
Automatica 136 (2022) 109886

H
D

g
a
a
o
m

x

u
t
p
e
w
(
d
C
(
(
b
a
l

(

h
0

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Technical communique

A distributed continuous-timemodified Newton–Raphson algorithm✩

ossein Moradian ∗,1, Solmaz S. Kia
epartment of Mechanical and Aerospace Engineering, University of California, Irvine, United States of America

a r t i c l e i n f o

Article history:
Received 19 July 2020
Received in revised form 19 May 2021
Accepted 14 July 2021
Available online 26 August 2021

Keywords:
Distributed optimization
Newton–Raphson method
Convex optimization
Machine learning

a b s t r a c t

We propose a continuous-time second-order optimization algorithm for solving unconstrained convex
optimization problems with bounded Hessian. We show that this alternative algorithm has a compara-
ble convergence rate to that of the continuous-time Newton–Raphson method, however structurally, it
is amenable to a more efficient distributed implementation. We present a distributed implementation
of our proposed optimization algorithm and prove its convergence via Lyapunov analysis. A numerical
example demonstrates our results.

© 2021 Elsevier Ltd. All rights reserved.
d
f
t
c
f
H
P
C
e
i
a
a
d
c
K
i
a
c
e
i
w

s
t

1. Introduction

Consider a network of N agents interacting over a connected
raph G, see Fig. 1. Each agent i ∈ {1, . . . ,N} is endowed with
local cost function f i : Rd

→ R which is twice differentiable
nd mi-strongly convex. Our objective is to design a distributed
ptimization algorithm such that each agent obtains the global
inimizer x⋆

∈ Rd of the feasible optimization problem

⋆
= argmin

x∈Rd
f (x), f (x) =

N∑
i=1

f i(x), (1)

sing local interactions with its neighbors. The existing dis-
ributed optimization solutions are mostly consensus-based ap-
roaches that use gradient and sub-gradient methods, see
.g., Boyd, Parikh, Chu, Peleato, and Eckstein (2010), Duchi, Agar-
al, and Wainwright (2012), Johansson, Rabi, and Johansson
2009), Nedić and Ozdaglar (2009), Zhu and Martínez (2012) for
iscrete-time and Droge, Kawashima, and Egerstedt (2014), Kia,
ortés, and Martínez (2014), Lu and Tang (2012), Wang and Elia
2011), Zanella, Varagnolo, Cenedese, Pillonetto, and Schenato
2011) for continuous-time algorithms. Even though the gradient-
ased solutions’ distributed implementation is fully understood
nd requires low computational resources, they suffer from a
ow convergence rate, especially near the solution. With the

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Iman
Shames under the direction of Editor André L. Tits.

∗ Corresponding author.
E-mail addresses: hmoradia@uci.edu (H. Moradian), solmaz@uci.edu

S.S. Kia).
1 This work is supported by NSF award ECCS-1653838.
 t

ttps://doi.org/10.1016/j.automatica.2021.109886
005-1098/© 2021 Elsevier Ltd. All rights reserved.
recent advances in fast computing via graphics processing units
(GPUs), the interest in Newton-based optimization algorithms,
which use second-order information to achieve faster conver-
gence, is renewed for large-scale optimization problems (Hen-
riques, Ehrhardt, Albanie, & Vedaldi, 2018; Yao et al., 2020).
The popular Newton–Raphson (NR) method uses the inverse
of the Hessian of the total cost multiplied by the gradient of
the total cost, i.e., −(

∑N
i=1 H

i(x))−1(
∑N

i=1 g
i(x)), as the descent

irection. Here, gi(x) = ∇f i(x) and Hi(x) = ∇
2f i(x). Starting

rom a local guess xi ∈ Rd, i ∈ {1, . . . ,N}, a common way
o execute the NR algorithm in a decentralized way is to use a
onsensus-based framework to track

