2021 60th IEEE Conference on Decision and Control (CDC) | 978-1-6654-3659-5/21/$31.00 ©2021 IEEE | DOIL: 10.1109/CDC45484.2021.9682818

2021 60th IEEE Conference on Decision and Control (CDC)
December 13-15, 2021. Austin, Texas

Multi-Agent Maximization of a Monotone Submodular Function via
Maximum Consensus

Navid Rezazadeh and Solmaz S. Kia, IEEE member, Senior

Abstract— This paper studies distributed submodular optimiza-
tion subject to partition matroid. We work in the value oracle
model where the only access of the agents to the utility function
is through a black box that returns the utility function value.
The agents are communicating over a connected undirected
graph and have access only to their own strategy set. As known
in the literature, submodular maximization subject to matroid
constraints is NP-hard. Hence, our objective is to propose a
polynomial-time distributed algorithm to obtain a suboptimal
solution with guarantees on the optimality bound. Our proposed
algorithm is based on a distributed stochastic gradient ascent
scheme built on the multilinear-extension of the submodular set
function. We use a maximum consensus protocol to minimize
the inconsistency of the shared information over the network
caused by delay in the flow of information while solving for
the fractional solution of the multilinear extension model.
Furthermore, we propose a distributed framework of finding
a set solution using the fractional solution. We show that our
distributed algorithm results in a strategy set that when the
team objective function is evaluated at worst case the objective
function value is in 1 —1/e —O(1/T) of the optimal solution in
the value oracle model where 7" is the number of communication
instances of the agents. An example demonstrates our results.

I. INTRODUCTION

We consider a group of A = {1,..., N} agents with com-
munication and computation capabilities, interacting over a
connected undirected graph G(A, £). Each agent i € A has
a distinct discrete policy set P; and wants to choose at most
one policy from P; such that a monotone increasing and
submodular utility function f : 27 — Rxo, P =;c4 Pis
evaluated at all the agents’ policy selection is maximized'. In
other words, the agents aim to solve in a distributed manner
the discrete domain optimization problem

Rey/ (R .
I={RCP|IRNP| <1, Vic A} (1b)

The agents’ access to the utility function is through a black
box that returns f(R) for any given set R € P (value
oracle model). The constraint set (1b) is a partition matroid,
which restricts the number of policy choices of each agent
i € A to one. Many sensor placements for monitoring and
coverage can be formulated as problem (1) [1]-[3]; see Fig. 1
for an illustration. Our goal is to design a polynomial-time
distributed solution for (1) with formal guarantees on the
optimality bound.

The authors are with the Mechanical and Aerospace Eng. Dept. of
University of California Irvine, Irvine, USA. This work is supported by
NSF award IIS-SAS-1724331.

'We use standard notation, but for clarity we provide a brief description
of the notation and the definitions in Section II.

% Mobile sensor

) .
(/, Sensing zone

@ Point of interest

,.w.

P P
s L A0 . o A id
\5_/7-,./..“:. t/.// L 2 ir corridors

@® Sensor placement point

- Communication channel

Fig. 1: Let the policy set of each mobile sensor ¢ € A be
Pi = {(¢,p)|p € B:i}, where B; C B is the set of the allowable
sensor placement points for agent ¢ € A out of all the sensor
placement points B. Note that by definition, for any two agent
i,j7 € A, P; nP; = (. The sensors are heterogeneous in
the sense that the size of their sensing zone is different. The
objective is to place the sensors in points in 5 such that the total
number of the observed points of interest is maximized. The utility
function, the sum of observed points, is known to be monotone and
increasing submodular function of the agent’s sensing zone [4]. This
sensor placement problem can be formalized as the optimization
problem (1). The agents communicate over a connected undirected
graph, and their objective is to obtain their respective placement
point by interacting only with their communicating neighbors.

