + 6)°,

where the second inequality is due to Assumption 1. Combining (25) and (26) yields (23) by
noting (22). m]
Now we are ready to prove Theorem 1.

Proof (Proof of Theorem 1) First, the following inequalities hold:

g(xs+1)
< g(xg) — m(Vg(xs), Guy (s, ys it jq ) + 3Len G iy (x5, ¥, w1, 13

= g(xs) — 771<vxf(xss y*(xg) — fo;u (x5, y*(x5)) + vxfm (x5, y*(xg)) — fom (x5, ys)
H Vi (s 905 G (s Yoo w1, 1uD) + 3Lt Gy G v, 1) 13
. Len?
< g(xs) + IVa f (xg, y*(x5)) — Vi fuy (x5, y*(xs))||2/2Lg + Gy, (x5, s, w11 DI

L
H Vi fuy (55, ¥ (56)) = Vi fuy (g, ¥ 12/ Lg + Z5L Gy G, v w1, 1,11
—M (fo;L21 (x5, ¥s), G;L] (x5, ¥s, ul,[ql])) + %Lgn%”Gm (x5, ¥s, ul,[ql])”%
< g(xg) + %glly*(xx) — Vs ||% - nl(vxf;m (x5, ¥s), G;/.] (x5, ¥s, ul,[qu))

2
1 LGy (o, Y5 w g3 + 275 € (di +3)°,

where the first inequality is due to Lemma 3 and the Descent lemma, the second inequality
is due to Young’s inequality, and the last inequality is due to Lemmas 6 and 12. Now take
expectation with respect to 1 4] to the above inequality, we get:
2
MENVi fu (i, 39113 < Eglny) — Eglatsqn) + £ Elly*(xs) = w3 o
2
H17 LB Gy (g, ys w13 + g7 €2(d1 +3)°.

From Lemma 12, we have
MENVy fu, s, Y EDI3 < 2mENVe fu, Gisy YOI3 +2m € lys — y* ()13 (28)
From Lemma 6, we have

2
Ny 22

S+ 3)3 (29)

MIVE)I3 < 2011V fu, (g, y* )3 +
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Combining (26), (27), (28), (29) yields,

MENVg(x)I3
< 4Eg(xy) — 4EgCrgsn) + (4 +4m )y (o) — wlE + 2 +3)°

(30)
232y +3)° + AL [ GBIV (I3 + 6N () — I3 + w3 (e +6)°]
= 4Eg(xs) — 4Eg(xo11) + 247 LeElIVE(xo) |3 + 01E8s + 62,
where
4£2 2 2 3
01 :L—+4m£ +24771L 0 <4044yt +24n1E (k +1), (31)
8
and
ui niud
0, = L—lez(dl +3)3 + Tlez(dl +3) 4 dAnTLopit*(d) +6)°
8
mu
< wdedy +3)° + =L (d) +3)° + 4t + DE Py +6)°, (32)
where we have used the definition of Lg := £(x + 1). Taking sum over s =0, ..., S to both
sides of (23), we get
S s—1 S s—1 .
ZE(S < Zy ESo+a1 )y Y v TEIVEi-DIZ 00 Yy v T (33)
s=0i=0 s=0i=0
Moreover, from (22) it is easy to obtain
N S s—1 )
Doyt 36k, DY T <36k(S+ 1), (34)
s=0 s=0i=0
and
S s—1
DY IVl < 36KZE||Vg(xs>||%. (35)
s=0i=0 s=0
Substituting (34) and (35) into (33), we obtain
S S
> B8y < 36kESo + 36k Y E[ V(x5 + 36Kk60(S + 1). (36)
s=0 s=0
Now, summing (30) over s =0, ..., S yields
m Yo EIVe(xo 13
= 4Eg(x0) — 4Eg(xs1) + 247 Ly Yo EIVE (I3 + 01 Lo B8, + (S + D62 (35

< 4Eg(x0) — 4Eg(xs 1) + 2402 Ly Y0 EVg(xy)|2
+01[36KESy + 36k 35_o EIVE(xs)[13 4 36K80(S + 1] + (S + 1)6>

where the second inequality is from (36). Using (31), (24) and (11), it is easy to verify that

108 108 54
36k610 < 3% + 7 + 2% 1210 m < 0.021ny,

which together with L, := (« + 1)£ yields
36k01a1 + 247]%Lg < 0.021n; 4 0.000317; = 0.0213n;. (38)
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Combining (37) and (38) yields

S
0.9787 E|IV 2
n1 S;) “ g(xs)”z (39)

< 4Eg(xp) — 4Eg(x541) + 01[36KESy + 36K00(S + 1] + (S + 1)65.

