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ABSTRACT

Conventional sampling techniques fall short of selecting representatives that encode the underlying con-
formation of non-linear manifolds. The problem is exacerbated if the data is contaminated with gross
sparse corruptions. In this paper, we present a data selection approach, dubbed MoSSaRT, which draws
robust and descriptive sketches of grossly corrupted manifold structures. Built upon an explicit random-
ized transformation, we obtain a judiciously designed representation of the data relations, which facil-
itates a versatile selection approach accounting for robustness to gross corruption, descriptiveness and
novelty of the chosen representatives, simultaneously. Our model lends itself to a convex formulation
with an efficient parallelizable algorithm, which coupled with our randomized matrix structures gives
rise to a highly scalable implementation. Theoretical analysis guarantees probabilistic convergence of the
approximate function to the desired objective function and reveals insightful geometrical characterization
of the chosen representatives. Finally, MoSSaRT substantially outperforms the state-of-the-art algorithms
as demonstrated by experiments conducted on both real and synthetic data.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The ever-increasing availability of large-scale and high-
dimensional data offers unprecedented opportunities for data-
driven studies across widely differing domains ranging from
marketing and web mining, to bioinformatics and space explo-
ration. Yet, it also poses formidable challenges in face of storing,
organizing and analyzing such data.

With regard to dimensionality, there has been enormous
progress in devising solutions for the analysis and visualization of
high-dimensional data through low-dimensional embedding meth-
ods, e.g., Principal Component Analysis, Isomap, feature selection
and dictionary learning algorithms, and embedding techniques via
random projections [1-6].

Another line of research focuses on extracting knowledge from
a sheer volume of data by tapping into the sample space while
keeping the dimension intact. This paper focuses on the prob-
lem of representative selection, which has elicited strong inter-
est from the data sciences communities in recent years. Selecting
representative samples aims at reducing the problem size by sub-
sampling the data points independently of the dimension, while
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minimizing the information loss. A major distinction from other
methods obtaining compact representations in the sample space
such as dictionary learning approaches is that the chosen rep-
resentative subsets consist of actual data points, thereby afford-
ing easy interpretations in various application domains. For in-
stance, these subsets could consist of distinct images in a collec-
tion and specific words in a document, or particular sensors and
bands in a system and hyperspectral imaging [7-9]. The advan-
tages of representative selection are multifold. Notably, substantial
savings in storage and computation can be derived from the de-
velopment of inference algorithms around descriptive and concise
data sketches in lieu of the full-scale data. This is particularly rel-
evant with the emergence of edge machine learning paradigms in
which complex algorithms are required to run locally on tiny and
resource-constrained devices with minimal information centraliza-
tion. For instance, advancements in virtual and augmented real-
ity such as Oculus and HoloLens [10,11] and smart wearable de-
vices necessitate the efficient integration of state-of-the-art mod-
els and algorithms into these portable computing platforms, such
as deep learning models, whose computational/memory burden
and power consumption substantially overtax the resources of
smaller devices. For example, a widely used classification network
known as AlexNet [12] performs 1.5 billion high precision oper-
ations through 61 M parameters and takes 249 MB of memory
per image. The requirements are even more considerable for more
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complex networks such as VGG and GANs [13,14]. Another domain
is in the automative industry where mobility platforms have to
realize efficient data management solutions to address the com-
plexity underlying Advanced Driver-Assistance Systems (ADAS) and
autonomous driving given a sheer volume of sensory data from
Radar, Lidar, Cameras, Sonar, and GPS, among others [15,16]. Other
advantages facilitated through concise and informative represen-
tatives include insightful summaries of complex systems, deeper
grasp of complex underlying interactions, simpler data annotation
and cleansing processes, and even better generalization and en-
hanced phase transitions for supervised and unsupervised learning
algorithms [17].

Despite notable progress in developing compelling approaches
to representative selection, some important limitations of prior
work motivate the work of this paper. First, the vast majority
of existing approaches rest upon linearity assumptions about the
data. One commonly made assumption is that it lies in a union
of low-dimensional linear subspaces. In many real-world scenar-
ios, however, the underlying data patterns can be modeled more
accurately by non-linear manifold structures of lower intrinsic di-
mensionality, rather than linear subspaces. Second and most im-
portant, while there exist numerous methods that are robust to
various data perturbations such as gross corruptions, outliers, and
noise under linear data models, no principled approach is known
to date to handle such perturbations in the presence of non-
linear data structures. Sparse gross corruptions, a central focus of
this work, can be caused by occlusions, measurement errors, and
adversarial interference and can easily jeopardize the validity of
the existing methods due to their arbitrary magnitude and un-
known support [18,19]. Therefore, selecting descriptive and com-
pact samples under these practical circumstances remains largely
unexplored. Motivated by this, here we study the problem of rep-
resentative selection from manifold structures with gross sparse
corruptions.

1.1. Summary of contributions

This paper makes five main contributions. First, for the first
time we formalize the problem of representative selection from
non-linear manifolds in presence of gross sparse corruptions in
a principled and mathematically rigorous framework. Based on a
constrained optimization formulation in a transformed space, we
obtain an encoding of the data relations, termed reproduction pro-
file, which we leverage to draw a representative, diverse and con-
cise sketch of the data.

Second, we leverage the rich representation power of Reproduc-
ing Kernel Hilbert Spaces (RKHSs) to capture the non-linearities in
the data structure. Much of the existing work in kernel settings is
based on merely replacing the original inner products with ker-
nel evaluations. However, as our formulation relies on sparsity-
inducing norms to adequately handle sparse corruptions, the use
of the standard kernel trick is not feasible. To overcome this is-
sue, we integrate an approximate feature mapping framework in
our formulation to emulate a desired feature mapping associated
with a RKHS. While any approximate feature can be potentially
plugged into our method depending on the data specifics, we
showcase the use of random Fourier features [20] due to the wide
use of stationary kernels in machine learning applications. The util-
ity of these features, which were introduced for accelerating kernel
machines, rests upon a classic result in harmonic analysis. Here,
we exploit similar features for the first time in the context of
representative sampling to mirror the unknown mapping of the
RKHS.

Third, we develop a highly scalable and parallelizable ADMM-
based algorithm for representative sampling. Leveraging the special
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structures of the approximate feature maps, the algorithm exhibits
nearly linear complexity in the data size.!

Our fourth contribution lies in establishing key theoretical re-
sults affording guarantees on the goodness of the approximation
induced by random feature maps and a characterization of the
sampled representative set. In particular, based on concentration
of measure arguments, we show that the optimal value for the
proxy objective function induced by the approximate features con-
verges to the true optimal value exponentially fast, thereby estab-
lishing the effectiveness of our proxy formulation (Theorem 1). In
addition, we present a characterization rooted in geometric func-
tional analysis of the sampled subset, which provides the theo-
retical underpinning of an interpretable mechanism for sampling
informative representatives. In particular, it turns out that the
sampled subset of representatives consists of the vertices of the
symmetrized convex hull of all samples in a transformed space
(Theorem 2).