Discrete set function maximization problems subject to ma-
troid constraints such as (1) are NP hard [5]. When the ob-
jective function is monotone increasing and submodular set
function, however, it is well-known that the sequential greedy
algorithm delivers a polynomial-time suboptimal solution
with guaranteed optimality bound of % times the optimal
utility value for problem (1) [6]. For large-scale submodular
maximization problems, to manage the sequential greedy al-
gorithm’s computational complexity, reducing the problem’s
size through approximations is proposed in [7]. Using several
processing units to accelerate the sequential greedy algorithm
with trading some optimality bounds is also proposed in [8]—
[11].

More recently, for problems with partition matroid constraint,
a suboptimal solution with a better optimality gap is proposed
in [12]-[15] using the multilinear-extension to the continu-
ous domain of a submodular set function. The multilinear-
extension of a submodular set function allows transforming
the discrete problems such as (1) into a continuous opti-
mization problem with linear constraints. Then, as shown
in [12] a gradient ascent algorithm along with a continuous
to discrete domain mapping procedure is employed to obtain
an improved solution with 1 — % optimality gap bound for
a partition matroid constraint, outperforming the sequential
greedy algorithm optimality bound of 1/2. However, this so-
lution requires a central authority. A distributed multilinear-

978-1-6654-3659-5/21/$31.00 ©2021 IEEE 1238

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 29,2022 at 06:34:38 UTC from IEEE Xplore. Restrictions apply.

extension-based continuous algorithm that uses an average
consensus scheme to solve (1) is proposed in [16]. However,
the proposed algorithm assumes that access to the exact
multilinear-extension of the utility function is available,
whose calculation is exponentially hard. The algorithm also
lacks a final distributed rounding technique to map the final
continuous solution to an acceptable discrete domain policy
set.

In this paper, motivated by the improved optimality gap
of the multilinear-extension-based algorithm, we develop a
distributed implementation of the algorithm of [12] over a
connected undirected graph to obtain a suboptimal solution
for (1). We use the stochastic evaluation of the multilinear-
extension of a submodular function to manage the computa-
tional cost of constructing the utility function’s multilinear-
extension and propose a gradient-based algorithm, which
uses a maximum consensus message passing scheme over
the communication graph. Our algorithm uses a distributed
stochastic rounding algorithm that allows each agent to ob-
tain its final suboptimal policy selections. Through rigorous
analysis, we show that our proposed distributed algorithm
achieves, with a known probability, a 1 — 1 — O(1/T)
optimality bound, where T is the number of times agents
communicated over the network. A numerical example
demonstrates our results.

II. NOTATION AND DEFINITIONS

For a vector x € R”, the pth element of the vector is returned
as [x|,. For a set P = {1,---,n} and a vector x € RZ,
with 0 < [x], < 1, is referred to as membership probability
vector, and the set Ry is a random set where p € P is
in Ry with the probability [x],. Furthermore, for R C P,
1z € {0, 1}, referred to as membership indicator vector, is
the vector whose p" element is 1 if p € R and 0 otherwise.
Lastly, A¢(p|R) = f(RU{p}) — f(R) for any R C P and
p € P. |z| is the absolute value of = € R. By overloading
the notation, we also use |R| as the cordiality of set R.
Given a set F C X X R and an element (p, o) € X x R we
define the addition operator & as F&{(p,a)} = {(u,7) €
XXR[(u,7) € Fou#pU{(u,7+a) € X xR|(u,7) €
F,u=ptU{(p,a) € X xR|(p,7) &€ F,v € R}. Given
a collection of sets F; € X x R, ¢« € A, we define the
max-operation over these collection as I\ZI&X Fi={(u,y) €
X xR|(u,y) € F sit. v = (m?xfa}, where F = {J;c 4 Fi-
u,x)€

We denote a graph by G(A,E) where A is the node set
and £ C A x A is the edge set. G is undirected if and
only (i¢,7) € £ means that agents ¢ and j can exchange
information. An undirected graph is connected if there is
a path from each node to every other node in the graph.
We denote the set of the neighboring nodes of node i by
N; = {j € Al(i,j) € E}. We also use d(G) to show the
diameter of the graph.

A set function f : 2”7 — Rsq is normalized if f(()) = 0
and monotone increasing if f(P1) < f(P2) for any P; C
P2 C P. Furthermore, the set function f is submoular if

Af(p|P1) > Af(p|Ps), for any p € P\ Pa, which shows
the diminishing return of a set function.