∑N
i=1 H

i(xi) and
∑N

i=1 g
i(xi)

or every agent cooperatively by exchanging the gradient and the
essian of the local costs, see e.g., Varagnolo, Zanella, Cenedese,
illonetto, and Schenato (2015) for continuous-time and Bof,
arli, Notarstefano, Schenato, and Varagnolo (2019), Varagnolo
t al. (2015) for discrete-time algorithms. These algorithms result
n O(Nd2) communication, computation and storage costs per
gent to solve problem (1). To remove communicating Hessian
mong agents, Mokhtari, Ling, and Ribeiro (2015) propose a
istributed algorithm that approximates Newton step by trun-
ating the Taylor series expansion of the exact Newton step at
terms. But, implementing this algorithm requires aggregating

nformation from K hops away. Increasing K makes the method
rbitrarily close to Newton’s method at the cost of increasing the
ommunication overhead of each iteration. Building on Mokhtari
t al. (2015), Mansoori and Wei (2020) propose an asynchronous
mplantation to manage communication cost but the method
orks only for univariate local cost functions.
In this paper, we provide an alternative continuous-time

econd-order algorithm with a comparable convergence rate to
hat of the continuous-time NR algorithm, but with a struc-

ure that is amenable to a more resource-efficient distributed

https://doi.org/10.1016/j.automatica.2021.109886
http://www.elsevier.com/locate/automatica
http://www.elsevier.com/locate/automatica
http://crossmark.crossref.org/dialog/?doi=10.1016/j.automatica.2021.109886&domain=pdf
mailto:hmoradia@uci.edu
mailto:solmaz@uci.edu
https://doi.org/10.1016/j.automatica.2021.109886

H. Moradian and S.S. Kia Automatica 136 (2022) 109886

a
a

i
a
t
b
a
a
u
r

2

n
R
i

w
E
r
i
g
F
W

Π

F

M

3

g

N

S

(

(

t

T
s
T
t
u
r
o

P
f

≤

4
d
∇

o
−

o
o

Fig. 1. A connected graph: in a connected undirected graph agents connected by
n edge can exchange information. Moreover, there is a path from any agent to
ny other agent.

mplementation that also requires information exchange only
mong one-hop neighbors. In the distributed implementation of
his algorithm, agents use the inverse of their local Hessians
ut do not need to communicate it. As a result, our proposed
lgorithm’s communication, computation, and storage cost per
gent are O(Nd). We establish the convergence of our algorithm
sing Lyapunov stability analysis. Simulations demonstrate our
esults.

. Preliminaries

Our notations are standard and definitions are given if it is
ecessary to avoid confusion. A differentiable function f : Rd

→

is m-strongly convex (m ∈ R>0) in a convex set C if and only
f (z − x)⊤(∇f (z) − ∇f (x)) ≥ m∥z − x∥2, ∀ x, z ∈ C, x ̸= z. For
twice differentiable function f m-strong convexity (m > 0) is also
equivalent to H(x) = ∇

2f (x) ≥ mI, ∀ x ∈ C .
A connected graph, see Fig. 1, is represented by G = (V, E,A),

where V = {1, . . . ,N} is the node set, E = {e1, . . . , eM} ⊆ V × V
is the edge set, and A = [aij] ∈ RN×N is the adjacency matrix
such that aij = aji = 1 if (i, j) ∈ E and aij = 0, otherwise. The
incidence matrix is B =

1
√
2
[b1, −b1, . . . , bM , −bM

] ∈ RN×2M

here bk
∈ RN is a vector corresponds to the edge ek = (i, j) ∈

with zero elements except for ith and jth components with
espectively bi = 1, bj = −1. The Laplacian matrix of a graph
s L = Diag(A1N) − A. Note that L1N = 0. Moreover, L = BB⊤. A
raph is connected if and only if 1T

NL = 0, and rank(L) = N − 1.
or a connected graph, eigenvalue of L is λ1 = 0, {λi}

N
i=2 ⊂ R>0.

e let λi ≤ λj, for i < j. Moreover,

N = LL+
= BB⊤(BB⊤)+ = B(B⊤B)+B⊤, (2)

where (.)+ denotes the generalized inverse matrix (George &
reeman, 2019) and ΠN = I −

1
N 1N1⊤

N , where 1N is the vector of
N ones.

Throughout the paper, the following assumption holds.

Assumption 2.1. The local cost functions f i : Rd
→ R, i ∈

{1, · · · ,N}, are mi-strongly convex with the bounded Hessians
miI ≤ Hi(xi) ≤ m̄iI, for some mi, m̄i

∈ R>0. □

Thus, the total cost f is m-strongly convex and its Hessian is
upper-bounded by m̄I where m = min{mi

}
N
i=1, m̄ = max{m̄i

}
N
i=1.

oreover, x⋆ in (1) is unique (Bertsekas, 1999).