As our final contribution, we demonstrate the effectiveness of
the proposed approach using both synthetic and real data in a
broad range of supervised and unsupervised applications, including
classification, clustering, and face pose generation using Generative
Adversarial Networks (GANSs).

Fig. 1 illustrates a conceptual diagram of the proposed frame-
work, which will be explicated in further detail in Section 2.

1.2. Related work

Random selection approaches are ineffective in fully describ-
ing the entire set due to redundancy and corruptions in the data.
On the other hand, optimal subset selection is generally NP-hard.
Hence, various relaxations of the problem have been tackled by
different approaches, which can be mainly categorized into three
classes: linear, diversity-based and clustering-based methods.

Linear algebraic methods typically found their models on the
low-rankness of the data collection. Rank-Revealing QR (RRQR) al-
gorithms [21-23] aim to find a permutation matrix that, when
multiplied by the data matrix, reveals the best conditioned sub-
matrix as its first columns. Others have focused on choosing some
columns that can best span the column space of the original
dataset [24-27]. Missing entries and non-negative matrices are
considered in Balzano et al. [28], Esser et al. [29] via a greedy al-
gorithm and ¢;/¢- optimization, respectively. Inspired by dictio-
nary learning approaches, Elhamifar et al. [27] uses a linear model
in which each point in the dataset is described as a linear com-
bination of others and a sparsity constraint is enforced to get a
few representatives. The authors in Wang et al. [30] diversify these
chosen samples by employing multiple regularization terms. In-
tuitively, the approaches of the first class all seek to find a low-
rank approximation of the data matrix to recover its column space.
Hence, they are only suited for linear models and cannot capture
the non-linearity properly.

Diversity-based approaches, on the other hand, focus mainly
on information novelty. A-optimal and D-optimal approaches
[8,31] build on convex relaxations of the original problem. A faster
greedy optimization algorithm is suggested in Shamaiah et al. [32],
however it yields a sub-optimal solution, since the actual cost
function of the problem is not sub-modular [33]. In an effort to
maximize the diversity, these methods are all negligent of the rep-
resentation power of the chosen subset, and are highly prone to
choosing irrelevant corrupted data points.

Alternatively, the clustering-based approaches typically use sim-
ilarity relationship among data points, which makes them poten-
tially more suitable for sampling from non-linear data. Centroids

! The code is available at https://github.com/Mahlagha/MoSSaRT.
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Convex Formulation

Fig. 1. Conceptual diagram of the proposed Representative Selection framework. First, the underlying patterns of the huge dataset are captured through non-linear manifold
structures. The original collection is transformed into an explicit Hilbert space, emulating a desired implicit RKHS. Then, a reproduction profile is introduced for each sample,
using which the combinatorial subset selection problem is formulated as a convex minimization. The optimization is corruption-aware, hence, the optimal reproduction
profile indicates the best subset which negates the effects of gross corruptions in the data, while preserving the underlying structure of the whole collection.

of the clusters obtained by various clustering techniques are identi-
fied as representatives. In [34], exemplars are selected to minimize
the total distance from all samples, and Charikar et al. [35] approx-
imates the k-means algorithm. The efficacy of these algorithms is
adversely affected by their high dependence on initialization. This
issue was addressed in Frey and Dueck [36,37], where the cluster
centroids were identified by a message passing procedure. Also,
in Elhamifar et al. [17] a trace minimization program was sug-
gested to find exemplars for a source and target set. These meth-
ods yield sub-optimal solutions and require restrictive conditions
on the similarities to perform well.

Among all the developed techniques, only a few have specif-
ically attempted to tackle the problem with a Manifold Learn-
ing (ML) approach. These methods mostly adopt graph-based dis-
tances as approximate measures of geodesic distances, or resem-
ble manifolds by processing local neighborhood sets in a linear
fashion. In [38], a geodesic measure minimization is included in
the formulation of a RRQR-based factorization assuming a priori
knowledge of the structure of the manifold. In [39], sampling of
manifolds is tackled through an iterative scheme, where the spec-
trum of the Laplace-Beltrami operator on manifolds is approxi-
mated. In [40], a similarity-based quadratic criterion is optimized
for high representability while rejecting column-wise outliers. A
graph-based variant of the k-means algorithm is proposed in Tu
et al. [41], where Euclidean distances are replaced by geodesic dis-
tances to account for the intrinsic characteristics of the manifold.
These methods, either inherit the deficiency of the original meth-
ods such as dependency on initialization and complex iterations,
or incorporate local information, which diminishes their ability to
capture a global view of the collection.

Notation. Let N, £ {1, ..., k} for k € N. Column vectors and ma-
trices are denoted in boldface lower-case and upper-case letters,
respectively. Let 1 and I, denote the all-ones vector of proper
length, and the identity matrix of size n, respectively. For a scalar
a, |a| denotes its absolute value, while for a set S, |S| denotes its
cardinality. For a vector a, ||al|,, stands for its ¢p-norm, and a(i) its
ith element. This notation is used for both finite-dimensional vec-
tors and infinite sequences. When necessary, the distinction will
be made explicit to avoid confusion. Accordingly, ¢P denotes the
space of all sequences whose ¢,-norms are bounded. For a ma-
trix A, a;, a;; denote its ith column and (i, j)th element, respec-
tively, [|Allp = >_; lla;ll, its Frobenius norm, and ||A[l; , = >=; [laill,

its group Lasso norm. Similar to vectors, the notation is shared
between matrices whose columns are finite-dimensional vectors
or infinite sequences. Matrix Az = [A; Az] denotes the concatena-
tion of two matrices Ay, Ay, with equal number of rows. The hinge
function denoted [-], is defined as max{-, 0}. For a random vari-
able (RV) x, Mx(y) denotes its Moment Generating Function (MGF)
with parameter y. Also, the probability of realization of a random
event A4, is denoted by P{A}.

2. Proposed method

In this section, we present the Manifold Sampling through
Sparse Reproduction Profile of Randomized Transformations
(MoSSaRT) method, a powerful sampling approach for high-
dimensional data governed by low-dimensional manifold struc-
tures. A key aspect is that the data is contaminated with gross
sparse corruptions. Inspired by many real-world scenarios, the pro-
posed method applies to both linear and non-linear models by
choosing suitable settings. Formally, our adopted data model is as
follows.

Data Model 1. The columns of matrix X € R™<" consist of cor-
rupted observations from the set X' £ {x;};.;,. We assume that the
clean data lies on a low-dimensional manifold M, and each coordi-
nate of the data points may be contaminated with gross corruption
with a small probability p, resulting in a sparse corruption matrix
S, whose elements follow a Bernoulli distribution with probability
1 — p. This gives rise to a natural decomposition of the data ma-
trix as X = M + S, where M refers to the collection of points drawn
from the manifold M.

Remark 1. Note that our adopted data model does not restrict
the low-dimensional structures to linear settings; this element can
come from a low-rank linear subspace, or a low-dimensional non-
linear Riemannian manifold. The focus of this paper will be on the
more challenging scenario for the non-linear settings, but as will
be shown in the sequel, the linear case is a special case of our for-
mulation.