Throughout this paper, without loss of generality, we assume
that the ground set P is equal to {1,---,n}. For a sub-
modular function f : 2P R>o, its multilinear-extension
F :]0,1]™ — R>¢ in the continuous space is

Fx)= fR) [T, [T ~x,), xe0,1",

RCP pER PER
2

which is a unique multilinear function agreeing with f on
the vertices of the hypercube [0, 1]™.

Lemma 2.1 (See [12]) If f is non-decreasing, then a?TIL >
0 for all p € P, everywhere in [0,1]™ (monotonicity of F).
If [is submodular, then a[f]gﬁ < 0 for all p,q € P,
everywhere in [0,1]™.

Evidently, F'(x) equivalently reads as
F(x) = E[f(Rx)], 3)

where Rx C P is a set where each element p € Ry appears
independently with the probabilities [x],. Then, it can be
shown that taking the derivatives of F'(x) yields

3?,13(’0 =E[f(Rx U{p}) — f(Rx \ {P})], (4a)
2
(%(X) =E[f(RxU{p.q}) — fF(RxU{a} \ {p})
—f(Rx U{p} \{a}) + F(Rx \ {p, a})], (4b)
p,q € P.

III. MULTILINEAR-EXTENSION-BASED DISTRIBUTED
SOLUTION

Our proposed distributed algorithm to solve the set value
optimization problem (1) over a connected graph G is a
stochastic multilinear-extension-based iterative greedy solu-
tion given by Algorithm 1. This algorithm is constructed
based on a suboptimal solution to the continuous exten-
sion representation of problem (1) that is formed around
the multilinear-extension of the utility function. The design
procedure, the convergence guarantee, and the suboptimality
gap of Algorithm 1 are presented in the following sections. In
the first following section, to provide an insight on the design
procedure, we review the idea of the central suboptimal
solution proposed in [12].

Without loss of generality, in what follows, we let P =
UieaP: = {1,--- ,n}, and we let the local policy set of
the agents be ordered according to their label {1,--- , N},
such that 1 € Py, and n € Py.

A. Review of the centralized multilinear-extension-based so-
lution

‘We use the multilinear-extension of submodular set functions
to extends the submodular utility function f : 27 — R,
which is defined on the vertices of the n—dimensional

1239

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 29,2022 at 06:34:38 UTC from IEEE Xplore. Restrictions apply.

hypercube {0,1}", to the continuous multilinear function
F, given in (2), which is defined on [0,1]". Next, let
X = [X{,..,x\], where x; € R‘fgl is the membership
probability vector of P; that defines the probability of
choosing policies from P; for each agent i € A. Thus, the

matroid polytope
— n < .
M= {xeRY] Zpepi x|, <1, Vic A} (5

is the convex hull of the partition matroid constraint (1b) in
the space of the membership probability vector. Therefore,
maxxepm F'(x) can be viewed as the continuous approxima-
tion of problem (1). Then, by way of a process that runs
continuously, depending only on local properties of F', we
can produce a point in M to approximate the optimum
OPT = maxxem F'(x). The proposal is to move in the
maximum ascent direction in M by following the flow

dx _ v(x) where v(x)=argmax(w.VF(x)). (6)

dt weM
over the time interval [0,1]. Note that x(¢) for ¢ € [0,1]
is contained in M, since it is a convex combination of
vectors in M. [12] shows that by following (6), we obtain
F(x(1)) > (1 — 1/e)OPT. Because for any R € Z,
1z € M, the global optimizer of (1), R*, satisfies OPT >
f(R*), then F(x(1)) > (1 — 1/e) f(R*). Next, by use
of the Pipage rounding method [17], the fractional solution
x(1) is rounded to an integral point X € M, such that
X = [%X],.,%x}]" € {0,1}" and F(x) > F(x(1)). Note
that by definition of X € M, x; € {0, 1}'7’”, i € A, has at
most one element with value of one. Hence R = Rg € T
is a deterministic feasible set that satisfies f(R) > F(x(1)),
and thus, f(R) > (1 —1/e)f(R*).

