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ABSTRACT
The threshold degree of a Boolean function f : {0, 1}n ! {0, 1} is
the minimum degree of a real polynomial p that represents f in
sign: sgnp(x) = (�1)f (x ). A related notion is sign-rank, de�ned
for a Boolean matrix F = [Fi j ] as the minimum rank of a real ma-
trixM with sgnMi j = (�1)Fi j . Determining the maximum thresh-
old degree and sign-rank achievable by constant-depth circuits
(AC0) is a well-known and extensively studied open problem, with
complexity-theoretic and algorithmic applications.

We give an essentially optimal solution to this problem. For any
� > 0, we construct an AC0 circuit in n variables that has thresh-
old degree �(n1�� ) and sign-rank exp(�(n1�� )), improving on the
previous best lower bounds of �(pn) and exp(�̃(pn)), respectively.
Our results subsume all previous lower bounds on the threshold
degree and sign-rank of AC0 circuits of any given depth, with a
strict improvement starting at depth 4. As a corollary, we also ob-
tain near-optimal bounds on the discrepancy, threshold weight,
and threshold density of AC0, strictly subsuming previous work
on these quantities. Our work gives some of the strongest lower
bounds to date on the communication complexity of AC0.
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1 INTRODUCTION
A real polynomial p is said to sign-represent the Boolean func-
tion f : {0, 1}n ! {0, 1} if sgnp(x) = (�1)f (x ) for every input
x 2 {0, 1}n . The threshold degree of f , denoted deg±(f ), is the min-
imum degree of a multivariate real polynomial that sign-represents
f . Equivalent terms in the literature include strong degree, voting
polynomial degree, PTF degree, and sign degree. Since any function
f : {0, 1}n ! {0, 1} can be represented exactly by a real polynomial
of degree at most n, the threshold degree of f is an integer between
0 and n. Viewed as a computational model, sign-representation is
remarkably powerful because it corresponds to the strongest form
of pointwise approximation. The formal study of threshold degree
began in 1969 with the pioneering work of Minsky and Papert [21]
on limitations of perceptrons. The authors of [21] famously proved
that the parity function on n variables has the maximum possible
threshold degree, n. They obtained lower bounds on the thresh-
old degree of several other functions, including DNF formulas and
intersections of halfspaces. Since then, sign-representing polyno-
mials have found applications far beyond arti�cial intelligence. In
theoretical computer science, applications of threshold degree in-
clude circuit lower bounds, size-depth trade-o�s, communication
complexity, structural complexity, and computational learning; see
the full version [39] of this paper for a bibliographic overview.

The notion of threshold degree has been especially in�uential
in the study of AC0, the class of constant-depth polynomial-size
circuits with ^,_,¬ gates of unbounded fan-in. The �rst such re-
sult was obtained by Aspnes et al. [3], who used sign-representing
polynomials to give a beautiful new proof of classic lower bounds
for AC0. In communication complexity, the notion of threshold
degree played a central role in the �rst construction [28, 30] of an
AC0 circuit with exponentially small discrepancy and hence large
communication complexity in nearly every model. That discrep-
ancy result was used in [28] to show the optimality of Allender’s
classic simulation of AC0 by majority circuits, solving the open
problem [18] on the relation between the two circuit classes. Sub-
sequent work [5, 13, 36, 38] resolved other questions in communi-
cation complexity and circuit complexity related to constant-depth
circuits by generalizing the threshold degree method of [28, 30].

Sign-representing polynomials also paved the way for algorith-
mic breakthroughs in the study of constant-depth circuits. Speci�-
cally, any function of threshold degree d can be viewed as a half-
space in

�n
0
�
+

�n
1
�
+ · · · +

�n
d
�
dimensions, corresponding to the

monomials in a sign-representation of f . As a result, a class of
functions of threshold degree at most d can be learned in the stan-
dard PACmodel under arbitrary distributions in time polynomial in�n
0
�
+

�n
1
�
+ · · · +

�n
d
�
. Klivans and Servedio [16] used this threshold

degree approach to give what is currently the fastest algorithm
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Table 1: Known bounds on the maximum threshold degree
of ^,_,¬-circuits of polynomial size and constant depth. In
all bounds, n denotes the number of variables, and k denotes
an arbitrary positive integer.

