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a b s t r a c t 

Conventional sampling techniques fall short of selecting representatives that encode the underlying con- 

formation of non-linear manifolds. The problem is exacerbated if the data is contaminated with gross 

sparse corruptions. In this paper, we present a data selection approach, dubbed MoSSaRT, which draws 

robust and descriptive sketches of grossly corrupted manifold structures. Built upon an explicit random- 

ized transformation, we obtain a judiciously designed representation of the data relations, which facil- 

itates a versatile selection approach accounting for robustness to gross corruption, descriptiveness and 

novelty of the chosen representatives, simultaneously. Our model lends itself to a convex formulation 

with an efficient parallelizable algorithm, which coupled with our randomized matrix structures gives 

rise to a highly scalable implementation. Theoretical analysis guarantees probabilistic convergence of the 

approximate function to the desired objective function and reveals insightful geometrical characterization 

of the chosen representatives. Finally, MoSSaRT substantially outperforms the state-of-the-art algorithms 

as demonstrated by experiments conducted on both real and synthetic data. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The ever-increasing availability of large-scale and high- 

imensional data offers unprecedented opportunities for data- 

riven studies across widely differing domains ranging from 

arketing and web mining, to bioinformatics and space explo- 

ation. Yet, it also poses formidable challenges in face of storing, 

rganizing and analyzing such data. 

With regard to dimensionality, there has been enormous 

rogress in devising solutions for the analysis and visualization of 

igh-dimensional data through low-dimensional embedding meth- 

ds, e.g., Principal Component Analysis, Isomap, feature selection 

nd dictionary learning algorithms, and embedding techniques via 

andom projections [1–6] . 

Another line of research focuses on extracting knowledge from 

 sheer volume of data by tapping into the sample space while 

eeping the dimension intact. This paper focuses on the prob- 

em of representative selection, which has elicited strong inter- 

st from the data sciences communities in recent years. Selecting 

epresentative samples aims at reducing the problem size by sub- 

ampling the data points independently of the dimension, while 
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inimizing the information loss. A major distinction from other 

ethods obtaining compact representations in the sample space 

uch as dictionary learning approaches is that the chosen rep- 

esentative subsets consist of actual data points, thereby afford- 

ng easy interpretations in various application domains. For in- 

tance, these subsets could consist of distinct images in a collec- 

ion and specific words in a document, or particular sensors and 

ands in a system and hyperspectral imaging [7–9] . The advan- 

ages of representative selection are multifold. Notably, substantial 

avings in storage and computation can be derived from the de- 

elopment of inference algorithms around descriptive and concise 

ata sketches in lieu of the full-scale data. This is particularly rel- 

vant with the emergence of edge machine learning paradigms in 

hich complex algorithms are required to run locally on tiny and 

esource-constrained devices with minimal information centraliza- 

ion. For instance, advancements in virtual and augmented real- 

ty such as Oculus and HoloLens [10,11] and smart wearable de- 

ices necessitate the efficient integration of state-of-the-art mod- 

ls and algorithms into these portable computing platforms, such 

s deep learning models, whose computational/memory burden 

nd power consumption substantially overtax the resources of 

maller devices. For example, a widely used classification network 

nown as AlexNet [12] performs 1.5 billion high precision oper- 

tions through 61 M parameters and takes 249 MB of memory 

er image. The requirements are even more considerable for more 

https://doi.org/10.1016/j.patcog.2021.108454
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
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1 The code is available at https://github.com/Mahlagha/MoSSaRT . 
omplex networks such as VGG and GANs [13,14] . Another domain 

s in the automative industry where mobility platforms have to 

ealize efficient data management solutions to address the com- 

lexity underlying Advanced Driver-Assistance Systems (ADAS) and 

utonomous driving given a sheer volume of sensory data from 

adar, Lidar, Cameras, Sonar, and GPS, among others [15,16] . Other 

dvantages facilitated through concise and informative represen- 

atives include insightful summaries of complex systems, deeper 

rasp of complex underlying interactions, simpler data annotation 

nd cleansing processes, and even better generalization and en- 

anced phase transitions for supervised and unsupervised learning 

lgorithms [17] . 

Despite notable progress in developing compelling approaches 

o representative selection, some important limitations of prior 

ork motivate the work of this paper. First, the vast majority 

f existing approaches rest upon linearity assumptions about the 

ata. One commonly made assumption is that it lies in a union 

f low-dimensional linear subspaces. In many real-world scenar- 

os, however, the underlying data patterns can be modeled more 

ccurately by non-linear manifold structures of lower intrinsic di- 

ensionality, rather than linear subspaces. Second and most im- 

ortant, while there exist numerous methods that are robust to 

arious data perturbations such as gross corruptions, outliers, and 

oise under linear data models, no principled approach is known 

o date to handle such perturbations in the presence of non- 

inear data structures. Sparse gross corruptions, a central focus of 

his work, can be caused by occlusions, measurement errors, and 

dversarial interference and can easily jeopardize the validity of 

he existing methods due to their arbitrary magnitude and un- 

nown support [18,19] . Therefore, selecting descriptive and com- 

act samples under these practical circumstances remains largely 

nexplored. Motivated by this, here we study the problem of rep- 

esentative selection from manifold structures with gross sparse 

orruptions. 

.1. Summary of contributions 

This paper makes five main contributions. First, for the first 

ime we formalize the problem of representative selection from 

on-linear manifolds in presence of gross sparse corruptions in 

 principled and mathematically rigorous framework. Based on a 

onstrained optimization formulation in a transformed space, we 

btain an encoding of the data relations, termed reproduction pro- 

le , which we leverage to draw a representative, diverse and con- 

ise sketch of the data. 

Second, we leverage the rich representation power of Reproduc- 

ng Kernel Hilbert Spaces (RKHSs) to capture the non-linearities in 

he data structure. Much of the existing work in kernel settings is 

ased on merely replacing the original inner products with ker- 

el evaluations. However, as our formulation relies on sparsity- 

nducing norms to adequately handle sparse corruptions, the use 

f the standard kernel trick is not feasible. To overcome this is- 

ue, we integrate an approximate feature mapping framework in 

ur formulation to emulate a desired feature mapping associated 

ith a RKHS. While any approximate feature can be potentially 

lugged into our method depending on the data specifics, we 

howcase the use of random Fourier features [20] due to the wide 

se of stationary kernels in machine learning applications. The util- 

ty of these features, which were introduced for accelerating kernel 

achines, rests upon a classic result in harmonic analysis. Here, 

e exploit similar features for the first time in the context of 

epresentative sampling to mirror the unknown mapping of the 

KHS. 

Third, we develop a highly scalable and parallelizable ADMM- 

ased algorithm for representative sampling. Leveraging the special 
2 
tructures of the approximate feature maps, the algorithm exhibits 

early linear complexity in the data size. 1 

Our fourth contribution lies in establishing key theoretical re- 

ults affording guarantees on the goodness of the approximation 

nduced by random feature maps and a characterization of the 

ampled representative set. In particular, based on concentration 

f measure arguments, we show that the optimal value for the 

roxy objective function induced by the approximate features con- 

erges to the true optimal value exponentially fast, thereby estab- 

ishing the effectiveness of our proxy formulation ( Theorem 1 ). In 

ddition, we present a characterization rooted in geometric func- 

ional analysis of the sampled subset, which provides the theo- 

etical underpinning of an interpretable mechanism for sampling 

nformative representatives. In particular, it turns out that the 

ampled subset of representatives consists of the vertices of the 

ymmetrized convex hull of all samples in a transformed space 

 Theorem 2 ). 

As our final contribution, we demonstrate the effectiveness of 

he proposed approach using both synthetic and real data in a 

road range of supervised and unsupervised applications, including 

lassification, clustering, and face pose generation using Generative 

dversarial Networks (GANs). 

Fig. 1 illustrates a conceptual diagram of the proposed frame- 

ork, which will be explicated in further detail in Section 2 . 

.2. Related work 

Random selection approaches are ineffective in fully describ- 

ng the entire set due to redundancy and corruptions in the data. 

n the other hand, optimal subset selection is generally NP-hard. 

ence, various relaxations of the problem have been tackled by 

ifferent approaches, which can be mainly categorized into three 

lasses: linear, diversity-based and clustering-based methods. 