Constructing the gradient V F'(x) requires the knowledge of
f(R) for all R € 27, which becomes computationally in-
tractable when the size of ground set P increases. Computing
the continuous flow (6) also adds to the computational cost of
the solution. A practical solution is achieved by the numerical
iterative process

x(t+1) = x(t) + %v(t), @

where 1/T, T € Z-o, is the step size used to quantize
[0,1] and the use of a stochastic sampling procedure to
approximate V F'(x). Given the stochastic interpretation (4a),
if enough set samples are drawn according to membership
probability vector x, we can obtain an estimate of F'(x) with
a reasonable computational cost. The Chernoff-Hoeffding’s
inequality [18] can be used to quantify the quality of this
estimation given the number of samples. The optimality gap
for this practical solution is 1 — 1/e — O(1/T) with the
probability of 1 — 2T ne 52X where K is the number of
samples.

In what follows, we explain a practical distributed implemen-
tation of the continuous greedy process, which is realized as
Algorithm 1, and is inspired by this central solution.

B. Design and analysis of the multilinear-extension-based
distributed solution

The proposed distributed iterative solution is performed over
the finite time horizon of T steps. At time t, each agent
i € A is assigned a local probability membership vector
x;(t) € RZ, with x;(0) = 0 . Recall that P = {1,...,n}
and it is sorted agent-wise with 1 € P; and n € Py. Hence,
xi(t) = [XA (1), xj;(8), - iy (1)] T where x;(t) €
Rfo” is the membership probability vector of agent i € A
at iteration ¢, while %;;(t) € R‘fg is the local estimate of
the membership probability vector of agent j by agent 1.

At time step ¢, each agent ¢ € A empirically computes
gradient vector VF(x;(t)) € RY,, defined element-wise as
oF

o, ~ R0 P =/ R\ {p})

by taking K; samples of Ry, ;). We let ﬁ/‘(xz(t)) to stand
for the empirically evaluated vector VF'(x;(¢)). Then, each
agent i € A greedily finds the constrained maximum ascent
direction as

Vi(t) = argmax w.VF(x;(t)),
weM;
Mi:{w € R, ‘ 1Tw<1,[w),=0, Ve P\Pi}.
(8b)
Then, agent ¢ € A propagates its local variable according to
1

x; (t+1) =x;(t) + T\%(t).)

Next, agent ¢ € A, by interacting with its neighbors, updates
its propagated x; (t+1) by element-wise maximum seeking

(10)

(8a)

xi(t+1)= max x:(t+1).

jeN;u{iy 7

The following lemma establishes that x;;(t+1) = x; (t+1),
i € A, i.e., the updated component of x; corresponding to
probability of choosing elements from agent ¢’s own local
policy set does not change in the update stage. Thus, after
updating the local membership probability vectors according
to (10), at each agent i € A we have ch(t) =x,;(t),j € N;.

Lemma 3.1: Assume that the agents propagate and update

their local probability membership vectors x;(t), i € A ac-

cording to, respectively, (9) and (10). Let X(t) = max x;(t).
1€

Then, we have

x(t) = [x1y (1), xAn ()]

Moreover, X(t) € M at any time step t.

tef{o,---,T}Y. (11)

The proof of Lemma 3.1 is given in the extended version of
this paper available at [19].

Because of the propagation and update rules (9) and (10), the
flow of the updated information in the network between the
agents is delayed based on how far they are located in the
network with respect to each other. Hence at each time step ¢,
each agent has its own probability membership vector x; ()
on the policies that do not necessarily agree with the other

1240

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 29,2022 at 06:34:38 UTC from IEEE Xplore. Restrictions apply.

agents’ probability membership vectors. The following result
establishes the bounds on the disagreement of the agents.

Proposition 3.1: Assume that the agents propagate and up-
date their local probability membership vector according
to, respectively, (9) and (10). Then, for the membership
probability vector of each agent, i € A, i.e., x;(t), satisfies

1. 1

0 < SL&(H) —xi(t) < =d(G), (12a)

x(t+1) — x(t) = % > Vi) (12b)
€A

1. _ 1

where X(t) is given in (11).