Depth Threshold degree Reference

2 �(n1/3) Minsky and Papert [21]

2 O(n1/3 logn) Klivans and Servedio [16]

k + 2 �(n1/3 log2k/3 n) O’Donnell and Servedio [23]

k �(n k�1
2k�1 ) Sherstov [35]

4 �(pn) Sherstov [37]

3 �̃(pn) Bun and Thaler [12]

k �̃(n k�1
k+1 ) This paper

for learning polynomial-size DNF formulas, with running time
exp(Õ(n1/3)). Another learning-theoretic breakthrough based on
threshold degree is the fastest algorithm for learning Boolean for-
mulas, obtained by O’Donnell and Servedio [23] for formulas of
constant depth and by Ambainis et al. [2] for arbitrary depth. Their
algorithm runs in time exp(Õ(n(2k�1�1)/(2k�1))) for formulas of size
n and constant depth k , and in time exp(Õ(pn)) for formulas of
unbounded depth. In both cases, the bound on the running time fol-
lows from the corresponding upper bound on the threshold degree.

A far-reaching generalization of threshold degree is the matrix-
analytic notion of sign-rank, which allows sign-representation out
of arbitrary low-dimensional subspaces rather than the subspace
of low-degree polynomials. The contribution of this paper is to
prove essentially optimal lower bounds on the threshold degree
and sign-rank of AC0, which in turn imply lower bounds on other
fundamental complexity measures of interest in communication
complexity and learning theory. In the remainder of this section,
we give a detailed overview of the previous work, present our main
results, and discuss our proofs.

1.1 Threshold Degree of AC0

Determining the maximum threshold degree of an AC0 circuit in n
variables is a longstanding open problem in the area. It is motivated
by algorithmic and complexity-theoretic applications [8, 16, 17, 23,
26], in addition to being a natural question in its own right. Table 1
gives a quantitative summary of the results obtained to date. In their
seminal monograph, Minsky and Papert [21] proved a lower bound
of �(n1/3) on the threshold degree of the following DNF formula in
n variables: f (x) = ”n1/3

i=1
‘n2/3
j=1 xi, j . Three decades later, Klivans

and Servedio [16] obtained an O(n1/3 logn) upper bound on the
threshold degree of any polynomial-size DNF formula inn variables,
essentially matching Minsky and Papert’s result and resolving the
problem for depth 2. Determining the threshold degree of circuits
of depth k > 3 proved to be challenging. The only upper bound
known to date is the trivial O(n), which follows directly from the
de�nition of threshold degree. In particular, it is consistent with our

Table 2: Known lower bounds on the maximum sign-rank
of ^,_,¬-circuits F : {0, 1}n ⇥ {0, 1}n ! {0, 1} of polynomial
size and constant depth. In all bounds,k denotes an arbitrary
positive integer.

Depth Sign-rank Reference

3 exp(�(n1/3)) Razborov and Sherstov [26]

3 exp(�̃(n2/5)) Bun and Thaler [10]

7 exp(�̃(pn)) Bun and Thaler [12]

3k exp(�̃(n1� 1
k+1 )) This paper

3k + 1 exp(�̃(n1� 1
k+1.5 )) This paper

knowledge that there are AC0 circuits with linear threshold degree.
On the lower bounds side, the only progress for a long time was
due to O’Donnell and Servedio [23], who constructed for any k > 1
a circuit of depth k + 2 with threshold degree �(n1/3 log2k/3 n).
The authors of [23] formally posed the problem of obtaining a
polynomial improvement on Minsky and Papert’s lower bound.
Such an improvement was obtained in [35], with a threshold degree
lower bound of �(n(k�1)/(2k�1)) for circuits of depth k . A polyno-
mially stronger result was obtained in [37], with a lower bound
of �(pn) on the threshold degree of an explicit circuit of depth 4.
Bun and Thaler [12] recently used a di�erent, depth-3 circuit to
give a much simpler proof of the �̃(pn) lower bound for AC0. We
obtain a quadratically stronger, and near-optimal, lower bound on
the threshold degree of AC0.

T������ 1.1. Fix an integer k > 1. Then there is an (explicitly
given) Boolean circuit family { fn }1n=1, where fn : {0, 1}n ! {0, 1}
has polynomial size, depth k, and threshold degree

deg±(fn ) = �
⇣
n
k�1
k+1 · (logn)� 1

k+1 d
k�2
2 e b k�22 c

⌘
.