. Problem definition

The continuous-time NR algorithm to solve problem (1) is
iven by

R: ẋ = −

(N∑
Hi(x)

)−1 N∑
gi(x). (3)
i=1 i=1 i

2

In this paper, we propose the Hessian inverse sum optimization
(HISO) algorithm

HISO: ẋ = −

(1
N

N∑
i=1

Hi(x)−1
) N∑

i=1

gi(x), (4)

as an alternative Hessian-based solver for the optimization prob-
lem (1). We show that this algorithm has the convergence rate no
worse than that of (3) but it has a structure that is amenable to
a distributed implementation with more efficient resource usage.
We start by the auxiliary result below.

Lemma 3.1 (Bound on the Inverse of Sum of Symmetric Positive
Definite Matrices). Let every Hi

∈ Rd×d, i ∈ {1, . . . ,N}, be a positive
definite matrix. Then(N∑

i=1

Hi
)−1

≤
1
N

N∑
i=1

Hi−1
. (5)

Proof. The proof is by mathematical induction. Recall that the
inverse of positive definite matrices is a convex function (Nord-
strom, 2011). Hence, for N = 2 for any κ ∈ [0, 1] we have

(
κ H1

+ (1 − κ)H2)−1
≤ κ H1−1

+ (1 − κ)H2−1
. (6)

ubstituting κ = 0.5 gives (H1
+ H2)−1

≤
1
4 (H

1−1
+ H2−1) ≤

1
2 (H

1−1
+ H2−1). Thus, (5) holds for N = 2. Next, assuming∑N−1

i=1 Hi)−1
≤

1
N−1

∑N−1
i=1 Hi−1 we show that (

∑N
i=1 H

i)−1
≤

1
N

∑N
i=1 H

i−1 holds. To this aim, notice that given (6) we obtain

1
N
HN

+
N − 1
N

N−1∑
i=1

Hi
)−1

≤
1
N
HN−1

+
N − 1
N

N−1∑
i=1

Hi−1

≤
1
N
HN−1

+
N − 1
N

(1
N − 1

N−1∑
i=1

Hi−1
)

=
1
N

N∑
i=1

Hi−1
.

Since
(∑N

i=1 H
i
)−1

≤
(1
NH

N
+

N−1
N

∑N−1
i=1 (Hi)

)−1, then (5) holds
for any N ≥ 2, which concludes proof. □

Lemma 3.1 enables us to make the following statement about
he HISO algorithm’s convergence guarantees.

heorem 3.1 (Convergence Analysis of the HISO Algorithm). Con-
ider the optimization problem (1) and let Assumption 2.1 hold.
hen, starting from any initial condition x(0) ∈ Rd, as t → ∞

he HISO algorithm (4) converges exponentially fast to x⋆
∈ Rd, the

nique minimizer of the optimization problem (1). Furthermore, the
ate of convergence of (4) is no worse than the rate of convergence
f algorithm (3).

roof. Consider the candidate Lyapunov function V (x) = f (x) −

(x⋆). Given Assumption 2.1, we have m∥x − x⋆
∥
2

≤ V (x) ≤

m̄∥x − x⋆
∥
2, and ∥(

∑N
i=1 H

i(x))−1
∇f (x)∥ ≤

m̄
m∥x − x⋆

∥ where
∇f (x) =

∑N
i=1 g

i(x). The derivative of V (x) along trajectories
of (4), satisfies V̇ (x) = −

1
N ∇f (x)⊤(

∑N
i=1 H

i(x)−1)∇f (x)
−

m̄2

m ∥x − x⋆
∥
2, which by virtue of Khalil (2002, Theorem

.10) confirms the exponential stability of (4). On the other hand,
erivative of V (x) along (3) satisfies V̇ = −∇f (x)⊤(

∑N
i=1 H

i(x))−1

f (x) ≤ −
m̄2

m ∥x − x⋆
∥
2, confirming the exponential stability

f (3). By virtue of Lemma 3.1, −
1
N ∇f (x)⊤(

∑N
i=1 H

i(x)−1)∇f (x) ≤

∇f (x)⊤(
∑N

i=1 H
i(x))−1

∇f (x), which indicates that the derivative
f V (x) is more negative along the trajectories of (4) than those
f (3). Hence, we can conclude that the rate of convergence of (4)
s no worse than the convergence rate of (3). □

H. Moradian and S.S. Kia Automatica 136 (2022) 109886

∑
a
c

t
e
t
b
T
r

w

v
c
α
f
x
o

r
l
s
o
a
t
c
d
a
r
c
w
I
t

x

i
u
C
g
e
t
c
c
t
a
d

s
c

z

M

Fig. 2. The convergence of the Euler discretized GD, NR and HISO algorithms
under different conditions to find the minimum of the cost function, f (x) =

10
i=1 a

ix2 + bix4 where ai and bi are randomly chosen in [0, 0.1]. For each
lgorithm the stepsize is set to its optimum value, obtained numerically,
orresponding to its fastest convergence.