Linear algebraic methods typically found their models on the 

ow-rankness of the data collection. Rank-Revealing QR (RRQR) al- 

orithms [21–23] aim to find a permutation matrix that, when 

ultiplied by the data matrix, reveals the best conditioned sub- 

atrix as its first columns. Others have focused on choosing some 

olumns that can best span the column space of the original 

ataset [24–27] . Missing entries and non-negative matrices are 

onsidered in Balzano et al. [28] , Esser et al. [29] via a greedy al-

orithm and � 1 /� ∞ optimization, respectively. Inspired by dictio- 

ary learning approaches, Elhamifar et al. [27] uses a linear model 

n which each point in the dataset is described as a linear com- 

ination of others and a sparsity constraint is enforced to get a 

ew representatives. The authors in Wang et al. [30] diversify these 

hosen samples by employing multiple regularization terms. In- 

uitively, the approaches of the first class all seek to find a low- 

ank approximation of the data matrix to recover its column space. 

ence, they are only suited for linear models and cannot capture 

he non-linearity properly. 

Diversity-based approaches, on the other hand, focus mainly 

n information novelty. A-optimal and D-optimal approaches 

8,31] build on convex relaxations of the original problem. A faster 

reedy optimization algorithm is suggested in Shamaiah et al. [32] , 

owever it yields a sub-optimal solution, since the actual cost 

unction of the problem is not sub-modular [33] . In an effort to 

aximize the diversity, these methods are all negligent of the rep- 

esentation power of the chosen subset, and are highly prone to 

hoosing irrelevant corrupted data points. 

Alternatively, the clustering-based approaches typically use sim- 

larity relationship among data points, which makes them poten- 

ially more suitable for sampling from non-linear data. Centroids 

https://github.com/Mahlagha/MoSSaRT
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Fig. 1. Conceptual diagram of the proposed Representative Selection framework. First, the underlying patterns of the huge dataset are captured through non-linear manifold 

structures. The original collection is transformed into an explicit Hilbert space, emulating a desired implicit RKHS. Then, a reproduction profile is introduced for each sample, 

using which the combinatorial subset selection problem is formulated as a convex minimization. The optimization is corruption-aware, hence, the optimal reproduction 

profile indicates the best subset which negates the effects of gross corruptions in the data, while preserving the underlying structure of the whole collection. 
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f the clusters obtained by various clustering techniques are identi- 

ed as representatives. In [34] , exemplars are selected to minimize 

he total distance from all samples, and Charikar et al. [35] approx- 

mates the k -means algorithm. The efficacy of these algorithms is 

dversely affected by their high dependence on initialization. This 

ssue was addressed in Frey and Dueck [ 36,37 ], where the cluster 

entroids were identified by a message passing procedure. Also, 

n Elhamifar et al. [17] a trace minimization program was sug- 

ested to find exemplars for a source and target set. These meth- 

ds yield sub-optimal solutions and require restrictive conditions 

n the similarities to perform well. 

Among all the developed techniques, only a few have specif- 

cally attempted to tackle the problem with a Manifold Learn- 

ng (ML) approach. These methods mostly adopt graph-based dis- 

ances as approximate measures of geodesic distances, or resem- 

le manifolds by processing local neighborhood sets in a linear 

ashion. In [38] , a geodesic measure minimization is included in 

he formulation of a RRQR-based factorization assuming a priori 

nowledge of the structure of the manifold. In [39] , sampling of 

anifolds is tackled through an iterative scheme, where the spec- 

rum of the Laplace–Beltrami operator on manifolds is approxi- 

ated. In [40] , a similarity-based quadratic criterion is optimized 

or high representability while rejecting column-wise outliers. A 

raph-based variant of the k -means algorithm is proposed in Tu 

t al. [41] , where Euclidean distances are replaced by geodesic dis- 

ances to account for the intrinsic characteristics of the manifold. 

hese methods, either inherit the deficiency of the original meth- 

ds such as dependency on initialization and complex iterations, 

r incorporate local information, which diminishes their ability to 

apture a global view of the collection. 

Notation . Let N k � { 1 , . . . , k } for k ∈ N . Column vectors and ma-

rices are denoted in boldface lower-case and upper-case letters, 

espectively. Let 1 and I n denote the all-ones vector of proper 

ength, and the identity matrix of size n , respectively. For a scalar 

 , | a | denotes its absolute value, while for a set S , |S | denotes its
ardinality. For a vector a , ‖ a ‖ p stands for its � p -norm, and a (i ) its

 th element. This notation is used for both finite-dimensional vec- 

ors and infinite sequences. When necessary, the distinction will 

e made explicit to avoid confusion. Accordingly, � p denotes the 

pace of all sequences whose � p -norms are bounded. For a ma- 

rix A , a i , a i j denote its i th column and (i, j) th element, respec-

ively, ‖ A ‖ F = 

∑ 

i ‖ a i ‖ 2 its Frobenius norm, and ‖ A ‖ 1 ,p = 

∑ 

i ‖ a i ‖ p 
3 
ts group Lasso norm. Similar to vectors, the notation is shared 

etween matrices whose columns are finite-dimensional vectors 

r infinite sequences. Matrix A 3 = [ A 1 A 2 ] denotes the concatena- 

ion of two matrices A 1 , A 2 , with equal number of rows. The hinge 

unction denoted [ ·] + is defined as max {·, 0 } . For a random vari-

ble (RV) x , M x (γ ) denotes its Moment Generating Function (MGF) 

ith parameter γ . Also, the probability of realization of a random 

vent A , is denoted by P {A} . 

. Proposed method 

In this section, we present the M anif o ld S ampling through 

 p a rse R eproduction Profile of Randomized T ransformations 

MoSSaRT) method, a powerful sampling approach for high- 

imensional data governed by low-dimensional manifold struc- 

ures. A key aspect is that the data is contaminated with gross 

parse corruptions. Inspired by many real-world scenarios, the pro- 

osed method applies to both linear and non-linear models by 

hoosing suitable settings. Formally, our adopted data model is as 

ollows. 

ata Model 1. The columns of matrix X ∈ R 
m ×n consist of cor- 

upted observations from the set X � { x i } i ∈ N n . We assume that the 

lean data lies on a low-dimensional manifold M , and each coordi- 

ate of the data points may be contaminated with gross corruption 

ith a small probability p, resulting in a sparse corruption matrix 

 , whose elements follow a Bernoulli distribution with probability 

 − p. This gives rise to a natural decomposition of the data ma- 

rix as X = M + S , where M refers to the collection of points drawn

rom the manifold M . 

emark 1. Note that our adopted data model does not restrict 

he low-dimensional structures to linear settings; this element can 

ome from a low-rank linear subspace, or a low-dimensional non- 

inear Riemannian manifold. The focus of this paper will be on the 

ore challenging scenario for the non-linear settings, but as will 

e shown in the sequel, the linear case is a special case of our for-

ulation. 

In principle, there is a trade-off between the number of cho- 

en representatives and the amount of information retrieved. We 

pproach the problem noting these two confronting criteria. Our 

esirable exemplars are rich in representation power to maximize 
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he information content, but also not too similar to minimize re- 

undancy. One natural choice would be a minimax type of for- 

ulation between these two criteria. However, this may yield an 

nduly aggressive strategy, given that in most realistic scenarios 

any data points in the collection could be redundant and individ- 

al data points may not be too informative. In addition, while such 

 formulation could implicitly reduce the amount of data, it may 

ot meet explicit budget constraints for representative selection. In 

rder to dictate these constraints more forcefully, we deliberately 

evelop a two-stage strategy, wherein the first stage acts as the 

ain building block, where we obtain thorough structural infor- 

ation of the underlying manifold, and the second step leverages 

he obtained encoding to impose any existing budget constraints 

xplicitly. 

Additionally, note that fulfilling the first criterion intrinsically 

ffords robustness to the disturbances introduced by the gross cor- 

uptions, since otherwise, the chosen samples would not be able to 

epresent the whole dataset with enough fidelity. Hence, the main 

oal is to choose few samples which can be descriptive representa- 

ives of the true data, in spite of observing the contaminated data. 