The proof of Proposition 3.1 is given in the extended version
of this paper available at [19]

Let the agents terminate their propagation and update of their
probability membership vector according to, respectively,
(9) and (10) at T steps. The following lemma quantifies
the optimality of X(7') € M evaluated by the multilinear-
extension function F.

Lemma 3.2 (Optimality gap of decentralized multilinear-
extension-based framework) Let R* be the optimizer of
problem (1) and each agent i € A follow the update rules
(9), and (10) with the initial condition of x;(0) = 0. Then,

(1— i)(1 - (2N2d(g)+;N2 + N) ;)f(R*) <F(x(T)),

holds with probability of at least 1 — 2Tne_ﬁ£, K =
min K;.

i€ A

Proof of Lemma 3.2 is given in the extended version of this
paper available at [19].

x(T), however, is a fractional point in M. Moreover, only
part of it is available at each agent ¢ € A. The final output
of a distributed solver for problem (1) must be a set R
that should belong to the constraint set Z in (1b). From the
propagation and update rules (9) and (10) and Lemma 3.1,
we can conclude that 1.x;;(T) = 1. We propose that each
agent ¢ € A samples a single policy p; out of its local policy
set P; according to probability membership vector x;;(7")
(according to Algorithm 2, whose notation is introduced in
Section III-C), which results in the distributively selected
final policy set R = (J;c 4{pi}. The following lemma, whose
proof is given in the extended version of this paper available
at [19], compares the utility value f(R) with F(z(T)) in the
expected value.

Lemma 3.3 (Distributed rounding) Letting each agents
1 € A to sample one single policy p; out of P; according
to the probability membership vector x;;(T) results in R =
Uicalpi} that satisfies the constraint (1b) and

F(x(T)) <E[f(R)].

Algorithm 1 Distributed multilinear-extension-based itera-
tive greedy algorithm

1: Init: P« 0, F; < 0, t « 1,

2: while t < T do

3: for i € A do

4: Draw K; sample policy sets R such that ¢ € R with probability « for
all (¢, @) € Fi.

5: for p € P; do
6: Compute w,, ~ E[f(R U {p}) — f(R \ {p})] using the policy
sample sets of step 4.
7 end for)
8 Solve for p* = argmax wj,.
pEP;
9: F (—fi@{(p*,%)}.
10: Broadcast F, to the neighbors N;.
11: Fi+— MAX F-

X F;
jeN;u{i}
12: end for
13: t+—t+1.
14: end while
15: for i € A do
16: Sample one policy p € P; using F; using Algorithm 2
17 P+« PuU{p}
18: end for

Algorithm 2 Distributed Policy Selection

1: Input: P;, F;.
2: Let Pi(l), L€ {1,---

,|Pi|} be the lth element of P;.

3: Generate vector y; GR‘;U” as follows. For any P; (1) € P;, L € {1,--- ,|P;il},
iz i, € F(D),
[y;li =0, otherwise.
4: Generate a random number 3 € [0, 1] with a uniform distribution.
5: Finldz}ﬁ =P;(l) € Pi. L € {1, ,|Pi|}. such that Sk _ [y;]x < B <
k+:1 [vilk
6: return p

Note: notice that F; here is the information set of agent ¢ € A at ¢t = T

C. Distributed multilinear-extension-based iterative greedy
algorithm: A minimal information implementation

In what follows, we outline how the propagation and update
rules (9) and (10) can be implemented in a distributed way
without a need to exchange the entire x;, € R"™ of each
agent ¢ € A with its neighbors. The resulted implementation
is summarized as the distributed multilinear-extension-based
iterative greedy algorithm presented as Algorithm 1.

We define the local information set of each agent ¢ at time
t as

Fi(t) = {(p, a)eP x [0,1]|[x;(¢)], # 0 and o = [xz(t)]p}
(13)

Since x*(0) = 0, then F;(0) = {}. Introduction of the
information set F;(t) provides the framework through which
the agents only store and communicate the necessary in-
formation. Furthermore, it enables the agents to evaluate
the necessary values only using the available information in
Fi(t).

