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Abstract—We propose a distributed deployment solution for a
group of networked agents that should provide a service for a large
set of targets, which densely populate a finite area. The agents
are heterogeneous in the sense that their quality of service (QoS),
modeled as spatial Gaussian distribution, is different. To provide
the best service, the objective is to deploy the agents such that their
collective QoS distribution is as close as possible to the density
distribution of the targets in the sense of the Kullback-Leibler diver-
gence (KLD) measure. We propose a distributed consensus-based
expectation-maximization (EM) algorithm to estimate the target
density distribution, modeled as a Gaussian mixture model (GMM).
Different than the existing algorithms, our proposed distributed
EM algorithm enables every agent in the network to obtain an
estimate of the GMM model of the distribution of the targets even
if only a subset of agents can measure the targets locally. The GMM
not only gives an estimate of the targets’ distribution but also clus-
ters the targets to a set of subgroups, each of which is represented
by one of the GMM’s Gaussian bases. We use the KLD measure to
evaluate the similarity between the QoS distribution of each agent
and each Gaussian basis/cluster. A distributed assignment problem
is then formulated and solved as a discrete optimal mass transport
problem that allocates each agent to a target cluster by taking the
KLD as the assignment cost. We demonstrate our results by a sensor
deployment for event detection where the sensor’s QoS is modeled
as an anisotropic Gaussian distribution.

Index Terms—Multi-sensor deployment, distributed sensor
deployment, distributed task assignment, Kullback-Leibler
divergence, Gaussian mixture model.

I. INTRODUCTION

D EPLOYING a group of sensors/agents to cover a region
with service objectives such as monitoring, data collec-

tion/harvesting, and wireless communication has been of great
interest in the recent decade; see for example [1]–[5]. The
deployment strategy commonly includes partitioning the envi-
ronment into subregions and assigning an agent to a location
in each subregion such that some coverage metric is optimized.
The Voronoi-based deployment strategy is a prime example of
multi-agent deployment for area coverage [6]–[17]. As one of the
initial work in this area, [6] developed a deployment algorithm
based on the Lloyd method to compute the Voronoi partition
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and allocated the agents to the Centroidal Voronoi configura-
tion, which is well-known as the optimal configuration of a
class of locational optimization cost function [8]. The original
Voronoi-based deployment strategy is developed for homoge-
neous agents. To reach the optimal coverage with heterogeneous
agents whose service capabilities are different, [9]–[11] employ
the weighted Voronoi diagram where the weightings account
for heterogeneity among the agents. The work mentioned above
assumes that the footprint of the service provided by an agent is
disk-shaped, i.e., the distribution of quality of service (QoS) is
isotropic. But, in practice, most sensory systems such as cam-
eras, directional antennas, and radars are anisotropic. [12]–[14]
consider, respectively, wedge-shape and elliptic service models
and modify the Voronoi diagrams to match the features of
the anisotropy of the sensors. But these methods increase the
complexity of the Voronoi partitioning, which makes the design
of distributed optimal deployment strategies very challenging.
The heterogeneity in deployment algorithm design can also be
due to non-uniformity in the area of interest. To deal with such
scenarios, a position priority function is introduced to indicate
the importance level over each location; a location needs higher
QoS if the value of the priority function is higher at that location.
The work [6]–[14] mentioned above assume the priority function
is known to each agent. This assumption may not be realistic for
every application. [15] uses the parameterized basis functions to
model the priority distribution, and [16] models the distribution
by a zero-mean Gaussian random field. Then, in both [15]
and [16], the agents gradually fit their model to the true distribu-
tion using their local sensor measurements while exploring the
area. In [17], the authors assume the unknown priority function
is a function of the position of some unknown targets. The search
agents aim to detect the targets while exploring the area and then
broadcast their information about the environment to the service
agents to decide on the deployment plan.

This paper proposes a novel distributed service-matching de-
ployment strategy for a group of heterogeneous agents to provide
a service to a collection of dense targets in an efficient manner by
taking into account the agents’ anisotropic QoS. By service, we
mean serving objectives such as monitoring for event detection,
data collection/harvesting, or wireless communication. The QoS
of each agent is modeled as a spatial density distribution. For
example, in an event detection application, the QoS can be the
likelihood of event detection given the position of the targets
with respect to the sensor/agent. In this paper, we model the
spatial QoS of each agent as Gaussian distribution. The agent’s
difference in capability is captured in the size of their covariance
matrix. Since the footprint of Gaussian distribution is elliptic, the
agents’ QoS are heterogeneous and anisotropic. In our setting,
we consider the targets’ density distribution, unknown a priori,
as the locational priority function. The deployment objective is
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to deploy the agents such that the resulting QoS distribution of
the agents is similar to the density distribution of the targets.
Hence, the agents’ service efficiently covers the targets; i.e.,
the places containing more targets are served with higher QoS.
We model the unknown density distribution of the targets by
a Gaussian mixture model (GMM). We propose a distributed
consensus-based EM algorithm to enable the agents to learn the
parameters of the GMM. Different than the existing distributed
EM algorithms [18], [19], our proposed distributed EM algo-
rithm allows every agent in the network to obtain an estimate
of the GMM model of the distribution of the targets even if
only a subset of the agents can measure the targets locally.
GMM model of the targets’ distribution intrinsically clusters the
targets into subgroups, each represented by a Gaussian basis of
the GMM model. Therefore, after estimating the targets’ density
distribution, the agents also complete the targets clustering based
on their spatial distribution. Our approach only requires the
communication graph among the agents to be connected. This
is an advantage over the Voronoi partitioning algorithms which
require the Voronoi neighbor agents to communicate with each
other. This requirement in Voronoi partitioning algorithms can
be unrealistic because the physical distance between Voronoi
neighbors may be outside the communication range of the
agents. We use the KLD measure to assess the similarity of
the collective QoS of the agents and the targets’ density distri-
bution. We then propose to obtain the optimal deployment pose
(position and orientation) of the service agents by minimizing
this KLD measure. Since this KLD measure is highly coupled
and computing a distributed solution for it is challenging, we
propose a suboptimal deployment solution in the form of an
optimal mass transport problem. This suboptimal deployment
strategy allocates each agent to a Gaussian basis/cluster of the
GMM used to estimate the targets’ distribution. We set the
cost of transporting an agent to a target cluster as the KLD
value between the agent’s QoS distribution and the Gaussian
basis’s distribution. We show that this assignment problem can
be cast as a distributed linear programming that can be solved
efficiently by a distributed simplex algorithm. The GMM has
been used in the robotic literature to estimate environmental
factor distributions [20], [21]. The novelty in our work is to
take into account the QoS of the agents and create a framework
that deploys the agents using a distributed assignment approach
that matches the QoS of the agents with the distribution of the
targets modeled by a GMM. We illustrate our results via a sensor
deployment problem for event detection.