In principle, there is a trade-off between the number of cho-
sen representatives and the amount of information retrieved. We
approach the problem noting these two confronting criteria. Our
desirable exemplars are rich in representation power to maximize
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the information content, but also not too similar to minimize re-
dundancy. One natural choice would be a minimax type of for-
mulation between these two criteria. However, this may yield an
unduly aggressive strategy, given that in most realistic scenarios
many data points in the collection could be redundant and individ-
ual data points may not be too informative. In addition, while such
a formulation could implicitly reduce the amount of data, it may
not meet explicit budget constraints for representative selection. In
order to dictate these constraints more forcefully, we deliberately
develop a two-stage strategy, wherein the first stage acts as the
main building block, where we obtain thorough structural infor-
mation of the underlying manifold, and the second step leverages
the obtained encoding to impose any existing budget constraints
explicitly.

Additionally, note that fulfilling the first criterion intrinsically
affords robustness to the disturbances introduced by the gross cor-
ruptions, since otherwise, the chosen samples would not be able to
represent the whole dataset with enough fidelity. Hence, the main
goal is to choose few samples which can be descriptive representa-
tives of the true data, in spite of observing the contaminated data.

For the sake of identifiability, we assume that the clean data
is unlikely to be sparse. Otherwise, the decomposition problem
becomes ill-posed since there is no unique solution to the prob-
lem (e.g., see Candés et al. [18]). We hypothesize that if there is
a “good” representative subset for the data with few elements,
then there should exist a low-cost projection of the data onto the
span of that subset. The patterns underlying manifold data make
it challenging to desirably model this behavior in the original do-
main, but one may achieve such a representation through a suit-
able transformation. To effectively capture the non-linear behavior
of the data, we relax this criterion to any separable Hilbert space H
up to a continuous transformation. In other words, we consider a
possibly highly non-linear mapping function ¢ : R™ — H, where in
the transformed domain the data points can be better represented
by a small subset of the collection. It is worth noting that, in gen-
eral, the elements of the Hilbert space are abstract vectors (such
as functions), but since every separable Hilbert space has an or-
thonormal basis [42], any element can be uniquely specified by its
coordinates w.r.t. that basis. In what follows, ¢(x) denotes either
the vector or the infinite sequence of its coordinates.

To elucidate our approach, knowing the data decomposition in
hindsight, one can then formulate the oracle in (1) aiming at spar-
sifying the residual errors corresponding to the corruption matrix,
while satisfying the reconstruction of the clean data.

I&lg lp(S) — (@ (S))lo
st. ¢(M) = o (p(M)), || = x (1)

where, for a matrix A, ¢ (A) is defined as the matrix of element-
wise evaluation of the function ¢ at the columns of A, i.e. ¢(A) =
[¢(@1) ¢(az) ... ¢(ap)], and ms(A) stands for the projection of A
onto the span of its selected columns indexed by S.

To re-formulate this combinatorial optimization as a convex
problem, we translate it into finding a real-valued matrix @ e
R™" which we call the reproduction profile of the dataset. The ap-
pellation is associated with the encoded information in this matrix
which is delineated in Remark 2. The reproduction profile ® aims
to emulate the projection operator when multiplied by the data
matrix. To this end, ® is enforced to have sparse rows, such that
the data is projected into the subspace spanned by the samples
corresponding to the non-zero rows. Hence, it can be re-expressed
as

min [[¢(S) ~$(S)®llo

st. ¢M)=¢M)®, [|O[lg;=x. O #I (2)
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Bearing in mind the successful employment of kernel methods
in identifying the non-linear patterns hidden in the data, we
would like our mapping function ¢ to resemble a feature map-
ping ¢y : R™ — H associated with a RKHS #. In this case, for a
RKHS with the reproducing kernel k, a mapped feature @4 (x) is
itself a function from the input space to R, such that ¢y (X;)(X;) =
k(x;,X:), VX;,X; € X. Then one can choose an orthonormal basis
for this function space, collect the resulting coordinates for all ele-
ments in a matrix, and attempt to minimize its ¢p-norm as in (2).
Note that, our formulation does not involve explicit inner products
of the data points given our use of the £p-norm in order to cap-
ture the sparse structure of the corruption. Therefore, the common
practice of substituting the inner products in the original space by
those in the RKHS - a technique referred to as the kernel trick -
is not feasible in our setting. Moreover, since the explicit feature
mappings are not known in general, we obtain an approximate fea-
ture mapping function, such that it emulates that of the desired
RKHS.

Existing feature approximation methods are primarily devel-
oped to accelerate the classical kernel methods. By contrast, here
we exploit such approximations to overcome the foregoing issues,
namely, the lack of explicit inner products in our formulation and
the unknown feature mapping of the RKHS. Various approxima-
tions have been developed to provide an explicit feature map-
ping associated with different types of kernels, such as random
Fourier features [20], fast random binning features [43], additive
kernel approximates [44], locality sensitive binary codes [45], and
compact random features [46] (e.g., see Liu et al. [47] for a re-
cent survey of these methods). While any approximate feature map
can be plugged in our proposed approach, we focus on the class
of stationary positive-definite (pd) kernels (for which the random
Fourier features were proposed) due to their wide use in machine
learning applications. For a stationary pd kernel k, a result from
harmonic analysis by Bochner [48] is applicable, asserting the ex-
istence of a probability measure (&), with k as its Fourier trans-
form. Accordingly, to approximate the RKHS features, we use the
vector-valued function ¢(-; £, B) : R™ — R”, where each element is
calculated as /2/rsin(¢;"x + B;), and {&i. Bi}ien, are iid. realiza-
tions from the independent distributions (&), the inverse Fourier
transform of the kernel function, and U[O0, ], respectively.

Now, recall that the formulation in (2) involves hindsight, as the
data decomposition of Data Model 1 is not available explicitly, and
this in fact, poses a core subtlety to our problem. Henceforth, in-
spired by (2), we propose the alternative formulation (3) expressed
in terms of the observed contaminated data, where the problem
has been also convexified by replacing the ¢y-norms by their tight
£1 surrogates.

min " [ sin(¢"xc + B) = sin(@ %+ B0l + MOy (3)

t=1

£f(¢.0©)

The first term amounts to a representation constraint, and the em-
ployed regularization automatically avoids the trivial solution of
identity, hence eliminating the need for the constraint ® # I. In-
spired by the oracle non-convex and constrained optimization in
(2), our formulation in (3) yields excelling performance as shown
in Section 4.

Remark 2. The optimal reproduction profile ®* contains structural
information about the collective behavior of the data points, which
enables us to not only draw representative sketches, but also to
ensure novelty. More specifically, each row of this matrix encodes
how a given sample participates to reproduce the whole collection
under the presumed constraints of adhering to manifold structures,
while negating the impact of the gross corruptions. Therefore, sam-
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ples are associated with an elaborate profile describing their re-
producing ability. Hence, the representative points can be identi-
fied by the non-zero row-norms of the optimal profile, while hard
constraints can be satisfied by choosing the most distinctive ones
among the identified samples.

