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ABSTRACT

The threshold degree of a Boolean function f: {0,1}" — {0,1} is
the minimum degree of a real polynomial p that represents f in
sign: sgn p(x) = (=1®)_ A related notion is sign-rank, defined
for a Boolean matrix F = [F;;] as the minimum rank of a real ma-
trix M with sgn M;; = (~1)Fii. Determining the maximum thresh-
old degree and sign-rank achievable by constant-depth circuits
(AC®) is a well-known and extensively studied open problem, with
complexity-theoretic and algorithmic applications.

We give an essentially optimal solution to this problem. For any
€ > 0, we construct an AC? circuit in n variables that has thresh-
old degree Q(n'~€) and sign-rank exp(Q(n!~€)), improving on the
previous best lower bounds of Q(+/n) and exp(f)(\/ﬁ)), respectively.
Our results subsume all previous lower bounds on the threshold
degree and sign-rank of AC circuits of any given depth, with a
strict improvement starting at depth 4. As a corollary, we also ob-
tain near-optimal bounds on the discrepancy, threshold weight,
and threshold density of ACY, strictly subsuming previous work
on these quantities. Our work gives some of the strongest lower
bounds to date on the communication complexity of AC.
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1 INTRODUCTION

A real polynomial p is said to sign-represent the Boolean func-
tion f: {0,1}" — {0,1} if sgnp(x) = (-1 ™ for every input
x € {0,1}". The threshold degree of f, denoted deg, (f), is the min-
imum degree of a multivariate real polynomial that sign-represents
f. Equivalent terms in the literature include strong degree, voting
polynomial degree, PTF degree, and sign degree. Since any function
f:{0,1}" — {0, 1} can be represented exactly by a real polynomial
of degree at most n, the threshold degree of f is an integer between
0 and n. Viewed as a computational model, sign-representation is
remarkably powerful because it corresponds to the strongest form
of pointwise approximation. The formal study of threshold degree
began in 1969 with the pioneering work of Minsky and Papert [21]
on limitations of perceptrons. The authors of [21] famously proved
that the parity function on n variables has the maximum possible
threshold degree, n. They obtained lower bounds on the thresh-
old degree of several other functions, including DNF formulas and
intersections of halfspaces. Since then, sign-representing polyno-
mials have found applications far beyond artificial intelligence. In
theoretical computer science, applications of threshold degree in-
clude circuit lower bounds, size-depth trade-offs, communication
complexity, structural complexity, and computational learning; see
the full version [39] of this paper for a bibliographic overview.
The notion of threshold degree has been especially influential
in the study of AC, the class of constant-depth polynomial-size
circuits with A, Vv, = gates of unbounded fan-in. The first such re-
sult was obtained by Aspnes et al. [3], who used sign-representing
polynomials to give a beautiful new proof of classic lower bounds
for AC®. In communication complexity, the notion of threshold
degree played a central role in the first construction [28, 30] of an
AC? circuit with exponentially small discrepancy and hence large
communication complexity in nearly every model. That discrep-
ancy result was used in [28] to show the optimality of Allender’s
classic simulation of AC® by majority circuits, solving the open
problem [18] on the relation between the two circuit classes. Sub-
sequent work [5, 13, 36, 38] resolved other questions in communi-
cation complexity and circuit complexity related to constant-depth
circuits by generalizing the threshold degree method of [28, 30].
Sign-representing polynomials also paved the way for algorith-
mic breakthroughs in the study of constant-depth circuits. Specifi-
cally, any function of threshold degree d can be viewed as a half-
space in () + (1) + -+ + (}) dimensions, corresponding to the
monomials in a sign-representation of f. As a result, a class of
functions of threshold degree at most d can be learned in the stan-
dard PAC model under arbitrary distributions in time polynomial in
(o) + (1) +---+(3)- Klivans and Servedio [16] used this threshold
degree approach to give what is currently the fastest algorithm
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Table 1: Known bounds on the maximum threshold degree
of A, V, —-circuits of polynomial size and constant depth. In
all bounds, n denotes the number of variables, and k denotes
an arbitrary positive integer.
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Table 2: Known lower bounds on the maximum sign-rank
of A, V,—-circuits F: {0,1}" x {0,1}" — {0,1} of polynomial
size and constant depth. In all bounds, k denotes an arbitrary
positive integer.

Depth  Threshold degree  Reference Depth Sign-rank Reference

2 Q(n!/?) Minsky and Papert [21] 3 exp(Q(nl/ ) Razborov and Sherstov [26]
2 O(nl/3 logn) Klivans and Servedio [16] 3 exp(f)(nz/s)) Bun and Thaler [10]

k+2 Q(nl/3 long/3 n) O’Donnell and Servedio [23] 7 exp(Q(v/n)) Bun and Thaler [12]

k Q(n%) Sherstov [35] 3k exp(ﬁ(nl_ﬁ)) This paper

4 Q(y/n) Sherstov [37] 3k+1 eXp(f)(nl_ﬁ)) This paper

3 Q(vn) Bun and Thaler [12]

k f)(n%) This paper

for learning polynomial-size DNF formulas, with running time
exp(é(nl/ 3)). Another learning-theoretic breakthrough based on
threshold degree is the fastest algorithm for learning Boolean for-
mulas, obtained by O’Donnell and Servedio [23] for formulas of
constant depth and by Ambainis et al. [2] for arbitrary depth. Their
algorithm runs in time exp(é(n(2k_1_1)/ (2k_1))) for formulas of size
n and constant depth k, and in time exp(O(+/n)) for formulas of
unbounded depth. In both cases, the bound on the running time fol-
lows from the corresponding upper bound on the threshold degree.

A far-reaching generalization of threshold degree is the matrix-
analytic notion of sign-rank, which allows sign-representation out
of arbitrary low-dimensional subspaces rather than the subspace
of low-degree polynomials. The contribution of this paper is to
prove essentially optimal lower bounds on the threshold degree
and sign-rank of AC®, which in turn imply lower bounds on other
fundamental complexity measures of interest in communication
complexity and learning theory. In the remainder of this section,
we give a detailed overview of the previous work, present our main
results, and discuss our proofs.

1.1 Threshold Degree of AC°

Determining the maximum threshold degree of an AC? circuit in n
variables is a longstanding open problem in the area. It is motivated
by algorithmic and complexity-theoretic applications [8, 16, 17, 23,
26], in addition to being a natural question in its own right. Table 1
gives a quantitative summary of the results obtained to date. In their
seminal monograph, Minsky and Papert [21] proved a lower bound
of Q(n'/3) on the threshold degree of the following DNF formula in
n variables: f(x) = /\?:1/13 \/;i/l3 x;,j. Three decades later, Klivans
and Servedio [16] obtained an O(n!/3 log n) upper bound on the
threshold degree of any polynomial-size DNF formula in n variables,
essentially matching Minsky and Papert’s result and resolving the
problem for depth 2. Determining the threshold degree of circuits
of depth k > 3 proved to be challenging. The only upper bound
known to date is the trivial O(n), which follows directly from the
definition of threshold degree. In particular, it is consistent with our

knowledge that there are ACO circuits with linear threshold degree.
On the lower bounds side, the only progress for a long time was
due to O’Donnell and Servedio [23], who constructed for any k > 1
a circuit of depth k + 2 with threshold degree Q(n'/3log?*/? n).
The authors of [23] formally posed the problem of obtaining a
polynomial improvement on Minsky and Papert’s lower bound.
Such an improvement was obtained in [35], with a threshold degree
lower bound of Q(n'k=1/(2k=1)) for circuits of depth k. A polyno-
mially stronger result was obtained in [37], with a lower bound
of Q(+/n) on the threshold degree of an explicit circuit of depth 4.
Bun and Thaler [12] recently used a different, depth-3 circuit to
give a much simpler proof of the Q(+/n) lower bound for AC°. We
obtain a quadratically stronger, and near-optimal, lower bound on
the threshold degree of ACY.

