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Learning Contraction Policies From Offline Data

Navid Rezazadeh
Solmaz S. Kia

Abstract—This letter proposes a data-driven method for learning
convergent control policies from offline data using Contraction the-
ory. Contraction theory enables constructing a policy that makes
the closed-loop system trajectories inherently convergent towards a
unique trajectory. At the technical level, identifying the contraction
metric, which is the distance metric with respect to which a robot’s
trajectories exhibit contraction is often non-trivial. We propose to
jointly learn the control policy and its corresponding contraction
metric while enforcing contraction. To achieve this, we learn an
implicit dynamics model of the robotic system from an offline data
set consisting of the robot’s state and input trajectories. We propose
a data augmentation algorithm for learning contraction policies
using this learned dynamics model. We randomly generate samples
in the state space and propagate them forward in time through the
learned dynamics model to generate auxiliary sample trajectories.
We then learn both the control policy and the contraction metric
such that the distance between the trajectories from the offline data
set and our generated auxiliary sample trajectories decreases over
time. We evaluate the performance of our proposed framework
on simulated robotic goal-reaching tasks and demonstrate that
enforcing contraction results in faster convergence and greater
robustness of the learned policy.

Index Terms—Deep learning methods, machine learning for
robot control, reinforcement learning.

1. INTRODUCTION

HILE learning-based controllers have achieved signif-
W icant success, they still lack safety guarantees. For in-
stance, in general, the temporal evolution of a robot’s trajec-
tories under a learned policy cannot be certified. On the other
hand, when a system’s dynamics are known, control-theoretic
properties, such as stability and contraction, directly examine
the temporal progression of a system’s states to verify whether
a system remains within a safe set, and whether the system’s
trajectories converge. In this letter, we seek to enforce the desired
temporal evolution of the closed-loop system’s states while
learning the policy from an offline set of data, i.e. we seek to
learn control policies such that under the learned policy, the
convergence of a robot’s trajectories is achieved.

To achieve such trajectory convergence, our design approach
leverages Contraction theory [1]. Contraction theory provides
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a framework for identifying the class of nonlinear dynamic
systems that have asymptotic convergent trajectories. Intuitively,
a region of the state space is a contraction space if the distance
between any two close neighboring trajectories decays over time.
This notion of convergence is relevant to many robotic tasks such
as tracking controllers where we want a robot to either reach a
goal or track a reference trajectory. In this letter, we want to learn
policies from offline data such that they achieve convergence of
a robot’s trajectories in closed loop. While contraction theory
provides a simple and intuitive characterization of convergent
trajectories, finding the distance metric with respect to which a
robot’s trajectories exhibit contraction — which is called the con-
traction metric — is often non-trivial. To address this challenge,
we propose to jointly learn the robot policy and its corresponding
contraction metric.

We learn the robot dynamics model from an offline data set
consisting of the robot’s state and input trajectories. This setting
is similar to the setting of offline model-based reinforcement
learning (RL) where a dynamics model and a policy are learned
from a set of robot trajectories that are collected offline. Learning
from offline data is appropriate for safety-critical applications
where online data collection is dangerous [2]. We learn a dy-
namics model of the system from the data and propose a data
augmentation algorithm for learning contraction policies. Ran-
domly sampled states are propagated forward in time through
the learned dynamics model to generate auxiliary sample trajec-
tories. We then learn both our policy and our contraction metric
such that the distance between the robot trajectories from the
data set and the auxiliary sample trajectories decreases over time.
Learning contraction policies is particularly relevant to offline
RL as it allows us to regard the errors in the learned dynamics
model as external disturbances and obtain a tracking error bound
in regions where the learning errors of the dynamics model are
bounded [3], [4].

We evaluate the performance of our proposed framework on
a set of simulated robotic goal-reaching tasks. The performance
of our proposed framework is compared with a number of
control algorithms. We demonstrate that as a result of enforcing
contraction, the robot’s trajectories converge faster to the goal
position with a higher degree of accuracy. It is further shown
that learning contraction policies increases the robustness of
the learned policy with respect to learned dynamics model
mismatch, i.e. enforcing contraction increases the robustness
of the learned policies. In summary, our contributions are the
following:

® We propose a framework for learning convergent robot

policies from an offline data set using Contraction theory.

e We develop a data augmentation algorithm for learning

contraction policies from the offline data set.

e We provide a formal analysis for bounding contraction

policy performance as a function of dynamics model mis-
match.
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® We perform numerical evaluations of our proposed policy
learning framework and demonstrate that enforcing con-
traction results in favorable convergence and robustness
performance.

