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1. Introduction

Consider a network of N agents interacting over a connected
graph g, see Fig. 1. Each agenti € {1,..., N} is endowed with
a local cost function f' : R? — R which is twice differentiable
and m'-strongly convex. Our objective is to design a distributed
optimization algorithm such that each agent obtains the global
minimizer x* € RY of the feasible optimization problem

Zf (1)

using local interactions with its neighbors. The existing dis-
tributed optimization solutions are mostly consensus-based ap-
proaches that use gradient and sub-gradient methods, see
e.g., Boyd, Parikh, Chu, Peleato, and Eckstein (2010), Duchi, Agar-
wal, and Wainwright (2012), Johansson, Rabi, and Johansson
(2009), Nedi¢ and Ozdaglar (2009), Zhu and Martinez (2012) for
discrete-time and Droge, Kawashima, and Egerstedt (2014), Kia,
Cortés, and Martinez (2014), Lu and Tang (2012), Wang and Elia
(2011), Zanella, Varagnolo, Cenedese, Pillonetto, and Schenato
(2011) for continuous-time algorithms. Even though the gradient-
based solutions’ distributed implementation is fully understood
and requires low computational resources, they suffer from a
low convergence rate, especially near the solution. With the

X" = arg mlnf
xeRd
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recent advances in fast computing via graphics processing units
(GPUs), the interest in Newton-based optimization algorithms,
which use second-order information to achieve faster conver-
gence, is renewed for large-scale optimization problems (Hen-
riques, Ehrhardt, Albanie, & Vedaldi, 2018; Yao et al., 2020).
The popular Newton-Raphson (NR) method uses the inverse
of the Hessian of the total cost multlghed by the gradient of
the total cost, ie., —(Y N, Qi , as the descent
direction. Here, gi(x) = Vf (x) and H’( ) = sz( ). Starting
from a local guess X' € RY i € {1,...,N}, a common way
to execute the NR algorithm in a decentralized way is to use a
consensus-based framework to track Y"1, Hi(x') and "1 , g/(x")
for every agent cooperatively by exchanging the gradient and the
Hessian of the local costs, see e.g., Varagnolo, Zanella, Cenedese,
Pillonetto, and Schenato (2015) for continuous-time and Bof,
Carli, Notarstefano, Schenato, and Varagnolo (2019), Varagnolo
et al. (2015) for discrete-time algorithms. These algorithms result
in O(Nd?) communication, computation and storage costs per
agent to solve problem (1). To remove communicating Hessian
among agents, Mokhtari, Ling, and Ribeiro (2015) propose a
distributed algorithm that approximates Newton step by trun-
cating the Taylor series expansion of the exact Newton step at
K terms. But, implementing this algorithm requires aggregating
information from K hops away. Increasing K makes the method
arbitrarily close to Newton's method at the cost of increasing the
communication overhead of each iteration. Building on Mokhtari
et al. (2015), Mansoori and Wei (2020) propose an asynchronous
implantation to manage communication cost but the method
works only for univariate local cost functions.

In this paper, we provide an alternative continuous-time
second-order algorithm with a comparable convergence rate to
that of the continuous-time NR algorithm, but with a struc-
ture that is amenable to a more resource-efficient distributed
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Fig. 1. A connected graph: in a connected undirected graph agents connected by
an edge can exchange information. Moreover, there is a path from any agent to
any other agent.

implementation that also requires information exchange only
among one-hop neighbors. In the distributed implementation of
this algorithm, agents use the inverse of their local Hessians
but do not need to communicate it. As a result, our proposed
algorithm’s communication, computation, and storage cost per
agent are O(Nd). We establish the convergence of our algorithm
using Lyapunov stability analysis. Simulations demonstrate our
results.

2. Preliminaries

Our notations are standard and definitions are given if it is
necessary to avoid confusion. A differentiable function f : R —
R is m-strongly convex (m € R.g) in a convex set C if and only
if (z—x)T(Vf(z) — Vf(x)) > m|lz— x||>, VX,z € C, X # z For
twice differentiable function f m-strong convexity (m > 0) is also
equivalent to H(x) = V2f(x) > ml, V x € C.