THEOREM 1.1. Fix an integer k > 1. Then there is an (explicitly
given) Boolean circuit family {f,};",, where f;,: {0,1}" — {0,1}
has polynomial size, depth k, and threshold degree

deg,(fn) = Q (n% . (logn)_ﬁr¥] L%J) .
Moreover, fy, has bottom fan-in O(log n) for all k # 2.

For large k, Theorem 1.1 essentially matches the trivial upper bound
of n on the threshold degree of any function. For any fixed depth
k, Theorem 1.1 subsumes all previous lower bounds on the thresh-
old degree of AC?, with a polynomial improvement starting at
depth k = 4. In particular, the lower bounds due to Minsky and
Papert [21] and Bun and Thaler [12] are subsumed as the special
cases k = 2 and k = 3, respectively. From a computational learning
perspective, Theorem 1.1 definitively rules out the threshold de-
gree approach to learning constant-depth circuits. By well-known
reductions, Theorem 1.1 implies a number of other lower bounds
for the representation of AC? circuits by polynomials; see the full
version [39] of this paper for details.

1.2 Sign-rank of AC°

The sign-rank of a matrix A = [A;;] without zero entries, de-
noted rks(A), is the least rank of a real matrix M = [M;;] with
sgn M;j = sgnA;j for all i, j. In other words, the sign-rank of A



Near-Optimal Lower Bounds on the Threshold Degree and Sign-Rank of AC°

is the minimum rank of a matrix that can be obtained by making
arbitrary sign-preserving changes to the entries of A. The sign-
rank of a Boolean function F: {0,1}" x {0,1}"" — {0, 1} is defined
in the natural way as the sign-rank of the matrix [(~1)F 9] xy-
In particular, the sign-rank of F is an integer between 1 and 2".
This fundamental notion has been studied in contexts as diverse
as matrix analysis, communication complexity, circuit complexity,
and learning theory; see [26] for a bibliographic overview. To a
complexity theorist, sign-rank is a vastly more challenging quantity
to analyze than threshold degree. Indeed, a sign-rank lower bound
rules out sign-representation out of every linear subspace of given
dimension, whereas a threshold degree lower bound rules out sign-
representation specifically by linear combinations of monomials
up to a given degree.

Unsurprisingly, progress in understanding sign-rank has been
slow and difficult. No nontrivial lower bounds were known for any
explicit matrices until the breakthrough work of Forster [14], who
proved strong lower bounds on the sign-rank of Hadamard matrices
and more generally all sign matrices with small spectral norm. The
sign-rank of constant-depth circuits F: {0,1}" x {0,1}" — {0, 1}
has since seen considerable work, as summarized in Table 2. The
first exponential lower bound on the sign-rank of an AC® cir-
cuit was obtained by Razborov and Sherstov [26], solving a 22-
year-old problem due to Babai, Frankl, and Simon [4]. The au-
thors of [26] constructed a polynomial-size circuit of depth 3 with
sign-rank exp(Q(nl/ 3)). In follow-up work, Bun and Thaler [10]
constructed a polynomial-size circuit of depth 3 with sign-rank
exp(Q(nz/ %)). A more recent and incomparable result, also due to
Bun and Thaler [12], is a sign-rank lower bound of exp(Q(+/n)) for a
circuit of polynomial size and depth 7. No nontrivial upper bounds
are known on the sign-rank of AC®. Closing this gap between the
best lower bound of exp(Q(+y/n)) and the trivial upper bound of 2"
has been a challenging open problem. We solve this problem almost
completely, by constructing for any € > 0 a constant-depth circuit
with sign-rank exp(Q(n!~€)). In quantitative detail, our results on
the sign-rank of AC? are the following two theorems.

THEOREM 1.2. Fix an integer k > 1. Then there is an (explicitly
given) Boolean circuit family {F,} |, where Fp: {0, 1}"x{0,1}" —

{0, 1} has polynomial size, depth 3k, and sign-rank
| (k-1
rky (Fp) = exp (Q (nl_m - (logn) 2k+) )) .

THEOREM 1.3. Fix an integer k > 1. Then there is an (explicitly
given) Boolean circuit family {Gp};,_,, whereGp: {0,1}"x{0,1}" —

{0, 1} has polynomial size, depth 3k + 1, and sign-rank
2
rk.(Gp) = exp (Q (nl_ﬁ - (log n)_zlliiﬂ)) .

For large k, the lower bounds of Theorems 1.2 and 1.3 approach
the trivial upper bound of 2" on the sign-rank of any Boolean func-
tion {0, 1} x {0, 1}" — {0, 1}. For any given depth, Theorems 1.2
and 1.3 subsume all previous lower bounds on the sign-rank of
ACY, with a strict improvement starting at depth 3. From a compu-
tational learning perspective, Theorems 1.2 and 1.3 state that AC?
has near-maximum dimension complexity [12, 26, 27, 29], namely,
exp(Q(n'=€)) for any constant € > 0. This rules out the possi-
bility of learning AC? circuits via dimension complexity [26], a
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far-reaching generalization of the threshold degree approach from
the monomial basis to arbitrary bases.

1.3 Communication Complexity

Theorems 1.1-1.3 imply strong new lower bounds on the commu-
nication complexity of AC?. We adopt the standard randomized
model of Yao [19], with players Alice and Bob and a Boolean func-
tion F: X XY — {0,1}. On input (x,y) € X X Y, Alice and Bob
receive the arguments x and y, respectively, and communicate back
and forth according to an agreed-upon protocol. Each player pri-
vately holds an unlimited supply of uniformly random bits that he
or she can use when deciding what message to send at any given
point in the protocol. The cost of a protocol is the total number
of bits communicated in a worst-case execution. The e-error ran-
domized communication complexity R¢(F) of F is the least cost of
a protocol that computes F with probability of error at most € on
every input.

Of particular interest to us are communication protocols with
error probability close to that of random guessing, 1/2. There are
two standard ways to formalize the complexity of a communication
problem F in this setting, both inspired by probabilistic polynomial
time PP for Turing machines:

UPP(F) = inf Re(F),
0<e<1/2

. 1
PP(F) = 0<16n<f1/2 {Re(F) + log, (l - e)} .

2

The former quantity, introduced by Paturi and Simon [25], is called
the communication complexity of F with unbounded error, in refer-
ence to the fact that the error probability can be arbitrarily close to
1/2. The latter quantity is called the communication complexity of F
with weakly unbounded error. Proposed by Babai et al. [4], it features
an additional penalty term that depends on the error probability.
It is clear that UPP(F) < PP(F) < n + 2 for every communication
problem F: {0,1}" x {0,1}"* — {0, 1}, with an exponential gap
achievable between the two complexity measures [6, 27]. These
two models occupy a special place in the study of communication
because they are more powerful than any other standard model
(deterministic, nondeterministic, randomized, quantum with or
without entanglement). Moreover, unbounded-error protocols rep-
resent a frontier in communication complexity theory in that they
are the most powerful protocols for which explicit lower bounds
are known. Our results imply that even for such protocols, AC? has
near-maximal communication complexity. To begin with, combin-
ing Theorem 1.1 with the pattern matrix method [28, 30] gives:

THEOREM 1.4. Let k > 3 be a fixed integer. Then there is an
(explicitly given) Boolean circuit family {Fn}}_,, where F: {0,1}"x
{0,1}" — {0, 1} has polynomial size, depth k, communication com-

plexity
PP(F,) = Q (n% . (logn)_ﬁf%] L%J)
and discrepancy
disc(Fn) = exp (‘Q ("% - (log n)” %1 T%M%J)) _

Discrepancy is a combinatorial complexity measure of interest in
communication complexity theory and other research areas; see the
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full version [39] of this paper for a formal definition. As k grows,
the bounds of Theorem 1.4 approach the best possible bounds
for any communication problem Fp: {0,1}" x {0,1}" — {0,1}.
The same qualitative behavior was achieved in previous work by
Bun and Thaler [12], who constructed, for any constant € > 0, a
constant-depth circuit F, : {0,1}" x {0,1}"* — {0, 1} with commu-
nication complexity PP(F,,) = Q(n'~¢) and discrepancy disc(Fy) =
exp(—Q(n!~€)). Theorem 1.4 strictly subsumes the result of Bun
and Thaler [12] and all other prior work on the discrepancy and
PP-complexity of constant-depth circuits [6, 28, 30, 35, 37]. For any
fixed depth greater than 3, the bounds of Theorem 1.4 are a poly-
nomial improvement in n over all previous work. We further show
that Theorem 1.4 carries over to the number-on-the-forehead model,
the strongest formalism of multiparty communication. This result,
presented in detail in Section 3.4, uses the multiparty version [36]
of the pattern matrix method.