Dividing both sides of (40) by 0.9787#5(S + 1) yields

s
1 2 47 36K0;E8o 36K0160 0y

S+1 Z%)E||Vg(x5)||2 < oo 7D T 097 s T oomy T oomsTy e (40D
s=l

where A, := g(xo) — min, e g(x). Now we only need to upper bound the right hand
side of (40) by €2, and this can be guaranteed by choosing the parameters as in (12). This
completes the proof of Theorem 1. O

Remark 5 Note that the term 8¢y appearing in (40) is defined as 8y := ||yo — y*(x0) ||%. Under
the assumption that the set )’ is bounded, this term could be upper bounded by D?. This
is the only place in the proof where we require the constraint set ) to be bounded. In the
unconstrained case, when ) := R, having 8 being bounded away from infinity is dependent
on the initial values (xo, yo) supplied to the algorithm. In fact, by defining 4 (y) := f(xo, y),
we know that y*(xg) = argmaxyeyh(y). Since f(x, -) is T-strongly concave for all x € R4,
we know that /(y) is T-strongly concave. By Lemma 2, we have

1 1
llyo = y*(xo)ll < Z VRGO = Z1IVy f o, yo)ll-

Therefore, &p is upper bounded by a constant depending only on x¢ and yo. Indeed this
scenario is common in the complexity analysis of optimization algorithms [39].

C Convergence analysis of Z0-GDMSA (Algorithm 2)

First, we show the following iteration complexity of the inner loop for y in Algorithm 2.

Lemma 17 In Algorithm 2, setting no = 1/(60), ur, = (’)(K’l/zdz_S/ze) and T =
Ok log(e™Y)). For fixed x; in the s-th iteration, we have E||y* (x;) — yr (xx)||% <é

Proof According to the updates in Algorithm 2, we have

lly* (xs) — yig1 (x|
= (IProjy, (v (x5) + 12 Hyy (x5, 31 (X)), U2,1g2) — Y* (x))113)
< [ly*(xe) = yi ()12
+2772<H,u2 (x5, yr(x5), U [g21s Yt (x5) — y*(x5)) + 77§||H/L2 (x5, yr(xs), Uz (g1 ”%
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For a given s, denote by E taking expectation with respect to random samples u> 4, condi-
tioned on all previous iterations. By taking expectation to both sides of this inequality, we
obtain

Ely*(xy) — vt (x) 112

< ENy*() — v Gl — 2m2(=Vy fup (ss 30 (5)), ¥ (x5) — ¥ (x))
+03EN Hyy (x5, 31 (x5), w2, 1) 13

< Ely* () — v ()12 = 202(=Vy fup (s 31 (x5)), ¥1 () — ¥ (x5))
+13 (319, £ G, 3 DI + 1362 +6)°)

< Elly*(x5) — yz(xs)||2 - 2”2[.fu2(XSs y*(x)) — fuz(xm Y (xs))]
+13 (31V, S (ks 31 DI + 1363 +6)°)

< Ely*(x5) — v () 12 = 2ma(f (g, ¥ (x5)) — f (s, ¥e (x5))) + 2p3domat
+03 (6L (f (x5, y*(x)) — f(xg, y1(x5)))
0307 (d2 +6)°

= Ely*(xy) — y (o)l = (f (s, ¥ (x0)) — (s, 31 (x0)))/(60) + p3da/3 + u3(dz + 6)3 /36

= Elly* (o) = 30 () 1P (1 = 157 ) + 13d2/3 + i3 (d2 + 6)°/36,

where the second inequality is due to Lemma 10, the third inequality is due to the concavity
of fu, (xy, ) (see Lemma 4), the fourth inequality is due to Lemmas 5 and 2, the equality is
due to np = 1/(6£), and the last inequality is due to Lemma 2.