II. NOTATIONS AND PRELIMINARIES

We let R, R>0, R≥0, Z, Z>0 and Z≥0 denote the set of real,
positive real, non-negative real, integer, positive integer, and
non-negative integer, respectively. For s ∈ Rd, ‖s‖ =

√
s�s de-

notes the standard Euclidean norm. We let 1n (resp. 0n) denote
the vector of n ones (resp. n zeros), and In denote the n× n
identity matrix. Given two continuous probability density distri-
butions p(x) and q(x), x ∈ X, the Kullback–Leibler divergence
(KLD) is defined as DKL(p(x)||q(x)) =

∫
x∈X p(x) ln p(x)

q(x)dx.

KLD is a measure of similarity (dissimilarity) between two
probability distributions p(x) and q(x), where the smaller the
value the more similar two distributions are. KLD is zero if and
only if the two distribution are identical [22, p.34]. For Gaussian
distributions, p(x) = N (µ0,Σ0) and q(x) = N (µ1,Σ1), the

KLD has a closed form expression [23, eq. (2)]

DKL (p(x)||q(x)) = 1

2

(
ln
|Σ1|
|Σ0|

+(µ0 − µ1)
�Σ−11 (µ0 − µ1) + tr(Σ−11 Σ0)− n

)
, (1)

where n is the dimension of the distributions.
We follow [8] for our graph theoretic notation and definitions.

A graph is a triplet G = (V, E ,A), where V = {1, . . . , N} is
the node set, E ⊆ V × V is the edge set, and A ∈ RN×N is the
adjacency matrix such that aij = 1 if (i, j) ∈ E and aij = 0,
otherwise. An edge (i, j) from i to j means that agents i and j
can communicate. A path is a sequence of nodes connected by
edges. A connected graph is an undirected graph in which for
every pair of nodes there is a path connecting them.

III. PROBLEM DEFINITION AND OBJECTIVE

Consider a deployment problem in which a group of Ns ∈
Z>0 service agents Vs should be deployed over a large number
of targets that have densely populated a finite two-dimensional
planar space Wt ⊂ R2. We let {xn

t }Mn=1 ⊂ R2 be the set of
the targets’ position vector and p(x), x ∈ R2 be the density
distribution of the targets, which both are not known to the
agents a priori. The objective of the deployment can be event
detection among the targets, providing wireless communication
to the targets, or targets/crowd monitoring; in general we say that
the agents are deployed to provide a ‘service’ for the targets. Let
(xi

s, θ
i
s) ∈ R2 × [0, 2π] be the pose (position and orientation) of

service agent i ∈ Vs. The QoS distributionQi(x|xi
s, θ

i
s)provided

by a service agent i ∈ Vs is modeled by a scaled Gaussian prob-
ability distribution Qi(x|xi

s, θ
i
s) = ziN (x|xi

s,Σ(θ
i
s)), x ∈ R2,

where zi ∈ R>0 is the scale constant and N (x|xi
s,Σ(θ

i
s)) is

the Gaussian distribution with the mean xi
s and the covariance

matrixΣ(θis). We define the normalized collective QoS provided
by the service agents by the probability density distribution

q(x|{xi
s, θ

i
s}i∈Vs) =

∑
i∈Vs

Qi∫
x∈R2

∑
i∈Vs

Qidx

=

∑
i∈Vs

ziN (x|xi
s,Σ(θ

i
s))∑

i∈Vs
zi

=
∑
i∈Vs

ωi
sN (x|xi

s,Σ(θ
i
s)), (2)

where ωi
s =

zi
∑

i∈Vs z
i represents the relative service capability of

agent i among Vs.
Th objective of this letter is to devise a deployment solution

that first enables the agents to obtain an estimate p̂(x) of the
density distribution of the targets in a distributed manner. Then,
design a distributed deployment strategy to re-position the ser-
vice agents in a way that their collective QoS serves the targets
in an efficient manner. In other words, we seek locations and
orientations for service agents such that the collective QoS dis-
tribution q is as much similar to as possible to the estimated target
density distribution p̂. The optimal solution for the deployment
objective can be obtained from

{xi
s, θ

i
s}i∈Vs = argminDKL (p̂(x)||q(x)) . (3)

Notice that p̂(x) and q(x) are mixture distributions for which
obtaining a closed-form for their KLD can be quite challenging.
In practice, KLD for mixture models are usually estimated by
using costly Monte-Carlo sampling simulations [23]. Moreover,
the collective QoS distribution q(x) contributed by each agent’s
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Algorithm 1: Active Weighted Average Consen-
sus Algorithm [24], Denoted by {yi(L)}i∈V ←
ActConsen({ηi}i∈V , {ri}i∈V ,L).