The organization of this letter is as follows. In Section II, we
provide an overview of the related and prior work. We provide
an overview of Contraction theory in Section III and present our
problem formulation in Section IV. We then discuss our pro-
posed framework in Section V. Section VI provides a discussion
and analysis of the robustness of learned contraction policies. In
Section VII, we evaluate and compare the performance of our
policy learning algorithm. Finally, we will conclude the letter in
Section VIII.

II. RELATED WORK

For systems with unknown dynamics, several offline RL algo-
rithms have been developed recently which either directly learn
a policy using an offline data-set [2], [5]-[7] or learn a surrogate
dynamics model from the offline data to learn an appropriate
policy [8], [9]. However, the majority of such RL algorithms
lack formal safety guarantees, and the convergent behavior of
the learned policies is not certified [10], [11].

When the system dynamics are known, robust and certifi-
able control policy design can be achieved through various
control-theoretic methods such as reachability analysis [12],
Funnels [13], [14], and Hamilton-Jacobi analysis [15], [16].
Lyapunov stability criteria, Contraction Theory, and Control
Barrier Functions have also been extensively utilized for pro-
viding strong convergence guarantees for nonlinear dynam-
ical systems [1], [17]-[20]. However, even when the dy-
namics are known, finding a proper Lyapunov function or a
control barrier function is itself a challenging task. To ad-
dress these challenges, learning algorithms have been uti-
lized for learning the Lyapunov and Control Barrier Func-
tions [21]-[23]. In [10] and [24], a framework for learning
contraction metrics was proposed for systems with known
dynamics.

Various recent works have considered combining control-
theoretic tools with learning algorithms to enable learning safe
policies even when dynamics are unknown. For instance, [25],
[26] consider learning stable dynamics models. In [27], Con-
traction theory is used to learn stabilizable dynamics models of
unknown systems. In [11], [28], Lyapunov functions are used
for ensuring the stability of the learned policies. In [29], it is
proposed to learn the system dynamics and its corresponding
Lyapunov function jointly to ensure the stability of the learned
dynamics model.

In this work, we consider learning contraction policies from
offline data for systems with unknown dynamics. Our work
is closely related to [10] and [24], where Contraction theory
has been used for certifying convergent trajectories. The current
work is different in that, unlike these approaches where dynam-
ics are explicitly known and assumed to be control-affine, we
consider access to only an offline data set. We assume that we can
learn an implicit model of system dynamics, in the form of a neu-
ral network function approximator, and provide robustness guar-
antees with respect to the errors of the learned dynamics model.
Moreover, we develop a novel method for learning contraction
policies which can be be applied to general nonlinear dynamical
systems.
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Fig. 1. The schematic of two neighboring trajectories that exhibit contraction.
The distance between the trajectories decreases over time: [|dx¢+1]| < [|0x¢|,
i.e. trajectories converge.

III. CONTRACTION THEORY

Contraction theory assesses the stability properties of dynam-
ical systems by studying the convergence behavior of neighbor-
ing trajectories [1]. The convergence is established by directly
examining the evolution of the weighted Euclidean distance of
close neighboring trajectories.

Formally, consider a differentiable autonomous discrete-time
dynamical system g(x) : R” — R™ defined as

Xt+1 = Q(Xt), (1)
with Jacobian
0
Vg(x,) = f,)(;) @)

Now, consider a differential displacement dx;. The differen-
tial displacement dynamics at x; are governed by

§Xt+1 = Vg(xt)5xt (3)

The system dynamics g(x;) are contractive if there exists a
full rank state dependent metric @ (x) € R™ x R™ such that the
system trajectories satisfy

1©(x¢) 0% || > [|©(x441)0%s41]- C))

Equation (4) indicates that the weighted distance between
any two infinitesimally close states decreases as the dynamics
evolve [1]. When ©(x) = I the distances between trajectories
are measured in the Euclidean norm sense. Fig. 1 illustrates
the behavior of two trajectories of a contractive system when
Ox) =L

For a small finite displacement Ax;, as an approximation of
infinitesimal small displacement §x;, the first-order Taylor ex-
pansion of the system dynamics allows us to locally approximate
the forward evolution of the displacement

Vg(x:)Axy =~ g(x + Axy) — g(xy). Q)
Thus, we may approximate the contraction condition (4) as
10 (x41) (9(x: + Axe)—g(x1)) |- [©(x1) Ax, [ < 0. (6)

Establishing a system as contractive allows for several useful
stability properties to be deduced. We state motivating results
from [1] in the following definition and proposition.