Moreover, fn has bottom fan-in O(logn) for all k , 2.

For large k, Theorem 1.1 essentially matches the trivial upper bound
of n on the threshold degree of any function. For any �xed depth
k, Theorem 1.1 subsumes all previous lower bounds on the thresh-
old degree of AC0, with a polynomial improvement starting at
depth k = 4. In particular, the lower bounds due to Minsky and
Papert [21] and Bun and Thaler [12] are subsumed as the special
cases k = 2 and k = 3, respectively. From a computational learning
perspective, Theorem 1.1 de�nitively rules out the threshold de-
gree approach to learning constant-depth circuits. By well-known
reductions, Theorem 1.1 implies a number of other lower bounds
for the representation of AC0 circuits by polynomials; see the full
version [39] of this paper for details.

1.2 Sign-rank of AC0

The sign-rank of a matrix A = [Ai j ] without zero entries, de-
noted rk±(A), is the least rank of a real matrix M = [Mi j ] with
sgnMi j = sgnAi j for all i, j . In other words, the sign-rank of A
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is the minimum rank of a matrix that can be obtained by making
arbitrary sign-preserving changes to the entries of A. The sign-
rank of a Boolean function F : {0, 1}n ⇥ {0, 1}n ! {0, 1} is de�ned
in the natural way as the sign-rank of the matrix [(�1)F (x,�)]x,� .
In particular, the sign-rank of F is an integer between 1 and 2n .
This fundamental notion has been studied in contexts as diverse
as matrix analysis, communication complexity, circuit complexity,
and learning theory; see [26] for a bibliographic overview. To a
complexity theorist, sign-rank is a vastly more challenging quantity
to analyze than threshold degree. Indeed, a sign-rank lower bound
rules out sign-representation out of every linear subspace of given
dimension, whereas a threshold degree lower bound rules out sign-
representation speci�cally by linear combinations of monomials
up to a given degree.

Unsurprisingly, progress in understanding sign-rank has been
slow and di�cult. No nontrivial lower bounds were known for any
explicit matrices until the breakthrough work of Forster [14], who
proved strong lower bounds on the sign-rank of Hadamard matrices
and more generally all sign matrices with small spectral norm. The
sign-rank of constant-depth circuits F : {0, 1}n ⇥ {0, 1}n ! {0, 1}
has since seen considerable work, as summarized in Table 2. The
�rst exponential lower bound on the sign-rank of an AC0 cir-
cuit was obtained by Razborov and Sherstov [26], solving a 22-
year-old problem due to Babai, Frankl, and Simon [4]. The au-
thors of [26] constructed a polynomial-size circuit of depth 3 with
sign-rank exp(�(n1/3)). In follow-up work, Bun and Thaler [10]
constructed a polynomial-size circuit of depth 3 with sign-rank
exp(�̃(n2/5)). A more recent and incomparable result, also due to
Bun and Thaler [12], is a sign-rank lower bound of exp(�̃(pn)) for a
circuit of polynomial size and depth 7. No nontrivial upper bounds
are known on the sign-rank of AC0. Closing this gap between the
best lower bound of exp(�̃(pn)) and the trivial upper bound of 2n
has been a challenging open problem. We solve this problem almost
completely, by constructing for any � > 0 a constant-depth circuit
with sign-rank exp(�(n1�� )). In quantitative detail, our results on
the sign-rank of AC0 are the following two theorems.

T������ 1.2. Fix an integer k > 1. Then there is an (explicitly
given) Boolean circuit family {Fn }1n=1,where Fn : {0, 1}n⇥{0, 1}n !
{0, 1} has polynomial size, depth 3k, and sign-rank

rk±(Fn ) = exp
✓
�

✓
n1�

1
k+1 · (logn)�

k (k�1)
2(k+1)

◆◆
.

T������ 1.3. Fix an integer k > 1. Then there is an (explicitly
given) Boolean circuit family {Gn }1n=1,whereGn : {0, 1}n⇥{0, 1}n !
{0, 1} has polynomial size, depth 3k + 1, and sign-rank

rk±(Gn ) = exp
✓
�

✓
n1�

1
k+1.5 · (logn)� k2

2k+3

◆◆
.