Require: Weight ηi, reference ri, number of iterations L, a
stepsize δc > 0.
Initialization: yi(0) ∈ Rm and vi(0) ∈ Rm

for l = 0, 1, . . . ,L do
yi(l + 1) = yi(l)− δcη

i (yi(l)− ri)

− δc
∑N

j=1
aij(y

i(l)− yj(l))

− δc
∑N

j=1
aij(v

i(l)− vj(l)),

vi(l + 1) = vi(l) + δc
∑N

j=1
aij(y

i(l)− yj(l)),

end for
return yi(L)

Fig. 1. The proposed two-stage distributed deployment solution.

QoS distribution, ωi
sN (x|xi

s,Σ(θ
i
s)), i ∈ Vs, is a global infor-

mation. Accordingly, designing a distributed solver for (3) is
challenging. Therefore, in this paper, we seek a suboptimal
solution for (3) that can be implemented in a distributed manner
and has low computational complexity.

IV. OVERVIEW OF THE PROPOSED AGENT DEPLOYMENT

SOLUTION

Our proposed distributed solution to meet the objective stated
in Section III is the two-stage process depicted in Fig. 1. In the
first stage, we use a GMM with Ns Gaussian bases to model
the targets’ density distribution. Recall that Ns is the number
of service agents. To provide a flexible design, we consider
an operation that the agents have heterogeneous capability,
some may be equipped with measurement devices to detect
the targets and obtain their location, which we call them active
agents, and some may be only service agent, and some may
act as both active and service agent. The agents communicate
over a connected undirected graph. We let Va be the set of
active agents. Notice that unlike some existing literature, for
example [17], we do not assume that Va and Vs are mutually
exclusive. The active agentsVa detect the positions of the targets,
considered as the sampled data from the unknown distribution
p(x). An EM algorithm can be used to obtain the parameters

Fig. 2. An active average consensus scenario; every agent i ∈ {1, 2, 3, 4, 5, 6}
wants to obtain r1+r2+r4+r6

4 .

of the Ns (the number of the service agents) Gaussian bases
of the GMM. However, since not every agent in the network
is active observers, existing distributed EM algorithms such
as [18], [19] can not be used. To enable every service agent to
obtain a coherent estimate of the parameters of the Ns Gaussian
bases of the GMM from the measurements of active agents, we
use a set of active weighted average consensus algorithms as
described in Section V. For a group of agents V = {1, . . . , N}
communicating over a connected graph G(V, E), in an active
weighted average consensus, only a subset of the agents Va ⊂ V
are active and observe a reference value ri ∈ Rm, see Fig. 2. The
objective then is to enable all the agents, both active and passive,
without knowing what subset of the agents are active, to obtain

the weighted average of the reference values,
∑

j∈Va ηj rj
∑

j∈Va ηj , where

ηj ∈ R>0 is the weight used by active agent j ∈ Va. [24] shows
that Algorithm 1, starting at any yi(0),vi(0) ∈ Rm, results in

limL→∞ yi(L) =
∑

j∈Va ηj rj
∑

j∈Va ηj for any agent i ∈ V . Notice that to

simplify presentation of Algorithm 1, we substitute ηi = 0 if
i ∈ V\Va, i.e., i is a passive agent.

The Gaussian bases of the GMM cluster the targets into
Ns subgroups, each of which corresponds to a Gaussian basis.
Our solution’s second stage is an agent-allocation process that
follows an optimal mass transport framework. In this allocation
process, first each service agent i ∈ Vs computes the KLD be-
tween its QoS distribution,ωi

sN (x|xi
s,Σ(θ

i
s)), and each cluster’s

Gaussian basis obtained in stage 1. A distributed assignment
problem is then formulated with the KLDs as the cost of de-
ploying the agent to each respective target cluster. As a result,
each agent is paired with a target cluster, and the summation
of the divergences corresponding to each paired agent’s QoS
distribution and target cluster’s Gaussian basis is minimized. The
last step in this stage is a transportation process in which a local
controller can drive the agents to their assigned destinations. For
dynamic targets, the process repeats. We present the details of
each stage in the following sections; see Fig. 1.

V. STAGE 1: DISTRIBUTED TARGET DENSITY DISTRIBUTION

ESTIMATION

We aim to find the best mixture of Gaussian density dis-
tributions with Ns bases that describes the distribution of the
targets p(x). GMM is characterized by finite sum of Gaussian
bases with different weights, means and covariance matrices. Let
x ∈ R2 be the observed target’s position drawn from a mixture
ofNs Gaussian bases with the distributionN (x|µk,Σk), where
µk ∈ R2 is the mean and Σk ∈ R2×2 is the covariance matrix
for k ∈ K = {1, . . . , Ns}. Let z ∈ R be the indicator which
indicates the variable x belongs to kth Gaussian basis when
z = k. The variable z is not observed so z is also called hidden
variable or latent variable. The probability of drawing a variable
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Fig. 3. The principal axis angle of (a) Agent i’s QoS Gaussian distribution
and (b) The kth the cluster/basis of p̂i(x).

from the kth Gaussian basis is denoted πk := Pr(z = k). The
distribution of x given the kth mixture basis is Gaussian, i.e.,
p̂(x|z = k) = N (x|µk,Σk). Therefore, the marginal probabil-
ity distribution for x is given by

p̂(x) =

Ns∑
k=1

πkN (x|µk,Σk) (4)

The parameters that should be determined to obtain the
estimate p̂(x) are the set {πk,µk,Σk}Ns

k=1. Next, we employ
the EM algorithm to obtain these parameters [25].