Our work also gives near-optimal lower bounds for AC? in the
much more powerful unbounded-error model. Specifically, it is well-
known [25] that the unbounded-error communication complexity
of any Boolean function F: X X Y — {0,1} coincides up to an
additive constant with the logarithm of the sign-rank of F. As a
result, Theorems 1.2 and 1.3 imply:

THEOREM 1.5. Let k > 1 be a given integer. Let {F,},"_, and
{Gn},_, be the polynomial-size circuit families of depth 3k and
3k + 1, respectively, constructed in Theorems 1.2 and 1.3. Then

1 _ k(k=1)

UPP(F,) = Q (nl—m - (log )~ 2k+D) )
1——L_ _ k2

UPP(G,) = Q (n &+15 - (logn) 2k+3) .

For large k, the lower bounds of Theorem 1.5 essentially match
the trivial upper bound of n + 1 on the unbounded-error commu-
nication complexity of any function F: {0,1}" x {0,1}"" — {0,1}.
Theorem 1.5 strictly subsumes all previous lower bounds on the
unbounded-error communication complexity of AC?, with a poly-
nomial improvement for any depth greater than 2. The best lower
bound on the unbounded-error communication complexity of AC’
prior to our work was Q(+/n) for a circuit of depth 7, due to Bun and
Thaler [12]. Finally, we remark that Theorem 1.5 gives essentially
the strongest possible separation of the communication complexity
classes PH and UPP. We refer the reader to the work of Babai et
al. [4] for definitions and detailed background on these classes.

Qualitatively, Theorem 1.5 is stronger than Theorem 1.4 because
communication protocols with unbounded error are significantly
more powerful than those with weakly unbounded error. On the
other hand, Theorem 1.4 is stronger quantitatively for any fixed
depth and has the additional advantage of generalizing to the mul-
tiparty setting.

1.4 Previous Approaches

In the remainder of this section, we discuss our proofs of The-
orems 1.1-1.3. The notation that we use here is standard, and
we defer its formal review to Section 2. We start with necessary
approximation-theoretic background, then review relevant previ-
ous work, and finally contrast it with the approach of this paper.
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To sidestep minor technicalities, we will represent Boolean func-
tions in this overview as mappings {-1,+1}" — {-1,+1}. We
alert the reader that we will revert to the standard {0, 1}" — {0, 1}
representation starting with Section 2.

Background. Recall that our results concern the sign-representation
of Boolean functions and matrices. To properly set the stage for our
proofs, however, we need to consider the more general notion of
pointwise approximation [22]. Let f: {-1,+1}" — {-1,+1} bea
Boolean function of interest. The e-approximate degree of f, denoted
deg(f), is the minimum degree of a real polynomial that approxi-
mates f within e pointwise: deg, (f) = min{degp: || f —pllo < €}.
The regimes of most interest are bounded-error approximation, cor-
responding to constants € € (0, 1); and large-error approximation,
corresponding to € = 1—0(1). In the former case, the choice of error
parameter € € (0, 1) is immaterial and affects the approximate de-
gree of a Boolean function by at most a multiplicative constant. It is
clear that pointwise approximation is a stronger requirement than
sign-representation, and thus deg, () < deg(f) forall0 < e < 1.
A moment’s thought reveals that threshold degree is in fact the
limiting case of e-approximate degree as the error parameter ap-
proaches 1:

deg,(f) = eh/,ml deg (f). (1)

Both approximate degree and threshold degree have dual char-
acterizations [30], obtained by appeal to linear programming du-
ality. Specifically, deg, (f) > d if and only if there is a function
¢: {-1,+1}" — R with the following two properties: (¢, f) >
€||pll1; and (¢, p) = 0 for every polynomial p of degree less than
d. Rephrasing, ¢ must have large correlation with f but zero cor-
relation with every low-degree polynomial. By weak linear pro-
gramming duality, ¢ constitutes a proof that deg (f) > d and for
that reason is said to witness the lower bound deg, (f) > d. In
view of (1), this discussion generalizes to threshold degree. The
dual characterization here states that deg, (f) > d if and only if
there is a nonzero function ¢: {-1,+1}" — R with the following
two properties: ¢(x)f(x) > 0 for all x; and (@, p) = 0 for every
polynomial p of degree less than d. In this dual characterization, ¢
agrees in sign with f and is additionally orthogonal to polynomials
of degree less than d. The sign-agreement property can be restated
in terms of correlation, as (¢, f) = ||¢||l1. As before, ¢ is called a
threshold degree witness for f.

What distinguishes the dual characterizations of approximate
degree and threshold degree is how the dual object ¢ relates to f.
Specifically, a threshold degree witness must agree in sign with f
at every point. An approximate degree witness, on the other hand,
need only exhibit such sign-agreement with f at most points, in
that the points where the sign of ¢ is correct should account for
most of the £ norm of ¢. As a result, constructing dual objects for
threshold degree is significantly more difficult than for approximate
degree. This difficulty is to be expected because the gap between
threshold degree and approximate degree can be arbitrary, e.g.,
1 versus ©(n) for the majority function on n bits [24].

Hardness amplification via block-composition. Much of the recent
work on approximate degree and threshold degree is concerned
with composing functions in ways that amplify their hardness.
Of particular significance here is block-composition, defined for
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functions f: {-1,+1}" — {-1,+1} and g: X — {-1,+1} as the
function f o g: X" — {-1,+1} given by (f o g)(x1,...,xp) =
f(g(x1), . . ., g(xn)). Block-composition works particularly well for
threshold degree. To use an already familiar example, the block-
composition AND,,1/300R, 23 has threshold degree Q(nl/ 3) whereas
the constituent functions AND, 1/ and OR,2/3 have threshold de-
gree 1. As a more extreme example, Sherstov [34] obtained a lower
bound of Q(n) on the threshold degree of the conjunction hj A hp of
two halfspaces hy, hz: {0,1}" — {0, 1}, each of which by definition
has threshold degree 1. The fact that threshold degree can increase
spectacularly under block-composition is the basis of much pre-
vious work, including the best previous lower bounds [35, 37] on
the threshold degree of AC . Apart from threshold degree, block-
composition has yielded strong results for approximate degree in
various error regimes, including direct sum theorems [32], direct
product theorems [31], and error amplification results [8, 9, 31, 40].