For large k , the lower bounds of Theorems 1.2 and 1.3 approach
the trivial upper bound of 2n on the sign-rank of any Boolean func-
tion {0, 1}n ⇥ {0, 1}n ! {0, 1}. For any given depth, Theorems 1.2
and 1.3 subsume all previous lower bounds on the sign-rank of
AC0, with a strict improvement starting at depth 3. From a compu-
tational learning perspective, Theorems 1.2 and 1.3 state that AC0

has near-maximum dimension complexity [12, 26, 27, 29], namely,
exp(�(n1�� )) for any constant � > 0. This rules out the possi-
bility of learning AC0 circuits via dimension complexity [26], a

far-reaching generalization of the threshold degree approach from
the monomial basis to arbitrary bases.

1.3 Communication Complexity
Theorems 1.1–1.3 imply strong new lower bounds on the commu-
nication complexity of AC0. We adopt the standard randomized
model of Yao [19], with players Alice and Bob and a Boolean func-
tion F : X ⇥ Y ! {0, 1}. On input (x ,�) 2 X ⇥ Y , Alice and Bob
receive the arguments x and �, respectively, and communicate back
and forth according to an agreed-upon protocol. Each player pri-
vately holds an unlimited supply of uniformly random bits that he
or she can use when deciding what message to send at any given
point in the protocol. The cost of a protocol is the total number
of bits communicated in a worst-case execution. The �-error ran-
domized communication complexity R� (F ) of F is the least cost of
a protocol that computes F with probability of error at most � on
every input.

Of particular interest to us are communication protocols with
error probability close to that of random guessing, 1/2. There are
two standard ways to formalize the complexity of a communication
problem F in this setting, both inspired by probabilistic polynomial
time PP for Turing machines:

UPP(F ) = inf
06�<1/2

R� (F ),

PP(F ) = inf
06�<1/2

(
R� (F ) + log2

 
1

1
2 � �

!)
.

The former quantity, introduced by Paturi and Simon [25], is called
the communication complexity of F with unbounded error, in refer-
ence to the fact that the error probability can be arbitrarily close to
1/2. The latter quantity is called the communication complexity of F
with weakly unbounded error. Proposed by Babai et al. [4], it features
an additional penalty term that depends on the error probability.
It is clear that UPP(F ) 6 PP(F ) 6 n + 2 for every communication
problem F : {0, 1}n ⇥ {0, 1}n ! {0, 1}, with an exponential gap
achievable between the two complexity measures [6, 27]. These
two models occupy a special place in the study of communication
because they are more powerful than any other standard model
(deterministic, nondeterministic, randomized, quantum with or
without entanglement). Moreover, unbounded-error protocols rep-
resent a frontier in communication complexity theory in that they
are the most powerful protocols for which explicit lower bounds
are known. Our results imply that even for such protocols, AC0 has
near-maximal communication complexity. To begin with, combin-
ing Theorem 1.1 with the pattern matrix method [28, 30] gives:

T������ 1.4. Let k > 3 be a �xed integer. Then there is an
(explicitly given) Boolean circuit family {Fn }1n=1,where Fn : {0, 1}n⇥
{0, 1}n ! {0, 1} has polynomial size, depth k, communication com-
plexity

PP(Fn ) = �
⇣
n
k�1
k+1 · (logn)� 1

k+1 d
k�2
2 e b k�22 c

⌘
and discrepancy

disc(Fn ) = exp
⇣
��

⇣
n
k�1
k+1 · (logn)� 1

k+1 d
k�2
2 e b k�22 c

⌘⌘
.

Discrepancy is a combinatorial complexity measure of interest in
communication complexity theory and other research areas; see the
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full version [39] of this paper for a formal de�nition. As k grows,
the bounds of Theorem 1.4 approach the best possible bounds
for any communication problem Fn : {0, 1}n ⇥ {0, 1}n ! {0, 1}.
The same qualitative behavior was achieved in previous work by
Bun and Thaler [12], who constructed, for any constant � > 0, a
constant-depth circuit Fn : {0, 1}n ⇥ {0, 1}n ! {0, 1} with commu-
nication complexity PP(Fn ) = �(n1�� ) and discrepancy disc(Fn ) =
exp(��(n1�� )). Theorem 1.4 strictly subsumes the result of Bun
and Thaler [12] and all other prior work on the discrepancy and
PP-complexity of constant-depth circuits [6, 28, 30, 35, 37]. For any
�xed depth greater than 3, the bounds of Theorem 1.4 are a poly-
nomial improvement in n over all previous work. We further show
that Theorem 1.4 carries over to the number-on-the-forehead model,
the strongest formalism of multiparty communication. This result,
presented in detail in Section 3.4, uses the multiparty version [36]
of the pattern matrix method.