The EM algorithm obtains the maximum likelihood estimates
of {πk,µk,Σk}Ns

k=1 given M independent detected targets’
positions {xn

t }Mn=1. It is an iterative method that alternates
between an expectation (E) step and a maximization (M) step.
Given a detected target xn

t , n ∈ {1, . . . ,M}, E-step computes
the posterior probability

γkn := Pr(z = k|xn
t ) =

πkN (xn
t |µk,Σk)∑Ns

j=1 πj N (xn
t |µj ,Σj)

, (5)

using the current value of {πk,µk,Σk}Ns

k=1. Then, M-step
updates the parameter set {πk,µk,Σk}Ns

k=1 by the following
equations using the current γkn:

πk =

∑M
n=1 γkn
M

, (6a)

µk =

∑M
n=1 γknx

n
t∑M

n=1 γkn
, (6b)

Σk =

∑M
n=1 γkn(x

n
t − µk)(x

n
t − µk)

�∑M
n=1 γkn

, (6c)

for k ∈ K. M-step needs the global information to update the pa-
rameter set {πk,µk,Σk}Ns

k=1 because the summations in (6) are
over all detected targetsn ∈ {1, . . . ,M}. However, the informa-
tion of the targets’ positions {xn

t }Mn=1 is distributed among the
active agents Va. We observe that the right hand side quantities
of (6) are in the form of (weighted) average. Hence, we propose a
distributed implementation of the EM algorithm, which invokes
three sets of active weighted average consensus algorithms of
the form {yi(L)}i∈V ← ActConsen({ηi}i∈V , {ri}i∈V ,L), such
that all the agents, V = Va ∪ Vs obtain an approximate value
of (6) by locally exchanging the information with their neigh-
bors; the approximation is due to terminating the consensus
algorithm in finite time step L. The details are as follows.

Agents V = Va ∪ Vs are communicating over a connected
undirected graph G = (V, E ,A). Suppose the targets spaceWt
is partitioned such that each active agent is in charge of one par-
tition in a way that their measurement zones are not overlapping,
so no target is double counted in the distributed algorithm that

will be employed to estimate the density distribution of the tar-
gets. Suppose each agent i ∈ V maintains a local copy of the pa-
rameter set of the Gaussian bases denoted by {πi

k,µ
i
k,Σ

i
k}Ns

k=1,
where the superscript shows that the variable is the local copy of
agent i ∈ V . At the E-step, every active agent i ∈ Va computes
γkn for k ∈ K and n ∈ Vi

t where Vi
t is the set of targets detected

by active agent i ∈ Va. Then, in the M-step, every agent i ∈ V
executes its three sets of weighted average consensus algorithms
of the form {yi(L)}i∈V ← ActConsen({ηi}i∈V , {ri}i∈V ,L) as
follows. In the first consensus algorithm, ηi = |Vi

t | and ri =
∑

n∈Vi
t
γkn

|Vit | if i ∈ Va, otherwise, ηi = 0 and ri = 0, results in the

consensus variableyi to converge close to neighborhood of (6a).
In the second consensus algorithm, setting ηi =

∑
n∈Vit γkn and

ri =
∑

n∈Vi
t
γknxn

∑
n∈Vi

t
γkn

if i ∈ Va, otherwise, ηi = 0 and ri = 0, results

in consensus variableyi converging to neighborhood of (6b). Fi-
nally, in the third consensus algorithm, setting ηi =

∑
n∈Vit γkn

and ri =
∑

n∈Vi
t
γkn(xn−µi

k)(xn−µi
k)
�

∑
n∈Vi

t
γkn

if i ∈ Va, otherwise, ηi = 0

and ri = 0, results in consensus variable yi to converge to
neighborhood of (6c). The accuracy of the approximations
of (6a), (6b) and (6c) depends on the number L of iterations of the
weighted active average consensus Algorithm 1. Theoretically,
if L→∞ the approximation is exact because the weight ηi and
the reference ri are static in each M-step. In practice, the choice
of finite L is a trade of between the accuracy of the approximation
and the consumption of communication among the agents. Note
that from the perspective of the weighted average consensus,
how the target areaWt is partitioned (assuming that there is no
overlap) or which agents have taken the measurements does not
affect the convergence result.

By use of weighted active average consensus, all agents (pas-
sive and active) obtain an estimate on the probability distribution
of the targets. But, because consensus algorithms that we use,
are terminated in a finite time, it is expected that p̂i(x) of each
agent i be slightly different than other agents. In what follows
we let,

p̂i(x) =

Ns∑
k=1

πi
kN (x|µi

k,Σ
i
k), (7)

be the local final estimate of agent i ∈ V .