Definition 1: Given the discrete-time system x; 11 = g(x;),
a region of the state space is called a contraction region
with respect to a uniformly positive definite metric M(x;) =
O(x;)TO(xy), if in that region

Vg(xe) "M (x¢51) V(i) — M(x;) <0, @)

Proposition 1: A convex contraction region contains at most
one equilibrium point.
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It is shown in [1] that (7) is equivalent to condition (4)
holding for all x; and x; in the contraction region. Thus, by
Proposition 1, we may conclude that a unique equilibrium exists
within a convex region if (4) holds everywhere inside the region.
Therefore, (6) represents a useful numerical analog that can be
enforced in order to drive a region towards being contractive.
By choosing a set of Ax;, we will use condition (6) to enforce
contracting behavior of the closed-loop system.

Going beyond autonomous systems, when a system is subject
to control input uy, i.e., x;+1 = g(x¢) = f(x¢, us), contraction
theory can be used to design state feedback policies u; = u(x;)
such that the closed-loop system trajectories converge to a given
reference state. This may be done by determining u(x;) such
that the convex region of interest is contractive and the unique
equilibrium is the desired reference state. Such a control design
process is outlined in the following sections.

IV. PROBLEM FORMULATION

We consider the problem of control policy design for a robot
with unknown discrete-time dynamics model f(x,u): X X
U — X, where X € R™ is convex, and &/ € R™. We assume
that we can use an offline data set D consisting of tuples of
state transitions and control inputs (x;, X;+1, u;) satisfying the
unknown system dynamics

Xi41 = f(Xt> ut)- ®)

Our objective is to obtain a data-driven state-feedback control
policy u; = u(x;) to steer the system (8) towards a desired
reference state x” € R",i.e.x; — x" ast — oco. To compensate
for the lack of knowledge of the true system dynamics, we
propose using a model of the system dynamics that we learn
from the offline data D. Note that this indicates that our learned
dynamics model may still not be available explicitly and may
only be available as implicit dynamics such as neural network
approximators. More specifically, we aim to design a control
policy u(x;) that leverages the learned dynamics model

X;f+1 = fl(xt7ut)7 (9)

to drive the system asymptotically to x".

V. LEARNING DEEP CONTRACTION POLICIES

To develop a policy that results in contractive behavior, we
seek to enforce the approximate condition in (6), requiring the
weighted distances of close neighboring trajectories to decrease
over time. To enforce this condition, we need to ensure that we
have sufficiently close neighboring points for each point within
our training set. However, our training data set may not include
such neighboring trajectories. We augment our data set with
auxiliary trajectories that enable us to enforce this condition at
each data point. That is, for each x; € D, we augment our data
set with a Ax; sampled from

At = {Axt S R"

lAxi]| <2}, (10)

where the parameter A is set in the training process. We sample
points from A; to ensure that Ax; is a small displacement
with respect to the training data set. Then, for each data point
x;, we create the auxiliary state X; = x; + Ax;. Both of these
points are propagated through our learned dynamics model to
calculate the states at the next time step: x} ,; = f'(x¢, u(xy))
and X ., = f'(X¢,u(X;)). The initial state, the auxiliary state,
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Fig. 2. We sample a small displacement Ax; around the data point x; to
augment an auxiliary point X; = x; + Ax; to our data set. Then, we propagate
the auxiliary state X4 and the actual state x; through our learned dynamics
model f under feedback control law u(x;) to calculate the next states: X},

and x, 41, respectively. Finally, we require that the weighted distance between
the two states decreases over time as stated in condition (11).

and the predicted evolution of these two states are then combined
into atuple (x¢, X, X}, 1, X, 1 ). The collection of all such tuples
over all x; € D form the augmented data set D’.