How, then, does one prove lower bounds on the threshold degree
or approximate degree of a composed function f o g? It is here that
the dual characterizations take center stage: they make it possible
to prove lower bounds algorithmically, by constructing the corre-
sponding dual object for the composed function. Such algorithmic
proofs run the gamut in terms of technical sophistication, from
straightforward to highly technical, but they have some structure
in common. In most cases, one starts by obtaining dual objects ¢
and ¢ for the constituent functions f and g, respectively, either
by direct construction or by appeal to linear programming duality.
They are then combined to yield a dual object ® for the composed
function, using dual block-composition [20, 32]:

D1, %2, o xn) = Glsgn (), osgnyGe)) [ [ Wl (@)
i=1

This composed dual object often requires additional work to ensure
sign-agreement or correlation with the composed Boolean func-
tion. Among the generic tools available to assist in this process is
a “corrector” object { due to Razborov and Sherstov [26], with the
following four properties: (i) ¢ is orthogonal to low-degree polyno-
mials; (ii) ¢ takes on 1 at a prescribed point of the hypercube; (iii) {
is bounded on inputs of low Hamming weight; and (iv) { vanishes
on all other points of the hypercube. Using the Razborov-Sherstov
object, suitably shifted and scaled, one can surgically correct the
behavior of a given dual object ® on a substantial fraction of inputs,
thus modifying its metric properties without affecting its orthog-
onality to low-degree polynomials. This technique has played an
important role in recent work, e.g., [7, 10-12].

Hardness amplification for approximate degree. Block-composition
has produced a treasure trove of results on polynomial representa-
tions of Boolean functions, yet it is of little use when it comes to con-
structing functions with high bounded-error approximate degree. To
illustrate the issue, consider arbitrary functions f: {-1,+1}"™ —
{-1,+1} and ¢g: {-1,+1}"2 — {-1,+1} with 1/3-approximate
degrees n'lz1 and ngz, respectively, for some 0 < a@; < 1 and
0 < ap < 1.1t is well-known [33] that the composed function
f © g on nyny variables has 1/3-approximate degree O(n{"ny*) =
O(nyng)™@{@1 2} This means that relative to the new number
of variables, the block-composed function f o g is asymptotically
no harder to approximate to bounded error than the constituent
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functions f and g. In particular, one cannot use block-composition
to transform functions on n bits with 1/3-approximate degree at
most n% into functions on N > n bits with 1/3-approximate degree
w(N%).

Until recently, the best lower bound on the bounded-error ap-
proximate degree of AC? was Q(n?/3), due to Aaronson and Shi [1].
Breaking this n?/3 barrier was a fundamental problem in its own
right, in addition to being a hard prerequisite for threshold degree
lower bounds for AC? better than Q(nz/ 3). This barrier was over-
come in a brilliant paper of Bun and Thaler [11], who proved, for any
constant € > 0, an Q(n!~€) lower bound on the 1/3-approximate
degree of ACC. Their hardness amplification for approximate de-
gree works as follows. Let f: {-1,+1}" — {-1,+1} be given,
with 1/3-approximate degree n® for some 0 < @ < 1. Bun and
Thaler consider the block-composition F = f o ANDg10g m) © ORm,
for an appropriate parameter m = poly(n). As shown in earlier
work [8, 32] on approximate degree, dual block-composition wit-
nesses the lower bound degl/S(F) = Q(deg1/3(ORm) deg1/3(f)) =
Q(v/mdeg, /3(f))- Next, Bun and Thaler make the crucial observa-
tion that the dual object for OR, has most of its {1 mass on inputs
of Hamming weight O(1), which in view of (2) implies that the
dual object for F places most of its £; mass on inputs of Hamming
weight O(n). The authors of [11] then use the Razborov-Sherstov
corrector object to transfer the small amount of £; mass that the
dual object for F places on inputs of high Hamming weight, to
inputs of low Hamming weight. The resulting dual object for F is
supported entirely on inputs of low Hamming weight and therefore
witnesses a lower bound on the 1/3-approximate degree of the re-
striction F” of F to inputs of low Hamming weight. By re-encoding
the input to F’, one finally obtains a function F” on O(n) variables
with 1/3-approximate degree polynomially larger than that of f.
This passage from f to F”’ is the desired hardness amplification for
approximate degree. We find it helpful to think of Bun and Thaler’s
technique as block-composition followed by input compression,
to reduce the number of input variables in the block-composed
function. To obtain an Q(n!~¢) lower bound on the approximate
degree of ACY, the authors of [11] start with a trivial circuit and
iteratively apply the hardness amplification step a constant number
of times, until approximate degree Q(n!~¢) is reached.

In follow-up work, Bun, Kothari, and Thaler [7] refined the tech-
nique of [11] by deriving optimal concentration bounds for the
dual object for ORp,. They thereby obtained tight or nearly tight
lower bounds on the 1/3-approximate degree of surjectivity, ele-
ment distinctness, and other important problems. The most recent
contribution to this line of work is due to Bun and Thaler [12], who
prove an Q(n!~€) lower bound on the (1 — 2 e )-approximate
degree of AC? by combining the method of [11] with Sherstov’s
work [31] on direct product theorems for approximate degree. This
near-linear lower bound substantially strengthens the authors’ pre-
vious result [11] on the bounded-error approximate degree of AC?,
but does not address the threshold degree.

1.5 Our Approach

Threshold Degree of AC®. Bun and Thaler [12] refer to obtaining
an Q(n!~€) threshold degree lower bound for AC? as the “main
glaring open question left by our work” It is important to note
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here that lower bounds on approximate degree, even with the error
parameter exponentially close to 1 as in [12], have no implications
for threshold degree. For example, there are functions [34] with
(1- 2_6("))—approximate degree ©(n) but threshold degree 1. Our
proof of Theorem 1.1 is unrelated to the most recent work of Bun
and Thaler [12] on the large-error approximate degree of AC? and
instead builds on their earlier and simpler “block-composition fol-
lowed by input compression” approach [11]. The centerpiece of
our proof is a hardness amplification result for threshold degree,
whereby any function f with threshold degree n® for a constant
0 < a < 1 can be transformed efficiently and within AC? into a
function F with polynomially larger threshold degree.

In more detail, let f: {-1,+1}" — {-1,+1} be a function of in-
terest, with threshold degree n. We consider the block-composition
f o MPy,, where m = n9M is an appropriate parameter and
MP, = AND,;, o OR,,z is the Minsky-Papert function with thresh-
old degree Q(m). We construct the dual object for MP,, from
scratch to ensure concentration on inputs of Hamming weight
O(m). By applying dual block-composition to the threshold degree
witnesses of f and MP,,, we obtain a dual object ® witnessing
the Q(mn®) threshold degree of f o MP,,. So far in the proof, our
differences from [11] are as follows: (i) since our goal is amplifi-
cation of threshold degree, we work with witnesses of threshold
degree rather than approximate degree; (ii) to ensure rapid growth
of threshold degree, we use block-composition with inner function
MP,,, = AND,;, o OR,,;2 of threshold degree ®(m), in place of Bun
and Thaler’s inner function ANDgy1og ) © ORm of threshold degree
O(log m).

Since the dual object for MP,, by construction has most of its
£1 norm on inputs of Hamming weight O(m), the dual object @
for the composed function has most of its £; norm on inputs of
Hamming weight O(nm). Analogous to [7, 11, 12], we would like to
use the Razborov-Sherstov corrector object to remove the {1 mass
that ® has on the inputs of high Hamming weight, transferring
it to inputs of low Hamming weight. This brings us to the novel
and technically demanding part of our proof. Previous works [7,
11, 12] transferred the ¢; mass from the inputs of high Hamming
weight to the neighborhood of the all-zeroes input (0,0, . ..,0). An
unavoidable feature of the Razborov-Sherstov transfer process is
that it amplifies the {1 mass being transferred. When the transferred
mass finally reaches its destination, it overwhelms ®’s original
values at the local points, destroying @’s sign-agreement with the
composed function f o MPp,. It is this difficulty that most prevented
earlier works [7, 11, 12] from obtaining a strong threshold degree
lower bound for ACP.