For the sake of identifiability, we assume that the clean data 

s unlikely to be sparse. Otherwise, the decomposition problem 

ecomes ill-posed since there is no unique solution to the prob- 

em (e.g., see Candès et al. [18] ). We hypothesize that if there is

 “good” representative subset for the data with few elements, 

hen there should exist a low-cost projection of the data onto the 

pan of that subset. The patterns underlying manifold data make 

t challenging to desirably model this behavior in the original do- 

ain, but one may achieve such a representation through a suit- 

ble transformation. To effectively capture the non-linear behavior 

f the data, we relax this criterion to any separable Hilbert space H
p to a continuous transformation. In other words, we consider a 

ossibly highly non-linear mapping function φ : R 
m → H, where in 

he transformed domain the data points can be better represented 

y a small subset of the collection. It is worth noting that, in gen-

ral, the elements of the Hilbert space are abstract vectors (such 

s functions), but since every separable Hilbert space has an or- 

honormal basis [42] , any element can be uniquely specified by its 

oordinates w.r.t. that basis. In what follows, φ(x ) denotes either 

he vector or the infinite sequence of its coordinates. 

To elucidate our approach, knowing the data decomposition in 

indsight, one can then formulate the oracle in (1) aiming at spar- 

ifying the residual errors corresponding to the corruption matrix, 

hile satisfying the reconstruction of the clean data. 

min 
�⊂X 

‖ φ(S ) − π�(φ(S )) ‖ 0 

.t. φ(M ) = π�(φ(M )) , | �| = � (1) 

here, for a matrix A , φ(A ) is defined as the matrix of element-

ise evaluation of the function φ at the columns of A , i.e. φ(A ) �
 φ(a 1 ) φ(a 2 ) . . . φ(a n ) ] , and πS (A ) stands for the projection of A 

nto the span of its selected columns indexed by S . 
To re-formulate this combinatorial optimization as a convex 

roblem, we translate it into finding a real-valued matrix � ∈ 

 
n ×n , which we call the reproduction profile of the dataset. The ap- 

ellation is associated with the encoded information in this matrix 

hich is delineated in Remark 2 . The reproduction profile � aims 

o emulate the projection operator when multiplied by the data 

atrix. To this end, � is enforced to have sparse rows, such that 

he data is projected into the subspace spanned by the samples 

orresponding to the non-zero rows. Hence, it can be re-expressed 

s 

min 
�

‖ φ(S ) − φ(S ) �‖ 0 

.t. φ(M ) = φ(M ) �, ‖ �T ‖ 0 ,l = �, � � = I n (2) 
w

4 
earing in mind the successful employment of kernel methods 

n identifying the non-linear patterns hidden in the data, we 

ould like our mapping function φ to resemble a feature map- 

ing ϕ H : R 
m → H associated with a RKHS H. In this case, for a

KHS with the reproducing kernel k , a mapped feature ϕ H (x ) is

tself a function from the input space to R , such that ϕ H (x i )(x t ) =
 (x i , x t ) , ∀ x i , x t ∈ X . Then one can choose an orthonormal basis

or this function space, collect the resulting coordinates for all ele- 

ents in a matrix, and attempt to minimize its � 0 -norm as in (2) .

ote that, our formulation does not involve explicit inner products 

f the data points given our use of the � 0 -norm in order to cap-

ure the sparse structure of the corruption. Therefore, the common 

ractice of substituting the inner products in the original space by 

hose in the RKHS – a technique referred to as the kernel trick –

s not feasible in our setting. Moreover, since the explicit feature 

appings are not known in general, we obtain an approximate fea- 

ure mapping function, such that it emulates that of the desired 

KHS. 

Existing feature approximation methods are primarily devel- 

ped to accelerate the classical kernel methods. By contrast, here 

e exploit such approximations to overcome the foregoing issues, 

amely, the lack of explicit inner products in our formulation and 

he unknown feature mapping of the RKHS. Various approxima- 

ions have been developed to provide an explicit feature map- 

ing associated with different types of kernels, such as random 

ourier features [20] , fast random binning features [43] , additive 

ernel approximates [44] , locality sensitive binary codes [45] , and 

ompact random features [46] (e.g., see Liu et al. [47] for a re- 

ent survey of these methods). While any approximate feature map 

an be plugged in our proposed approach, we focus on the class 

f stationary positive-definite (pd) kernels (for which the random 

ourier features were proposed) due to their wide use in machine 

earning applications. For a stationary pd kernel k , a result from 

armonic analysis by Bochner [48] is applicable, asserting the ex- 

stence of a probability measure μ( ζ) , with k as its Fourier trans- 

orm. Accordingly, to approximate the RKHS features, we use the 

ector-valued function φ(·; ζ, β) : R 
m → R 

r , where each element is 

alculated as 
√ 

2 /r sin ( ζi 
T x + βi ) , and { ζi , βi } i ∈ N r are i.i.d. realiza-

ions from the independent distributions μ( ζ) , the inverse Fourier 

ransform of the kernel function, and U[0 , π ] , respectively. 

Now, recall that the formulation in (2) involves hindsight, as the 

ata decomposition of Data Model 1 is not available explicitly, and 

his in fact, poses a core subtlety to our problem. Henceforth, in- 

pired by (2) , we propose the alternative formulation (3) expressed 

n terms of the observed contaminated data, where the problem 

as been also convexified by replacing the � 0 -norms by their tight 

 1 surrogates. 

in 
�

n ∑ 

t=1 

‖ sin ( ζT x t + β) − sin ( ζT x t + β) θt ‖ 1 + λ‖ �T ‖ 1 ,l ︸ ︷︷ ︸ 
� f (φ, �) 

(3) 

he first term amounts to a representation constraint, and the em- 

loyed regularization automatically avoids the trivial solution of 

dentity, hence eliminating the need for the constraint � � = I n . In- 

pired by the oracle non-convex and constrained optimization in 

2) , our formulation in (3) yields excelling performance as shown 

n Section 4 . 

emark 2. The optimal reproduction profile �∗ contains structural 

nformation about the collective behavior of the data points, which 

nables us to not only draw representative sketches, but also to 

nsure novelty. More specifically, each row of this matrix encodes 

ow a given sample participates to reproduce the whole collection 

nder the presumed constraints of adhering to manifold structures, 

hile negating the impact of the gross corruptions. Therefore, sam- 
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Algorithm 1 Proposed sampling scheme using ADMM optimiza- 

tion. 

Require: Data Matrix X ∈ R 
m ×n , kernel k , desired number of sam- 

ples � , l ∈ { 1 , 2 } , Optimization parameters λ, ρ , feasibility toler- 

ances εabs , εrel (both set to 10 
−5 in our experiments). 

Ensure: Collection of the representative samples R 

1: Construct the feature matrix � ∈ R 
r×n as explained in Section 

2, using X , k . 

2: Initialization: Set �(0) and U 
(0) 
1 

, U 
(0) 
2 

∈ R 
r×n to zero matrices, 

con v erged = F alse 

3: while not con v erged do 
{Update Primal variables} 

4: Q 
(i +1) = T 

(1) 
1 /ρ (� − ��(i ) − U 2 

(i ) ) 

5: B (i +1) = T 

(1 ,p) 
λ/ρ

(�(i ) − U 1 
(i ) ) 

6: �(i +1) = (I n + ˆ K ) −1 (B (i +1) + �T (� − Q 
(i +1) − U 

(i ) 
2 

+ U 
(i ) 
1 

)) 

{Update Dual variables} 

7: U 
(i +1) 
1 

= U 
(i ) 
1 

+ B (i +1) − �(i +1) 

8: U 
(i +1) 
2 

= U 
(i ) 
2 

+ Q 
(i +1) − � + ��(i +1) 

{Calculate Primal and Dual residuals} 

9: PR 1 
(i ) = Q 

(i ) − � + ��(i ) , PR 2 
(i ) = B (i ) − �(i ) 

10: DR 1 
(i ) = ρ(�(�(i ) − �(i −1) )) , DR 2 

(i ) = ρ(�(i ) − �(i −1) ) 