Define § = 12£(/L%d2/3 —+ ;L%(dz +6)3/36) /7. From the above inequality, we have

BNl (x0) = 3G 1P = 8 = ElY () = 31 Go)lP = (1= 73 )
< Elly*(xs) = yolxs)lI? = 8)(1 - ﬁ)t
4 t
< Elly* () = 3o0)IP(1 = 15) = D (1- 1) -

where the last inequality is due to Assumption 1. Now it is clear that in order to ensure that
Elly* (xs) — yr ()12 < €2, we need T = O(x log(e 1)) and 2 = O(c~'2d; %) 0

We are now ready to prove Theorem 2.

Proof (Proof of Theorem 2) First, the following inequalities hold:

8(Xs+1)
< g(xg) — M (Veg(xy), Gul (X5, Ys+1, ul,[ql])) + %Lgn%HGm (Xs, Ys+1, ul,[ql])”%

= g(xs) — m<fo(xs, V(X)) = Vi fug (s, Y5 (x)) 4 Vi fruy (s, Y5 (X5)) = Vi fr (s, Ys41)

+fop.1 (X5, Ys+1)5 G/L] (X5, Ys+1, ul,[q11)> + %Lgr/%”Gm (Xg, Ys+1, ul,[qﬂ)”%
Lon?
< g(xg) + Vi f(xs, y*(x5)) — VXflll (x5, y*(xs))||2/Lg2+ 5171 ”Gul (X5, Ys+15 ul,[q]J)”2
L
F Vi fry sy ¥*(5)) = Vi fuy (s Yo DIP/Lg + 111Gy (g, Ysi1 ) 12

=11V Sy s o1)s Gy (s Vo1 W1, 1q11)) + FLen? Gy (s, st ur g 113
< g(xs) + [%”y*(xs) — YVs+1 ”% - nl(vxful(xm Vs+1)s G;Ll (Xs, Ys+1, ul,[m]))

2
M7

H1i Lgll Gy (s, Yot un1gnD 13 + 775 € +3)°,

where the firstinequality is due to Lemma 3, the second inequality is due to Young’s inequality,
and the last inequality is due to Lemmas 6 and 12. Now take expectation withrespectto a4,
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to the above inequality, we get:

MENVy fiu, (s, vs+ 013 -
< Eg(xs) — Eg(xss1) + £ Ely*(xs) — ymn2

i LeEI Gy, (xs, ys+1, u1 DI+ 4 -02(d) +3)° (41)
< Eg() — EgCronn) + LBy (1) = 3o B
+17Lg (31 F 5o 30l 1 +6) Nt A +3),

where the second inequality is due to Lemma 10. From Lemma 6 we have
EIIVx f (oo Yo D15 < 2E0 Vi fuy (s, s D3 + 17 € (dr +3)*/2. (42)

Combining (41) and (42), and noting n; = 1/(12L,), we have

EllVi f (xg, ys+DII3 < 48LgLEg(xs) - Eg(xf+1)]z+ 4802 y* (xy) — ys4113 @3)
+13u3e2(d) + 3)° + i (dr + 6)/3.

It then follows that

ElIVg(xo)li3
< 2E[|Vxg(xs) = Vi f (g, Y5 D5 + 2E Vi £ (x5, vt D13
< 20%E[|y*(xs) = ys1113 + 2EN Vi f (xs, ysD 3 (44)

=< 96Lg Eg(xy) — Eg(xs+l)] + 9852E||y*(xs) - ys+l||%
+26p102(dy + 3) + 2u3e*(d) + 6)° /3,

where the second inequality is due to Assumption 1, and the last inequality is due to (43).
Take the sum over s = 0, ..., S to both sides of (44), we get

N
o = EIIVE )3 < ot — glusi] + 25 Z Elly* () = w15 45
+26u30(d) + 3)° + 2ute*(d; + 6) /3.

Denote A, = g(xo) — min, pa (g(x)). From Lemma 21, we know that when T =
O(k log(e™1)), we have E||y*(x;) — ys11]I> < €2 (note that ys41 = yr(x,)). Therefore,
choosing parameters as in (14) guarantees that the right hand side of (45) is upper bounded
by O(e?), and thus an e-stationary point is found. This completes the proof. O
D Convergence analysis for Z0-SGDA (Algorithm 3)

We first show the following inequality.