VI. STAGE 2: DISTRIBUTED DEPLOYMENT OF SERVICE AGENTS

The GMM model from stage 1 intrinsically clusters the tar-
gets into a set of subgroups, each represented by a Gaussian
basis of the GMM. Our suboptimal solution to the deployment
problem (3) is to deploy each service agent i ∈ Vs to optimally
cover an assigned target cluster k ∈ K = {1, . . . , Ns}, where
Ns = |Vs|. The service agent assignment is based on the sim-
ilarity of the agent’s QoS distribution, ωi

sN (x|xi
s,Σ(θ

i
s)), to

the distribution of target cluster, πi
kN (x|µi

k,Σ
i
k), such that the

summation of the KLD of each assigned agent-target cluster pair
is minimized. This objective can be formalized as follows. For
any service agent i ∈ Vs let

Cik(x
i
s, θ

i
s)

= DKL(π
i
kN (x|µi

k,Σ
i
k)||ωi

sN (x|xi
s,Σ(θ

i
s))
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= πi
k

(
ln

πi
k

ωi
s
+DKL

(N (x|µi
k,Σ

i
k)||N (x|xi

s,Σ(θ
i
s))
))

,

(8)

for k∈K. Notice that Cik in (8) is a continuous function of the
service agent’s pose (xi

s, θ
i
s). We introduce a binary decision

variable Zik ∈ {0, 1}, which is 1 if agent i is assigned to region
k and 0 otherwise. With the right notation at hand then, our
suboptimal deployment solution is given by

{xi�

s , θi
�

s , {Z�
ik}k∈K}i∈Vs = argmin

∑
i∈Vs

∑
k∈K

Cik(x
i
s, θ

i
s)Zik,

Zik ∈ {0, 1}, i ∈ Vs, k ∈ K,∑
k∈K

Zik = 1, ∀i ∈ Vs,

∑
i∈Vs

Zik = 1, ∀k ∈ K. (9)

Next, we introduce a set of manipulations that allows us to
arrive at a distributed solution for solving (9). For each service
agent i ∈ Vs, we start by defining

C�
ik = min

xi
s ,θ

i
s

Cik(x
i
s, θ

i
s), k ∈ K. (10)

Given (10) and observing thatCik depends only on the pose of
agent i, next we show that nonlinear mixed integer programming
(9) can be cast as a linear mixed integer programming.

Lemma 1: Consider the optimization problem

Z�
ik = argmin

∑
i∈Vs

∑
k∈K

C�
ikZik, s.t.

Zik ∈ {0, 1}, i ∈ Vs, k ∈ K,∑
k∈K

Zik = 1, ∀i ∈ Vs,

∑
i∈Vs

Zik = 1, ∀k ∈ K. (11)

where C�
ik is given in (10). Let (xik�

s , θik
�

s ) be the global
minimizer of (10) for k ∈ K. Let xi�

s , θi
�

s , i ∈ Vs, be equal
to (xik�

s , θik
�

s ) where k corresponds to Z�
ik = 1. Then,

{xi�
s , θi

�

s , {Z�
ik}k∈K}i∈Vs is a global minimizer of optimization

problem (9).
Proof: Let f� =

∑
i∈Vs

∑
k∈K C

�
ikZ

�
ik. Also, let

{x̄i�
s , θ̄i

�

s , {Z̄�
ik}k∈K}i∈Vs be a global minimizer of (9) and

f̄ =
∑

i∈Vs

∑
k∈K Cik(x̄

i
s, θ̄

i
s)Z̄ik. To prove our statement

in what follows we show that f̄ = f�. Because there is no
constraint on (xi

s, θ
i
s), i ∈ Vs and Cik depends only on the

pose of agent i, it is certain that Cik(x̄
i�
s , θ̄i

�

s ) = C�
ik for k

corresponding to Z̄�
ik = 1. Consequently, since {{Z̄ik}k∈K}i∈Vs

satisfies constraints of (11), we can conclude that f� ≤ f̄ .
Next, notice that {{Z�

ik}k∈K}i∈Vs satisfies constraints of (9).
Therefore, since in (9) there is no constraint on (xi

s, θ
i
s), i∈Vs,

it is certain that f̄≤ f�, concluding the proof. �
The equivalent optimization representation (11) casts our

suboptimal service agent assignment problem in the form of
a discrete optimal mass transport problem [26] in which the
minimum value of (8) given in (10) can be viewed as the cost
of assigning agent i to the kth target cluster/basis of the GMM.
In Section VI-B, we show that the mixed integer programming
problem (11), in fact can be cast as a linear programming in

continuous space, and then solved in a distributed manner using
an existing optimization algorithm. In what follows, before
presenting the equivalent linear programming representation
of (11), we discuss how we can obtain the minimizers of (10).

A. Similarity Between an Agent’s QoS Distribution and a
Target Cluster’s Distribution

Given the QoS distribution provided by agent i ∈ Vs to be
ωi

sN (x|xi
s,Σ

i(θis)), where the mean of the Gaussian distribution
is at the agent’s location xi

s and the covariance matrix is with
principal (major) axis at angle θis , see Fig. 3. Hence, the covari-
ance matrix can be decomposed intoΣi(θis) = R(θis)Λ

iR(θis)
�,

where R(θis) =
[
cos θi

s − sin θi
s

sin θi
s cos θi

s

]
and Λi =

[
σi
x 0
0 σi

y

]
, in which

σi
x, σ

i
y ∈ R>0 with σi

x ≥ σi
y are known service parameters de-

termines the ‘shape’ of the service agent i. Similarly, agent i’s
estimated covariance matrix Σi

k, for the kth target cluster/basis
of its estimated p̂(x), see (7), can be written as Σi

k(θ
i
k) =

R(θik)Λ
i
kR(θik)

�, where Λi
k =

[
σi
k,x 0

0 σi
k,y

]
, in which θik is the

angle of principal (major) axis of the covariance matrix and
σi
k,x, σ

i
k,y ∈ R>0 with σi

k,x ≥ σi
k,y are the variances in the

major axis and minor axis direction, respectively, see Fig. 3. With
the right notation at hand, the theorem below gives a closed-form
solution for the minimizer (xik�

s , θik
�

s ) of (10).
Theorem 1: Consider the optimization problem (10).