{Calculate Primal and Dual feasibility tolerances} 

11: εp1 = nεabs + εrel max (‖ Q 
i ‖ F , ‖ � − ��(i ) ‖ F ) , εd1 = nεabs + 

ρεrel ‖ U 
(i ) 
1 

‖ F 
12: εp2 = nεabs + εrel max (‖ Q 

i ‖ F , ‖ �(i ) ‖ F ) , εd2 = nεabs + 

ρεrel ‖ U 
(i ) 
2 

‖ F 
{Check Convergence} 

13: If ‖ PR 1 
(i ) ‖ F ≤ εp1 ∧ ‖ PR 2 

(i ) ‖ F ≤ εp1 ∧ ‖ DR 1 
(i ) ‖ F ≤ εd1 ∧ 

‖ DR 2 
(i ) ‖ F ≤ εd2 

14: con v er ged = T r ue 

15: end while 

16: �∗ = �(i ) 

17: R = 

{ 

x j ∈ X 

∣∣ ‖ θ ∗ j ‖ 2 � = 0 

} 

18: Calculate the pairwise distances acc. to Equation (4) 

19: while |R| > � do 

20: Remove less active samples similar to the highly contributing 

ones from R 

21: end while 

22: Return R 

w  

z
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les are associated with an elaborate profile describing their re- 

roducing ability. Hence, the representative points can be identi- 

ed by the non-zero row-norms of the optimal profile, while hard 

onstraints can be satisfied by choosing the most distinctive ones 

mong the identified samples. 

A secondary step ensures the selected set is compact so that 

ach element contains novel information, otherwise gets elimi- 

ated. Beside offering variability, this step allows us to impose the 

udget constraint explicitly at no extra cost. We consider the sam- 

les to be analogous if they are close in the transformed space as 

(x i , x t ) = 

√ 

ˆ k (x i , x i ) − 2 ̂ k (x i , x t ) + ̂
 k (x t , x t ) , (4) 

here ˆ k (x i , x t ) � 〈 φ(x i ) , φ(x t ) 〉 acts as the inner product in the
ransformed space, as a proxy to k , the actual inner product in 

he RKHS. Our measure to choose between two similar points is 

hen their level of representation power. Scrutinizing the obtained 

ncoding reveals that samples corresponding to higher row-norms 

f the encoding matrix contribute more to the reconstruction of 

he whole dataset, and hence, can be regarded as more influen- 

ial representatives of the dataset. Exploiting this information, the 

rocedure avoids the effort of fine-tuning hyper-parameters, and 

nsures maximal novelty in the chosen subset without sacrificing 

ts representativeness. 

.1. Algorithm, complexity and scalablity 

Generic solvers for convex problems such as CVX [49,50] have 

ubic or higher complexities, thus do not scale well with the 

roblem size. To alleviate this problem, we develop an Alternat- 

ng Direction Method of Multipliers (ADMM)-based algorithm [51] , 

hich reduces the computational costs and also enables paral- 

el implementation of this program. As will be shown later in 

he section, employing the involved matrix structures as well as 

he ADMM approach yields a near-linear computational complex- 

ty of O (r 2 n 1 . 373 ) , where n is the number of samples and r � n is

he model parameter for the dimension of the proposed feature. 

lgorithm 1 illustrates the big picture of the sampling process, 

here the superscript inside the parenthesis is the iteration indica- 

or, the convergence conditions for primal and dual feasibility are 

erived according to Boyd et al. [51] , and the proximal operators of 

ifferent norms are derived as follows: T 
(1) 

ε (X ) � sgn (x )[ | x | − ε] + ,
nd T ε (X ) (1 , 1) � [ x − ε] + − [ −x − ε] + apply to the elements of a

atrix. T ε (X ) (1 , 2) applies to the rows of a matrix and is taken to

e x − εx / ‖ x ‖ 2 , if ‖ x ‖ 2 > ε, and the zero vector otherwise. Also,

he matrix φ(X ) is denoted by � for simplicity, and ˆ K stands for 

he pairwise inner product of the transformed features. 

It is not hard to show that the overall computational com- 

lexity of our algorithm is dominated by the matrix inversion 

nd multiplication in step 6, since the remaining steps consist of 

atrix summations or scalar multiplications. In general, efficient 

ultiplication of matrices of the size p × q and q × t is shown 

o be O(pq 0 . 373 t) [52] . Accordingly, the complexity of the inver- 

ion of a n × n matrix follows from the same algorithm and is 

(n 2 . 373 ) [52,53] . Since our algorithm is parallelizable, using P par- 

llel processors leads to O(n 1 . 373 
 n/P � ) computational complexity 

54] . However, we illustrate in the following that via the use of 

pecific structures of the matrices involved in our computations, 

e are able to reduce the complexity of our algorithm even fur- 

her. Observe that the matrix whose inverse is calculated is of the 

orm I n + ˆ K . Suppose we have the Singular Value Decomposition 

f the low-rank feature matrix as � = SVD 
T . Then, utilizing some 

atrix manipulations, one can show that 

 I n + 
ˆ K ] −1 = D 1 (I r + �) −1 D 1 

T + I n 
5 
here D 1 is the first r columns of the matrix D , and � is the non-

ero r × r sub-matrix of V 
T V , with elements σi on the diagonals. 

ow we need to take the inverse of a diagonal matrix, which can 

e easily represented by a diagonal matrix with entries 1 
1+ σi 

, which 

e denote by diag 1 
1+ σi 

. The developed scheme effectively reduces 

he computational complexity of the original inversion down to 

 (r 2 n ) , exhibiting a linear complexity in n . Then, having the re-

ultant matrix of the form D 1 ( diag 
1 

1+ σi 
) D 1 

T multiplied by an n × n 

atrix yields the near-linear complexity of O (r 2 n 1 . 373 ) . The analy- 

is is validated in our experiments reported in Section 4.7 . Again, 

tilizing the P multi-processing cores reduces the complexity to 

 (r 2 n 0 . 373 
 n/P � ) . 

. Theoretical analysis 

In this section, we present probabilistic and geometric analy- 

is of the proposed method and the employed building blocks. As 

ur main result, we first evaluate how well our proxy for the op- 

imal encoding matrix minimizes the true cost in which the actual 

eature mapping ϕ H is considered ( Theorem 1 ). Then, we present 

 characterization of the obtained representatives based on geo- 

etric functional analysis ( Theorem 2 ). The approximation of RKHS 
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eatures via random Fourier features was shown to uniformly con- 

erge to that of a given shift-invariant kernel originally in Rahimi 

nd Recht [20] , and later improved in Sutherland and Schneider 

55] . The relatively tight and uniform bounds obtained in both ap- 

roaches hinge upon some assumptions, including the compact- 

ess of the input space and the existence of the first two moments 

f μ( ζ) . Here, we dispense with these assumptions and obtain a 

oncentration result that suffices to prove the result of Theorem 1 . 

elaxing the compactness requirement of the input domain is ben- 

ficial for convergence analysis in various optimization contexts 

here such restrictions do not hold. Also, the particular features 

tilized here are slight variants of the original random Fourier fea- 

ures. Thus, for coherency, the convergence behavior of the fea- 

ures utilized here is provided in Lemmas 1 and 2 . For clarity, we

enote the approximate inner product by ˆ k ζ,β (x i , x t ) , defined as 

(x i ; ζ, β) T φ(x t ; ζ, β) . Also, we often use the short-hand notation 

(x ) for the proposed features, where the two random variables 

, β are omitted, when no confusion arises. 

emma 1. For a given stationary real-valued pd kernel k , the 

nner product of the associated proposed features φ(x i ; ζ, β) 

nd φ(x t ; ζ, β) approximate the evaluation of the kernel k , i.e., 

 ζ,β [ ̂
 k ζ,β (x i , x t )] = k (x i , x t ) . 

roof. First, recall that the MGF of a uniform random variable 

l on [ a, b] is known to be M βl 
(γ ) = 

exp (γ b) −exp (γ b) 
γ (b−a ) 

for non-zero 

amma values. Hence, one can show that for a fixed ζl , 

 βl 
[ cos ( ζl 

T (x i + x t ) + 2 βl )] = �{ exp ( j ζl 
T (x i + x t )) 