Lemma 18 Assume {(xs, y5)} is the sequence generated by Algorithm 3. By setting n» =
1/(60), the following inequality holds:

Ely* (o) = sl < (1= 1/120 ) By om0 =y B + Gz, @46)

where 0(ua, €) = u3da/3 + p3(da + 3)%/72 + u3(da + 6)2€2/576 + €2 /7242,
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Proof According to the updates in Algorithm 3, we have

12 = IProjy, (V-1 + 12 Hyuy (Xs— 1, Vs—1, Unys Eaty) — ¥ (=1 )13
= ”y*(xsfl) — Vs—1 ”2 + 2772<Hp_2(x5717 Vs—1,UM;, SMz)a Vs—1 — y*(xxfl»

12 Hyy (Xs—1, Ys—15 Uty s Exta) 13-

”y*(xs—l) — Vs

For a given s, denote by E taking expectation with respect to random samples # a4, , Ear,
conditioned on all previous iterations. By taking expectation to both sides of this inequality,
we obtain

Elly* (xs—1) — yslI?

< Ely*(rs—1) — Ys—1 112 = 202(=Vy fup (ts—1, Ys—1)s Ys—1 — ¥ (x5-1))
+n%E”Huz(xs—la Ys—1, UM>, %_Mz)”%

< Elly*(x5—1) — Ys—1 11> = 2120 fuuy (ts—1, Y* (X5=1)) — fuup (Xs—1, Ys—1)]
+13 (317, £ (1, v 1)1 + €2))

< ENy*(es—1) — et 12 = 2m2(f (=1, y*(X5—1)) — £ (=1, ¥s—1)) + 2u3danal
+13(6L(f (x5—1, Y* (x5—1)) — f(xXs—1, ¥s—1)) + n302(€, p2)

= Elly* (xs—1) = Ys—1 17 = (f (ts—1, y*(x5-1)) — £ (xs—1, Ys—1))/(68) + 0112, €)

= Elly* () = v (1= 75) + ez, ),

where the second inequality is due to the concavity of f,, (x;—1, -) (see Lemma4) and Lemma
11, the third inequality is due to Lemmas 2 and 5, the equality is due to 2 = 1/(6£), and the
last inequality is due to Lemma 2. This completes the proof. O

We now prove the following upper bound of E||y; — y*(xs) ||%.

Lemma 19 Consider ZO-SGDA (Algorithm 3). Use the same notation and the same assump-

tions as in Lemma 18. Denote §s = ||ys — y*(x.;)ll% and set 0y as in (11), and
y:=1—i+144ezx3n%<1—i< 1. (47)
24k - 144k
It holds that
s—1 s—1
Es; < y'ESo+ar v " TEIVEGi-DIE +60 ) v T (48)
i=0 i=0
where
9 1
o b = a202(€, n2) +20(u2, €), o2 =

8 x 127k (kK + 1)*’
(49)

T 128xk(k + DAE+ 12

Proof Define the filtration F; = {xs, Vs Xs—1y Vs—1s s X1s yl}. Let & = (wpmy, EmM,,

UM, EM,)s Cs) = (81, &2, - .., &s). Denote by E taking expectation w.r.t ¢|5) conditioned on
Fs and then taking expectation over F. Since ¥ > 1, using the Young’s inequality, we have

ESy = Elly*(x,) — I3
= (14 by B i) = 3 + (1420126 = D)y () = v (-1 13

< (st (= 3By @s1) = ysll3 + 24KElly* () = y* (-3 + 20(12. €) (50

= (1 — 5 )E8—1 + 24k 2B Gy (K51, Ys—1, oty s Era )3 + 20(12, €)
= (1 — 5 )E8s—1 + LEIG i, (ts—1, Ys—1. Unys Emp)I3 + 20(n2, €),

@ Springer



Journal of Global Optimization

where the second inequality is due to (46), the third inequality is due to Lemma 3. From
Lemma 11, we have

E"/Vll M,y ”G/.L](XS‘ 15 Ys—1, uMla‘§M])||2
< 3E[[Vy f (g1, Js= DIB + 02(€. p2) (5D
< OE|Vg (xy—1)|13 + 6€7E[ly* (xs—1) = ys—13 + 02(€, 112),
where the second inequality is due to Assumption 1. Combining (50) and (51) yields (48) by
noting (47). ]

Similar to Lemma 18, we can prove the following result under the SGC assumption, i.e.,
Assumption 3.