Then, one of the global minimizer of optimization (10) is
(xik�

s , θik
�

s ) = (µi
k, θ

i
k), where θik is the angle of the principal

axis of Σi
k. Moreover,

C�
ik=πi

k

(
ln

πi
k

ωi
s
+
1

2

(
ln

σi
xσ

i
y

σi
k,x σ

i
k,y

+
σi
k,xσ

i
y+σi

k,yσ
i
x

σi
xσ

i
y

−2
))

.

(12)

Proof: We first note that since πi
k and ωi

s are fixed
parameters, (10) is equivalent to minimize DKL(N (x
|µi

k,Σ
i
k)||N (x|xi

s,Σ
i(θis))). From (1) we write

DKL
(N (x|µi

k,Σ
i
k)||N (x|xi

s,Σ
i(θis))

))

=
1

2

⎛
⎜⎜⎜⎜⎝ln
|Σi(θis)|
|Σi

k|︸ ︷︷ ︸
(a)

+(xi
s − µi

k)
�Σi(θis)

−1(xi
s − µi

k)︸ ︷︷ ︸
(b)

+tr(Σi(θis)
−1Σi

k)︸ ︷︷ ︸
(c)

−2

⎞
⎟⎠ . (13)

Notice that, in (13),

(a) = ln
|R(θis)Λ

iR�(θis)|
|R(θik)ΛkR

�(θik)|
= ln

|Λi|
|Λk|= ln

σi
xσ

i
y

σi
k,x σ

i
k,y

,

thus (a) does not depend on the decision variable θis . Next, notice
that (b) is the only term in (13) that depends onµi

k andxi
s. For any

value other than xi
s = µi

k, (b) returns a positive value, meaning
that the minimum of (13) happens at xik�

s = µi
k. Lastly, notice

that (c) in (13) reads also as

(c) = tr(R(θis)(Λ
i)−1R(−θis + θik)ΛkR(θik))
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= tr(R(θis − θik)(Λ
i)−1R(−θis + θik)Λk).

Now, let θ̄ = θis − θik, sθ̄ = sin(θ̄) and cθ̄ = cos(θ̄). Then, we
can write (c) as

(c) = tr

([
cθ̄ −sθ̄
sθ̄ cθ̄

] [ 1
σi
x

0

0 1
σi
y

] [
cθ̄ sθ̄
−sθ̄ cθ̄

] [
σi
k,x 0

0 σi
k,y

])

=
(σi

k,xσ
i
y + σi

k,yσ
i
x)c

2θ̄ + (σi
k,xσ

i
x + σi

k,yσ
i
y)s

2θ̄

σi
xσ

i
y

.

Let α = σi
k,xσ

i
y + σi

k,yσ
i
x and β = σi

k,xσ
i
x + σi

k,yσ
i
y. Then, (c)

reduces to

(c) =
α+ (β − α)s2θ̄

σi
xσ

i
y

.

Because σi
k,x ≥ σi

k,y and σi
x ≥ σi

y , we have β ≥ α and
(β − α)s2θ̄ is non-negative. Hence, the global minimum of

(c) is α
σi
xσ

i
y
=

σi
k,xσ

i
y+σi

k,yσ
i
x

σi
xσ

i
y

which happens at θ̄� = nπ, n ∈
{0, 1, · · · }, i.e., θik

�

s = θik + nπ, n ∈ {0, 1, · · · }. To complete
the proof, we note that n = 0 leads to one of the global mini-
mums θik

�

s = θik. �
Given Theorem 1, if optimization problem (11) allocates ser-

vice agent i to the kth target cluster/basis of p̂i(x), the corre-
sponding final pose of agent i becomes xi�

s =µi
k, θi

�

s =θik.

B. Distributed Multi-Agent Assignment Problem

The assignment optimization problem (11) is an integer op-
timization problem. As it is known in the discrete optimal
mass transport literature [26], by the convex relaxation [27],
the integer optimization (11) can be transferred to the linear
programming problem stated as follows:

min
Zik≥0

∑
i∈Vs

∑
k∈K

C�
ikZik, s.t.

∑
k∈K

Zik = 1, ∀i ∈ Vs,

∑
i∈Vs

Zik = 1, ∀k ∈ K. (14)

In general, problem (14) may have several optimal solutions
Zik

�s, some of them may not be integer. However, becauseVs =
K, as stated in [28], it is well-known that (14) has always an
optimal solution Z�

ik∈{0, 1}, and that this solution corresponds
exactly to the optimal assignment of (11). Since only agent i
knows its own cost C�

ik for k ∈ K, we are interested in solving
optimization problem (14) in a distributed way and such that
the agents agreed on the same optimal assignment plan. The
distributed simplex algorithm proposed by [28] can achieve this
aim, i.e., the distributed simplex algorithm of [28] will produce
a coherent optimal plan Z�

ik∈{0, 1} across the agents. Recall
that by the Brikhoff theorem [29], the extreme points (vertices)
of the constraint polytop of (14) belong to Zik∈{0, 1}.