A connected graph, see Fig. 1, is represented by G = (V, &, A),
where V = {1, ..., N} is the node set, £ = {ey,...,ey} CV XV
is the edge set, and A = [a;] € RV*N is the adjacency matrix
such that a; = a; = 1if (i,j) € £ and a; = 0, otherwise. The
incidence matrix is B = %[b‘, ., bY —pM] e RNx2M
where b* € RN is a vector corresponds to the edge e, = (i,j) €
& with zero elements except for ith and jth components with
respectively b; = 1, bj = —1. The Laplacian matrix of a graph
is L = Diag(A1y) — A. Note that L1y = 0. Moreover, L = BBT. A
graph is connected if and only if ILL =0, and rank(L) = N — 1.
For a connected graph, eigenvalue of L is A; = 0, {)»,-},(":2 C Roo.
We let A; < A;, for i < j. Moreover,

Iy =LYt =BB"(BB")" =B(B'B)"B', (2)
where (.)* denotes the generalized inverse matrix (George &
Freeman, 2019) and Iy = I — +1y1}, where 1y is the vector of
N ones.
Throughout the paper, the following assumption holds.
Assumption 2.1. 'The local cost functions fi : R — R, i €
{1,---, N}, are m'-strongly convex with the bounded Hessians

ml<H‘( i)y < m'l, for some mi, m' € R.o. O

Thus, the total cost f is m-strongly convex and its Hessian is
upper-bounded by mI where m = min{m! }l , m= max{ﬁl’}fvzl.
Moreover, x* in (1) is unique (Bertsekas, 1999).

3. Problem definition

The continuous-time NR algorithm to solve problem (1) is
given by

N N
NR: X = —(Z Hi(x)) 1 3 gx). 3)
i=1 i=1
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In this paper, we propose the Hessian inverse sum optimization
(HISO) algorithm

N N
HISO: %= —(% > H"(x)”) Y g, (4)
i=1 i=1

as an alternative Hessian-based solver for the optimization prob-
lem (1). We show that this algorithm has the convergence rate no
worse than that of (3) but it has a structure that is amenable to
a distributed implementation with more efficient resource usage.
We start by the auxiliary result below.

Lemma 3.1 (Bound on the Inverse of Sum of Symmetric Positive
Definite Matrices). Let every H € R%*¢, i € {1, ..., N}, be a positive
definite matrix. Then

N1 1<,
(oH) =yw )
i=1 i=1

Proof. The proof is by mathematical induction. Recall that the
inverse of positive definite matrices is a convex function (Nord-
strom, 2011). Hence, for N = 2 for any « € [0, 1] we have

Y (6)
Substituting k = 0.5 gives (H' + H*)™! < J(H'"' + H*') <
%(H“l + Hz”) Thus (5 ) holds for N = 2. Next, assuming
CLHYT < Y ~! we show that (YN, H)™' <

% 21:1 Hi ™' holds. To this aim, notice that given (6) we obtain
N—-1 N-1
1 N-1 A1 -1 N—1 i
(7HN L7 ZHI) P T L Zﬂt—l
N N i=1 N N i=1
1 1 1< 1
<fHN_ 7< H'_)z— H .
L )y
-1

since (Y, ) < (1R + NS IH)
for any N > 2, which concludes proof. O

(cH'+(1—)H) " <xH' ™ 41

then (5) holds

Lemma 3.1 enables us to make the following statement about
the HISO algorithm’s convergence guarantees.

Theorem 3.1 (Convergence Analysis of the HISO Algorithm). Con-
sider the optimization problem (1) and let Assumption 2.1 hold.
Then, starting from any initial condition Xx(0) € RY ast — oo
the HISO algorithm (4) converges exponentially fast to x* € RY, the
unique minimizer of the optimization problem (1). Furthermore, the
rate of convergence of (4) is no worse than the rate of convergence
of algorithm (3).

Proof. Consider the candidate Lyapunov function V(x) = f(x) —
f(x*). Given Assumption 2.1, we have m|x — X2 < V(x) <
mlx — x*[1%, and I(, H)) 'Vl < 2|lx — x*|| where
Vf(x) = Zf; g/(x). The derivative of V(x ) along trajectories
of (4), satisfies V(x) = —ﬁVf Zl L HI(X)VF(x)

< —”%znx — x*||2, which by virtue of Khalil (2002, Theorem
4.10) confirms the exponential stability of (4). On the other hand,
derivative of V(x) along (3) satisfies V = —Vf(x)T(va:1 Hi(x))™!
Vfx) < —ﬁl—z”x — x| confirming the exponential stability
of (3). By virtue of Lemma 3.1, — & T(le.\l:l Hi(x)")Vf(x) <
—VFfx)" (Zi:1 Hi(x))"1Vf(x), Wthh indicates that the derivative
of V(x) is more negative along the trajectories of (4) than those
of (3). Hence, we can conclude that the rate of convergence of (4)
is no worse than the convergence rate of (3). O
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Fig. 2. The convergence of the Euler discretized GD, NR and HISO algorithms
under different conditions to find the minimum of the cost function, f(x) =
z}jl a'x* + b'x* where a' and b’ are randomly chosen in [0,0.1]. For each
algorithm the stepsize is set to its optimum value, obtained numerically,
corresponding to its fastest convergence.