Lemma 20 (Linear convergence rate under SGC) Under the SGC assumption (Assumption
3), we have:

Elly* (xs—1) — yslI* < Elly* (xs—1) — ¥s—1 ||2(1 + 012, p2),

IZK)
where 0(j42, 02) = M2d2/3 + 3“2 (“2 L*(dy +6) + M%Kz(dz + 3)3/2) with ny = &.

Proof The proof is the almost identical to the proof of Lemma 18. The only difference is that
we need to use Lemma 14 instead of Lemma 11. We omit the details for succinctness. 0O

Now we are ready to prove Theorem 3.

Proof (Proof of Theorem 3) We first prove part 1. First, the following inequalities hold:
g(Xs+1)
< 8(x) = M (VE(), Gy (s, Vs Uy €aa))) + 5L Gy O Vs wany s Eaa) 13
= g(xy) — n1<fo(xx, y*(xs)) — fom (x5, y* (x5)) + fo;u (x5, ¥ (xg)) — fom (x5, ¥s)
F Vi G 30Dy G G Yoo ity Ea)) + S LGy G, sty 6013
< 8(x0) + IV f (s, 5 () = Vi fiuy (s, y* () 12 /L + LM Gy (s yss tany s Ena) 12

L
+||fo;l.|(xvay (xg)) — fo/“(xn yv)” /Lg g’h ”G}LI(-xS‘v yhuMngl)H
—N1 fouzl (Xg, ¥s), G/L](xsays;u./\/lp‘é;_/\/l] + 5 Lg’]1||G/l.|(xmy.w uM];EM])Hz
< g(xs) + %g“y*(xs) - ysllg —m VX.f[l.](-xSv Ys)» G/,q (x5, ¥s» Upm,, %'Ml»

+M LGy (s Vs oty s Em)IE + 4; (dy +3)3,

where the firstinequality is due to Lemma 3, the second inequality is due to Young’s inequality,
and the last inequality is due to Lemmas 6 and 12. Now take expectation with respect to
u pM, 60, to the above inequality, we get:

MENVi fu, (5, y9)II3 < Egxy) — Eg(xsq1) + f Elly*(xs) — ys ||2 )

+17 LgE Gy (s, yss ety Emp)l13 + ﬁzz(dws)?
From Lemma 12, we have
MEN Vi fiuy s, y* )5 < 200EN Vi fiuy (s Y15 4+ 2mllys — y*(xo)ll3. (53)

From Lemma 6, we have

2
Ny 22

3
> (dy +3)°. (54)

MIVEx)I3 < 2011V fu, gy y* )3 +

@ Springer



Journal of Global Optimization

Combining (51), (52), (53), (54) yields,

MENVg ()3 2
2
< 4Eg(x) — 4Eg(xor) + (45 +4m 2 )EIY (x) — ol + FLE2(A +3)

> (55)
L1 +3) + 4Ly [6E||Vg<xs>||% + 6CE]y* (x5) = 3 + €a2) |
= 4Eg(xy) — 4Eg(xy41) + 2407 LeE| Vg (x) |15 + 01E8s + 62,
where
402
6 = -+ 402 42407 Lg% < 404 4 02 + 240703 (c 4 1), (56)
g
and