M βl 
(2 j) ︷ ︸︸ ︷ 

E βl 
[ exp ( j2 βl )] } 

= 

sin ( ζl 
T (x i + x t ) + 2 π) − sin ( ζl 

T (x i + x t )) 

2 π
= 0 . (5) 

hen, with ˆ k ζ,β defined as the inner product of the two feature 

aps one can write 

 ζ,β [ ̂ k ζ,β (x i , x t )] = E ζl ,βl 
[1 /r 

r ∑ 

l=1 

cos ( ζl 
T (x i − x t )) 

− cos ( ζl 
T (x i + x t ) + 2 βl )] 

= E ζ[ cos (〈 ζ, (x i − x t ) 〉 )] 
+ 1 /r 

r ∑ 

l=1 

E ζl ,βl 
[ cos ( ζl 

T (x i + x t ) + 2 βl )] (6)

here the last equality follows from the identical distribution of 

he variables ζi ’s, and independence of { ζi } i ∈ N r and { βi } i ∈ N r . Now, 

ubstituting (5) into (6) implies that 

 ζ,β [ ̂ k ζ,β (x i , x t )] = E ζ,β [ cos (〈 ζ, (x i − x t ) 〉 )] = k (x i , x t ) 

here the last equality follows by Bochner’s theorem for real- 

alued functions [48] . �

The above analysis guarantees convergence of the features in 

xpectation. Next, we give a stronger result establishing exponen- 

ially fast concentration around the mean. 

emma 2. Let δ > 0 be a confidence level, then for any given points 

 i , x t , { i, t} ∈ N n , with probability at least 1 − δ

ˆ 
 ∈ 

[ 
k − 4 

√ 

2 /r log (2 /δ) , k + 4 
√ 

2 /r log (2 /δ) 
] 

(7) 

here ˆ k , k are short-hand notations for ˆ k ζ,β (x i , x t ) , k (x i , x t ) , respec-

ively. 

The theorem shows that the approximate inner products ob- 

ained from the inner product of any two proposed feature vec- 

ors concentrate around their expected value, i.e., the true inner 
6 
roduct, with high probability. To prove this result, we will first 

haracterize the tail behavior of the involved RVs in the following 

emma, and then establish the result of the theorem. The reader is 

eferred to Vershynin [56] for the common definitions regarding 

ub-Gaussian property, and related theorems such as Hoeffding, 

nd Chernoff bounds. Let ˆ k l (x i , x t ) � sin ( ζl 
T x i + βl ) sin ( ζl 

T x t + βl ) .

emma 3. ˆ k l (x i , x t ) is a sub-Gaussian RV with parameter α = 2 . 

roof. Let ˆ κl be independent of 
ˆ k l and with the same distribu- 

ion, where we have omitted the two arguments for simplicity. Ob- 

erve that ˆ k l − ˆ κl matches ε( ̂ k l − ˆ κl ) in distribution, where ε is the 

ademacher RV. Hence, 

 [ exp (γ ( ̂ k l − ˆ κl ))] = E ˆ k l , ̂ κl 
[ E ε[ exp (εγ ( ̂ k l − ˆ κl ))] ︸ ︷︷ ︸ 

M ε (γ ( ̂ k l − ˆ κl )) 

] . 

t is not hard to show that the Rademacher RV is itself sub- 

aussian with parameter 1, and hence, together with the bound- 

dness of ˆ k l and ˆ κl we conclude that 

 ˆ k l , ̂ κl 
[ exp (γ ( ̂ k l − ˆ κl ))] ≤ exp (γ 2 2 2 / 2) 

inally, Jensen’s inequality implies 

 ˆ k l 
[ exp (γ ( ̂ k l − E ˆ κl ̂

 κl ))] < E ˆ k l , ̂ κl 
[ exp (γ ( ̂ k l − ˆ κl ))] 

hich concludes the proof. �

roof of Lemma 1. ˆ k ζ,β (x i , x t ) is proportional to the sum of r in-

ependent RVs as 

ˆ 
 ζ,β (x i , x t ) = 1 /r 

r ∑ 

l=1 

ˆ k l (x i , x t ) . (8) 

he Sum Rule, together with the result of Lemma 1 , imply that 
ˆ 
 ζ,β is sub-Gaussian with parameter α = 4 / 

√ 

r . Recalling that 

 ζ,β [ ̂
 k ζ,β (x i , x t )] = k (x i , x t ) by Lemma 1 , the concentration of the

V of interest around its mean is inferred from Chernoff bound, 

 {| ̂ k − k | ≥ τ } ≤ 2 exp (−rτ 2 / 32) . 

inally, setting the obtained bound to a desired confidence level δ
ompletes the proof. �

heorem 1. The proxy optimal function of the problem (3) concen- 

rates around the true optimal value with exponentially high proba- 

ility, i.e., 

P {| f (φ, �∗) − f (ϕ H , �
∗
H 
) | < c 1 (nτ + n 2 τ 2 c 2 ) } 

≥ 1 − 2 exp (−rτ 2 / 32) (9) 

here �H 

∗
denotes the optimizer of f (ϕ H , �) , and c 1 , τ, c 2 are pos-

tive constants. 

roof. Consider f F (φ, �) � ‖ φ(X ) − φ(X ) �‖ F + λ‖ �T ‖ 1 ,l . The

ollowing holds uniformly over �. 

 f F (φ, �) − f F (ϕ H , �) | = 

∣∣ tr { ˆ K −K + �T ( ̂  K −K ) �−2( ̂  K −K�) 
}∣∣

≤
∣∣ tr {�}∣∣ + 

∣∣ tr {�}
��T 

∣∣ + 2 
∣∣ tr {�}

�
∣∣

≤
∣∣ tr {�}∣∣ + 

√ 

tr 
{
�T �

}(‖ (�T �) 2 ‖ F + 2 ‖ �T �‖ F 

)
≤

∣∣ tr {�}∣∣ + 

√ 

tr 
{
�T �

}(‖ �‖ 
4 
F + 2 ‖ �‖ 

2 
F 

)
(10) 

here K and � denote the matrix of pairwise evaluations of 

he kernel function k , and the difference matrix | ̂  K − K | , respec-
ively. Since both objective functions are coercive and lower- 

ounded by zero, the global optimizer of f (φ, ·) and f (ϕ H , ·) 
re attained. Hence, both ‖ �∗‖ F and ‖ �∗ ‖ F should be bounded 
H 
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y a positive number 
√ 

ν . Then the bound in (10) can be 

ritten as 

‖ φ(X ) − φ(X ) �∗‖ F − ‖ ϕ H (X ) − ϕ H (X ) �∗
H 
‖ F 

∣∣ ≤
∣∣ tr {�}∣∣

+ 

√ 

tr 
{
�T �

}
(ν2 + ν) ≤ nτ + n 2 τ 2 c 2 (11) 

ith probability at least 1 − 2 exp (−rτ 2 / 32) , where c 2 = ν2 + ν is

 constant, and the last inequality is a result of a union bound on 

he concentration bound of Lemma 2 . 

Note that since any RKHS is separable, it is isometric to either 

 
m for a finite m , or the space of square summable sequences, i.e. 

 
2 [42] . Herein, the arguments consider the case where the trans- 

ormed space is of infinite dimensions, and as shown later, the 

nite-dimensional case follows with no extra effort. 

We will work with the equivalent � 2 space with the standard 

rthonormal basis { e i } ∞ 

i =1 
. We have already shown that φ(x ) −

(X ) θ ∈ � 2 , but we know that for the problem to be well-defined,

t also needs to be in � 1 space at optimality. We will denote 

he sequence at optimality by h 
∗ � 

∑ n 
t=1 φ(x t ) − φ(X ) θ ∗

t . Note that

 ·‖ 2 < ‖ ·‖ 1 , hence, � 1 is a subset of � 2 , but as it is dense in � 2 [42] ,
his does not impose a restrictive condition on the feasible space. 