Comparing rate of convergence of continuous-time optimiza-
tion algorithms is a rather subtle matter. Any claim for an accel-
erated convergence by an algorithm meets the counter-argument
that the ‘simple’ continuous-time gradient descent algorithm can
be made arbitrarily fast using large scalar multiplicative gains.
To address this dilemma, one can think of continuous-time algo-
rithms as first-order integrator dynamics X = o u with « € R.,
where the system input « u is the control effort of the algorithm.
Suppose the control effort is bounded as |au| < akplx — X*||,
with ky € R.o. For an exponentially convergent algorithm, by
virtue of Khalil (2002, Theorem 4.14), there exists a Lyapunov
function that satisfies x1[x — X*[|> < V(X) < klx — x*||?,
and V < —aks||x — x*||? for some k1, ko, k3 € R.q. Then, by
virtue of Khalil (2002, Theorem 4.10) the exponential rate of
convergence of the algorithm is % indicating that increasing
« increases the rate of convergence. Now, on the other hand,
for the Euler-discretized form of the algorithm, i.e., x(k + 1) =
X(k) + dau, k € Zso, using the same Lyapunov function, we
obtain AV(x(k)) = V(x(k + 1)) — V(x(k)) < —8aks|x — X*||* +
2o yTV2V(¢)u where, ¢ € [x(k), x(k + 1)). Let V2V(¢) < 8L,
which is normally satisfied in optimization problems. Then, we
can write AV(x(k)) < —Sa(k3— %",BK&)HX—X*HZ, which indicates
that an admissible stepsize § for Euler-discretized form of the
algorithm should satisfy 0 < § < azl;(’fz. Thus, increasing o
results in smaller stepsizes. Moreover, algorithms that employ
larger control effort (larger « ko) will have smaller stepsize. As
such, to be mindful of practical Euler-discretize implementation
of continuous-time algorithms, any claim to a continuous-time
algorithm being faster than another should be evaluated under
the requirement that the algorithms employ the same maximum
control effort level. Fig. 2 shows the convergence behavior of the
discrete-time implementation of the gradient descent (GD), NR,
and HISO algorithms. As we can see, NR and HISO show compa-
rable responses and also faster convergence than GD. For all three
cases, the maximum control effort happens at the initial time,
with GD having the largest and NR having the smallest values.
If we normalize the control efforts of NR and GD with respect
to that of HISO by using, respectively, gains ||% Zfil Hi(x(0)™||
and || 38 HI(x(0)) ]|l &+ S°I, Hi(x(0))~"[l, the GD algorithm can
use larger stepsize and NR should use a smaller stepsize, with GD
still showing slower convergence. Notice that, as Fig. 2 shows, if
we increase the GD algorithm’s control effort by using the gain
o = 5, the discrete-time implementation still has slower conver-
gence because we are forced to use a smaller Euler discretization
stepsize.

HISO algorithm uses the sum of the inverse of the Hessian
of the local cost functions rather than the inverse of the sum of
the local Hessians as in the NR algorithm. This trait, as shown
below, results in a more efficient distributed implementation for
algorithm (4), in which agents only incur a cost of O(Nd) in
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communication, computations, and storage rather than O(Nd?) as
in the distributed NR algorithms in the literature (Bof et al., 2019;
Varagnolo et al.,, 2015).

4. Distributed HISO algorithm

Our proposed distributed implementation of the HISO algo-
rithm is

=gx)+Vv, (7a)
N N
Vi=— Z ajsgn(z' —2) + Z a;(x' — x), (7b)
j=1 j=1
N
X'=-Hx'(z + Z az(x' — X)), (7¢c)
j=1
ie{1,...,N}. Conceptually, our approach to construct (7) was to

use the finite-time dynamic average consensus algorithm of Chen,
Cao, and Ren (2012) ((7a) and (7b)) with input gi(x}) = Vfi(x) to
generate ' — 1 Z]N:] g/(x/) as t — oo. For algorithm of Chen
et al. (2012) to converge we need Zg";lvi(O) = 0, which can
trivially be satisfied using vi(0) = 0. Next, we noticed that the
collective dynamics exhibits Y , gi(x) — — Z]’.V:] g(x) as Z!
converges. Then, if agreement occurs, every agent has a copy of
the HISO algorithm locally. We added ZjN:1 a;(x — x/) to (7b)
and (7c) for technical reasons to create agreement between the
decision vector of the agents.