2
0, = "1 62(d +3)% + Le2(d) +3)° + 40T Lge(ua)
< Hle(dl +3)3 + mng(dl +3)3 +4n1(;c + Dle(ur) i L (57)
< w3t +3)° + ML + 3+ r e + DO (23 +3)° + AT
+2171(/c + 1)¢ee?,

where we have used the definition of Ly := £(k + 1). Taking sum over s =0, ..., S to both
sides of (55), we get
S s—1 S s—1
ZE5 < ZySan tar Y Yy TRV +60 Yy Y v (58)
s=0 i=0 s=0i=0
Moreover, from (47) it is easy to obtain
N S s—1 )
Syt <36k, D03y <36k(S + D), (59)
s=0 s=0 i=0
and
S s—1
DY v EIVeGi-nIE 536KZE||Vg(xs>||2. (60)
s=0i=0 s=0
Substituting (59) and (60) into (58), we obtain
s s
> B8y < 36KESo + 36K Y E V(x5 + 36Kk60(S + 1). 61)
s=0 s=0
Now, summing (55) over s =0, ..., S yields
J 2
m > ElIVg(xl3
s=0
= 4Eg(x0) — 4Eg(xs41) + 2407 Lg Z EIVE x5+ 61 Z ESs + (S + 1)62
O s=0
(62)

< 4Eg(x) — 4Eg(xs41) + 2417 L, Z EllVg(xs)I3
s=0

S
+601[36KESg + 36K01 > E||Vg(xs)||% 4+ 36K6p(S + )]+ (S + 1)6a,
s=0
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where the second inequality is from (61). Using (56), (66) and (11), it is easy to verify that

108 108 54
okt < | -—=+ =+ —= < 0.021n1,
K“’“—<3x123+127+4x1210>’“— "
which together with Lg := (x + 1) yields
36Kk0101 + 2477%Lg < 0.021n; + 0.000377; = 0.0213n;. (63)

Combining (62) and (63) yields

S
0.9787n1 3_ EllVg(xy)l3

=0 (64)
< 4Eg(xo) — 4Eg(xs41) + 01[36KESo + 36K80(S + 1]+ (S + 1)6s.
Dividing both sides of (64) by 0.9787#5(S + 1) yields
N
1 2 AYY 366, ES, 36010 0
S+1 ZOE”Vg(xs)”z = o.9787nf(s+1) + 0.978§n11(S(3i-1) + 0.9’;8171701 + 0.97§7m’ (65)
5=

where Ag := g(x9) —min, 4 g(x). Now we only need to upper bound the right hand side
of (65) by O (€?). Note that by the choice of parameters in (12), the right hand side of (65) is
0(€%) + 0(e*). Hence, with € € (0, 1), we get the required result. This completes the proof
of the part 1 of Theorem 3.

We now prove part 2. Denote §; = ||ys — y*(xs)||% and set 1 as in (11), and y is defined
as in (47).

From Lemma 20 we have:

ElLY* 1) = w12 < Bl o) = w2 (1= 135 ) + 8022 p2).

Using Young’s inequality on §;, we have:
1

24k

Following the same way for proving (61), it is easy to show that

o] _
B8y = (1= 5 B0t + S EIGu (ot 3o gy Ea0)) 13 42012, p2).

s—1 s—1

B, < ¥'ESo+ar v TEIVE(ioDIZ +60 Yy

i=0 i=0
in which
= 2 b0 = 202( ) +20( ), oy = !
al_ 128K(K+])4(£+])2’ 0—05292 I'L27p2 QH23p23a2_8X127K(K+1)4'
(66)
Using the above expressions and following the result of (55), we have:
S _
0.9787n1 ) ElIVg(x,)l5 < 4Eg(xo) — 4Eg(xs41) + O1[36¢ES
s=0
+36K60(S + 1)] + (S + 1)6s, (67)
with
g, = (4132/Lg 4+ 24nngz2)
— 2 2
62 = [L(d1 +3)° + T (d1 +3)° + 4 Ll (. p).
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Divide both sides of (67) by 0.9787n1(S + 1), we get

S - [ — —_
1 4A 36k 01 Edg 36k0109 6>

— Y ElIVel; < £ + :

S+1 = 09787 (S+1) 09787 (S+1) 0.9787n;  0.9787m

(68)

According to Remark 5, we know that E§p is upper bounded by a constant. Choosing | =
O(min(1, p1)e(d; + 3)3?), ur = O(min(1, p2)e(d> + 3)*?) , we guarantee that the right
hand side of (68) is upper bounded by O (€2)+ O(e*). Under Assumption 3, since we choose
IM1| = O(p1dy), IM2| = O(p1d>) the total number of calls to stochastic zeroth-order oracle

is (’)(/cs (dip1 + dzpz)e’z). This completes the proof of part 2. O

E Convergence analysis of Z0-SGDMSA (Algorithm 4)