We proceed differently. Instead of transferring the £; mass of ®
from the inputs of high Hamming weight to the neighborhood of
(0,0,...,0), we transfer it simultaneously to exponentially many
strategically chosen neighborhoods. Split this way across many
neighborhoods, the transferred mass does not overpower the origi-
nal values of ® and in particular does not change any signs. Working
out the details of this transfer scheme requires subtle and lengthy
calculations; it was not clear to us until the end that such a scheme
exists. Once the transfer process is complete, we obtain a witness
for the Q(mn?%) threshold degree of f o MP,, restricted to inputs
of low Hamming weight. Compressing the input as in [7, 11], we
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obtain an amplification theorem for threshold degree. With this
work behind us, the proof of Theorem 1.1 for any depth k amounts
to starting with a trivial circuit and amplifying its threshold degree
O(k) times.

Sign-rank of AC°. It is not known how to “lift” a threshold degree
lower bound in a black-box manner to a sign-rank lower bound. In
particular, Theorem 1.1 has no implications a priori for the sign-
rank of AC®. Our proofs of Theorems 1.2 and 1.3 are completely
disjoint from Theorem 1.1 and are instead based on a stronger
approximation-theoretic quantity that we call y-smooth thresh-
old degree. Formally, the y-smooth threshold degree of a Boolean
function f: X — {-1,+1} is the largest d for which there is a
nonzero function ¢: X — R with the following two properties:
d(x)f(x) = v - |l$ll1/1X]| for all x € X; and (¢,p) = 0 for every
polynomial p of degree less than d. Taking y = 0 in this formalism,
one recovers the standard dual characterization of the threshold
degree of f. In particular, threshold degree is synonymous with
0-smooth threshold degree. The general case of y-smooth threshold
degree for y > 0 requires threshold degree witnesses ¢ that are
min-smooth, in that the absolute value of ¢ at any given point is at
least a y fraction of the average absolute value of ¢ over all points.
A substantial advantage of smooth threshold degree is that it has
immediate sign-rank implications. Specifically, any lower bound
of d on the 279@_smooth threshold degree can be converted effi-
ciently and in a black-box manner into a sign-rank lower bound of
29 ysing a combination of the pattern matrix method [28, 30]
and Forster’s spectral lower bound on sign-rank [14, 15]. Accord-
ingly, we obtain Theorems 1.2 and 1.3 by proving an Q(n1=¢) lower
bound on the 2-°(""")_smooth threshold degree of ACY, for any
constant € > 0.

At the core of our result is an amplification theorem for smooth
threshold degree, whose repeated application makes it possible to
prove arbitrarily strong lower bounds for AC?. Amplifying smooth
threshold degree is a complex juggling act due to the presence
of two parameters—degree and smoothness—that must evolve in
coordinated fashion. The approach of Theorem 1.1 is not useful here
because the threshold degree witnesses that arise from the proof of
Theorem 1.1 are highly nonsmooth. In more detail, when amplifying
the threshold degree of a function f as in the proof of Theorem 1.1,
two phenomena adversely affect the smoothness parameter. The
first is block-composition itself as a composition technique, which
in the regime of interest to us transforms every threshold degree
witness for f into a hopelessly nonsmooth witness for the composed
function. The other culprit is the input compression step, which
re-encodes the input and thereby affects the smoothness in ways
that are hard to control. To overcome these difficulties, we develop
a novel approach based on what we call local smoothness.

Formally, let ®: N — R be a function of interest. For a subset
X C N™ and a real number K > 1, we say that ® is K-smooth on X if
|®(x)| < K*=*"l|@(x")| for all x, x’ € X. Put another way, for any
two points of X at {1 distance d, the corresponding values of ¢ differ
in magnitude by a factor of at most K 4 In and of itself, a locally
smooth function ® need not be min-smooth because for a pair of
points that are far from each other, the corresponding ®-values
can differ by many orders of magnitude. However, locally smooth
functions exhibit extraordinary plasticity. Specifically, we show
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how to modify a locally smooth function’s metric properties—such
as its support or the distribution of its £; mass—without the change
being detectable by low-degree polynomials. This apparatus makes
it possible to restore min-smoothness to the dual object ® that
results from the block-composition step and preserve that min-
smoothness throughout the input compression step, eliminating the
two obstacles to min-smoothness in the earlier proof of Theorem 1.1.
The new block-composition step uses a locally smooth witness for
the threshold degree of MP,,, which needs to be built from scratch
and is quite different from the witness in the proof of Theorem 1.1.
Our described approach departs considerably from previous
work on the sign-rank of constant-depth circuits [10, 12, 26]. The
analytic notion in those earlier papers is weaker than y-smooth
threshold degree and in particular allows the dual object to be
arbitrary on a y fraction of the inputs. This weaker property is
acceptable when the main result is proved in one shot, with a
closed-form construction of the dual object. By contrast, we must
construct dual objects iteratively, with each iteration increasing the
degree parameter and proportionately decreasing the smoothness
parameter. This iterative process requires that the dual object in
each iteration be min-smooth on the entire domain. Perhaps unex-
pectedly, we find y-smooth threshold degree easier to work with
than the weaker notion in previous work [10, 12, 26]. In particular,
we are able to give a new and short proof of the exp(Q(nl/ %)) lower
bound on the sign-rank of AC?, originally obtained by Razborov
and Sherstov [26] with a much more complicated approach. The
new proof can be found in the full version of our paper [39], where
it serves as a prelude to our main result on the sign-rank of AC°.

2 PRELIMINARIES

2.1 General

For a string x € {0,1}" and a set S € {1,2,...,n}, we let x|s
denote the restriction of x to the indices in S. In other words, x|g =
Xiy Xiy - .xils‘,where i1 <ip <--- <ig)are the elements of S. The
characteristic function of a set S C {1,2,...,n} is given by

15(x) 1 ifxes,
xX) =
s 0 otherwise.

For a logical condition C, we use the Iverson bracket

1C] =

1 if C holds,
0 otherwise.

We let N = {0, 1,2,3,...} denote the set of natural numbers.

We adopt the extended real number system R U {—o0, 00} in
all calculations, with the additional convention that 0/0 = 0. We
use the comparison operators in a unary capacity to denote one-
sided intervals of the real line. Thus, <a, <a, >a, >a stand for
(=00, a), (-, al, (a, ), [a, ), respectively. We let In x and log x
stand for the natural logarithm of x and the logarithm of x to base 2,
respectively. We use the following two versions of the sign function:

-1 ifx<0, .
. i -1 ifx<o,
sgnx =40 ifx=0, sgnx = .
) 1 ifx > 0.
1 ifx >0,
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The term Euclidean space refers to R™ for some positive integer n.
We let e; denote the vector whose ith component is 1 and the others
are 0. Thus, the vectors e1, es, . . ., e, form the standard basis for
R™. For vectors x and y, we write x < y to mean that x; < y; for
each i. The relations >, <, > on vectors are defined analogously.

We frequently omit the argument in equations and inequalities
involving functions, as in sgnp = (~1)/. Such statements are to
be interpreted pointwise. For example, the statement “f > 2|g|
on X” means that f(x) > 2|g(x)| for every x € X. The positive
and negative parts of a function f: X — R are denoted pos f =
max{f,0} and neg f = max{-f, 0}, respectively.

2.2 Boolean Functions and Circuits

We view Boolean functions as mappings X — {0,1} for some
finite set X. More generally, we consider partial Boolean func-
tions f: X — {0, 1,*}, with the output value = used for don’t-
care inputs. The negation of a Boolean function f is denoted as
usual by ? =1 — f. The familiar functions OR,: {0,1}" — {0, 1}
and AND,,: {0,1}" — {0, 1} are given by OR,(x) = VI, x; and
AND,(x) = A;?:l x;j. We abbreviate NOR,, = =OR,,. The general-
ized Minsky—Papert function MP, »: ({0,1}7)™ — {0, 1} is given
by MPp, (x) = AIZ4 \/J’.=1 xj,j. We abbreviate MP;, = MP,, .,
which is the right setting of parameters for most of our applications.