Now, we want to evaluate the contracting behavior of the
controller u(x;) through the learned model on the augmented
data set D’. Thus, we seek to enforce condition (6) for the
elements of D’

1O (x141)(Xiy = xp00) | = [1O(xe) Axe]| <0, (1D)

with respect to a contraction metric @ (x; ). Contractive behavior
is illustrated in Fig. 2, showing the weighted distance between
%; and x, decays as the system evolves to X; ,; and x} ;. We
evaluate the approximate contraction condition only at the states
X, that exist in the data set D. This is due to the fact that the
dynamics model is learned from D and hence f’ is expected
to behave the most accurately at these points, which in turn
will increase the quality of the learned policy. This will enforce
contractive behavior with respect to the learned dynamics model
f'. Later we will discuss how we can ensure contractive behavior
of the closed-loop behavior of the true dynamics model f.
Since in general, the contraction metric @ (x) is not known,
and it is directly coupled to the control policy, we propose a
learning-based approach to jointly learn both the control policy
and the metric with respect to which the policy exhibits con-
traction. We refer to such a policy as a deep contraction policy.
To this end, let us start by assuming that we know a control
policy u(x) that makes f'(x,u(x)) contractive. Consider now
that we want to learn a corresponding contraction metric. Let
this contraction metric be represented by a model (':)(x; wo)
which is parameterized by weights wg. We then obtain the best
parameters of this contraction metric, denoted by w, from

wg = argmin Le(D';we), (12)
wWe
where
Le(D';we) =Ep (HQ(X;H%W@)(%H — x|
~[1©(xi; we)Axi|) - (13)
The —term  [|©(x}1;We)(Xiy1 —Xi11)| — 1O (xi; we)
Ax;|| is an approximate measure of the contraction

condition (11) which ideally should be negative for all
elements of D'. Since enforcing (11) directly results in a
non-differentiable optimization, we minimize (13) as a proxy
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for (11). Note that Leg is computed over all data points in D’.

When paired with differentiable contraction metric @(x; wo),
the choice of loss function (13) is differentiable and is amenable
to gradient decent optimization.

Now, let’s consider the more general case where both the
policy and its contraction metric are unknown. We want to
learn both the state-feedback policy and the contraction metric
together. We want to learn a control policy represented by a
function approximator Gi(x; wy, ), parameterized by weights w,,
such that the closed-loop system is contractive with respect to

the metric model ®. To achieve this, we propagate the initial
data points in D" with the control policy model u(x;w,) as
Xy = f'(%e, U(x; W) and Xi g = f/(Xe, U(Xe5 W)

We obtain the parameters of the contraction metric wg,
denoted by w§, and the parameters of the control policy wy,
denoted by w},, by minimizing a loss function L,, over the data
set D/

(wh,wg) = argmin L, (D';wy, we),

Wu,We

(14)

where

Lo(D's W, wo) = Epy ([1©(x,11: wo) (ke

=) = O we)Axi) . (15)

Loss function (15) ensures that the region of interest X is
contractive with respect to © and the learned dynamics model
f'. However, so far, there has been no mechanism to ensure that
the unique equilibrium of the contractive system is indeed the
desired reference value x". To alleviate this, we need the learning
process to be aware of the desired reference value, which we
would like to be the equilibrium of the contraction region. The
measure of awareness that we introduce is based on the ability of
the controller Gi(x; wy,) to steer the system from an initial state
X € X to the desired state value X" in k time steps, i.e. how
close x/, gets to x” where x|, is the k™ state value of the process
/. Therefore, to enforce the system’s states to contract to x”,
we add another penalty term to our loss function to obtain the
final loss function utilized for learning the policy and contraction
metric:

L(D,/ Viwe, Wu):Lu(D/; Wo, Wu)"'aLtr(y; Wu)a

where

(16)

Le(Vswa) = Y [I%4(x0) = x|, (17)

x0€Y

is the tracking loss with a € Ry as the penalty factor.
Here, x)(x¢) is the k™ state value of the process x|, =
f/(x},a(x}; wy)), initialized at x{, = x¢ where x¢ is drawn
from a countable set ) € X'. The number of time steps £ is set
by the designer and, as the reader may infer, affects the transient
behavior of the closed-loop system.

The algorithm describing Learning Contraction Policies from
Offline Data is outlined in Algorithm 1

VI. CONTRACTION OF TRUE DYNAMICS UNDER THE LEARNED
PoLicy

A major concern regarding control policy design using a
learned model from offline data is that of model mismatch.
In this section, we focus on verifying the convergent behavior
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Algorithm 1: Learning Deep Contraction Policies.