A secondary step ensures the selected set is compact so that
each element contains novel information, otherwise gets elimi-
nated. Beside offering variability, this step allows us to impose the
budget constraint explicitly at no extra cost. We consider the sam-
ples to be analogous if they are close in the transformed space as

5% x0) = y k% X)) — 2806, %) + k%, %) (4)

where I?(xi,xt) £ (p(x;), ¢ (X)) acts as the inner product in the
transformed space, as a proxy to k, the actual inner product in
the RKHS. Our measure to choose between two similar points is
then their level of representation power. Scrutinizing the obtained
encoding reveals that samples corresponding to higher row-norms
of the encoding matrix contribute more to the reconstruction of
the whole dataset, and hence, can be regarded as more influen-
tial representatives of the dataset. Exploiting this information, the
procedure avoids the effort of fine-tuning hyper-parameters, and
ensures maximal novelty in the chosen subset without sacrificing
its representativeness.

2.1. Algorithm, complexity and scalablity

Generic solvers for convex problems such as CVX [49,50] have
cubic or higher complexities, thus do not scale well with the
problem size. To alleviate this problem, we develop an Alternat-
ing Direction Method of Multipliers (ADMM)-based algorithm [51],
which reduces the computational costs and also enables paral-
lel implementation of this program. As will be shown later in
the section, employing the involved matrix structures as well as
the ADMM approach yields a near-linear computational complex-
ity of O(r2n!-373), where n is the number of samples and r « n is
the model parameter for the dimension of the proposed feature.
Algorithm 1 illustrates the big picture of the sampling process,
where the superscript inside the parenthesis is the iteration indica-
tor, the convergence conditions for primal and dual feasibility are
derived according to Boyd et al. [51], and the proximal operators of
different norms are derived as follows: ?é”(X) £ sgn(x)[|x| — €]y,
and Z.(X)(ID 2 [x — €], —[-x — €]+ apply to the elements of a
matrix. Z (X)(12) applies to the rows of a matrix and is taken to
be x —ex/||x||»,if ||x||> > €, and the zero vector otherwise. Also,
the matrix ¢ (X) is denoted by ® for simplicity, and K stands for
the pairwise inner product of the transformed features.

It is not hard to show that the overall computational com-
plexity of our algorithm is dominated by the matrix inversion
and multiplication in step 6, since the remaining steps consist of
matrix summations or scalar multiplications. In general, efficient
multiplication of matrices of the size pxq and g xt is shown
to be O(pq®373t) [52]. Accordingly, the complexity of the inver-
sion of a nxn matrix follows from the same algorithm and is
O(n%373) [52,53]. Since our algorithm is parallelizable, using P par-
allel processors leads to ©(n'373[n/P]) computational complexity
[54]. However, we illustrate in the following that via the use of
specific structures of the matrices involved in our computations,
we are able to reduce the complexity of our algorithm even fur-
ther. Observe that the matrix whose inverse is calculated is of the
form I, + K. Suppose we have the Singular Value Decomposition
of the low-rank feature matrix as @ = SVD'. Then, utilizing some
matrix manipulations, one can show that

I+ K" =D (I, + Z)7'Dy" +1,
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Algorithm 1 Proposed sampling scheme using ADMM optimiza-

tion.

Require: Data Matrix X € R™ ", kernel k, desired number of sam-
ples x,l € {1, 2}, Optimization parameters A, p, feasibility toler-
ances €gps. € (both set to 107> in our experiments).

Ensure: Collection of the representative samples R

1: Construct the feature matrix ® € R™" as explained in Section
2, using X, k.

2: Initialization:Set ®©® and U%O),Ugo) € R™™ to zero matrices,
converged = False

3: while not converged do
{Update Primal variables} '

4 QiD= «717/;@ - 900 —U,")

5. BU+D — y}h(/l/;P)(@(i) -U; (l))

6  @U+D) — (In + f()—l(B(l’H) +®T(d - Q(i+1) _ Ugi) +U§i)))
{Update Dual variables}

7: U§i+1) _ U%l’) +B+D) _ @G+

8: U§i+1) _ Ug) + Q(i+]) —_ @+ dOID
{Calculate Primal and Dual residuals}

9: PRy (l‘) — Q(i) — P+ PO, pRz(l) — B(i) —_eW0

10: DR;® = p(@®(@D - @i-D)) DR,V = p(@D) — @(-D)
{Calculate Primal and Dual feasibility tolerances}

11: €p1 = N€gps + €pel max(||Qi||F, ”(I) - 200 ”F)v €41 = N€gps +
perelllU1p

120 €pp = N€gpg + €l max(||(1i||F, ”@(i) llF), €4p = N€gps +
perelllU3 ¢

{Check Convergence}

13 If PRy D lF < €p1 A IPRZD [IF < €p1 A DRy V[ < €4y A
IDR VI < €2

14: converged = True

15: end while

16: @* = QD

7 R= {xj eX | 6], # o]

18: Calculate the pairwise distances acc. to Equation (4)

19: while |R| > » do

20:  Remove less active samples similar to the highly contributing
ones from R

21: end while

22: Return R

where D, is the first r columns of the matrix D, and X is the non-
zero r x r sub-matrix of VTV, with elements o; on the diagonals.
Now we need to take the inverse of a diagonal matrix, which can
be easily represented by a diagonal matrix with entries %01 which

we denote by diagﬁ. The developed scheme effectively reduces
the computational complexity of the original inversion down to
O(r?n), exhibiting a linear complexity in n. Then, having the re-
sultant matrix of the form Dy (diagﬁ)mr multiplied by an n x n

matrix yields the near-linear complexity of ©(r2n!-373). The analy-
sis is validated in our experiments reported in Section 4.7. Again,
utilizing the P multi-processing cores reduces the complexity to
Or2n®373n/PY).

3. Theoretical analysis

In this section, we present probabilistic and geometric analy-
sis of the proposed method and the employed building blocks. As
our main result, we first evaluate how well our proxy for the op-
timal encoding matrix minimizes the true cost in which the actual
feature mapping ¢y is considered (Theorem 1). Then, we present
a characterization of the obtained representatives based on geo-
metric functional analysis (Theorem 2). The approximation of RKHS
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features via random Fourier features was shown to uniformly con-
verge to that of a given shift-invariant kernel originally in Rahimi
and Recht [20], and later improved in Sutherland and Schneider
[55]. The relatively tight and uniform bounds obtained in both ap-
proaches hinge upon some assumptions, including the compact-
ness of the input space and the existence of the first two moments
of u(¢). Here, we dispense with these assumptions and obtain a
concentration result that suffices to prove the result of Theorem 1.
Relaxing the compactness requirement of the input domain is ben-
eficial for convergence analysis in various optimization contexts
where such restrictions do not hold. Also, the particular features
utilized here are slight variants of the original random Fourier fea-
tures. Thus, for coherency, the convergence behavior of the fea-
tures utilized here is provided in Lemmas 1 and 2. For clarity, we
denote the approximate inner product by ’2{_[5 (X;, X;), defined as
d(x;; ¢, ﬂ)Td)(xt; ¢, B). Also, we often use the short-hand notation
¢ (x) for the proposed features, where the two random variables
¢, B are omitted, when no confusion arises.