We adopt the standard notation for function composition, with
f og defined by (f o g)(x) = f(g(x)). In addition, we use the o oper-
ator to denote the componentwise composition of Boolean functions.
Formally, the componentwise composition of f: {0,1}" — {0,1}
and g: X — {0,1} is the function f o g: X" — {0,1} given by
(f o g)(x1,x2,...,xn) = f(g(x1),9(x2),...,9(xn)). To illustrate,
MPy,,» = AND,, o OR,. Componentwise composition is consis-
tent with standard composition, which in the context of Boolean
functions is only defined for n = 1. Thus, the meaning of f o g is
determined by the range of g and is never in doubt. Compositions
fio fao---o fi of three or more functions, where each instance of
the o operator can be standard or componentwise, are well-defined
by associativity and do not require parenthesization.

For Boolean strings x,y € {0,1}", we let x ® y denote their
bitwise XOR. The strings x A y and x V y are defined analogously,
with the binary connective applied bitwise. A Boolean circuit C in
variables x1, X2, . . ., X is a circuit with inputs x1, =x1, ..., X, X,
and gates A and V. The circuit C is monotone if it does not use
any of the negated inputs —x1, =x2, . . ., ~xp. The fan-in of C is the
maximum in-degree of any A or V gate. Unless stated otherwise, we
place no restrictions on the gate fan-in. The size of C is the number
of A and V gates. The depth of C is the maximum number of A and
V gates on any path from an input to the circuit output. With this
convention, the circuit that computes (x1, x2,...,x,) — x1 has
depth 0. The circuit class AC? consists of function families { f;, Yot
such that f,: {0,1}" — {0, 1} is computed by a Boolean circuit of
size at most cn® and depth at most ¢, for some constant ¢ > 1 and
all n. We specify small-depth layered circuits by indicating the type
of gate used in each layer. For example, an AND-OR-AND circuit
is a depth-3 circuit with the top and bottom layers composed of A
gates, and middle layer composed of V gates. A Boolean formula
is a Boolean circuit in which every gate has fan-out 1. Common
examples of Boolean formulas are DNF and CNF formulas.
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2.3 Norms and Products

For a set X, we let RX denote the linear space of real-valued
functions on X. The support of a function f € RX is denoted
supp f = {x € X : f(x) # 0}. For real-valued functions with finite
support, we adopt the usual norms || fllc = maxyesupp £ 1f(%)]
and ||f]1 = Zxesuppf |f(x)], as well as inner product (f,g) =
> xesupp f N supp g f(x)g(x). This covers as a special case functions
on finite sets. The tensor product of f € RX and g € RY is de-
noted f ® g € RXXY and given by (f ® g)(x,y) = f(x)g(y). The
tensor product f ® f ® - -+ ® f (n times) is abbreviated f®". For
asubset S C {1,2,...,n} and a function f: X — R, we define
FOS: X" = Rby f®5(x1,x2,...,%) = [Tjes f(xi). As extremal
cases, we have f®? = 1and f®{L2---n} = £ Tensor product
notation generalizes naturally to sets of functions: FRG = {f ®g:
feEFgeGtand F®" ={fi® o ® - ® fu: fi, f2r---» fu € F}.

Analogous to functions, we adopt the familiar norms for vectors
x € R" in Euclidean space: ||x|lcc = max;=1,...n |x;| and ||x]; =
27, |xi|. The latter norm is particularly prominent in this paper,
and to avoid notational clutter we use |x| interchangeably with ||x||;.
We refer to |x| = ||x||; as the weight of x. For any sets X € N"
and W C R, we define X|y = {x € X : |x] € W}. In the case of a
one-element set W = {w}, we further shorten X|,,} to X|,,. To
illustrate, N |, denotes the set of vectors whose components are
natural numbers and sum to at most w, whereas {0, 1}"|,, denotes
the set of Boolean strings of length n and Hamming weight exactly
w. For a function f: X — RonasubsetX € N", welet f|y denote
the restriction of f to X|yy. A typical instance of this notation would
be f|<,y for some real number w.

2.4 Orthogonal Content

For a multivariate real polynomial p: R" — R, we let deg p denote
the total degree of p, i.e., the largest degree of any monomial of
p. We use the terms degree and total degree interchangeably in
this paper. It will be convenient to define the degree of the zero
polynomial by deg 0 = —co. For a real-valued function ¢ supported
on a finite subset of R", we define the orthogonal content of ,
denoted orth ¢, to be the minimum degree of a real polynomial p
for which (¢, p) # 0. We adopt the convention that orth ¢ = oo ifno
such polynomial exists. It is clear that orth ¢ € N U {co}, with the
extremal cases orth¢p =0 & ($,1) #0andorthd =0 & ¢ =
0. Our next result, whose proof is available in the full version [39],
records additional facts about orthogonal content.

PROPOSITION 2.1. Let X and Y be nonempty finite subsets of Eu-
clidean space. Then:
(i) orth(¢ + ¢) > min{orth @, orthy/} forallp,y: X — R;
(ii) orth(¢®y) = orth(¢)+orth(y) forg: X — Randy: Y = R;
(iii) orth(¢®" —y®") > orth(¢ — ) ford,: X — Randn > 1.

Let f: X — {0,1} be a given Boolean function, for a finite
subset X C R™. The threshold degree of f, denoted deg, (f), is
the least degree of a real polynomial p that represents f in sign:
sgnp(x) = (—l)f(x) for each x € X. One of the first results on
polynomial representations of Boolean functions was the following
tight lower bound on the threshold degree of MP,, due to Minsky
and Papert [21].

THEOREM 2.2 (MINSKY AND PAPERT). deg, (MPy,) = Q(m).
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2.5 Basic Dual Objects

As described in the introduction, we prove our main results con-
structively, by building explicit dual objects that witness the cor-
responding lower bounds. An important tool in this process is the
following lemma, which is used to adjust a dual object’s metric
properties while preserving its orthogonality to low-degree poly-
nomials.

LEMMA 2.3. Fix a point u € N" and a natural numberd < |ul.
Then there is {;,: N — R such that

supply C {utU{v e N":v <uand|v| <d},

Cu(u) =1,

u
et < 1+29("5),
orth{, > d.

This result is a symmetrized version of Lemma 3.2 of Razborov and
Sherstov [26]; a detailed proof is available in the full version [39] of
this paper. The next lemma is an adaptation of a result due to Bun
and Thaler [11] that serves to identify the dominant components
of a vector. Its proof is also available in the full version [39] of this
paper.

LEMMA 2.4. Fix 0 > 0 and let v € R" be an arbitrary vector with
llolly = 6. Then thereis S C {1,2,...,n} such that

[
S| =z ———,
512 2ol
infor] >~ ——2

min |v; i —
ies ' "7 IS| 2(1+Inn)
Z lvi] < 0.

i¢S

3 THE THRESHOLD DEGREE OF AC’

This section is devoted to our results on threshold degree. While we
are mainly interested in the threshold degree of AC, the techniques
developed here apply to a much broader class of functions. Specif-
ically, we prove an amplification theorem that takes an arbitrary
function f and builds from it a function F with higher threshold
degree. The transformation f + F is efficient with regard to cir-
cuit depth and size and in particular preserves membership in ACP.
To deduce our main results for AC?, we start with a single-gate
circuit and iteratively apply the amplification theorem to produce
constant-depth circuits of higher and higher threshold degree. We
develop this general machinery in Sections 3.1-3.3, followed by the
applications to AC? in Section 3.4.