The � 1 -norm of the optimal sequence h 
∗ introduces a conver- 

ent series, for which the convergence theorems guarantee the 

xistence of an integer μ, such that for a given tolerance ε, 
 

i>μ | h 
∗(i ) | < ε [57] . Then, ‖ h 

∗‖ 1 can be upper-bounded by 

 h 
∗‖ 1 = 

∥∥∥∥∥
∞ ∑ 

i =1 

h 
∗(i ) e i 

∥∥∥∥∥
1 

= 

∥∥∥∥∥
μ∑ 

i =1 

h 
∗(i ) e i 

∥∥∥∥∥
1 

+ ε ≤
μ∑ 

i =1 

| h 
∗(i ) | ‖ e i ‖ 1 + ε

≤
√ 

μ∑ 

i =1 

| h 
∗(i ) | 2 

√ 

μ∑ 

i =1 

‖ e (i ) ‖ 

2 
1 + ε = ‖ h 

∗‖ 2 

√ 

μ + ε . (12) 

etting c = μ + ε/ ‖ h 
∗‖ 2 2 yields the desired constant, hence, show- 

ng the boundedness of the � 1 -norm for the optimal point of the 

nduced RKHS by a constant factor of its � 2 -norm, and the proof is

omplete by the equivalence of these two norms at optimality. �

emark 3. The analysis in the proof of Theorem 1 is applicable 

o kernels whose induced RKHS are finite dimensional, at no extra 

ffort. The argument s f ollow closely the proof above, where the 

quivalence of the Hilbert space with the finite dimensional Eu- 

lidean space is considered, and the � 1 -norm of the RKHS vector 

t optimality is simply a finite sum. 

emark 4. As explained in Section 2 , the mapped features in 

he Hilbert space are functions, and the choice of the orthonor- 

al basis maps them to the Euclidean space or the space of in- 

nite square-summable sequences. For many cases though, spe- 

ific choices of the basis connect to well-known fundamental con- 

epts in signal processing fields. We illustrate such an example 

n the following. Consider a stationary kernel ( k (x i , x t ) = κ( δ) ,
here δ := x i − x t ) which is defined over the interval [0 , 2 π ] m ,

uch that it can be extended to a symmetric and periodic func- 

ion on R 
m . Then, if we choose the Fourier basis for the induced

unction space, an element of the RKHS can be written by the 

ourier series of this function as 
∑ 

i ˆ κi exp ( j2 π i T δ) , where the 

ector i = (i (1) , i (2) , . . . , i (m )) is the integer lattice in R 
m , typi-

ally known as Z 
m , and the Fourier coefficients can be obtained 

y ˆ κi = 

∫ 
[0 , 2 π ] m exp (− j2 π i T δ) κ( δ) d δ. A one-dimensional example 

oils down to the familiar Fourier basis as the orthogonal func- 

ions of { 1 , sin (x ) , cos (x ) , sin (2 x ) , cos (2 x ) , . . . } . Then, the mapped

 
2 sequence is nothing but the Fourier coefficients, and the condi- 

ion on the optimality can be translated to the Truncated Fourier 

eries of the original function for infinite dimensional spaces. With 

ourier coefficients going to zero at a faster speed, μ is smaller 
7 
nd the � 1 norm is closer to the � 2 norm. In the finite-dimensional 

ase, only the elements of the space corresponding to the finite 

on-zero coefficients are present in constructing the transformed 

eature, which defines the geometry of the associated RKHS. 

Next, to characterize the representative subset we select, con- 

ider the following. We denote the symmetrized convex hull of all 

ransformed samples by P(�) . Also, let the positive ray of a vector 

 be � v = { tv : t > 0 } . 
heorem 2. When the representation constraint in (3) is fully en- 

orced, our method samples the vertices of P(�) as representatives. 

roof. Consider the following definitions. Given the convex hull 

(�) , its polar set is defined as 

 
o = { h ∈ H : 〈 y , h 〉 ≤ 1 , ∀ y ∈ P(�) } . (13)

lso, we call the face of the convex hull passing through the posi- 

ive ray of y , the closest face to y . Now, note that when regularizing

y the � 1 -norms of the encoding matrix, our objective function is 

ecomposable to columns of the optimization variable, and hence, 

he minimization can be done in a separate fashion. 

min 
θt 

‖ θt ‖ 1 

.t. sin ( ζT x t + β) = sin ( ζT x t + β) θt ∀ t ∈ N n (14) 

hen the reconstruction constraint is fully enforced, the dual can 

e obtained as the following linear program 

max 
h ∈H 

〈 sin ( ζT x t + β) , h 〉 
.t. ‖ �T h ‖ ∞ ≤ 1 . (15) 

he constraint in (15) can be equivalently expressed as h belonging 

o the polar set of the convex hull. 

Guaranteed by the strong duality, the optimal value of each 

riginal optimization problem in (14) is equal to that of (16) . 

ax 
h ∈P o 

〈 sin ( ζT x t + β) , h 〉 . (16) 

his problem can be easily solved using linear programming tech- 

iques [58,59] . Using the aforementioned definitions, the problem 

s equivalent to finding the closest faces of the convex hull of 

ransformed dataset to the given point sin ( ζT x t + β) . The extreme 

oints of this face are indicated by the indices with non-zero en- 

ries. Finally, note that this holds for all columns of the encoding 

atrix as shown in (14) , through which, the vertices of the convex 

ull are identified. �

Specifically, by solving the optimization problem with zero re- 

onstruction error constraint, we indeed find those faces of the 

olytope P(�) which intersect the positive rays of transformed 

ata points, { tφ(x ) : t > 0 , ∀ x ∈ X } . Also, the vertices of this poly-
ope, being the extreme points of the aforementioned faces are in- 

icated by the rows of the optimal encoding matrix �∗ with non- 

ero norms. Sampling the vertices of this convex hull meets our 

ntuition in restoring the information of the dataset via few sam- 

les. Vertices are considered as the most critical points of a convex 

ody; while they are not reconstructible by the others, any other 

oint of the set can be represented by a convex combination of 

hese points. 

Finally, note that enforcing the reconstruction error to be zero 

oes not inactivate the regularization, rather provides the most in- 

eresting case to analyze theoretically. Indeed, if the problem has 

 feasible representative subset, the transformed data matrix � is 

mplied to be inherently low-rank. Consequently, there exist mul- 

iple potential encoding matrices which result in precisely zero re- 

onstruction error, and the choice of regularizer rules one of those 

andidates as the optimal solution of the program. As it will be 
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lear from the proof of the theorem, when λ = ∞ , the regular- 

zer actually plays as the main cost function of the problem, con- 

trained by the precise reconstruction. 

orollary 1. The optimal solution of our program in Theorem 2 is of 

he form 

∗ = 

[
˜ � I v 
0 0 

]
T (17) 

here v is the number of vertices of the convex hull P(�) , and ˜ � is

 non-zero sub-matrix. 

roof. By definition, every point inside the convex hull can be re- 

onstructed by a linear combination of the vertices, i.e. the chosen 

epresentatives. This reconstruction results in the encoding sub- 

atrix ˜ �. On the other hand, each vertex can only be written as 

ts own coordinates by an encoding of 1, which gives rise to the I v 
ub-matrix. �

. Experiments 

In this section, we conduct a set of experiments using both 

ynthetic and real data for various applications of the proposed 

ethod, and also compare its performance to state-of-the-art 

ketching algorithms. In the first set of experiments, we study rep- 

esentative sampling from a database of face images ( Section 4.3 ). 

e provide both a qualitative and quantitative analysis of the abil- 

ty of different methods to select a balanced set of images, sam- 

le sufficiently from different face expressions and poses, and pick 

aces with minimal shading/occlusion effects. The second set of 

xperiments in Section 4.4 focuses on fair sampling from group- 

orming and clustered data; we assess if our method samples suf- 

ciently from each group/cluster in data with multiple overlap- 

ing manifold structures of various dimensions and sparse corrup- 

ion, and yields a balanced sub-sample. In Section 4.5 , we consider 

he downstream task of classification using representatives in vari- 

us domains, including face identification and hand-written digit 

ecognition. The classification model is trained on a small sub- 

et of the training data selected using different selection meth- 

ds, then the performance is evaluated on the original test data. In 

he fourth set of experiments, we investigate the application of our 

odel in the task of face pose generation, where the goal is to gen-

rate new poses/angles of the face images using a set of observed 

mages from multiple views (See Section 4.6 ). The pipeline consists 

f choosing representatives of the face images of each subject us- 

ng different selection methods, training a deep generative model 

sing only said representatives, and evaluating the performance of 

ach trained model on the test set. We make use of a two-path 

AN architecture [60] , and provide samples of the generated im- 

ges and each method’s average identity error. Lastly, we compare 

he running time of different algorithms for a different number of 

ata points, which confirms the computational superiority of the 

roposed algorithm. 