Comparing rate of convergence of continuous-time optimiza-
ion algorithms is a rather subtle matter. Any claim for an accel-
rated convergence by an algorithm meets the counter-argument
hat the ‘simple’ continuous-time gradient descent algorithm can
e made arbitrarily fast using large scalar multiplicative gains.
o address this dilemma, one can think of continuous-time algo-
ithms as first-order integrator dynamics ẋ = α u with α ∈ R>0,
where the system input α u is the control effort of the algorithm.
Suppose the control effort is bounded as ∥αu∥ ≤ ακ0∥x − x⋆

∥,
ith κ0 ∈ R>0. For an exponentially convergent algorithm, by

virtue of Khalil (2002, Theorem 4.14), there exists a Lyapunov
function that satisfies κ1∥x − x⋆

∥
2

≤ V (x) ≤ κ2∥x − x⋆
∥
2,

and V̇ ≤ −ακ3∥x − x⋆
∥
2 for some κ1, κ2, κ3 ∈ R>0. Then, by

irtue of Khalil (2002, Theorem 4.10) the exponential rate of
onvergence of the algorithm is ακ3

2κ2
, indicating that increasing

increases the rate of convergence. Now, on the other hand,
or the Euler-discretized form of the algorithm, i.e., x(k + 1) =

(k) + δαu, k ∈ Z≥0, using the same Lyapunov function, we
btain ∆V (x(k)) = V (x(k + 1)) − V (x(k)) ≤ −δακ3∥x − x⋆

∥
2

+
δ2α2

2 u⊤
∇

2V (ζ)u where, ζ ∈ [x(k), x(k + 1)). Let ∇
2V (ζ) ≤ βI,

which is normally satisfied in optimization problems. Then, we
can write ∆V (x(k)) ≤ −δα(κ3−

δα
2 βκ2

0)∥x−x⋆
∥
2, which indicates

that an admissible stepsize δ for Euler-discretized form of the
algorithm should satisfy 0 < δ <

2κ3
αβκ2

0
. Thus, increasing α

esults in smaller stepsizes. Moreover, algorithms that employ
arger control effort (larger α κ0) will have smaller stepsize. As
uch, to be mindful of practical Euler-discretize implementation
f continuous-time algorithms, any claim to a continuous-time
lgorithm being faster than another should be evaluated under
he requirement that the algorithms employ the same maximum
ontrol effort level. Fig. 2 shows the convergence behavior of the
iscrete-time implementation of the gradient descent (GD), NR,
nd HISO algorithms. As we can see, NR and HISO show compa-
able responses and also faster convergence than GD. For all three
ases, the maximum control effort happens at the initial time,
ith GD having the largest and NR having the smallest values.

f we normalize the control efforts of NR and GD with respect
o that of HISO by using, respectively, gains ∥

1
N

∑N
i=1 H

i(x(0))−1
∥

and ∥
∑N

i=1 H
i(x(0))∥∥ 1

N

∑N
i=1 H

i(x(0))−1
∥, the GD algorithm can

use larger stepsize and NR should use a smaller stepsize, with GD
still showing slower convergence. Notice that, as Fig. 2 shows, if
we increase the GD algorithm’s control effort by using the gain
α = 5, the discrete-time implementation still has slower conver-
gence because we are forced to use a smaller Euler discretization
stepsize.

HISO algorithm uses the sum of the inverse of the Hessian
of the local cost functions rather than the inverse of the sum of
the local Hessians as in the NR algorithm. This trait, as shown
below, results in a more efficient distributed implementation for
algorithm (4), in which agents only incur a cost of O(Nd) in
3

communication, computations, and storage rather than O(Nd2) as
in the distributed NR algorithms in the literature (Bof et al., 2019;
Varagnolo et al., 2015).