Input :
Data set: (X4, X¢+1,u:) € D
Set of sampled initial states : xg € )
Reference state: x”
Init :
1/ (x¢,uz) + learned dynamics using D
Wg, Wy < randomly sampled
for Nepochs do
Calculate x) ’s using Y and f’(x;, u(x; wy))
10:  Calculate Ly (wy,) using xo € ) and x3’s
11:  Ax; + uniform random sample from A,
12:  Create D' using sampled Ax;
13:  Calculate L, (weg, Wy ) using Ax;’s and D’
14:  L(we,Wu) < Lu(Wo, Wy) + aLy(wy)
15:  Calculate gradients Vo L and V, L
16:  Update wg and wy,
17:  end for

ORI NE RN

of the true system dynamics under the learned policy. In order
to bound the controller performance degradation, we assume a
known upper bound on the Lipschitz constant of the model error
f(x¢,uy) — f'(x¢, 1), which we denote as L;_ ;. In practice,
such an upper bound may be estimated by fitting a Reverse
Weibull distribution over the data set D [30], [31].

Lemma 1: Consider an unknown system f(x,u) and its
learned model f’(x,u) with an upper-bound estimation on the
Lipschitz constant of f(x,u) — f'(x,u) as Ly_p. The error
between the learned model and the unknown system is bounded
by ¢, ie. [|f(x,u) — f'(x,u)| <e, forall (x,u) € X xU
where

€= max xee1 — f/(xe, )| + Ly D (18)

(x¢,x¢41,u)€D

withD = max min || {X} - [Xt} Il
(x,u)eXxU (x¢,uy)eD u Uy

Proof: See Appendix.

The constant D in Lemma 1 is the maximum distance that
a point (x,u) € X x U can have from its nearest data point
(x¢,uy) € D.

Deep contraction policy learning proposed in Algorithm 1
ideally ensures contractive behavior of the controlled learned
system f(x;, u(x;)) at the states x; € D. More specifically, by
defining an approximate measure of contraction condition (4) as
Cyxp) : X x Ay = R

Cg(xt)(xt; Axt) =
1©(g(x))(9(%e) — g(x))| = |©(x0) Axy],

the controlled learned model being contractive is equiva-
lent to Eay, (Cp(x,,a(x;)) (Xe, Axg)) < 0 for all x; € D and
Ax; € A;. Hence, it remains for us to verify whether the
learned policy exhibits contraction with the true unknown sys-
tem dynamics in the sense of contraction condition (4), i.e.
EAxt (Cf(xt,ﬁ(xt))(xtaAXt)) < 0 for all x;, € X and Ax; €
Ay. We seek to derive a condition under which we are guaranteed
that the controlled true dynamics are also contractive with the
learned policy. To arrive to such quantification, we begin with
contraction of the learned model C'/(x, w(x,))(X¢, AX;) at the
training points, x; € D and end with an upper bound estimation
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of the contraction of the true dynamics C'¢(x, a(x,)) (Xt, AX¢) at
any points x € X. The following Proposition establishes the
condition under which the approximate contraction measure
holds for the true robot dynamics under the trained u(x;).

Proposition  2: Let  Eax, (Cpr(x, u(x,)) (X, A%¢)) <0
for all x; € D. Let the Lipschitz constant of (':),-j(xt),
fxeae) =[x, ae), f(%ewe), a(xe), f'(x¢,0(x¢)) and
Crxp,ta(x;)) (Xt, Axy) be given as Le, Ly s, L, Lu, Ly,
and Lc, respectively. Additionally, let |@” (x¢)] <7, A be
given by (10), and ¢ be given as in (18). Then the true
dynamics (8) are contractive under the trained controlled policy
u(xy), ie. Eax, (Crix,,ax)) (X, A%¢)) <0 for all x; € X
and Ax; € Ay, if

CH+Alerly, + (e7 +ny)Ls_p(14+Ly)) <0,

where 7= /> L% and ¢ = maz min C(x;) + Lol —
7 ij xeX x:€D

x|

19)

Proof: See Appendix.

VII. IMPLEMENTATION & EVALUATION

We evaluate the performance of the contraction policies in
a set of goal-reaching robotic tasks by comparing our method
against a number of offline control methods suitable for systems
with learned dynamics models. In particular, we compare our
framework with the following algorithms:

1) MPC: An iterative Linear Quadratic Controller GLQR) as

described in [32] ran in a receding horizon fashion.

2) Learning Without Contraction: To evaluate the effective-
ness of the contraction penalty, we further evaluate the
robot’s performance in the absence of any contraction
terms in the loss function.