It follows from f being monotone increasing and submodular
that f(Rx, U {p}) — f(Rx,t)\ {p}) = 0. Therefore, one
realization of v;(t) of problem (8) is 1y,:}, where

pf = arg max w’ (t),

(14)
pEP; P

where agent ¢ can empirically evaluate w;(t) using the local

1241

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 29,2022 at 06:34:38 UTC from IEEE Xplore. Restrictions apply.

information set F;(t) as

wi(t) =E[f(RU{p}) — fF(R\ {p}]

for all p € P; by generating I; samples of R such that p €
R with the probability of « for all couples (p,) € F;(t).

Since 1y, is a realization of v;(t), the corresponding
realization of update rule (9) over the information set F;(t)
is denoted as

Frt+1) =R e {<p:,1>}, 1)

T
where F; (t+1) is consistent with the realization of x; (t+
1) through the membership probability vector to information
set conversion relation (13).

Instead of the agents sharing x; (¢), ¢ € A with their
neighbors, they can share their local information set with
their neighboring agents and execute a max operation over
their local and received information sets as

Fit+1)= MAX F:(t+1). 16
() jeNiu{i} 7 () (16)
Consequently, through the membership probability vector
to information set conversion relation (13) F;(¢t + 1) is
consistent with a realization of x;(t + 1) .

Finally given the information set of each agent i € A at time
T, each agents samples a single policy p; € P; such that

a7)

bi =D,
for all (p,) € F;(T') and p € P;.
The following theorem establishes the optimality bound of

f(R) where R = |J;ca{Pi} is generated through the
decentralized Algorithm 1.

with probability «,

Theorem 3.1 (Convergence guarantee and suboptimality
gap of Algorithm 1) Let f : 2P — Rsq be normalized,
monotone increasing and submodular set function. Let R*
to be the optimizer of problem (1). Following the distributed
Algorithm 1, the admissible policy set P is achieved such
that

1 2 1 2 1 * »
(1-2Y(1- (2 b) 1) e st

1

holds with probability of at least 1 — 2T ne™ 2l K=
min K;.
i€ A

Proof: Given that the information set update rules (14),
(15), and , (16) are a realization of the vector space update
rules rules (8), (9), and (10), we can conclude that the vector
y=1[y{, - ,yx]" defined as

[y]p a, (p,a) € .E(T),
[y]l, =0, Otherwise
is a realization of X(T) and satisfies F(X(T)) = F(y).
Moreover, sampling a single policy p; according to y, out
of P; is equivalent to sampling rule (17). Noting that y is a

realization of X(7"), Lemma 3.2 and Lemma 3.3 leads us to
concluding the proof. []

peP;

(€]

()

Fig. 2: Plots (a)-(f) show 6 different SEQ used in the sequential
greedy algorithm. Plot (g) shows the outcome of using Algorithm 1
whereas plot (h) shows the outcome of the sequential greedy
algorithm when SEQ in case 1 (plot (a)) is used.

IV. NUMERICAL EXAMPLE

Consider the multi-agent sensor placement problem intro-
duced in Fig. 1 for 5 agents for which B; = B, i.e., each
agent can move to any of the sensor placement points. This
sensor placement point is cast by optimization problem (1).
The field is a 6 unit by 6 unit square, and the feasible sensor
locations are the 6 by 6 grid in the center square of the
field, see Fig. 2. The points of interest are spread around
the map (small red dots in Fig. 2) in the total number of
900. The sensing zone of the agents A = {a,b,c,d, e} are
circles with radii of respectively {0.5,0.6,0.7,0.8,1.5}. The
agents communicate over a ring graph as shown in Fig. 2.
We first solve this problem using our proposed distributed
Algorithm 1. The results of the simulation for different
iteration and sampling numbers are shown in Table I. The
algorithm produces good results at the modest number of
iteration and sampling numbers (e.g., see 7' = 20 and
K = 500). Fig. 2(g) shows the result of the deployment
using Algorithm 1. Next, we solve this algorithm using the
sequential greedy algorithm [1] in a decentralized way by
first choosing a route SEQ = —|2|—=[3|—|4|—
that visits all the agents, and then giving SEQ to the agents
so they follow SEQ to share their information in a sequential
manner. Fig. 2(a)-(f) gives 6 possible SEQ denoted by the
semi-circular arrow inside the networks. The results of
running the sequential greedy algorithm over the sequences
in Fig. 2(a)-(f) are shown in Table II. What stands out
about the sequential greedy algorithm is that the choice of
sequence can significantly affect the algorithm’s outcome.
We can attribute this inconsistency to the heterogeneity of
the sensors’ measurement zone. We can see that when sensor
e is given the last priority to make its choice, the sequential