4. Distributed HISO algorithm

Our proposed distributed implementation of the HISO algo-
rithm is

zi = gi(xi) + vi, (7a)

v̇i = −

N∑
j=1

aij sgn(zi − zj) +

N∑
j=1

aij(xi − xj), (7b)

˙
i
= −Hi(x)−1(zi + N∑

j=1

aij(xi − xj)
)
, (7c)

∈ {1, . . . ,N}. Conceptually, our approach to construct (7) was to
se the finite-time dynamic average consensus algorithm of Chen,
ao, and Ren (2012) ((7a) and (7b)) with input gi(xi) = ∇f i(xi) to
enerate zi →

1
N

∑N
j=1 g

j(xj) as t → ∞. For algorithm of Chen
t al. (2012) to converge we need

∑N
i=1 v

i(0) = 0, which can
rivially be satisfied using vi(0) = 0. Next, we noticed that the
ollective dynamics exhibits

∑N
i=1 ġ

i(xi) → −
∑N

j=1 g
j(xj) as zi

onverges. Then, if agreement occurs, every agent has a copy of
he HISO algorithm locally. We added

∑N
j=1 aij(x

i
− xj) to (7b)

nd (7c) for technical reasons to create agreement between the
ecision vector of the agents.
In what follows, we provide a formal proof of convergence and

tability analysis of (7). For analysis, we write algorithm (7) in the
ompact form

ż = − B sgn(B⊤z) + BB⊤x +
d
dt

g(x), (8a)

ẋ = −H−1(z + BB⊤x
)
, (8b)

where B = B ⊗ Id, H = diag(H1(x), . . . ,HN (x)), g(x) =

[g1(x1)⊤, . . . , gN (xN)⊤]
⊤ and Π = ΠN ⊗ Id with the network

aggregated variables z, x ∈ RdN . The following result shows that
agents arrive at agreement in their {zi}Ni=1 in finite time, and in
their {xi}Ni=1 as t → ∞.

Lemma 4.1 (Consensus in Algorithm (7) Over Connected Graphs).
Let G be a connected graph. Under Assumption 2.1, starting algo-
rithm (7) over G from any xi(0), vi(0) ∈ Rd,

∑N
i=1 v

i(0) = 0,
every xi(t), i ∈ {1, . . . ,N}, converges to 1

N

∑N
j=1 x

j as time goes to
infinity, while every zi, i ∈ {1, . . . ,N}, converges to 1

N

∑N
j=1 g

j(xj)
in finite time.

Proof. (7b) leads to
∑N

i=1 v̇
i
= 0, which along with

∑N
i=1 v

i(0) = 0
gives

∑N
i=1 v

i(t) = 0 for any t ∈ R≥0. Moreover, from (7a), we
obtain

N∑
i=1

zi(t) =

N∑
i=1

gi(xi(t)), t ∈ R≥0. (9)

Next, note that d
dt g(x) = H ẋ. Then, we can obtain from (8) that

˙ = − B sgn(B⊤z) − z, which gives
N∑
i=1

żi = −

N∑
i=1

zi →

N∑
i=1

zi(t) = e−t
N∑
i=1

zi(0), t ∈ R≥0. (10)

oreover, using

z̃(t) = Π z(t), (11a)

x̃(t) = Π x(t), (11b)

H. Moradian and S.S. Kia Automatica 136 (2022) 109886

x

(

S

L

a

S
f

W

T

m

t

R

o

b
t

i

W

t
d
d
H
a
i
r
M

(8) can be written as
˙̃z = − B sgn(B⊤z̃) − z̃, (12a)

˙̃ = −ΠH−1(z̃ +
e−t

N
1N ⊗

N∑
i=1

zi(0) + BB⊤x̃
)
. (12b)

Here, we used (10). Moreover, given (11) we obtain
1N ⊗

∑N
i=1 z̃

i(t) = 0 and 1N ⊗
∑N

i=1 x̃
i(t) = 0, which hold for

any t ∈ R≥0.
Next, we show that B⊤z̃(t) goes to zero in finite time. Defining

ẑ = B⊤z̃(t) and x̂ = B⊤x̃(t), from (12) we get
˙̂z = −B⊤Bsgn(ẑ) − ẑ, (13a)

˙̂x = −B⊤H−1(z̃ +
e−t

N
1N ⊗

N∑
i=1

zi(0)) − B⊤H−1Bx̂. (13b)