Lemma 1. For a given stationary real-valued pd kernel k, the
inner product of the associated proposed features ¢ (x;; ¢, B)
and ¢(X¢; §. B) approximate the evaluation of the kernel k, ie,
E¢ glke g (Xi, Xc)] = k(X;, X¢).

Proof. First, recall that the MGF of a uniform random variable
pi on [a,b] is known to be Mg (y) = exp(yb

W for non-zero
gamma values. Hence, one can show that for a fixed g,
Mg, (2))

T .o T ———
Eg [cos(& (Xi+x:)+28))1=0{exp(j&; (X; +X:)) Eg [exp(j28)]}

_sin(g" (% + %) +270) —sin(g (i + %) _

s 0. (5)

Then, with IZH; defined as the inner product of the two feature
maps one can write

Eg plke (% %)) = Eg, g [1/7_ cos(g," (x; —X0))
1=1

—cos(¢," (xi + ) + 28]
= E¢[cos((Z, (X; — X¢)))]

+1/r Y By, g lcos(§)| (% + %) +2)] 6)
1=1

where the last equality follows from the identical distribution of
the variables ¢;’s, and independence of {¢;}icy, and {Bi}icy,. Now,
substituting (5) into (6) implies that

Eg plke p (i Xe)] = Eg glcos((E, (xi — X)) = k(xi, %)

where the last equality follows by Bochner’s theorem for real-
valued functions [48]. O

The above analysis guarantees convergence of the features in
expectation. Next, we give a stronger result establishing exponen-
tially fast concentration around the mean.

Lemma 2. Let § > 0 be a confidence level, then for any given points
X;, X¢, {i, t} € Ny, with probability at least 1 —§

ke [k—4\/2/rlog(2/8),k+4\/2/rlog(2/8)] (7)

where k, k are short-hand notations for IQ;_ﬂ (X;, Xt ), k(X;, X; ), respec-
tively.

The theorem shows that the approximate inner products ob-
tained from the inner product of any two proposed feature vec-
tors concentrate around their expected value, i.e., the true inner
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product, with high probability. To prove this result, we will first
characterize the tail behavior of the involved RVs in the following
lemma, and then establish the result of the theorem. The reader is
referred to Vershynin [56] for the common definitions regarding
sub-Gaussian property, and related theorems such as Hoeffding,
and Chernoff bounds. Let IA<, (x;, X¢) = sin(C,ij +B) sin(;,Tx[ + Bp).

Lemma 3. IA<, (X;, Xt) is a sub-Gaussian RV with parameter o = 2.

Proof. Let &, be independent of IA<, and with the same distribu-
tion, where we have omitted the two arguments for simplicity. Ob-
serve that IA<, — k; matches e(lAq — k&) in distribution, where € is the
Rademacher RV. Hence,

Elexp(y (k — &)1 = B [Ec[exp(ey (k — &))]]
Me (y (ki=#1))

It is not hard to show that the Rademacher RV is itself sub-
Gaussian with parameter 1, and hence, together with the bound-
edness of k; and k; we conclude that

Ef, o [exp(y (ki — &1))] = exp(y?22/2)

Finally, Jensen’s inequality implies

By [exp(y (ki — Be )] < Bz, . [exp(y (k — 1))
which concludes the proof. O

Proof of Lemma 1. I?;, g (X;, X) is proportional to the sum of r in-
dependent RVs as

.
kep(Xi Xe) =1/ "k (Xi. Xe) - (8)
=1

The Sum Rule, together with the result of Lemma 1, imply that
ky g 1s sub-Gaussian with parameter « = 4//r. Recalling that
Em[f%_ﬁ (X, Xt)] = k(x;, X;) by Lemma 1, the concentration of the
RV of interest around its mean is inferred from Chernoff bound,
P{lk — k| > T} < 2exp(-rt2/32).

Finally, setting the obtained bound to a desired confidence level &
completes the proof. O

Theorem 1. The proxy optimal function of the problem (3) concen-
trates around the true optimal value with exponentially high proba-
bility, i.e.,
P{|f(¢, ©%) — flon, ®3)| < c1 (nT +n’Tcy)}
>1—2exp(-rt?/32) (9)
where @ denotes the optimizer of f(¢x, ®), and c1, T, ¢, are pos-
itive constants.

Proof. Consider fr(¢p, ®) 2 [|¢(X) —p(X)O||r + 1||OT[|; ;. The
following holds uniformly over ©.

|fr (@, ©)—fr (¢n, ©)|=] tr {R-K+OT (R-K)©-2(R-K®)}|
<|tr{A}]+|tr{A}©@OT| +2|tr {A} O]

<|wr(a}|+ /w{ara} (@07 +2I0" O )
= (A} + Jr{aTa} (101 +2101) (10)

where K and A denote the matrix of pairwise evaluations of
the kernel function k, and the difference matrix |K — K|, respec-
tively. Since both objective functions are coercive and lower-
bounded by zero, the global optimizer of f(¢,-) and f(@y,-)
are attained. Hence, both ||@*[|r and ||@3 || should be bounded
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by a positive number ./v. Then the bound in (10) can be
written as

[ X) — )OI — llpn (X) — 02 (X) 05| < |tr {A}|

+/tr{ATA}(V? +v) <nT + 1?7, (1)

with probability at least 1 — 2exp(—rz2/32), where ¢; = V2 + v is
a constant, and the last inequality is a result of a union bound on
the concentration bound of Lemma 2.

Note that since any RKHS is separable, it is isometric to either
R™ for a finite m, or the space of square summable sequences, i.e.
¢2 [42]. Herein, the arguments consider the case where the trans-
formed space is of infinite dimensions, and as shown later, the
finite-dimensional case follows with no extra effort.

We will work with the equivalent ¢2 space with the standard
orthonormal basis {e;}3°,. We have already shown that ¢(x) —
¢ (X)0 € £2, but we know that for the problem to be well-defined,
it also needs to be in ¢! space at optimality. We will denote
the sequence at optimality by h* £ 31", ¢(x;) — ¢(X)6;. Note that
Il < II-ll;, hence, ¢! is a subset of ¢Z, but as it is dense in ¢ [42],
this does not impose a restrictive condition on the feasible space.

The ¢;-norm of the optimal sequence h* introduces a conver-
gent series, for which the convergence theorems guarantee the
existence of an integer u, such that for a given tolerance e,
Yiwp M* ()] < € [57]. Then, ||h*||; can be upper-bounded by

" M
= > hr(e| +e <Y [he(@)][leifl,+e

1 li=t 1 i=1

[l = || Y h* (e
i=1

w wn
s\/Z|h*(i>|2\/2||e<i>||%+e=||h*||2m+e. (12)

i=1 i=1

Letting c =  + e/||h*||% yields the desired constant, hence, show-
ing the boundedness of the ¢;-norm for the optimal point of the
induced RKHS by a constant factor of its £;-norm, and the proof is
complete by the equivalence of these two norms at optimality. O

Remark 3. The analysis in the proof of Theorem 1 is applicable
to kernels whose induced RKHS are finite dimensional, at no extra
effort. The arguments follow closely the proof above, where the
equivalence of the Hilbert space with the finite dimensional Eu-
clidean space is considered, and the ¢;-norm of the RKHS vector
at optimality is simply a finite sum.