.1. Data 

We use both real and synthetic manifold datasets for the 

xperiments. 5Spirals refers to a 5-class 10-dimensional artificial 

ataset with 500 points sampled from surfaces of arithmetic 

 spirals, sampled from an involute of a circle with paramet- 

ic equations x 1 = cos φ + φ sin φ and x 2 = sin φ − φ cos φ, by a 

niform distribution of the angle φ. The manifolds are then ro- 

ated, shifted, and embedded in the ambient space. Similarly, 

Spirals-2Knots ∈ R 
10 ×500 is another 5-class synthetic data 

ith 300 points from three spiral manifolds, and the other 

wo from embedded Trefoil Knots, where 100 points from 
8 
ach knot are sampled uniformly over the parameter θ of 

he curve [ x 1 , x 2 , x 3 ] = [ sin θ + 2 sin 2 θ, cos θ − 2 cos 2 θ, − sin 3 θ ] .
astly, Sphere-SwissRoll contains 30-dimensional points that 

ie on one of the two low-dimensional manifolds of Sphere 

100 points uniformly sampled over θ and φ from the curve 

 x 1 , x 2 , x 3 ] = [ cos θ sin φ, sin θ sin φ, cos φ] ) and SwissRoll, con-

tructed from 150 points on arithmetic spirals with three different 

eights. We randomly replace 5 percent of the data with random 

alues in the data range, i.e., we add a sparse matrix S with 

p = 0 . 05 to the data points to affect gross corruption in the data.

s for the real data, the Extended Yale Database [61] consists of 

ace images of 38 human subjects, with 64 different illuminations 

er person. We have resized the images to 32 × 32 . Multiple 

eatures is another real dataset from the UCI repository [62] , con- 

isting of 10 0 0 data points, each with 649 features of handwritten 

igits, covering their different characterizations. Similarly, the 

NIST dataset [63] contains images of hand-written images. Lastly, 

ulti-pie Face Database [64] contains images of 250 persons under 

arious variations of illumination (20 settings), pose (13 angles), 

nd expression (4 sessions). In the experiments, the preprocessed 

ata is used with 128 × 128 images of two expressions from the 

rst session, under all lighting and pose variations. 

.2. Experimental setup 

We compare against state-of-the-art methods that can handle 

on-linear data relations and are widely used in the related litera- 

ure, including Spec [39] , MKM [41] , Kmed [34] , SRS [27] , and DS3

17] . For these methods, the parameters were set as suggested by 

heir authors, while for the MoSSaRT, we avoid the use of data- 

ependent feature specifications as well as hyper-parameter tun- 

ng, by only using the two generic kernel functions, namely the 

aussian kernel, k (x , x ′ ) = exp 
−‖ x −x ′ ‖ 2 2 

2 σ 2 , and the Laplacian kernel 

 (x , x ′ ) = exp 
−‖ x −x ′ ‖ 1 

σ , with spread parameter σ . For σ , we adopt

he standard procedure of choosing it from { 0 . 1 , 1 , 10 } of average
ata variance. The datasets are randomly split to training, test- 

ng, and validation sets by 70 − 20 − 10 ratios. We choose the ker- 

el/parameter settings over their performance on the validation 

et, and the results are averaged over 50 runs. 

.3. Representatives of face poses 

Here, we present our findings on experimental results of the 

ulti-PIE dataset as a case study for our methodology. In Fig. 2 a 

elected images from 520 images of a subject based on different 

election methods are displayed in different rows. Some interest- 

ng observations can be made from this visualization. First, other 

ethods tend to sample dominantly from one expression (smile) 

ersus the other (neutral). Other methods fall short of preserv- 

ng the representation space of the expressions as evidenced by 

he unbalanced selection from the different expressions. In sharp 

ontrast, MoSSaRT selects sufficient samples from both gestures, 

overing the whole space of different expressions. Second, as our 

odel tackles corruption, it avoids the misinformation caused by 

he lighting conditions, by selecting the illumination with min- 

mal shading/occlusion effects. Third, except our method, others 

hoose samples that focus on specific angles, hence, deteriorat- 

ng their representation power. MoSSaRT, however, selects samples 

hat span the angle space of the poses in a balanced way. To eval- 

ate this feature quantitatively, we allow the methods to select 

3 samples from each subject for 50 randomly chosen subjects, 

nd report the average value for selected angle intervals by each 

ethod in Fig. 2 b. The even distribution of our results as opposed 

o the others’ validates our visual observations. 
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Fig. 2. Left: Visualization of representatives of a subject in Multi-pie dataset selected by different algorithms (MKM, DS3, KMed, and MoSSaRT, from top to bottom row). 

Right: Average number of selected images based on their view angle. Only our method selects samples from diverse angles evenly. 

Fig. 3. Percentage of sampled representatives from different clusters. Our method 

fairly samples from different clusters for (a) Sphere-SwissRoll , (b) 3Spirals-2Knots , 

and (c) for Multiple Features dataset. 
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.4. Fair sampling of clustered data 

One expects a representative subset to capture key character- 

stics of a collection. Group-forming collections are some of the 

idely encountered data types that arise in clustering problems. 

n this setting, the ability to contain sufficient information form- 

ng the clusters becomes pivotal, which can be significantly dis- 

orted by gross corruptions. Many clustering algorithms exhibit 

onsiderably better performance when the input data are clus- 

ered in balanced sizes [65] . Here, we experiment how our sam- 

ling scheme can fairly sample from multiple grossly corrupted 

lusters. For a more challenging scenario, the sizes of the clus- 

ers are chosen to be different. More specifically, 3Spirals-2Knots 

ontains 5 equally-sized clusters, and the number of points in 

he two clusters of Sphere-SwissRoll are 100–150. For the Multi- 

le Features dataset, we randomly choose three groups of digits 

f the size 3 − 3 − 4 , and set their corresponding cluster sizes to 

00 − 750 − 1000 data points. Then, our representative selection 

lgorithm is applied to the obtained datasets, and the percentage 

f chosen samples from each cluster is illustrated in Fig. 3 . The re-

ults show that our method is capable of fairly sampling from both 

alanced and unbalanced clusters for different synthetic and real 

atasets. 

.5. Training classifiers on reduced sketches 

Having in mind the burden of classification tasks for large 

atasets, we consider the problems of face identification, hand- 

ritten digit recognition, as well as classification of synthetic 

atasets by training the classifier only using the chosen representa- 

ives. To this end, 10% of the training set is first selected by differ-

nt selection methods. Using these reduced sketches, we then train 

 SVM model [66] on those subsets and evaluate their performance 

n the original test sets for multiple real and synthetic datasets. 

e also include the results for training the classifier with com- 

lete training sets as guidelines, denoted by “No selection”. The 

omparison of classification accuracy trained on samples obtained 

rom our method vs. other sampling methods is shown in Table 1 . 

onfirmed by its lowest classification errors, MoSSaRT achieves the 

est performance uniformly over all datasets. While offering signif- 

cant savings in the computational/storage requirements, one can 
9 
nfer that the sampled chosen by our proposed method are indeed 

ood representatives of the whole collection, as our performance is 

lose to (if not better than) training the model with the full train- 

ng set. In fact, since MoSSaRT is designed to handle gross corrup- 

ions, it exhibits considerable improvements over the full training 

et in most cases. 