To analyze the stability of (13a) consider

V =
1
2
ẑ⊤(B⊤B)+ẑ ≤ λ̄∥ẑ∥2

2, (14)

where λ̄ is the maximum eigenvalue of 1
2 (B

⊤B)+. Note that
B⊤B)+ ≥ 0. The Lie derivative of V along (13a) is equal to

V̇ = − ẑ⊤sgn(ẑ) − ẑ⊤ẑ = −∥ẑ∥1 − ẑ⊤ẑ ≤ −∥ẑ∥1.

ince ∥ẑ∥2 ≤ ∥ẑ∥1, then we have V̇ ≤ −∥ẑ∥2 ≤ 0. As such,
from (14), we obtain V̇ ≤

−1
√

λ̄

√
V . Then, invoking the comparison

emma (Khalil, 2002, Lemma 3.4), we have the
√
V ≤

√
V (0) −

1
2
√

λ̄
t . Consequently, starting from any V (0), V (t) becomes zero at

a finite time. Then, since V =
1
2 ẑ

⊤(B⊤B)+ẑ = z⊤B(B⊤B)+B⊤z =

z⊤Πz = (Πz)⊤(Πz) = z̃⊤z̃, and (9), we can conclude that every
zi, i ∈ {1, . . . ,N}, converges to 1

N

∑N
j=1 g

j(xj) in finite time, and
also z̃ is bounded and converges to zero in finite time (∥z̃(t)∥2 ≤

∥z̃(0)∥2 −
1

2
√

λ̄
t).

Next, we show that Bx̂ converges to 0 as t → ∞. To this
im, we consider the radially unbounded Lyapunov function W =

1
2 x̂

⊤x̂. The Lie derivative of this function along the trajectories
of (13b) is

Ẇ = − x̂⊤B⊤H−1Bx̂ − x̂⊤B⊤H−1(z̃ +
e−t

N
1N ⊗

N∑
i=1

zi(0)).

ince z̃(t) vanishes in finite time, there exists a t1 ∈ R>0 such that
or any t ≥ t1, we obtain

˙ = −∥

√

H−1Bx̂∥2
− x̂⊤B⊤H−1(

e−t

N
1N ⊗

N∑
i=1

zi(0)) ≤

− ∥

√

H−1Bx̂∥
(
∥

√

H−1Bx̂∥ −
e−t

N
∥

√

H−1(1N ⊗

N∑
i=1

zi(0))∥
)

Note that at each time t ≥ t1, Ẇ ≤ 0 if and only if ∥
√
H−1Bx̂∥ ≥

e−t

N ∥
√
H−1(1N ⊗

∑N
i=1 z

i(0))∥. Then, at any t2 ≥ t1 if the trajec-
tories of (13) satisfy x̂(t2) ∈ S = {x̂ ∈ RNd

| ∥
√
H−1Bx̂∥ ≤

e−t2
√
mN ∥(1N ⊗

∑N
i=1 z

i(0))∥}, then x̂(t) ∈ S for all t ≥ t2, other-

wise, Ẇ (t2) < 0. Here, we used the fact that ∥

√
H−1(x(t))∥ ≤

1
√
m , which ensures that e−t

N ∥

√
H−1(x(t))(1N ⊗

∑N
i=1 z

i(0))∥ ≤

e−t
√
mN ∥1N ⊗

∑N
i=1 z

i(0)∥ < e−t2
√
mN ∥1N ⊗

∑N
i=1 z

i(0)∥ for any t > t2.
herefore, as t → ∞, we have the guarantees that along the

trajectories of the system, ∥
√
H(x(t))−1Bx̂(t)∥ goes to zero, which

eans that Bx̂(t) goes to zero. Consequently, because of x̂ = B⊤x̃
and BB⊤

= L ⊗ Id we can conclude that (L ⊗ Id)x̃(t) goes to zero
as t → ∞. Given that the graph is connected, then, as t → ∞, x̂
goes to 1 ⊗θ , θ ∈ Rd, which given 1 ⊗

∑N x̃i(t) = 0, it means
N N i=1 t

4

Fig. 3. Convergence of DGD1, DGD2, DHISO and DNR of Varagnolo et al. (2015)
algorithms in logarithmic scale.

that x̃(t) goes to zero as t → ∞. As a result, it follows from (11b)
hat xi converges to 1

N

∑N
j=1 x

j(t) as t → ∞. □

emark 4.1 (Remark on the Proof of Lemma 4.1). The solution
of (7) is in the sense of Filippov (Filippov, 1988) since the so-
lution is piecewise differentiable. The Filippov approach provides
multi-valued functions for the solution of (7) over discontinuity
points. Note, however, that our stability analysis is valid since the
Lyapunov function is smooth and decreasing over every Filippov
solution of (7). □

Lemma 4.1 showed that the trajectories of distributed HISO
algorithm (7) converge to agreement space. The next theorem
shows that this property indeed results in xi, i ∈ {1, . . . ,N} con-
verging to x⋆, the unique solution of the optimization problem (1),
as t → ∞.