3.1 Shifting Probability Mass in Product
Distributions

Consider a product distribution A on N whereby every component
is concentrated near 0. The centerpiece of our threshold degree
analysis, presented here, is the construction of an associated prob-
ability distribution A that is supported entirely on inputs of low
weight and cannot be distinguished from A by a low-degree polyno-
mial. More formally, define B(r, ¢, @) to be the family of probability
distributions A on N such that supp A = {0, 1,2,...,r’} for some
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nonnegative integer r’ < r, and in addition

Ct+1 1

— M) —,

(r+1)220t = ® < ot + 1)2 241
Distributions in this family are subject to pointwise constraints,
hence the symbol B for “bounded” In this notation, our analysis
handles any distribution A € B(r, ¢, ®)®". The precise statement
of our result is as follows.

tesuppA.  (3)

THEOREM 3.1. Let A € B(r,c,a)®" be given, for some integer
r > 0 and realsc > 0 and a > 0. Let d and 0 be positive integers
with
0 > 2d, 4)
4en(1+1nn)
fenllxnm) 5)
c
Then there is a function A: N* — R such that

0>

supp A € (supp A)|<2¢. (6)
orth(A — A) > d, (7)

|A - A|<(SZ’) 2 [0/r1-af0/2]+2 5 onN"|_,9. (8)

In general, the function A constructed in Theorem 3.1 may not
be a probability distribution. However, when 6 is large enough
relative to the other parameters, the pointwise property (8) forces
|A = Al < A on the support of A, and in particular A > 0. Since
orth(A — A) > 0 by construction, A is a probability distribution in
that case.

Proor oF THEOREM 3.1. For ¢ > 1, we have B(r,c,a) = & and
the theorem holds vacuously. Another degenerate possibility is
r = 0, in which case A is the single-point distribution on 0", and
therefore it suffices to take A = A. In what follows, we treat the
general case when ¢ € (0,1],r > 1.

For every vector v € N" with ||o|; > 6, let S(v) C {1,2,...,n}
denote the corresponding subset identified by Lemma 2.4. To restate
the lemma’s guarantees,

0

[S(v)| > > v € (supp A)l>20, )

0
in v >-— € N[ 10
U S vy 0 (PPl (10)
okl < 6. ve(suppAllszg. (1)

Property (11) implies that
lols)lls > 0. v € (supp A)|>2¢, (12)

and in particular

lolsyll > d, v € (supp A)l>206- (13)

Foreachi = 1,2,...,nand each u € Ni|>d, Lemma 2.3 gives a
function ¢, : N* — R such that

supp {u € {u} U{v e N' : v < wand |v| < d}, (14)
gu(u) = 1’ (15)

ugm<1+ﬂ@ﬁﬂ, (16)
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orth{, > d, (17)
and in particular

Sulloo < max{|Zu ()], IZullt = 18u(@)}

< 2ulh?. (18)

The central object of study in our proof is the following func-
tion {: N® — R, built from the auxiliary objects S(v) and ¢, just
introduced:

(= >

vE(supp A)|>20

A®) Zolg,) (s Uxly = okl (19)

The expression on the right-hand side is well-formed because, to
restate (13), each string v|g(,) has weight greater than d and can

therefore be used as a subscript in évvlsw)' Specializing (17) and (18),

orth {v|s(v) >d, v € (supp A)|>2¢, (20)
120150 lloo < 2(nr)°,

Property (14) ensures that {, Is(o) (x5 I
when x < v. It follows that

supp { C U {x e N": x < v}
vEsupp A

v € (supp A)|>2¢- (21)

x|W = v|%] # O only

= supp A, (22)

where second step is valid because A € B(r, ¢, a)®".
Before carrying on with the proof, we take a moment to simplify
the defining expression for {. For any v € N5 59, we have

$ols(o) (x|S(v))I[x|Tv) = U|ﬁ]
= Lol 50y K@) 1xIs(0) = Vls(0) or lIxls(0)llt < d]
xIlxlsy = vlsl
= Lol 50y Fls(0)x]s(0) = 0ls(0)]
+Ixls (o)l < dDlxlsy = vls)
= {o|5(0) Kls())llx = 0]
+ 8ol 50y Kls@)IlIx]s ()11 < d] I[X|@ = U|@]

=1Ilx = vl + o500, Kls)MUIxls () It < dIxlgs = olgs),

where the first, second, and fourth steps are valid by (14), (13),
and (15), respectively. Making this substitution in the defining equa-
tion for {,

(o= >

vE(supp A)|>20

xIlxlsy = vlsyl [+ Z

vE(suppA)|>20

Ao 510y lsllIxls(oy i < d]

A)[x =v]. (23)

We proceed to establish key properties of {.
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STEP 1: ORTHOGONALITY. By Proposition 2.1(ii), each term in the
summation on the right-hand side of (19) is a function orthogonal
to polynomials of degree less than orth (| s@)° Therefore,

orth{ > min
vE(suppA)|>20

> d, (24)

orth ¢,

Is(o)

where the first step uses Proposition 2.1(i), and the second step
applies (20).

STEP 2: HEAVY INPUTS. We now examine the behavior of { on
inputs of weight at least 26, which we think of as “heavy.” For any
string v € (supp A)[29, We have

x €Ny = |Ixli>d+0
= lxlsyli >d v lixlgeslh > 0

Xhe— # vl=—

= llxls@)ll >d v xlg; # vlsgy

where the final implication uses (11). We conclude that the first
summation in (23) vanishes on N" |3 59, so that

{(x) = Ax),

This completes the analysis of heavy inputs.

X € Nn|>29. (25)

STEP 3: LIGHT INPUTS. We now turn to inputs of weight less
than 26, the most technical part of the proof. Fix an arbitrary string
x € (supp A)|<29. Then

£Gol A@)
- A ol s sl < d]
vE(supp A)|>20

X I[x|e— = v|

5@ = Vsl

>

Alv

MO (lseoplTlixlseolh < d]
Ax) *Pls@)

vE(supp A)|>20

*lxlgy = vls]

Av
Y A lilsel <)
veE(supp A)[>20
x I[.

< 2(nr)?

5y = Vs

A(v)
=2m® )0 Mlslh<dl > TS
Sc{l,....,n}: vE(supp A)|>20:
IS1=0/r S(v)=8
xI[x|s = vl5]
A(v
<o Y dshea Y 39
Sci{y,..., n}: veN":
[S1=0/r Yies Ui?&g
minjes Vi 2 5gimm)
xI[x[5 = v[g], (26)

where the first step uses (23); the second step applies the triangle
inequality; the third step is valid by (21); the fourth step amounts
to collecting terms according to S(v), which by (9) has cardinality
at least 0/r; and the fifth step uses (10) and (12).

Alexander A. Sherstov and Pei Wu

Bounding (26) requires a bit of work. To start with, write A =
®;’:1 Ajforsome A, Ag, ..., Ay € B(r,c, «). In the full version [39]
of this paper, we prove the following for every nonempty S C
{1,2,...,n}:

1 _|S| 2a62 d
I[llx|slly < d] nm <c (T) ) (27)

ieS

D P

A(x
veN": ( )
Zies v; 20,
. 0
minjes Vi 2 3507y

o (21811 +Inn)\ 5! 1
s2 ( cf ) gli(xi)' @)

It remains to put together the bounds obtained so far. We have:

IS|
'g(X)|<z(nr)d Z Llelslly < d - 2~ 2|S|(1 + In n)
A(x) co
Sc{1,...,n}:
|S|=0/r
1
X —
gli(xi)
IS a.2\d
<2 Y 2-a9(2|5|(12+1nn)) .(2 e )
c0 c
Sc{1,...,n}k
IS1=0/r
(enr/c)d (z|5|(1+1nn))5'
X e T
201ORT oy c*0
IS|1=0/r
2 d 0 s
=2‘(eanr;//(;)] Z (n)(Zs(l -zkglnn))
2 s=fo/r /N €
(e2nr/c)? i (en 2s(l+lnn))s
<o S T
2¢ s=To/r \ ° c*0
(e?nr/c)d < s
2. > 2
%
201011 5
. (e?nr/c)?
2a[0/21+70/r1’

where the first step follows from (26) and (28); the second step
substitutes the bound from (27); the third step uses (4); and the
next-to-last step uses (5). In summary, we have shown that