In what follows, we provide a formal proof of convergence and
stability analysis of (7). For analysis, we write algorithm (7) in the
compact form

. d

z=—Bsgn(B'z)+ BB x+ ag(x), (8a)
Xx=—#""(z+ BB'X), (8b)
where B = B ® I;, H = diagH'(x),...,H'(x)), g(x) =
[g'xH)T,...,g"xM)T]T and N = Iy ® Iy with the network
aggregated variables z, x € R, The following result shows that
agents arrive at agreement in their {z’}f": ; in finite time, and in
their {x'}}'; as t — oo.

Lemma 4.1 (Consensus in Algorithm (7) Over Connected Graphs).
Let G be a connected graph. Under Assumption 2.1, starting algo-
rithm (7) over G from any xi(0),vi(0) € R? YN vi(0) = 0
every Xi(t), i € {1,..., N}, converges to + ;v:] X as time goes to
infinity, while every ', i € {1, ..., N}, converges to %Z}L g(x)
in finite time.

Proof. (7[IV3) leads to vazl vi = 0, which along with Zf’zl vi(0)=0
gives > . V'(t) = 0 for any t € R(. Moreover, from (7a), we
obtain

N N
Y Z)=) gX(), teR. 9)
i=1 i=1

Next, note that %g(x) = H X. Then, we can obtain from (8) that
z = —Bsgn(B'z) — z, which gives
N

N N N
Yoi=-Y 7> Z(t)=e") 7(0), teRy  (10)
i=1 i=1 i=1

i=1
Moreover, using

z(t) = nz(t),

X(t) = nx(t),

(11a)
(11b)
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(8) can be written as

= —Bsgn(B'z) — 7, (12a)
N
5 _1/= e : T~
X=-nN#n'z+ ~ W Z;z'(0)+ BB'X). (12b)
i=
Here, we used (10). Moreover, glven (11) we obtain

v YN, Z(t = 0, which hold for
any t € Rxo.
Next, we show that BTZ(t) goes to zero in finite time. Defining

Z=B"Z(t) and X = BTX(t), from (12) we get

=0and 1y ® YN, X(t

= —B'Bsgn(2) — , (13a)
et N
x=-BTH Z+ ~ e Zz‘(O)) — B'H 'Bk. (13b)
To analyze the stability of (13a) consider
V= 22T(8T8)" < T2l (14
where A is the maximum eigenvalue of J(B'B)". Note that

(BTB)* > 0. The Lie derivative of V along (13a) is equal to

AT A

y 5T 5 T 5 575 5
V=—-z2'sgn(z)-z'z=—|z| -z z < —|z|1.

Since ||Z|l; < [1z]|;, then we have V < —|z|, < 0. As such,
from (14), we obtain V < =% f Then, invoking the comparlson

Lemma (Khalil, 2002, Lemma 3.4), we have the vV < /V(0) —

ﬁt. Consequently, starting from any V(0), V(t) becomes zero at

a finite time. Then, since V = 12" (B"B)"2 = z'B(B"B)"BTz =
z'nz = (Nz)'(Nz) = Z'%, and (9), we can conclude that every
z', i € {1, ..., N}, converges to %ZJN:] g/(¥) in finite tirne, and
also z is bounded and converges to zero in finite time (||z(t)|]; <
IZ0)]l> — F=t).
Next, we show that BX converges to 0 as t — oo. To this
alm we consider the radially unbounded Lyapunov function W =
ATx The Lie derivative of this function along the trajectories
of (13b) is
et N
i TRTa-1pe _ ¢TRTa—15 1 & i
W=-%"B"3 "Bk~ X"B 32+ 1N®Zz(0)).
i=1
Since Z(t) vanishes in finite time, there exists a t; € R. such that
for any t > t;, we obtain