Remark 4. As explained in Section 2, the mapped features in
the Hilbert space are functions, and the choice of the orthonor-
mal basis maps them to the Euclidean space or the space of in-
finite square-summable sequences. For many cases though, spe-
cific choices of the basis connect to well-known fundamental con-
cepts in signal processing fields. We illustrate such an example
in the following. Consider a stationary kernel (k(x;,X:) =k (),
where § :=X; —X;) which is defined over the interval [0, 27 ]™,
such that it can be extended to a symmetric and periodic func-
tion on R™. Then, if we choose the Fourier basis for the induced
function space, an element of the RKHS can be written by the
Fourier series of this function as Y;&jexp(j2wi’8), where the
vector i= (i(1),i(2),...,i(m)) is the integer lattice in R™, typi-
cally known as Z™, and the Fourier coefficients can be obtained
by &; = f[o,zn]m exp(—j2mwil8)k (8)ds. A one-dimensional example
boils down to the familiar Fourier basis as the orthogonal func-
tions of {1, sin(x), cos(x), sin(2x), cos(2x), ...}. Then, the mapped
¢2 sequence is nothing but the Fourier coefficients, and the condi-
tion on the optimality can be translated to the Truncated Fourier
series of the original function for infinite dimensional spaces. With
Fourier coefficients going to zero at a faster speed, p is smaller
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and the ¢; norm is closer to the ¢, norm. In the finite-dimensional
case, only the elements of the space corresponding to the finite
non-zero coefficients are present in constructing the transformed
feature, which defines the geometry of the associated RKHS.

Next, to characterize the representative subset we select, con-
sider the following. We denote the symmetrized convex hull of all
transformed samples by P(®). Also, let the positive ray of a vector
vbevV={tv:t> 0}

Theorem 2. When the representation constraint in (3) is fully en-
forced, our method samples the vertices of P(®) as representatives.

Proof. Consider the following definitions. Given the convex hull
P(®), its polar set is defined as

P°={heH:{y.h) <1, VyeP(®)}. (13)

Also, we call the face of the convex hull passing through the posi-
tive ray of y, the closest face to y. Now, note that when regularizing
by the ¢;-norms of the encoding matrix, our objective function is
decomposable to columns of the optimization variable, and hence,
the minimization can be done in a separate fashion.

min ||6,
in [l

s.t. sin(¢'x + B) = sin(¢"x, + B)O; Vt € N, (14)

When the reconstruction constraint is fully enforced, the dual can
be obtained as the following linear program

max (sin(¢'x; + B), h)
heH
st ®Th. < 1. (15)

The constraint in (15) can be equivalently expressed as h belonging
to the polar set of the convex hull.

Guaranteed by the strong duality, the optimal value of each
original optimization problem in (14) is equal to that of (16).

max (sin(¢'x; + £). h) . (16)

This problem can be easily solved using linear programming tech-
niques [58,59]. Using the aforementioned definitions, the problem
is equivalent to finding the closest faces of the convex hull of
transformed dataset to the given point sin({Tx[ + B). The extreme
points of this face are indicated by the indices with non-zero en-
tries. Finally, note that this holds for all columns of the encoding
matrix as shown in (14), through which, the vertices of the convex
hull are identified. O

Specifically, by solving the optimization problem with zero re-
construction error constraint, we indeed find those faces of the
polytope P(®) which intersect the positive rays of transformed
data points, {t¢(x) : t > 0, Vx € X}. Also, the vertices of this poly-
tope, being the extreme points of the aforementioned faces are in-
dicated by the rows of the optimal encoding matrix ®* with non-
zero norms. Sampling the vertices of this convex hull meets our
intuition in restoring the information of the dataset via few sam-
ples. Vertices are considered as the most critical points of a convex
body; while they are not reconstructible by the others, any other
point of the set can be represented by a convex combination of
these points.

Finally, note that enforcing the reconstruction error to be zero
does not inactivate the regularization, rather provides the most in-
teresting case to analyze theoretically. Indeed, if the problem has
a feasible representative subset, the transformed data matrix @ is
implied to be inherently low-rank. Consequently, there exist mul-
tiple potential encoding matrices which result in precisely zero re-
construction error, and the choice of regularizer rules one of those
candidates as the optimal solution of the program. As it will be
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clear from the proof of the theorem, when A = oo, the regular-
izer actually plays as the main cost function of the problem, con-
strained by the precise reconstruction.

Corollary 1. The optimal solution of our program in Theorem 2 is of
the form

* __ (:) IU
o = [0 O}T (17)

where v is the number of vertices of the convex hull P(®), and © is
a non-zero sub-matrix.

Proof. By definition, every point inside the convex hull can be re-
constructed by a linear combination of the vertices, i.e. the chosen
representatives. This reconstruction results in the encoding sub-
matrix ©. On the other hand, each vertex can only be written as
its own coordinates by an encoding of 1, which gives rise to the I,
sub-matrix. O

4. Experiments

In this section, we conduct a set of experiments using both
synthetic and real data for various applications of the proposed
method, and also compare its performance to state-of-the-art
sketching algorithms. In the first set of experiments, we study rep-
resentative sampling from a database of face images (Section 4.3).
We provide both a qualitative and quantitative analysis of the abil-
ity of different methods to select a balanced set of images, sam-
ple sufficiently from different face expressions and poses, and pick
faces with minimal shading/occlusion effects. The second set of
experiments in Section 4.4 focuses on fair sampling from group-
forming and clustered data; we assess if our method samples suf-
ficiently from each group/cluster in data with multiple overlap-
ping manifold structures of various dimensions and sparse corrup-
tion, and yields a balanced sub-sample. In Section 4.5, we consider
the downstream task of classification using representatives in vari-
ous domains, including face identification and hand-written digit
recognition. The classification model is trained on a small sub-
set of the training data selected using different selection meth-
ods, then the performance is evaluated on the original test data. In
the fourth set of experiments, we investigate the application of our
model in the task of face pose generation, where the goal is to gen-
erate new poses/angles of the face images using a set of observed
images from multiple views (See Section 4.6). The pipeline consists
of choosing representatives of the face images of each subject us-
ing different selection methods, training a deep generative model
using only said representatives, and evaluating the performance of
each trained model on the test set. We make use of a two-path
GAN architecture [60], and provide samples of the generated im-
ages and each method’s average identity error. Lastly, we compare
the running time of different algorithms for a different number of
data points, which confirms the computational superiority of the
proposed algorithm.