.6. Face pose generation 

This experiment investigates the problem of generating face im- 

ges from multiple views. Despite marked success in computer 

ision and robotics, face recognition in a pose-invariant manner 

emains a challenging problem, mainly due to the performance 

egradation caused by variability in pose, illumination, and noise. 

ere, to examine the effectiveness of the selected representa- 

ives in such a challenging setting, we train a deep generative 

odel only on the sampled representatives, and evaluate its per- 

ormance on the test set. Regular GANs are tuned to generate 

ealistic instances but may learn incomplete representations due 

o their use of a single-pathway architecture, which consists of 

 generator (encoder E and decoder G) and a discriminator (D). 

s such, we make use of the two-path GAN architecture (CR- 

AN) in Tian et al. [60] , which introduces a second path in order 

o learn complete representations for multi-view generation. The 

dea is to use a second generation sideway to create view-specific 

mages from randomly sampled embeddings (see Fig. 4 and its 

aption). By encoding the complement space of the first path, a 

omplete representation space for the generator is obtained, so 

hat more realistic outputs can be generated from single-view 

nputs. 

In our experiment, we first use different sam pling methods to 

raw a small representative subset of 13 images for each sub- 

ect in the training data, each forming a different reduced train- 

ng set. Then, a CR-GAN network is trained for 300 epochs on 

ach of these reduced training sets, and the models are then eval- 

ated using the same test examples. Fig. 4 illustrates a diagram 

f our pipeline in this experiment. For more details on the imple- 

entation and training of a CR-GAN we refer the reader to Tian 

t al. [60] . Fig. 5 shows a visual comparison of the images gener-

ted by the GAN models trained on different sets of representa- 

ives in different rows. The first row contains the output of the 

odel trained by the samples chosen by our proposed method, 

nd the next ones correspond to SRS, Kmed, DS3, Spec, and MKM, 

rom top to bottom. Clearly, the results produced by the proposed 

ethod MoSSaRT are visually more appealing and realistic, testi- 

ying that our chosen samples are indeed better representatives of 

he whole training set. Others on the other hand, suffer from ar- 

ifacts such as checkerboard, corrupt pixels, posterizing, blurring 

nd ringing effects, which result in images that are visually less 

leasant and perceptually less convincing for the human viewer. 

mong others, the two methods Spec and MKM generated better 

ooking images, which may be caused by their manifold-specific 

pproaches. Note that since all the training details including archi- 

ecture, loss functions, and hyper-parameters are set the same for 
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Table 1 

Comparison of classification accuracy for classifiers trained on reduced subsets obtained from dif- 

ferent methods on various datasets.“No selection” corresponds to the results of training the clas- 

sifiers on the complete datasets. Our proposed method MoSSaRT outperforms all other methods. 

Data \ Method No selection MoSSaRT DS3 Kmed MKM SRS Spec 

Sphere-SwissRoll 0.725 0.800 0.725 0.700 0.800 0.775 0.625 

5Spirals 0.450 0.447 0.370 0.430 0.430 0.300 0.340 

Digits 0.523 0.610 0.575 0.355 0.523 0.418 0.548 

MNIST 0.850 0.870 0.718 0.825 0.760 0.737 0.688 

Yale 0.660 0.613 0.519 0.576 0.506 0.551 0.432 

Fig. 4. Pipeline of the trained model for the experiment of Section 4.6 , consisting of a two-way GAN architecture (CR-GAN) in the faded box, followed by the feature 

extraction by a pre-trained 18-layer ResNet for Identity Error calculation (reported in Table 2 ), and generation of synthetic face images in various angles (shown in Fig. 5 ), 

without the identity-preserving constraint. The upper generation path trains a generator G and discriminator D to produce realistic images. G generates images from random 

noise (without an encoder) to complete the latent space of the lower reconstruction path of a standard GAN, consisting of encoder E, decoder G, and discriminator D. The 

dashed-lines between the two generators and the two discriminators indicate weight-sharing. 

Fig. 5. GAN generated images trained on samples obtained from different selection 

methods. From top to bottom row: MoSSaRT, SRS, Kmed, DS3, Spec, and MKM. As 

it chooses better representatives, MoSSaRT results in more photo-realistic outputs 

compared to the others. 
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ll cases, these varied qualities can be solely traced back to the 

ifferences of the chosen samples by different methods. Moreover, 

e take a step further to avoid the subjective comparison of qual- 

tative results, and monitor the identity error of a generated view 

or a given image. This error indicates the Euclidean distance be- 

ween the features of real and generated images. For a given im- 

ge, we extract a 256-dimensional feature vector from a 18-layer 

esNet model [67] pre-trained on MS-Celeb-1M, a large-scale real 
10 
orld face dataset [68] . The reported results in the first row of 

able 2 correspond to the average value and standard deviation of 

he normalized identity errors over the test set. As this error il- 

ustrates how close a generated image is to its real version, the 

ower value of the error with MoSSaRT indicates its better perfor- 

ance in generating more realistic images from a given pose. This 

n turn suggests the capability of our method in selecting more in- 

ormative representatives, which give rise to a better trained GAN 

odel. 

.7. Running time comparison 

Lastly, we illustrate the efficiency of the developed algorithm 

n how scalable it is in the data size. Two subsets of the Multi-PIE 

ataset of size 10 0 0 and 50 0 0 are randomly selected, and multi-

le selection algorithms are run to select 13 samples from each 

ubset. We report average running time of each algorithm over 

0 runs in the last two rows of Table 2 . For these experiments,

 X64 machine with 2.4 GHz CPU and 32 GB RAM is used. While 

he ADMM algorithm of DS3 is faster than a general convex solver 

uch as CVX, as can be seen from its run-time for 10 0 0 samples,

his algorithm is too computationally expensive (approximately 

(n 3 ) ), hence the experiment with the larger subset of n = 50 0 0

as intractable to run for this method. Among others, MoSSaRT 

emonstrates much faster running time (except Spec), illustrat- 

ng our algorithm’s higher efficiency. These results also validate 

ur complexity analysis of near-linear computational complexity in 

erms of number of data points ( O(n 1 . 366 ) ). While Spec has sightly 

ower run-time that our algorithm, as shown in Tables 1 and 2 , 

t considerably falls behind our method w.r.t. other performance 

easures. 
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Table 2 

Performance analysis of various sampling methods on the Multi-PIE dataset. First row: Average ( ± standard deviation) nor- 

malized identity error on the test set for face pose generation. The GAN models are trained on reduced training sets (13 per 

subject) obtained by different sam pling methods. Second row: Average runtime of sampling algorithms for two different num- 

bers of data points ( n = 10 0 0 , 50 0 0 ). 

Metric \ Method MoSSaRT SRS Kmed DS3 Spec MKM 

GAN Identity Error 0 . 537 ± 0 . 194 0 . 674 ± 0 . 209 0 . 632 ± 0 . 205 0 . 625 ± 0 . 186 0 . 618 ± 0 . 229 0 . 613 ± 0 . 231 

Run- 

time 

(s) 

n = 10 0 0 17.14 39.93 25.46 887.72 10.69 24.32 

n = 50 0 0 157.08 1612.35 776.64 – 154.17 1685.72 

5

a

o

s

t

a

t

t

d

t

t

a

l

e

o

o

w

f

e

m

i

u

y

D

c

i

A

N

C

R

 

 

 

 

 

[

[

[

[

[

[

[  

[  

[  

[  

[  

[  

[

[

[  

[

[

. Conclusion 

Informative representatives allow for substantial computational 

nd storage conservations. This paper tackles important limitations 

f existing methods under realistic and practical scenarios. More 

pecifically, the proposed method is the first approach that offers 

he following advantages simultaneously: (i) ability to account for 

 versatile set of qualities in the chosen subset including represen- 

ativeness, novelty, and conciseness, (ii) a global understanding of 

he prevailing non-linear manifold structures in high-dimensional 

ata, (iii) robustness to gross sparse corruptions in non-linear set- 

ings, (iv) provable guarantees and interpretability, (v) computa- 

ionally efficient and scalable implementation. We developed an 

pproach tailored for non-linear manifold data without the use of 

ocal information or complex algebraic iterations. An approximate 

xplicit transformation was built upon an implicit feature mapping 

f a desired RKHS. Based on the introduced reproduction profile, 

ur formulation gave rise to a parallelizable convex minimization 

hose optimal solution provides a concise encoding of the data 

acilitating the realization of the aforementioned criteria. Finally, 

xperiments on both synthetic and real datasets showed that our 

ethod improves upon the state-of-the-art on the problems of face 

dentification, hand-written digit recognition, face pose generation 

sing GANs, classification of artificial data, and running time anal- 

sis. 
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