—t N
i TRo2 -1,€ i
W = — V3 'BX| ( 1N®;z(o>)<
1=

—t N
— VAR (1A BRI — S IVR (@ ) Z(0)])

i=1

Note that at each time t > t;, W < 0 if and only if ||+~ 1BX|| >
eN;tH«/’;-rl(lN ® Zf’zl Z(0))||. Then, at any t, > t; if the trajec-
tories of (13) satisfy f((tz) e S =1{&eRY| |VHIBX| <

|| Iy ® Z, 1Z/(0)|I}, then X(t) € S for all t > t;, other-

w1se W(tz) < 0. Here, we used the fact that ||/H-I(x(t))| <

L " which ensures that & ||\/ “Ix(t)(1y ® Z L, Z0))] <

ﬁ

mN||1N®Z, LZ(0)] < e 2 21y ® Y, Z/(0)]| for any t > .
Therefore ast — oo, we have the guarantees that along the
trajectories of the system, ||\/H —1BX(t)|| goes to zero, which
means that BX(t) goes to zero. Consequently, because of X = BTX
and BB" = L ® I; we can conclude that (L ® I;)X(t) goes to zero
as t — oo. Given that the graph is connected, then ast — oo, X

goes to 1y ®0, 6 € RY, which given 1y ®Zl 1 X{(t) = 0, it means
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=== DHISO
DNR

0 Time 2

Fig. 3. Convergence of DGD1, DGD2, DHISO and DNR of Varagnolo et al. (2015)
algorithms in logarithmic scale.

that X(t) goes to zero as t — o0. As a result, it follows from (11b)
that x' converges to ﬁ Z]N:l X(t)ast - oc0. O

Remark 4.1 (Remark on the Proof of Lemma 4.1). The solution
of (7) is in the sense of Filippov (Filippov, 1988) since the so-
lution is piecewise differentiable. The Filippov approach provides
multi-valued functions for the solution of (7) over discontinuity
points. Note, however, that our stability analysis is valid since the
Lyapunov function is smooth and decreasing over every Filippov
solution of (7). O

Lemma 4.1 showed that the trajectories of distributed HISO
algorithm (7) converge to agreement space. The next theorem
shows that this property indeed results in X, i € {1, ..., N} con-
verging to X*, the unique solution of the optimization problem (1),
ast — oo.

Theorem 4.1 (Convergence of Algorithm (7)). Suppose the graph G is
connected and let Assumption 2.1 hold. Then, starting algorithm (7)
over G from any xi(0),vi(0) € RY YN, vi(0) = 0, every x(t),
i € {1,...,N}, converges to X*, the unique minimizer of (1) and
every z' converges to zero ast — oo.

Proof. From (11a),z = Z' + 1 Z 1z Recall from the proof
of Lemma 4.1 that under the stated initial condition, Z', i €
{1, ..., N}, converges to zero in finite time. Then, convergence of
Zie {1 , N}, to zero follows from (10). Next, notice that (9)
and (10) indicate that Z]N:] g/(x') goes to zero as t — oo. Then,
because Lemma 4.1 guarantees that X', i € {1,..., N} converges
to ~ Z ~,X ast — oo, we can conclude that 271)(1 and
subsequently every X' converges to X* ast — oco. [

5. Numerical example

We consider a distributed binary classification problem using
logistic regression over a connected graph of Fig. 1. Each agent
i € {1,...,N} has access to m' training samples (cij, yij) € RP x
{—1, +1}, where ¢;; contains p features of the jth training data at
agent i, and yj;; is the corresponding binary label. The agents min-
imize f = Z?’zlf"(w, b) cooperatively, where w € RP, b € R, and
each f' is given by fi(w, b) = Zm In(1+ e~ ci+byiy 4 2 w2
We generated the feature vectors ¢;js randomly from two dlStlnCt
Gaussian distributions corresponding to two different labels, +1
and —1. Here, p = 5, m = 10, and A = 2. Fig. 3 shows the
trajectories of the cost function when the problem is solved via:
distributed gradient descent algorithm of Kia et al. (2014) (DGD1),
distributed gradient descent algorithm obtained from (7) when
Hi(x) are replaced by I; (DGD2), our proposed distributed HISO
algorithm (DHISO) and distributed NR algorithm (DNR) proposed
in Varagnolo et al. (2015). As Fig. 3 shows, DHISO and DNR algo-
rithms both converge faster than the gradient descent algorithms.
Moreover, DHISO algorithm demonstrates a comparable response
to that of the DNR but without requiring the neighboring agents
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to exchange their local Hessians with each other that the DNR
algorithm of Varagnolo et al. (2015) requires.

6. Conclusion

We studied a novel second-order continuous-time distributed
fast converging solution for an unconstrained optimization prob-
lem. Our approach guarantees convergence to the minimizer
while keeping the communication and storage costs efficient,
in order of O(Nd) as opposed to O(Nd?) for the existing re-
sults in the literature. Future work includes obtaining a discrete-
time implementation of our algorithm with formal convergence
guarantees.
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