Theorem 4.1 (Convergence of Algorithm (7)). Suppose the graph G is
connected and let Assumption 2.1 hold. Then, starting algorithm (7)
over G from any xi(0), vi(0) ∈ Rd,

∑N
i=1 v

i(0) = 0, every xi(t),
i ∈ {1, . . . ,N}, converges to x⋆, the unique minimizer of (1) and
every zi converges to zero as t → ∞.

Proof. From (11a), zi = z̃i +
1
N

∑N
j=1 z

i. Recall from the proof
f Lemma 4.1 that under the stated initial condition, z̃i, i ∈

{1, . . . ,N}, converges to zero in finite time. Then, convergence of
zi, i ∈ {1, . . . ,N}, to zero follows from (10). Next, notice that (9)
and (10) indicate that

∑N
j=1 g

j(xj) goes to zero as t → ∞. Then,
ecause Lemma 4.1 guarantees that xi, i ∈ {1, . . . ,N} converges
o 1

N

∑N
j=1 x

j as t → ∞, we can conclude that 1
N

∑N
j=1 x

j, and
subsequently every xi converges to x⋆ as t → ∞. □

5. Numerical example

We consider a distributed binary classification problem using
logistic regression over a connected graph of Fig. 1. Each agent
i ∈ {1, . . . ,N} has access to mi training samples (cij, yij) ∈ Rp

×

{−1, +1}, where cij contains p features of the jth training data at
agent i, and yij is the corresponding binary label. The agents min-
mize f =

∑N
i=1 f

i(w, b) cooperatively, where w ∈ Rp, b ∈ R, and
each f i is given by f i(w, b) =

∑mi

j=1 ln(1+e−(w⊤cij+b)yij)+ λ
2N ∥w∥

2.
e generated the feature vectors cijs randomly from two distinct

Gaussian distributions corresponding to two different labels, +1
and −1. Here, p = 5, m = 10, and λ = 2. Fig. 3 shows the
rajectories of the cost function when the problem is solved via:
istributed gradient descent algorithm of Kia et al. (2014) (DGD1),
istributed gradient descent algorithm obtained from (7) when
i(x) are replaced by Id (DGD2), our proposed distributed HISO
lgorithm (DHISO) and distributed NR algorithm (DNR) proposed
n Varagnolo et al. (2015). As Fig. 3 shows, DHISO and DNR algo-
ithms both converge faster than the gradient descent algorithms.
oreover, DHISO algorithm demonstrates a comparable response

o that of the DNR but without requiring the neighboring agents

H. Moradian and S.S. Kia Automatica 136 (2022) 109886

t
a

6

f
l
w
i
s
t
g

R

B

M

N

N

V

W

Y

Z

Z

o exchange their local Hessians with each other that the DNR
lgorithm of Varagnolo et al. (2015) requires.

. Conclusion

We studied a novel second-order continuous-time distributed
ast converging solution for an unconstrained optimization prob-
em. Our approach guarantees convergence to the minimizer
hile keeping the communication and storage costs efficient,

n order of O(Nd) as opposed to O(Nd2) for the existing re-
ults in the literature. Future work includes obtaining a discrete-
ime implementation of our algorithm with formal convergence
uarantees.

eferences

ertsekas, D. (1999). Nonlinear programming.
Bof, N., Carli, R., Notarstefano, G., Schenato, L., & Varagnolo, D. (2019). Multiagent

Newton-Raphson optimization over lossy networks. IEEE Transactions on
Automatic Control, 64(7), 2983–2990.

Boyd, S., Parikh, N., Chu, E., Peleato, B., & Eckstein, J. (2010). Distributed
optimization and statistical learning via the alternating direction method
of multipliers. Foundations and Trends in Machine Learning, 3, 1–122.

Chen, F., Cao, Y., & Ren, W. (2012). Distributed average tracking of multiple
time-varying reference signals with bounded derivatives. IEEE Transactions
on Automatic Control, 57(12), 3169–3174.