3) Reinforcement Learning: We also use the state-of-the-art
offline RL method Conservative Q-Learning (CQL) [33]
for further comparisons.

We evaluate the performance of our approach on two different
robotic settings involving nonlinear dynamical systems of vary-
ing complexity represented by neural networks. The dynamics
of these systems have closed-form expressions, but it is assumed
that we do not have access to such expressions. We assume that
we only have access to a set of system trajectories and learn a
dynamics model from the state-action trajectories. The learned
dynamics are represented as neural networks to the model-based
control methods: deep contraction policy, MPC controller, and
contraction-free learning. The RL implementation develops the
policy directly from the same offline data set that is used to train
the dynamics model in a model-free fashion. This allows us to
implement our algorithm on the learned systems while having
an analytical baseline to compare against to quantify robustness.
Additionally, we consider state and control sets X',/ defined
by box constraints in order to constrain the size of the training
data. Clearly for such constraints, X is convex. The dynamical
systems we have chosen for our performance evaluation are as
follows:

1) 2D Planar Car: A planar vehicle that is capable of con-

trolling its acceleration, v, and angular velocity, w. Here
X := [Pz, Dy, 0,v] and u := [a,w] where p,,p, are the
planar positions, v is the velocity, and 6 is the head-
ing angle. The system dynamics are governed by: X =
[vcos(0),vsin(0),w,a].

2909

2) 3D Drone: An adaptation of a drone model that is
given by [10] and [34]. This model describes an
aerial vehicle capable of directly controlling the rate of
change of its normalized thrust F, and Euler Angles,

¢7é’¢' Here x := [pwapyapZ7vm7vy7vzaF7 ¢79’w] and

u:= [qﬁ, 0, 1/)] where p;, v; are the translational positions
and velocities along the iy, axis, respectively. Omitting
the first order integrators in p;, F, ¢,6,1 for brevity,
the dynamics can then be expressed as [U,7,,0.] =
[—Fsin(f), F cos() sin(¢), g — cos(d) cos(@)],
where ¢ is the acceleration due to gravity.

For both systems we assume a timestep of At = 0.1s and a

final time of 7" = 10s.

A. Learning System Dynamics

All of the continuous dynamical systems described above are
represented to our controllers as fully connected neural net-
works which capture the discretization of the model integration:
X¢41 — X = f'(x¢, ug; wy). The training dataset D is generated
by aggregating reference trajectories through the state space
generated from an iLQR controller applied directly to the true
dynamics f(x¢,u;). The reference trajectories ®(xy, u;) were
chosen such that x; € X and u; € U for all ¢. Trajectory data
was used in order to implement a discounted multistep prediction
error asin [35] until sufficient integration accuracy was achieved.

B. Controller Implementation

The contraction metric and control policy neural networks,

O(x4;we) and u(xy; wy), are trained according to Algo-
rithm 1. For our ablation study, we remove the contraction
penalty term and simply find a policy for minimizing the track-
ing error norm. Without a contraction penalty, the impact of
contraction conditions during the learning process vanishes. In
order to create a controller for this case, each x; € D is forward
evolved a number of time steps under the learned control policy
and trained with a discounted cumulative loss of the tracking
error norms over each timestep.

For the MPC controller, the iLQR planner utilizes the learned
dynamics model in order to calculate the linearization relative to
the state and control inputs. This linearization is used along with
weighting matrices Q = 100I, R = 10001 in order to calculate
an iLQR control law.

In order to train an offline reinforcement learning algorithm
like CQL, the algorithm needs access to state, action, and reward
pairs. We reutilize the offline iLQR trajectories created for
dynamics learning as training episodes for the offline CQL RL
algorithm. The reward at each time step is taken to be the negative
norm of the tracking error at the next time step given the currently
taken action.

C. Performance Results

In order to compare the performance of our method with
the alternative implementations outlined above, we propose a
number of metrics to compare the controllers:
e The time evolution of the tracking error, to quantify the
controllers’ ability to converge to the desired reference x".

e The converged tracking error versus the initial tracking
error, to quantify the controllers’ ability to operate over the
working space X' x U.
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Fig. 3. Norm of the tracking error over a collection of 256 initial states for the 2D car problem (left) and the 3D drone problem (middle): The y axis is shown

on a logarithmic scale and results capture the mean plus and minus one standard deviation. We see that the additional complexity of the 3D drone over the 2D car
model allows for greater variation in algorithm performance. Norm of the average final tracking error versus the norm of the initial tracking error (right): As the
initial states approach the boundary of the region of interest, controller performance tends to degrade.