First, we show the following iteration complexity of the inner loop for y in Algorithm 4.
Lemma21 In Algorithm 4, setting my = 1/(60), py = O ~/2d;"*¢) and T =
O(k log(f_l)). For fixed x in the s-th iteration, we have E||y*(xs) — yr (xs)||% < ez

Proof According to the updates in Algorithm 4, we have

¥ (xs) = Ye1 () 12
= (IProjy (v (x5) + m2Hyuy (g, 31 (X5), Uay, Eaty) — V(X))
< ly*(xs) — Y ) 1 4 202 (Hpuy (Xs, 31 (Xs)s U Ay s Ers), Vi (5) — ¥¥(x5))
031 Hyy (s, yi (6s), Aty Ens 13-

For a given s, denote by E taking expectation with respect to random samples # a1,, Ear,
conditioned on all previous iterations. By taking expectation to both sides of this inequality,
we obtain

Elly* (xs) = yrg1 (x5 112

< Elly*(x5) — Yt(xs)nz - 2772<_Vyf//.2 (x5, yi(x5)), ye(x5) — ¥*(x5))
+03El Hyy (s, v (x5)s wrd, s Ent) 113

< Elly*(xs) — e (eI = 2m2(—Vy fiuy (s e (x5)), 31 () — y*(x5))
+03 GBI Vy £ (x5, 3 ()13 + 02(€, 12)

< Elly*(xs) — yeG)I? = 202l fup (s, ¥ (65)) — fun (s, ¥ (55))]
+03BIIVy f (s, (e )3 + 02(€, 112))

< Elly*(xg) — e eI = 2m2(f (s, Y5 (x0)) — £ (x5, ¥ (x5)))
+2u3domal + N3 (6Lo(f (xg, y*(x5)) — f(xg, y1(x5)))
+n302(€, p2)

= Ely*(xy) — 3 (x> = (f (xg, 5 (x5)) — f (x5, y1(x4)))/(60)
+€2/(726%) + p3(dar + 3)3 /72 + 13 (d> + 6)%€? /288

< Iy = v )P (1= 13 ) +€2/(263) + 13z + 3*/72 + ud(ds + 6)%€7/288,
where the second inequality is due to Lemma 11, the third inequality is due to the concavity

of fy, (xs, ) (see Lemma 4), the fourth inequality is due to Lemmas 5 and 2, the equality is
due to n, = 1/(6£), and the last inequality is due to Lemma 2.
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Define § = 12¢(e?/(720%) + pu3(d> + 3)3/72 + p5(d> + 6)*€?/288) /7. From the above
inequality, we have

Ely"(e) = % @)IP = 8 = Ely*(e) = vi1 I = 9)(1 = %)
t
< (Elly*(xy) — yolxs) | — 8)(1 _ fTe)
4 t
< Elly* () = 3o0)IP (1= 15) = D(1- 1) -

where the last inequality is due to Assumption 1. Now it is clear that in order to ensure that
Elly*(xs) — yr (xs)||1> < €2, we need T = O(k log(e ")) and py = O(K_]/zd;yze). O

We are now ready to prove Theorem 4.

Proof (Proof of Theorem 4) We first prove Part 1. First, the following inequalities hold:

g(xs+1)
< g(xs) = n1{Vag(xs), Gm (Xs, Ys+1, UMM, $M1 ) + %Lgn%”Gm (X5, Ys+1s Up;, EM] )”%
= g(xs) — 711<fo(%~, V*(xs)) — fom (x5, Y*(x5)) + fo//.] (g, y*(x5)) — vxfu.] (%55 Ys+1)
Vs fi (s Vo) Gy (s Vbt oy Ea)) + SLemTI Gy G vt a0 13
Lon?
< g(xs) + “fo(x,w y*(xs)) - fo/u (xs, y*(xs))IIZ/Lg2+ g4’h ”Gm (x5, Vs+1, UMy EM])”Z
L
FVa fuy s ¥ (6)) = Vi fuy (s Y DIP/Lg + Z5 Gy G Vst waty s Enap) 12
- <vaI/«21 (X5, Ys+1)s Gul (X5, Ys+1> UM, §M1 )+ %Lgn%”Gm (X5, Ys+1, UM, g./\/l] )”%
< 80+ £ 1" () = Yot ll3 = (Vi fiug (s, Y1) Gy (s Vot waty - E0,)