We rewrite (14) to the standard form of linear programming

min
Z

C�T

Z, s.t.AZ = b, Z ≥ 0. (15)

where b = 12N ,

Z = [Z11, . . . , Z1N , Z21, . . . , Z2,N , . . . , ZN1 · · · , ZNN ]�,

C� = [C�
11, . . . , C

�
1N , C�

21, . . . , C
�
2,N , . . . , C�

N1 · · · , C�
NN ]�,

A = [A11, . . . ,A1N ,A21, . . . ,A2,N , . . . ,AN1 · · · ,ANN ],

in which, Aik ∈ R2N is a column vector with i-th and (N + k)-
th entries are 1, and others are 0. A column of problem (15)
is a vector hik ∈ R1+2N defined as hik = [C�

ik A�ik]
�. The

set of all columns is denote by H = {hik}i∈Vs,k∈K. Thus, the
linear program (15) is fully characterized by the pair (H,b). The
information of H is distributed in the service agents. Let Pi =
{hik}k∈K is the problem column set known by agent i ∈ Vs,
which satisfiesH = ∪Ni=1Pi andPi ∩ Pj = ∅, ∀(i, j) ∈ Vs. We
assume the communication graphGs(Vs, Es)of the service agents
is connected. Hence the tuple (Gs, (H,b), {Pi}i∈Vs) forms a
distributed linear program that can be solved by the distributed
simplex algorithm [28]. The result of the optimization problem
(14) is the optimal plan Z�

ik, whereZ�
ik = 1means assigning the

agent i to the kth target cluster with the optimal pose xi
s
�
= xik

s
�

and θis
�
= θiks

�
.

In stage 2 of our deployment solution, the last step is trans-
porting the agents to their corresponding assigned pose. In
practice, local controllers are expected to complete this task. One
such local controller can be the well-known minimum energy
control [30, page 138] that can transport the agents to their
respective assigned pose in finite time while also enabling the
agents to save on transportation energy. Lastly, note that if the
targets are dynamic, our two-stage deployment process can be
repeated to re-position the service agents in accordance with the
changes in targets distribution.

VII. DEMONSTRATIONS

We consider two sets of simulation scenarios to demonstrate
the performance of the proposed distributed service-matching
deployment algorithm. In these simulations, we assume that the
target spaceWt is a rectangle of [−80, 80]× [−60, 60] meters.
We generate the targets from a GMM model with 12 bases so
that we can evaluate the performance of our distributed EM
algorithm by observing how well it estimate the original GMM
distribution when we deploy 12 service agents. The number
of the targets are M = 1800. They are shown by the colored
points on Fig. 4. In the first scenario, we consider a group
of 12 agents that communicate over an undirected ring graph.
All the agents are service agents Vs = {1, 2, . . . , 12} but only
four agents Va = {2, 3, 4, 6} are active agents. In the second
scenario, we consider a group of 7 agents that also communicate
over an undirected ring graph. All the agents are service agents
Vs = {1, 2, . . . , 7} but again only four agents Va = {2, 3, 4, 6}
are active agents. In both scenarios, we partition the target space
Wt into four non-overlapping rectangles each assigned to one
of the active agents. Active agents observe the targets in their
respective space. Every agent initializes the parameters of its
active average consensus algorithms locally. The initialization
conditions for consensus algorithms corresponding to πi

k is
chosen randomly and for {µi

k,Σ
i
k}Ns

k=1 are shown in Fig. 4. The
parameters of the distributed algorithm for these scenarios are
T = 50 and L = 50. Agent 1’s estimation results are illustrated
in Fig. 4. Similar results are obtained for the other agents, but
not shown here for brevity. The results show an acceptable level
of performance from the distributed algorithm. The results also
show the sensitivity of the EM algorithm, as it is known in the
literature, to initialization. For these 2 dimensional simulations,
scattering the initial guess of the agents for {µi

k,Σ
i
k}Ns

k=1 uni-
formly, as shown in Fig. 4 for Agent 1, and also initializing
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Fig. 4. The GMM estimate of Agent 1: The targets are drawn from a GMM
with 12 bases; their color shows the basis they belong to. The light gray ellipses
show the initial guess of Agent 1 (3σ uncertainty plot). The colored ellipses
show the 3σ-plot of the bases of the estimated GMM. The top two plots show
the estimate with Ns = 12. The bottom two plots show the results for Ns = 7.

Fig. 5. The log-likelihood function for different values of L.

with a higher level of uncertainty produces better results. The
distributed EM algorithm is an approximate process of the
standard centralized EM algorithm. Its accuracy depends on L,
the number of iterations of consensus algorithm 1. Theoreti-
cally, if L→∞ the approximation is exact because consensus
algorithm converges to the exact weighted average. The choice
of a finite value for L is a trade off between the accuracy of
the approximation and inter-agent communication cost. Fig. 5
shows the log-likelihood, lnPr({xn

t }Mn=1|{π1
k µ

1
k,Σ

1
k}Nk=1) for

agent 1 in the second simulation case of 12 service agents, in
which T = 50 and L is varied between 10 and 100. As observed,
in a modest value of L = 50, the performance of the propose
distributed EM algorithm is close to the centralized EM.