Our work also gives near-optimal lower bounds for AC0 in the
muchmore powerful unbounded-error model. Speci�cally, it is well-
known [25] that the unbounded-error communication complexity
of any Boolean function F : X ⇥ Y ! {0, 1} coincides up to an
additive constant with the logarithm of the sign-rank of F . As a
result, Theorems 1.2 and 1.3 imply:

T������ 1.5. Let k > 1 be a given integer. Let {Fn }1n=1 and
{Gn }1n=1 be the polynomial-size circuit families of depth 3k and
3k + 1, respectively, constructed in Theorems 1.2 and 1.3. Then

UPP(Fn ) = �

✓
n1�

1
k+1 · (logn)�

k (k�1)
2(k+1)

◆
,

UPP(Gn ) = �

✓
n1�

1
k+1.5 · (logn)� k2

2k+3

◆
.

For large k, the lower bounds of Theorem 1.5 essentially match
the trivial upper bound of n + 1 on the unbounded-error commu-
nication complexity of any function F : {0, 1}n ⇥ {0, 1}n ! {0, 1}.
Theorem 1.5 strictly subsumes all previous lower bounds on the
unbounded-error communication complexity of AC0, with a poly-
nomial improvement for any depth greater than 2. The best lower
bound on the unbounded-error communication complexity of AC0

prior to our work was �̃(pn) for a circuit of depth 7, due to Bun and
Thaler [12]. Finally, we remark that Theorem 1.5 gives essentially
the strongest possible separation of the communication complexity
classes PH and UPP. We refer the reader to the work of Babai et
al. [4] for de�nitions and detailed background on these classes.

Qualitatively, Theorem 1.5 is stronger than Theorem 1.4 because
communication protocols with unbounded error are signi�cantly
more powerful than those with weakly unbounded error. On the
other hand, Theorem 1.4 is stronger quantitatively for any �xed
depth and has the additional advantage of generalizing to the mul-
tiparty setting.

1.4 Previous Approaches
In the remainder of this section, we discuss our proofs of The-
orems 1.1–1.3. The notation that we use here is standard, and
we defer its formal review to Section 2. We start with necessary
approximation-theoretic background, then review relevant previ-
ous work, and �nally contrast it with the approach of this paper.

To sidestep minor technicalities, we will represent Boolean func-
tions in this overview as mappings {�1,+1}n ! {�1,+1}. We
alert the reader that we will revert to the standard {0, 1}n ! {0, 1}
representation starting with Section 2.

Background. Recall that our results concern the sign-representation
of Boolean functions and matrices. To properly set the stage for our
proofs, however, we need to consider the more general notion of
pointwise approximation [22]. Let f : {�1,+1}n ! {�1,+1} be a
Boolean function of interest. The �-approximate degree of f , denoted
deg� (f ), is the minimum degree of a real polynomial that approxi-
mates f within � pointwise: deg� (f ) = min{degp : k f �pk1 6 �}.
The regimes of most interest are bounded-error approximation, cor-
responding to constants � 2 (0, 1); and large-error approximation,
corresponding to � = 1�o(1). In the former case, the choice of error
parameter � 2 (0, 1) is immaterial and a�ects the approximate de-
gree of a Boolean function by at most a multiplicative constant. It is
clear that pointwise approximation is a stronger requirement than
sign-representation, and thus deg±(f ) 6 deg� (f ) for all 0 6 � < 1.
A moment’s thought reveals that threshold degree is in fact the
limiting case of �-approximate degree as the error parameter ap-
proaches 1:

deg±(f ) = lim
�%1

deg� (f ). (1)