® Root Mean Square Error (RMSE) of the tracking error
versus learned model loss, to quantify the controllers’
ability to deal with model mismatch.

For all analyses, the controllers were each presented with
an identical set of 256 initial conditions within X'. The control
methods were implemented as described above in an attempt to
drive these initial states to the desired reference x". The results
were aggregated over the 256 initial conditions for the 2D car
and 3D drone.

In the time evolution analysis, desirable controllers have
trajectories that quickly converge, have minimal tracking error
norm, and have high convergence precision. Results directly
comparing all of the controllers relative to this performance
measure for the two dynamical systems are given in Fig. 3
(left and middle). The results show that over the two different
systems and a multitude of initial conditions, the contraction
learning policy performs well relative to the proposed compari-
son controllers. For the simpler dynamic system of the two, the
2D planar car, the results are comparable among all controllers
but favor the contraction controller, while the more complex
drone environment shows the clear benefits of our approach.
The enforcement of contraction conditions forces nearby trajec-
tories to converge to one another, and when near the reference
point, this has the effect of reducing the norm of the tracking
error further than the systems designed without contraction in
mind. The contraction controller consistently has the lowest
mean norm of the tracking error over all the sampled initial
states.

Comparing the converged tacking error, in this case, the
average of the final 10 timestamps of each trajectory, versus
the initial tracking error gives insight into the performance of
the controllers’ over the entire state and control space X and U{.
Cases with a higher initial tracking error represent trajectories
that start closer towards the boundary of our working space
X x U. Favorable controllers are ones in which the converged
tracking error remains constant or grows slowly as the initial
tracking error increases. Fig. 3 (right) directly shows this com-
parison. The results here clearly show that the MPC controller
and the learned policy without the contraction terms have dif-
ficulty as the initial state norm gets further from the desired
reference. For the MPC controller, the poor performance is
likely caused by not having expressive enough dynamics due to
the repeated linearization process. The contraction-free policy
shows good performance for small initial tracking errors but

quickly degrades as this value grows. Such a control method acts
extremely locally. Training a collection of states to converge to
the reference without the additional contraction structure does
not yield favorable stability properties. The CQL policy and
deep contraction learning generate trajectories with minimal
degradation as the tracking error increases, with the contrac-
tion learning method consistently having the highest degree of
performance.

Finally, for the 3D drone scenario, the impact of the learned
dynamics model quality on the model-based controllers’ per-
formance is studied. To this end, multiple models of different
quality were learned from the same offline data set. Since
the CQL policy is directly learned from the offline data and
does not utilize the learned dynamics model, this method is
omitted from this analysis. In this case, favorable controllers
are ones in which the error grows slowly with increasing model
inaccuracy. Comparison of the RMSE values of the tracking
error norm over the length of the trajectories for the varying
quality dynamics models are shown in Table I. The contraction
learning model shows favorable performance as dynamics model
mismatch increases due to the robustness properties discussed
in Section VI. For particularly low-quality learned dynamics
models, we even see that the deep contraction policy is able
to generate stabilizing controllers where the contraction-free
policy and MPC controller fail to do so.

D. Non-Control Affine Systems

In order to quantify the ability of our deep contraction policy
learning to generalize to more complex systems, we perform an
illustrative analysis of our controller on the double pendulum
model given in [36]. Such a system is chaotic with a non-affine
control input. Fig. 4 shows the comparison of two scenarios
where the designed controller was implemented on both the
learned model and the true dynamics. While the controller is
able to stabilize both the learned model and the true dynamics,
it also governs both systems towards the reference values. The
controller is able to drive the system states to exactly the refer-
ence values when applied to the learned model. However, when
applied to the true dynamics, the controller positions the arms
with a slight positional error while keeping the angular velocity
at zero.
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TABLE I
TRACKING ERROR NORM RMSE, 3D DRONE

Dynamics Model Test Loss Contraction learning No contraction term MPC iLQR
1 5.67e-05 1.905 £ 0.651 2.391 £ 0.968 2.161 £0.913
2 8.19e-05 2.026 + 0.676 2.528 £ 0.880 2.966 £ 1.593
3 1.14e-04 2.214 4 0.889 3.315 £ 0.917 6.458 £ 2.284
4 1.58e-04 2.891 + 1.061 5.392 £1.290 N/A”
5 2.64e-04 3.571 + 1.252 N/A” N/A"

*Values of N/A represent cases where sufficiently stabilizing controllers were not generated.
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= True Dynamics
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0.5

6,
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== True Dynamics
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14 0 Time, t

Time, t Time, t 14

Time, t Time, t

Fig. 4.
are shown for two different sets of initial conditions.