2
Ll Gy (s Yot s Er) 3 + 475 O +3)°,

where the firstinequality is due to Lemma 3, the second inequality is due to Young’s inequality,
and the last inequality is due to Lemmas 6 and 12. Now take expectation with respect to
u M, , Eam, to the above inequality, we get:

MENVa fuy s )13
< Eg(xs) — Eg(osn) + HEIY*(r) = vt 13
R LGENGy, (e, Yot way - Enn)I3 + o0y +3)? ©9)
< Eg(xs) — Eg(osn) + HEIY () — vyt 13
1L (3IV: £ 0o, 3o DIB + 016 ) + -6 + 37
where the second inequality is due to Lemma 11. From Lemma 6 we have

Ell Vi f (s, ysDII3 < 2BV o, (5. Yo D13 4+ 1362 (dy + 3)3 /2. (70)
Combining (69) and (70), and noting n; = 1/(12L;), we have

BV £ (xs. yeg D2 < 48L8LEg(xs) — Eg )| + 48y (1) — vy 13

(71)
+13u36%(d) + 3)° + 01 (€, pu1)/12.
It then follows that
EllVg(x,)l3
< 2E[|Veg(xs) — Vi £ (X5, Y5+ D3 + 2E[ Vi £ (x5, ys1 )13
< 20%E[ly* (x5) — ys1 113 + 2Bl Vs £ (s ys4D)II3 (72)

< 96L[Eglx,) — Eg(ros) | + 98CENY" (xy) = o1 3
+26170%(d1 + 3)° + 01 (€, p1)/6,
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where the second inequality is due to Assumption 1, and the last inequality is due to (71).
Take the sum over s = 0, ..., S to both sides of (72), we get

s s
| 982
st 2 EIVEG@IE = FrElgCo) — gl + 35 LB @) il g5
+2612¢%(d1 + 3)> + 01 (€, u1)/6.

Denote A, = g(xo) — min, pa (g(x)). From Lemma 21, we know that when T =
O(k log(e™1)), we have E||y*(x;) — ys11lI> < €2 (note that ys41 = yr(x,)). Therefore,
choosing parameters as in (14) guarantees that the right hand side of (73) is upper bounded
by O (€2)+ O(e%). Hence, with € € (0, 1), we get the required result and thus an e-stationary
point is found. This completes the proof of Part 1.

We next prove Part 2. From Lemma 20 we have

By Gr-n) = 3112 < Bl o) = 3o 1P (1 = 537 ) + 802. p2).

12[

Choosing § = ~==p(u2, p2), we have:

Elly*(xs) = v () 12 = 8 < (Elly* () = ye—1(xp) 1> = 8)(1 - m)
t
< Ely @) = oo I2 = 8)(1 = 1)
t t
< Elly* () = oG IP(1 = 157) = D*(1- 1% -
2

In order to ensure that E||y*(x;) — yT(x‘Y)H2 <e“,weneed T = O(k log(e_l)) and yuy =
O(min(1, pg)K*1/2d2_3/26). From (72) and (20) we have

EIVe ()l < 96L [Eg(xs) - Eg(xs+1)] +98C2E | y* (x5) — ys41ll3

(74)
+26u1€%(d1 + 3)* + 01 (11, p1)/6.

Taking the sum over s =0, ..., S to both sides of (74), we get:

s
I
5T g IVexn)l3 < S+1 LE[g(x0) — g(xsy )] + 5 Z Elly* (x) — ys+113 (75)
+26u10%(dy +3)* + 01 (1, ,01)/6

2
Recall that g1 (1, p1) = %Zz(dl +6) + ,ufﬂz(dl + 3)3/2, choosing p1 = (’)(min(l, 01)

ody)~¥ 2) , we guarantee that the right hand side of (75) is upper bounded by O (€4 0.

Hence, with € € (0, 1), we get the required result and thus an e-stationary point is found.
This completes the proof of Part 2. O
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