(eznr/c)d
[C(x)| < 4- Sarerz e A(x),  x€(suppA)l<zp-  (29)

STEP 4: FINISHING THE PROOF. Define A = A — . Then the
support property (6) follows from (22) and (25); the analytic indis-
tinguishability property (7) follows from (24); and the pointwise
property (8) follows from (22) and (29). I
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3.2 A Bounded Dual Polynomial for MP

We now turn to the construction of a gadget for our amplification
theorem. Let B*(r, ¢, ) denote the family of probability distribu-
tions A on N such that supp A = {0, 1,2, ...,r’} for some nonnega-
tive integer r’ < r, and moreover

c 1

— <) ——, te A
Gripzer SMDS e SupPP

In this family, a distribution’s weight at any given point is prescribed
up to the multiplicative constant c, in contrast to the exponentially
large range allowed in the definition of B(r, c, a). For all parameter
settings, we have 8*(r, ¢, a) € B(r, ¢, ). Indeed, the containment
holds trivially for ¢ < 1, and remains valid for ¢ > 1 because the
left-hand side and right-hand side are both empty in that case. It will
be helpful to have shorthand notation for translates of distributions
in B(r, ¢, a): we define B*(r, ¢, @, A) for A > 0 to be the family of
probability distributions A on N such that A(¢) = A’(¢ — a) for some
A € B*(r,c,a)and a € [0, A].

As our next step toward analyzing the threshold degree of AC?,
we will construct a dual object that witnesses the high threshold
degree of MP}, , and possesses additional metric properties in the
sense of B*.

THEOREM 3.2. For some absolute constants c1, ¢y € (0,1) and all
positive integers m and r, there are probability distributions Ag, A1

such that
. o \*" .
Aj € conv B (r,cl, ﬁ’ 1) ), i=0,1, (30)
suppA; C (MP}, )7 (i), i=0,1, (31)
orth(A1 — Ag) > min{m, c;\r}. (32)

A proof of this theorem is available in the full version [39] of our
paper.

3.3 Hardness Amplification

We now present a black-box transformation that takes any given
circuit in n variables with threshold degree n!~€ into a circuit with
polynomially larger threshold degree, Q(nl_i). This hardness
amplification procedure increases the circuit size additively by
n°W and the circuit depth by 2, preserving membership in ACC.

THEOREM 3.3. Let n,m, N be positive integers. Then there is an
(explicitly given) transformation H: {0,1}N — {0,1}", computable
by an AND-OR-AND circuit of size (Nnm)©W with bottom fan-in

O(log(nm)), such that for all functions f: {0,1}" — {0,1},
min{deg, (f o H),deg,(f o =H)}
cN
> min | cm deg (f), —————— - nlog(n + m),
min {cm eg. (f) SomIog?(n + ) n} og(n + m)

where 0 < ¢ < 1 is an absolute constant independent of n,m, N.

The proof of this central result combines Theorems 3.1 and 3.2 and
can be found in the full version [39]. For the function H with multi-
bit output, the notation —H above refers to the function obtained
by negating each of H’s outputs.
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3.4 Threshold Degree and Discrepancy of AC®

We have reached our main result on the sign-representation of
constant-depth circuits. For any € > 0, the next theorem constructs
a circuit family in AC? with threshold degree Q(n'~¢). The proof
amounts to a recursive application of the hardness amplification
procedure of Section 3.3.

THEOREM 3.4. Fix an integer k > 1. Then there is an (explicitly

given) family of functions {fi n},_;, where fi ,: {0,1}" — {0,1}
has threshold degree

deg. (fk,n) = Q (n% - (log n)” F1 f%]L%J) (33)

and is computable by a monotone Boolean circuit of size n°W and
depth k. In addition, the circuit for fi , has bottom fan-in O(log n)
forallk + 2.

Proor. The proof is by induction on k. The base cases k = 1
and k = 2 correspond to the families

Si,n(x) = x1,
fan(x) = MPLn1/3J’

For the former, the threshold degree lower bound (33) is trivial. For
the latter, it follows from Theorem 2.2.

For the inductive step, fix k > 3. Due to the asymptotic nature
of (33), it is enough to construct the functions in {fi ,},_, for n
larger than a certain constant of our choosing. As a starting point,
the inductive hypothesis gives an explicit family {fi_ ,}5-; in
which fi_5 ,: {0,1}" — {0, 1} has threshold degree

n=1273,...,
n=1273,....

k-3

deg, (fimz,n) = @ (nf5 - (logm B FIF) 5a)

and is computable by a monotone Boolean circuit of size n°® and
depth k — 2. We view the circuit for fi_, , as composed of k — 2
layers of alternating gates, where without loss of generality the bot-
tom layer consists of AND gates. This last property can be forced by
using = f_p, n(—x1, 72, .. ., ~Xp) instead of fi_y ,(x1,x2,...,%p),
which interchanges the circuit’s AND and OR gates without affect-
ing the threshold degree, circuit depth, or circuit size.

Now, let ¢ > 0 be the absolute constant from Theorem 3.3. For

every N larger than a certain constant, we apply Theorem 3.3 with

n= [N%(logN)—ﬁf¥H%J—zf;” : ﬁ} (35)
m = [NT (og Ny e 1L ] (36)
f= fk*Z,n (37)

to obtain a function Hy : {0, 1} — {0, 1}" such that the compo-
sition Fy = fi_y  © Hyn has threshold degree

degi(FN)
>'{d(f) l }1<+>
> min {cmde o), —————— —nlog(n+m
B+Vk-2.n 50mlog®(n + m) &
:@(N%(logN)_ﬁ’—%]L%J_%)
= 0 (N (og Ny m IS, (38)
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where the second step uses (34)—(36). Moreover, Theorem 3.3 en-
sures that Hy is computable by an AND-OR-AND circuit of poly-
nomial size and bottom fan-in O(log N). The bottom layer of fi_5
consists of AND gates, which can be merged with the top layer of
Hpy to give a circuit for Fy = fi_ , oHn of depth (k—2)+3—1 = k.

We have thus constructed, for some constant Ny, a family of
functions {FN};‘;:NO in which each Fy: {0,1}N — {0,1} has
threshold degree (38) and is computable by a Boolean circuit of
polynomial size, depth k, and bottom fan-in O(log N). Now, take
the circuit for Fjy and replace the negated inputs in it with N new,
unnegated inputs. The resulting monotone circuit on 2N variables
clearly has threshold degree at least that of Fjy. This completes the
inductive step. 0

Theorem 3.4 settles Theorem 1.1 from the introduction. In the full
version of this paper, we use the pattern matrix method to “lift”
Theorem 3.4 to communication complexity.

4 THE SIGN-RANK OF AC?

We now turn to our second main result, a near-optimal lower bound
on the sign-rank of constant-depth circuits. Our approach here is
based on the notion of local smoothness and is unrelated to the
threshold degree analysis. We start by defining local smoothness
and recording basic properties of locally smooth functions. Next,
we develop techniques for manipulating locally smooth functions
to achieve desired global behavior, without the manipulations being
detectable by low-degree polynomials. To apply this machinery to
constant-depth circuits, we design a locally smooth dual polynomial
for the Minsky—-Papert function. We then use this dual object to
prove an amplification theorem for smooth threshold degree. We
apply the amplification theorem iteratively to construct, for any € >
0, a constant-depth circuit with exp(—O(n1~¢))-smooth threshold
degree Q(n'~€). Finally, we conclude with a proof of our main
result on the sign-rank of ACY.

Due to the page limit, we defer the remainder of this section to
the full version of this paper [39].
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