1242

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 29,2022 at 06:34:38 UTC from IEEE Xplore. Restrictions apply.

T K 10000 | 500 100 50 10 5 1
100 768 768 | 718 | 710 | 718 | 716 | 696
20 768 768 | 718 | 710 | 726 | 716 | 696
10 661 640 | 657 | 640 | 634 | 602 | 551
5 630 630 | 634 | 626 | 583 608 | 540

1 456 456 | 456 | 456 | 456 | 456 | 456

TABLE I: The outcome of Algorithm 1 for different iteration 7'
and sampling numbers K.

Case 1 2 3 4 5 6
Utility 634 | 704 | 699 | 640 | 767 | 760

TABLE II: Outcome of sequential greedy algorithm.

greedy algorithm acts poorly. This can be explained by
agents with smaller sensing zone picking high-density areas
but not being able to cover it fully, see Fig. 2(h), which
depicts the outcome of the sequential greedy algorithm using
the sequence in Case 1. A simpler example justifying this
assumption is shown in Fig. 3 with the two disjoint clusters
of points and two sensors. One may suggest sequencing the
agents from high to low sensing zone order; however, this
is not necessarily the best choice as we can see in Table II,
the utility of case 6 is less than case 5 (the conjecture of
sequencing the agents from strongest to weakest is not valid).
Moreover, this ordering may lead to a very long SEQ over
the communication graph. Interestingly, this inconsistency
does not appear in solutions of Algorithm 1 where the agents
intrinsically are overcoming the importance of a sequence by
deciding the position of the sensor over a time horizon of
communication and exchanging their information set.

V. CONCLUSION

We proposed a distributed suboptimal algorithm to solve
the problem of maximizing an increasing submodular set
function subject to a partitioned matroid constraint. Our
problem of interest was motivated by optimal multi-agent
sensor placement problems in discrete space. Our algorithm
was a practical decentralization of a multilinear-extension-
based algorithm that achieves (1—1/e—O(1/T)) optimality
gap, which is an improvement over 1/2 optimality gap that
the well-known sequential greedy algorithm achieves. In our
numerical example, we compared the outcome obtained by
our proposed algorithm with that of a decentralized sequen-
tial greedy algorithm which is constructed from assigning
a priority sequence to the agents. We showed that the out-
come of the sequential greedy algorithm is inconsistent and
depends on the sequence. However, our algorithm’s outcome
due to its iterative nature intrinsically tended to be consistent,
which in some ways also explains its better optimality gap
over the sequential greedy algorithm. Our future work is to
study the robustness of our proposed algorithm to message
dropout.

REFERENCES

[1] N. Rezazadeh and S. S. Kia, “A sub-modular receding horizon solution
for mobile multi-agent persistent monitoring,” Automatica, vol. 127,
p. 109460, 2021.

e © o e ©
e e ,® ® e ., ®
@ o ® e @ o ® o
® °® ° °
® o ° °®
& ° & ®

Fig. 3: In the sequential greedy algorithm, when the blue agent
chooses first, it assigns both the blue and the orange agents to
point A resulting in an inferior performance compared to the case
that the orange agent chooses first. In the later case, orange agent
gets point A and the blue agent gets B, which is indeed the optimal
solution.