Droge, G., Kawashima, H., & Egerstedt, M. (2014). Continuous-time proportional-
integral distributed optimisation for networked systems. Journal of Control
and Decision, 1(3), 191–213.

Duchi, J., Agarwal, A., & Wainwright, M. (2012). Dual averaging for distributed
optimization: Convergence analysis and network scaling. IEEE Transactions
on Automatic Control, 57(3), 592–606.

Filippov, A. (1988). Differential equations with discontinuous righthand sides.
Springer.

George, J., & Freeman, R. (2019). Robust dynamic average consensus algorithms.
IEEE Transactions on Automatic Control, 64(11), 4615–4622.
5

Henriques, J. F., Ehrhardt, S., Albanie, S., & Vedaldi, A. (2018). Small steps
and giant leaps:Minimal Newton solvers for deep learning. Available at
https://arxiv.org/abs/1805.08095.

Johansson, B., Rabi, M., & Johansson, M. (2009). A randomized incremental
subgradient method for distributed optimization in networked systems. SIAM
Journal on Optimization, 20, 1157–1170.

Khalil, H. K. (2002). Nonlinear systems (3rd ed.). Englewood Cliffs, NJ: Prentice
Hall.

Kia, S. S., Cortés, J., & Martínez, S. (2014). Distributed convex optimization via
continuous-time coordination algorithms with discrete-time communication.
Automatica, 55, 254–264.

Lu, J., & Tang, C. (2012). Zero-gradient-sum algorithms for distributed convex
optimization: The continuous-time case. IEEE Transactions on Automatic
Control, 57(9), 2348–2354.

Mansoori, F., & Wei, E. (2020). A fast distributed asynchronous Newton-
based optimization algorithm. IEEE Transactions on Automatic Control, 65(7),
2769–2784.

okhtari, A., Ling, Q., & Ribeiro, A. (2015). Network Newton-part I: Algorithm
and convergence. Available at https://arxiv.org/abs/1504.06017.

edić, A., & Ozdaglar, A. (2009). Distributed subgradient methods for multi-agent
optimization. IEEE Transactions on Automatic Control, 54, 48–61.

ordstrom, K. (2011). Convexity of the inverse and moore–penrose inverse.
Linear Algebra and its Applications, 434, 1489–1512.

aragnolo, D., Zanella, F., Cenedese, A., Pillonetto, G., & Schenato, L. (2015).
Newton–RAphson consensus for distributed convex optimization. IEEE
Transactions on Automatic Control, 61(4), 994–1009.

ang, J., & Elia, N. (2011). A control perspective for centralized and distributed
convex optimization. In IEEE int. conf. on decision and control.

ao, Z., Gholami, A., Shen, S., Mustafa, M., Keutzer, K., & Mahoney, M. W. (2020).
ADAHESSIAN: An adaptive second order optimizer for machine learning.
Available at https://arxiv.org/abs/2006.00719.

anella, F., Varagnolo, D., Cenedese, A., Pillonetto, G., & Schenato, L. (2011).
Newton-Raphson consensus for distributed convex optimization. In IEEE int.
conf. on decision and control (pp. 5917–5922).

hu, M., & Martínez, S. (2012). On distributed convex optimization under
inequality and equality constraints. IEEE Transactions on Automatic Control,
1, 151–164.

http://refhub.elsevier.com/S0005-1098(21)00408-8/sb1
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb2
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb2
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb2
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb2
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb2
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb3
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb3
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb3
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb3
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb3
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb4
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb4
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb4
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb4
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb4
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb5
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb5
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb5
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb5
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb5
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb6
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb6
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb6
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb6
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb6
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb7
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb7
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb7
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb8
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb8
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb8
https://arxiv.org/abs/1805.08095
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb10
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb10
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb10
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb10
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb10
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb11
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb11
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb11
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb12
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb12
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb12
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb12
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb12
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb13
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb13
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb13
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb13
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb13
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb14
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb14
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb14
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb14
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb14
https://arxiv.org/abs/1504.06017
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb16
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb16
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb16
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb17
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb17
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb17
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb18
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb18
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb18
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb18
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb18
https://arxiv.org/abs/2006.00719
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb22
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb22
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb22
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb22
http://refhub.elsevier.com/S0005-1098(21)00408-8/sb22

	A distributed continuous-time modified Newton–Raphson algorithm
	Introduction
	Preliminaries
	Problem definition
	Distributed HISO algorithm
	Numerical example
	Conclusion
	References