4.1. Data

We use both real and synthetic manifold datasets for the
experiments. 5Spirals refers to a 5-class 10-dimensional artificial
dataset with 500 points sampled from surfaces of arithmetic
5 spirals, sampled from an involute of a circle with paramet-
ric equations x; =cos¢ + ¢sing and x, =sin¢ —¢pcos¢p, by a
uniform distribution of the angle ¢. The manifolds are then ro-
tated, shifted, and embedded in the ambient space. Similarly,
3Spirals-2Knots € R19%300 js another 5-class synthetic data
with 300 points from three spiral manifolds, and the other
two from embedded Trefoil Knots, where 100 points from
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each knot are sampled uniformly over the parameter 6 of
the curve [xq,%;,Xx3]=[sin6 + 2sin26, cosf — 2 cos 26, —sin30].
Lastly, Sphere-SwissRoll contains 30-dimensional points that
lie on one of the two low-dimensional manifolds of Sphere
(100 points uniformly sampled over 6 and ¢ from the curve
[x1,%2, %3] = [cos O sing, sinf sin¢, cos¢]) and SwissRoll, con-
structed from 150 points on arithmetic spirals with three different
heights. We randomly replace 5 percent of the data with random
values in the data range, i.e, we add a sparse matrix S with
p=0.05 to the data points to affect gross corruption in the data.
As for the real data, the Extended Yale Database [61] consists of
face images of 38 human subjects, with 64 different illuminations
per person. We have resized the images to 32 x 32. Multiple
Features is another real dataset from the UCI repository [62], con-
sisting of 1000 data points, each with 649 features of handwritten
digits, covering their different characterizations. Similarly, the
MNIST dataset [63] contains images of hand-written images. Lastly,
Multi-pie Face Database [64] contains images of 250 persons under
various variations of illumination (20 settings), pose (13 angles),
and expression (4 sessions). In the experiments, the preprocessed
data is used with 128 x 128 images of two expressions from the
first session, under all lighting and pose variations.

4.2. Experimental setup

We compare against state-of-the-art methods that can handle
non-linear data relations and are widely used in the related litera-
ture, including Spec [39], MKM [41], Kmed [34], SRS [27], and DS3
[17]. For these methods, the parameters were set as suggested by
their authors, while for the MoSSaRT, we avoid the use of data-
dependent feature specifications as well as hyper-parameter tun-
ing, by only using the two generic kernel functions, namely the

7112
Gaussian kernel, k(x,Xx') = exp % and the Laplacian kernel
k(x.x") = exp M with spread parameter o. For o, we adopt
the standard procedure of choosing it from {0.1, 1, 10} of average
data variance. The datasets are randomly split to training, test-
ing, and validation sets by 70 — 20 — 10 ratios. We choose the ker-
nel/parameter settings over their performance on the validation

set, and the results are averaged over 50 runs.

4.3. Representatives of face poses

Here, we present our findings on experimental results of the
Multi-PIE dataset as a case study for our methodology. In Fig. 2a
selected images from 520 images of a subject based on different
selection methods are displayed in different rows. Some interest-
ing observations can be made from this visualization. First, other
methods tend to sample dominantly from one expression (smile)
versus the other (neutral). Other methods fall short of preserv-
ing the representation space of the expressions as evidenced by
the unbalanced selection from the different expressions. In sharp
contrast, MoSSaRT selects sufficient samples from both gestures,
covering the whole space of different expressions. Second, as our
model tackles corruption, it avoids the misinformation caused by
the lighting conditions, by selecting the illumination with min-
imal shading/occlusion effects. Third, except our method, others
choose samples that focus on specific angles, hence, deteriorat-
ing their representation power. MoSSaRT, however, selects samples
that span the angle space of the poses in a balanced way. To eval-
uate this feature quantitatively, we allow the methods to select
13 samples from each subject for 50 randomly chosen subjects,
and report the average value for selected angle intervals by each
method in Fig. 2b. The even distribution of our results as opposed
to the others’ validates our visual observations.
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Fig. 2. Left: Visualization of representatives of a subject in Multi-pie dataset selected by different algorithms (MKM, DS3, KMed, and MoSSaRT, from top to bottom row).
Right: Average number of selected images based on their view angle. Only our method selects samples from diverse angles evenly.
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Fig. 3. Percentage of sampled representatives from different clusters. Our method

fairly samples from different clusters for (a) Sphere-SwissRoll, (b) 3Spirals-2Knots,
and (c) for Multiple Features dataset.

4.4. Fair sampling of clustered data

One expects a representative subset to capture key character-
istics of a collection. Group-forming collections are some of the
widely encountered data types that arise in clustering problems.
In this setting, the ability to contain sufficient information form-
ing the clusters becomes pivotal, which can be significantly dis-
torted by gross corruptions. Many clustering algorithms exhibit
considerably better performance when the input data are clus-
tered in balanced sizes [65]. Here, we experiment how our sam-
pling scheme can fairly sample from multiple grossly corrupted
clusters. For a more challenging scenario, the sizes of the clus-
ters are chosen to be different. More specifically, 3Spirals-2Knots
contains 5 equally-sized clusters, and the number of points in
the two clusters of Sphere-SwissRoll are 100-150. For the Multi-
ple Features dataset, we randomly choose three groups of digits
of the size 3 —3 —4, and set their corresponding cluster sizes to
500 — 750 — 1000 data points. Then, our representative selection
algorithm is applied to the obtained datasets, and the percentage
of chosen samples from each cluster is illustrated in Fig. 3. The re-
sults show that our method is capable of fairly sampling from both
balanced and unbalanced clusters for different synthetic and real
datasets.

4.5. Training classifiers on reduced sketches

Having in mind the burden of classification tasks for large
datasets, we consider the problems of face identification, hand-
written digit recognition, as well as classification of synthetic
datasets by training the classifier only using the chosen representa-
tives. To this end, 10% of the training set is first selected by differ-
ent selection methods. Using these reduced sketches, we then train
a SVM model [66] on those subsets and evaluate their performance
on the original test sets for multiple real and synthetic datasets.
We also include the results for training the classifier with com-
plete training sets as guidelines, denoted by “No selection”. The
comparison of classification accuracy trained on samples obtained
from our method vs. other sampling methods is shown in Table 1.
Confirmed by its lowest classification errors, MoSSaRT achieves the
best performance uniformly over all datasets. While offering signif-
icant savings in the computational/storage requirements, one can

infer that the sampled chosen by our proposed method are indeed
good representatives of the whole collection, as our performance is
close to (if not better than) training the model with the full train-
ing set. In fact, since MoSSaRT is designed to handle gross corrup-
tions, it exhibits considerable improvements over the full training
set in most cases.

4.6. Face pose generation

This experiment investigates the problem of generating face im-
ages from multiple views. Despite marked success in computer
vision and robotics, face recognition in a pose-invariant manner
remains a challenging problem, mainly due to the performance
degradation caused by variability in pose, illumination, and noise.
Here, to examine the effectiveness of the selected representa-
tives in such a challenging setting, we train a deep generative
model only on the sampled representatives, and evaluate its per-
formance on the test set. Regular GANs are tuned to generate
realistic instances but may learn incomplete representations due
to their use of a single-pathway architecture, which consists of
a generator (encoder E and decoder G) and a discriminator (D).
As such, we make use of the two-path GAN architecture (CR-
GAN) in Tian et al. [60], which introduces a second path in order
to learn complete representations for multi-view generation. The
idea is to use a second generation sideway to create view-specific
images from randomly sampled embeddings (see Fig. 4 and its
caption). By encoding the complement space of the first path, a
complete representation space for the generator is obtained, so
that more realistic outputs can be generated from single-view
inputs.