[2] H. A, M. Ghasemi, H. Vikalo, and U. Topcu, “Randomized greedy
sensor selection: Leveraging weak submodularity,” IEEE Transactions
on Automatic Control, 2020.

[3] V. Tzoumas, A. Jadbabaie, and G. J. Pappas, “Sensor placement
for optimal kalman filtering: Fundamental limits, submodularity, and
algorithms,” in American Control Conference, pp. 191-196, IEEE,
2016.

[4] C. Chekuri and A. Kumar, “Maximum coverage problem with group
budget constraints and applications,” in Approximation, Randomiza-
tion, and Combinatorial Optimization. Algorithms and Techniques,

pp- 72-83, Springer, 2004.

[5] G. Nembhauser, L. Wolsey, and M. Fisher, “An analysis of approxi-
mations for maximizing submodular set functions—i,” Mathematical
programming, vol. 14, no. 1, pp. 265-294, 1978.

[6] L. Fisher, G. Nemhauser, and L. Wolsey, “An analysis of approxi-
mations for maximizing submodular set functions—ii,” in Polyhedral
combinatorics, pp. 73—-87, Springer, 1978.

[71 K. Wei, R. Iyer, and J. Bilmes, “Fast multi-stage submodular maxi-

mization,” in International conference on machine learning, pp. 1494—

1502, PMLR, 2014.

B. Mirzasoleiman, A. Karbasi, R. Sarkar, and A. Krause, “Distributed

submodular maximization: Identifying representative elements in mas-

sive data,” in Advances in Neural Information Processing Systems,

pp- 2049-2057, 2013.

[9]1 B. Mirzasoleiman, M. Zadimoghaddam, and A. Karbasi, “Fast dis-
tributed submodular cover: Public-private data summarization,” in
Advances in Neural Information Processing Systems, pp. 3594-3602,
2016.

[10] R. Kumar, B. Moseley, S. Vassilvitskii, and A. Vattani, “Fast greedy
algorithms in mapreduce and streaming,” ACM Transactions on Par-
allel Computing, vol. 2, no. 3, pp. 1-22, 2015.

[11] P. S. Raut, O. Sadeghi, and M. Fazel, “Online dr-submodular
maximization with stochastic cumulative constraints,” arXiv preprint
arXiv:2005.14708, 2020.

[12] J. Vondrék, “Optimal approximation for the submodular welfare prob-
lem in the value oracle model,” in Proceedings of the fortieth annual
ACM symposium on Theory of computing, pp. 67-74, 2008.

[13] A. A. Bian, B. Mirzasoleiman, J. Buhmann, and A. Krause, “Guaran-
teed non-convex optimization: Submodular maximization over contin-
uous domains,” in Artificial Intelligence and Statistics, pp. 111-120,
2017.

[14] A. Mokhtari, H. Hassani, and A. Karbasi, “Stochastic conditional
gradient methods: From convex minimization to submodular maxi-
mization,” Journal of Machine Learning Research, vol. 21, no. 105,
pp. 1-49, 2020.

[15] O. Sadeghi and M. Fazel, “Online continuous dr-submodular maxi-
mization with long-term budget constraints,” in International Confer-
ence on Artificial Intelligence and Statistics, pp. 4410-4419, 2020.

[16] A. Robey, A. Adibi, B. Schlotfeldt, J. G. Pappas, and H. Hassani,
“Optimal algorithms for submodular maximization with distributed
constraints,” arXiv preprint arXiv:1909.13676, 2019.

[17] A. A. Ageev and M. 1. Sviridenko, “Pipage rounding: A new method of
constructing algorithms with proven performance guarantee,” Journal
of Combinatorial Optimization, vol. 8, no. 3, pp. 307-328, 2004.

[18] H. W, “Probability inequalities for sums of bounded random variables,”
in The Collected Works of Wassily Hoeffding, pp. 409-426, Springer,

1994.

[19] N. Rezazadeh and S. S. Kia, “Multi-agent maximization of a monotone
submodular function via maximum consensus,” 2020.

[8

=

1243

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 29,2022 at 06:34:38 UTC from IEEE Xplore. Restrictions apply.