VIII. CONCLUSION AND FUTURE WORK

In this letter, we established a framework for learning a
converging control policy for an unknown system from offline
data. We leveraged Contraction theory and proposed a data
augmentation method for encoding the contraction conditions
directly into the loss function. We jointly learned the control
policy and its corresponding contraction metric. We compared
our method with several state-of-the-art control algorithms and
showed that our method provides faster convergence, a smaller
tracking error, and lower variance of trajectories. For our future
work, we would like to extend the current work to develop the
stochastic confidence bounds for our proposed control design
approach.

APPENDIX

Proof of Lemma 1: We ground our error analysis on the
training error of the tuples (x¢, u;) € D and propagate the error
to the general state and control tuples (x,u) € X x U.

17606 w) = 1G] < [1£6ee ) — e )|
06t ) = e, w) = (e ) = F' e w))|
< Germ) = F e w4 Ly | =

The first and the second inequalities are obtained by adding
and subtracting the terms f(x;,u;) and f'(x;,u;), and also
using the norm and Lipschitz constant properties. If we define
E(x¢,us,x,u) as the right-hand side of the second inequality,

Time, t

Angular position and angular velocity of the double pendulum system. The controlled learned model and controlled true dynamics are shown. Results

then max min

E(x¢,us,x,u) < & where
(x,u)eX XU (x¢,uy)€D

£ = max

(xt7xt+17ut)€

[x¢41 — f'(xe,ue)|| + Ly gD,

which concludes the proof.

Proof of Proposition 2: We want to derive a sufficient condi-
tion which ensures that contraction condition (11) holds for the
true dynamics model. Using the learned dynamics model, the
left-hand side of (11) for x; € X can be bounded for the true
dynamics as

||(:3(Xt+1)(>~<t+1 —xp41)| — ||(;3(Xt)AXtH

<O 1) (K1 =) | = 10(xe) Axy |

+(O(xer1) = O(x41))(Key — Xi1) |

1Ok ) (et = Kigr) = (xev1 = X))l

+ 1O (xer1) = O ) (Repr — Kiiy) — (41— x44)
where x¢41 = f(xi, 0(xt)), Xe1 = f(Xe, W(Xe)), Xppq =

J'(%¢,0(x¢)), and X} | = f'(%X¢, 0(%)). The inequality holds
due to addition and subtraction of proper terms and norm
properties. The inequality can be further simplified using the
Frobenius norm of the contraction metric ©. Since, by as-
sumption, the entries of the contraction metric are bounded
by v, we have ||©(x)|r < ny. Having an upper bound
estimate of the Lipschitz constant of entries of the con-
traction metric Le,, and recalling that ||(X},, —x} )| <e
from Lemma 1, leads to the result (©(X11) - O, )r <
ZL%M. In addition, using the estimated Lipschitz constant
T o
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Ls_p, we have that [|((Xig1 —Xjpq) — (Xeq1 — X)) <
Ly gl LZ;)} — LZ‘X)} || Now, using the Lipschitz constant

of u(x) as L,, we have that |[((X¢41 —Xjyq) — (Xep1 —
x;11))|| <Ly pA(1+ Ly). Finally, we can write the following
inequality:

\\(:)(xt+1)(>~<t+1 = X)) = ||@(Xt)AXt||
< O(x) 1) (X g — Xpy) [l — 1O (xe) Ax|
+ )\(ETLﬂL + (ET + n’}/)Lf,fr(l + Lu)), (20)
where 7 = ZLQ&_,. With Lipschitz constant Lo, we can
ij ’

derive an upper bound for C(x, a(x,)) (X, AX¢), X; € X and
Ax; € Ay, such that Cp(x o(x)) (X¢, AX;) < ¢ where

C = 1’)1;13;{ )l;l;lé% Cf/(xhﬁ(xt))(xt, AXt) + LC”Xt - XH

Finally, by taking the expectation on Equation (20), we get
Eax, (||(:)(Xt+1)(5<t+1 — x| — ||(':)(Xt)AXtH)

< CHAerly, + (et +ny)lp_p (14 Ly))

which concludes the proof.
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