In our experiment, we first use different sampling methods to
draw a small representative subset of 13 images for each sub-
ject in the training data, each forming a different reduced train-
ing set. Then, a CR-GAN network is trained for 300 epochs on
each of these reduced training sets, and the models are then eval-
uated using the same test examples. Fig. 4 illustrates a diagram
of our pipeline in this experiment. For more details on the imple-
mentation and training of a CR-GAN we refer the reader to Tian
et al. [60]. Fig. 5 shows a visual comparison of the images gener-
ated by the GAN models trained on different sets of representa-
tives in different rows. The first row contains the output of the
model trained by the samples chosen by our proposed method,
and the next ones correspond to SRS, Kmed, DS3, Spec, and MKM,
from top to bottom. Clearly, the results produced by the proposed
method MoSSaRT are visually more appealing and realistic, testi-
fying that our chosen samples are indeed better representatives of
the whole training set. Others on the other hand, suffer from ar-
tifacts such as checkerboard, corrupt pixels, posterizing, blurring
and ringing effects, which result in images that are visually less
pleasant and perceptually less convincing for the human viewer.
Among others, the two methods Spec and MKM generated better
looking images, which may be caused by their manifold-specific
approaches. Note that since all the training details including archi-
tecture, loss functions, and hyper-parameters are set the same for
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Table 1

Pattern Recognition 124 (2022) 108454

Comparison of classification accuracy for classifiers trained on reduced subsets obtained from dif-
ferent methods on various datasets.“No selection” corresponds to the results of training the clas-
sifiers on the complete datasets. Our proposed method MoSSaRT outperforms all other methods.

Data \ Method No selection ~ MoSSaRT ~ DS3 Kmed MKM SRS Spec

Sphere-SwissRoll  0.725 0.800 0.725 0.700 0.800 0.775  0.625

5Spirals 0.450 0.447 0.370 0.430 0.430 0.300 0.340

Digits 0.523 0.610 0.575 0.355 0.523 0.418 0.548

MNIST 0.850 0.870 0.718  0.825 0.760  0.737  0.688

Yale 0.660 0.613 0.519 0.576 0.506 0.551 0.432
T — S

, f/ / RO GAN-generated
Representative Selection I > Images
T Come Formlation : \ View
focry | \
' | — “? S | Output space
S G

of
Original Data
Collection

Noise

Encoded space

Fig. 4. Pipeline of the trained model for the experiment of Section 4.6, consisting of a two-way GAN architecture (CR-GAN) in the faded box, followed by the feature
extraction by a pre-trained 18-layer ResNet for Identity Error calculation (reported in Table 2), and generation of synthetic face images in various angles (shown in Fig. 5),
without the identity-preserving constraint. The upper generation path trains a generator G and discriminator D to produce realistic images. G generates images from random
noise (without an encoder) to complete the latent space of the lower reconstruction path of a standard GAN, consisting of encoder E, decoder G, and discriminator D. The
dashed-lines between the two generators and the two discriminators indicate weight-sharing.

Fig. 5. GAN generated images trained on samples obtained from different selection
methods. From top to bottom row: MoSSaRT, SRS, Kmed, DS3, Spec, and MKM. As
it chooses better representatives, MoSSaRT results in more photo-realistic outputs
compared to the others.

all cases, these varied qualities can be solely traced back to the
differences of the chosen samples by different methods. Moreover,
we take a step further to avoid the subjective comparison of qual-
itative results, and monitor the identity error of a generated view
for a given image. This error indicates the Euclidean distance be-
tween the features of real and generated images. For a given im-
age, we extract a 256-dimensional feature vector from a 18-layer
ResNet model [67] pre-trained on MS-Celeb-1M, a large-scale real

10

world face dataset [68]. The reported results in the first row of
Table 2 correspond to the average value and standard deviation of
the normalized identity errors over the test set. As this error il-
lustrates how close a generated image is to its real version, the
lower value of the error with MoSSaRT indicates its better perfor-
mance in generating more realistic images from a given pose. This
in turn suggests the capability of our method in selecting more in-
formative representatives, which give rise to a better trained GAN
model.

4.7. Running time comparison

Lastly, we illustrate the efficiency of the developed algorithm
on how scalable it is in the data size. Two subsets of the Multi-PIE
dataset of size 1000 and 5000 are randomly selected, and multi-
ple selection algorithms are run to select 13 samples from each
subset. We report average running time of each algorithm over
50 runs in the last two rows of Table 2. For these experiments,
a X64 machine with 2.4 GHz CPU and 32 GB RAM is used. While
the ADMM algorithm of DS3 is faster than a general convex solver
such as CVX, as can be seen from its run-time for 1000 samples,
this algorithm is too computationally expensive (approximately
O(n3)), hence the experiment with the larger subset of n = 5000
was intractable to run for this method. Among others, MoSSaRT
demonstrates much faster running time (except Spec), illustrat-
ing our algorithm’s higher efficiency. These results also validate
our complexity analysis of near-linear computational complexity in
terms of number of data points (O(n!366)). While Spec has sightly
lower run-time that our algorithm, as shown in Tables 1 and 2,
it considerably falls behind our method w.r.t. other performance
measures.
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Table 2
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Performance analysis of various sampling methods on the Multi-PIE dataset. First row: Average (+ standard deviation) nor-
malized identity error on the test set for face pose generation. The GAN models are trained on reduced training sets (13 per
subject) obtained by different sampling methods. Second row: Average runtime of sampling algorithms for two different num-

bers of data points (n = 1000, 5000).

Metric \ Method MoSSaRT SRS Kmed DS3 Spec MKM

GAN Identity Error ~ 0.537+0.194  0.674+0.209 0.632+0.205 0.625+0.186  0.618+0.229  0.613 +0.231
Runa = 1000 17.14 39.93 25.46 887.72 10.69 24.32

timer = 5000 157.08 1612.35 776.64 - 154.17 1685.72

()

5. Conclusion

Informative representatives allow for substantial computational
and storage conservations. This paper tackles important limitations
of existing methods under realistic and practical scenarios. More
specifically, the proposed method is the first approach that offers
the following advantages simultaneously: (i) ability to account for
a versatile set of qualities in the chosen subset including represen-
tativeness, novelty, and conciseness, (ii) a global understanding of
the prevailing non-linear manifold structures in high-dimensional
data, (iii) robustness to gross sparse corruptions in non-linear set-
tings, (iv) provable guarantees and interpretability, (v) computa-
tionally efficient and scalable implementation. We developed an
approach tailored for non-linear manifold data without the use of
local information or complex algebraic iterations. An approximate
explicit transformation was built upon an implicit feature mapping
of a desired RKHS. Based on the introduced reproduction profile,
our formulation gave rise to a parallelizable convex minimization
whose optimal solution provides a concise encoding of the data
facilitating the realization of the aforementioned criteria. Finally,
experiments on both synthetic and real datasets showed that our
method improves upon the state-of-the-art on the problems of face
identification, hand-written digit recognition, face pose generation
using GANSs, classification of artificial data, and running time anal-
ysis.
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