Next, suppose the service agents are equipped with a wireless
sensor which is used to detect events of interest that occurred
with targets. A commonly used sensor model is a probabilistic
function conditioned on the sensor location and the event loca-
tion [31], [32], i.e., Pr(Detected|xi

s,xt). For example in [32],
given a sensor location at xi

s, i ∈ Vs and an event happening at
xt, the probability of the sensor detecting the event is expressed
as

Pr(Detected|xi
s,xt) = βie

−αi (xi
s −xt)

�(xi
s −xt)

γi2

where αi, βi, γi are sensor i’s parameters. In this case, the QoS
of the sensor i at location xi

s over the 2-D space x ∈ R2 can be

Fig. 6. The final deployment for the case with seven (top plot) and twelve
(bottom plot) service agents: The gray ellipses show the3σ GMM bases obtained
by Agent 1. The colored ellipses show the 3σ plot of the QoS distribution of the
service agents, while the blue color map is the collective QoS distribution (2).

defined as

Q(x|xi
s) = Pr(Detected|xi

s,x) = ziN (x|xi
s,Λ

i),

where zi =
√

2π|Λi|βi, Λi =
[
σi 0
0 σi

]
, σi = γi2

2αi . In this exam-

ple, we consider a more general sensor model with anisotropic
sensory capability, i.e. QoS is

Q(x|xi
s, θ

i
s) = ziN (x|xi

s,Σ
i(θis)),

with Σi(θis) = R(θis)Λ
iR�(θis), Λi =

[
σi
x 0
0 σi

y

]
, and θis is

the orientation of sensor i. Lastly, the collective den-
sity distribution of QoS provided by the service agents
is q(x|{xi

s,Σ
i(θis)}i∈Vs) =

∑
i∈Vs

ωi
sN (x|xi

s,Σ
i(θis)) where

ωi
s =

zi
∑N

i=1 zi
. In the first simulation scenario with 12

service agents we set ω1
s = 1/12, σ1

x = 30, σ1
y = 30, ω2

s =

1/12, σ2
x = 30, σ2

y = 15, ω3
s = 1/12, σ3

x = 80, σ1
y = 30, ω4

s =

1/12, σ4
x = 70, σ4

y = 25, ω5
s = 1/12, σ5

x = 30, σ5
y = 30, ω6

s =

1/12, σ6
x = 60, σ6

y = 40, ω7
s = 1/12, σ7

x = 50, σ7
y = 20, ω8

s =

1/12, σ8
x = 30, σ8

y = 70,ω9
s = 1/12, σ9

x = 40, σ9
y = 15,ω10

s =

1/12, σ10
x = 10, σ10

y = 30, ω11
s = 1/12, σ11

x = 20, σ11
y = 40,

ω12
s = 1/12, σ12

x = 20, σ12
y = 50. In the second scenario, we

use the values for the first 7 agents listed in first scenario,
with ωi

s = 1/7, i ∈ {1, . . . , 7}. Each agent i ∈ Vs evaluates its
costs C�

ik for all k ∈ K by (12). Then, the agents cooperatively
solve the distributed multi-agent assignment problem (15) by the
means of distributed simplex algorithm [28]. The optimal assign-
ment plan of (15) for the first scenario is Z�

1,4 = 1, Z�
2,12 = 1,

Z�
3,8 = 1, Z�

4,11 = 1, Z�
5,6 = 1, Z�

6,2 = 1, Z�
7,9 = 1, Z�

8,10 = 1,
Z�
9,7 = 1,Z�

10,3 = 1,Z�
11,1 = 1, andZ�

12,5 = 1. The assignment
solution for the second scenario isZ�

1,3 = 1,Z�
2,1 = 1,Z�

3,5 = 1,
Z�
4,7 = 1, Z�

5,4 = 1, Z�
6,2 = 1 and Z�

6,6 = 1. The density distri-
bution of QoS provided by the service agents (sensors) after
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deployment is illustrated in Fig. 6, where the black circles are
the targets, the colored dots represent the service agents. The
colored ellipses show the 3σ plot of the QoS distribution of the
service agents, while the blue color map is the collective QoS
distribution (2). The darker blue indicates a better QoS. These
simulation results show that the collective QoS distribution is
similar to the targets’ distribution, indicating that the distribution
of QoS efficiently covers the targets.

VIII. CONCLUSION

This paper considered the problem of distributed deployment
of a group of agents to provide a service for a dense set of
targets whose spatial distribution in the space was not known in
advance. The quality of the service of each agent was modeled
as a spatial Gaussian distribution. To solve this problem, we
proposed a two-stage deployment strategy. First, we proposed a
distributed consensus-based EM algorithm to enable the agents,
regardless of whether they observe any target or not, to obtain
an estimate of the spatial distribution of the targets as a GMM.
Then, we defined the deployment objective as deploying the
agents such that their collective QoS distribution is as similar as
possible to the targets’ density distribution. We used the KLD
to measure the similarity of the distributions. Since similarity
equation between the collective QoS distribution and the targets’
distribution was highly coupled and computing a distributed
solution for minimizing it was challenging, we proposed a
suboptimal deployment solution in the form of an optimal mass
transport problem to allocate each agent to a Gaussian basis of
the GMM that estimated the targets’ distribution. The idea was
originated from observing that the GMM bases in fact cluster the
targets into a set of subgroups. We can then deploy the agents
in a way that each agent serves one of these subgroups. We
defined the cost of transporting an agent to a target cluster as
the KLD value between the agent’s QoS distribution and that
cluster’s distribution. We showed that this assignment problem
can be cast as a distributed linear programming, which can be
solved efficiently by a distributed simplex algorithm to give us
the final deployment locations. We illustrated our results via a
set of simulations for a sensor deployment problem for event
detection.
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