Both approximate degree and threshold degree have dual char-
acterizations [30], obtained by appeal to linear programming du-
ality. Speci�cally, deg� (f ) > d if and only if there is a function
� : {�1,+1}n ! R with the following two properties: h�, f i >
� k�k1; and h�,pi = 0 for every polynomial p of degree less than
d . Rephrasing, � must have large correlation with f but zero cor-
relation with every low-degree polynomial. By weak linear pro-
gramming duality, � constitutes a proof that deg� (f ) > d and for
that reason is said to witness the lower bound deg� (f ) > d . In
view of (1), this discussion generalizes to threshold degree. The
dual characterization here states that deg±(f ) > d if and only if
there is a nonzero function � : {�1,+1}n ! R with the following
two properties: �(x)f (x) > 0 for all x ; and h�,pi = 0 for every
polynomial p of degree less than d . In this dual characterization, �
agrees in sign with f and is additionally orthogonal to polynomials
of degree less than d . The sign-agreement property can be restated
in terms of correlation, as h�, f i = k�k1. As before, � is called a
threshold degree witness for f .

What distinguishes the dual characterizations of approximate
degree and threshold degree is how the dual object � relates to f .
Speci�cally, a threshold degree witness must agree in sign with f
at every point. An approximate degree witness, on the other hand,
need only exhibit such sign-agreement with f at most points, in
that the points where the sign of � is correct should account for
most of the `1 norm of � . As a result, constructing dual objects for
threshold degree is signi�cantly more di�cult than for approximate
degree. This di�culty is to be expected because the gap between
threshold degree and approximate degree can be arbitrary, e.g.,
1 versus �(n) for the majority function on n bits [24].

Hardness amplification via block-composition. Much of the recent
work on approximate degree and threshold degree is concerned
with composing functions in ways that amplify their hardness.
Of particular signi�cance here is block-composition, de�ned for
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functions f : {�1,+1}n ! {�1,+1} and � : X ! {�1,+1} as the
function f � � : Xn ! {�1,+1} given by (f � �)(x1, . . . ,xn ) =
f (�(x1), . . . ,�(xn )). Block-composition works particularly well for
threshold degree. To use an already familiar example, the block-
compositionANDn1/3�ORn2/3 has threshold degree�(n1/3)whereas
the constituent functions ANDn1/3 and ORn2/3 have threshold de-
gree 1. As a more extreme example, Sherstov [34] obtained a lower
bound of �(n) on the threshold degree of the conjunction h1^h2 of
two halfspacesh1,h2 : {0, 1}n ! {0, 1}, each of which by de�nition
has threshold degree 1. The fact that threshold degree can increase
spectacularly under block-composition is the basis of much pre-
vious work, including the best previous lower bounds [35, 37] on
the threshold degree of AC0 . Apart from threshold degree, block-
composition has yielded strong results for approximate degree in
various error regimes, including direct sum theorems [32], direct
product theorems [31], and error ampli�cation results [8, 9, 31, 40].

How, then, does one prove lower bounds on the threshold degree
or approximate degree of a composed function f ��? It is here that
the dual characterizations take center stage: they make it possible
to prove lower bounds algorithmically, by constructing the corre-
sponding dual object for the composed function. Such algorithmic
proofs run the gamut in terms of technical sophistication, from
straightforward to highly technical, but they have some structure
in common. In most cases, one starts by obtaining dual objects �
and � for the constituent functions f and �, respectively, either
by direct construction or by appeal to linear programming duality.
They are then combined to yield a dual object � for the composed
function, using dual block-composition [20, 32]:

�(x1,x2, . . . ,xn ) = �(sgn� (x1), . . . , sgn� (xn ))
n÷
i=1

|� (xi )|. (2)

This composed dual object often requires additional work to ensure
sign-agreement or correlation with the composed Boolean func-
tion. Among the generic tools available to assist in this process is
a “corrector” object � due to Razborov and Sherstov [26], with the
following four properties: (i) � is orthogonal to low-degree polyno-
mials; (ii) � takes on 1 at a prescribed point of the hypercube; (iii) �
is bounded on inputs of low Hamming weight; and (iv) � vanishes
on all other points of the hypercube. Using the Razborov–Sherstov
object, suitably shifted and scaled, one can surgically correct the
behavior of a given dual object � on a substantial fraction of inputs,
thus modifying its metric properties without a�ecting its orthog-
onality to low-degree polynomials. This technique has played an
important role in recent work, e.g., [7, 10–12].

Hardness amplification for approximate degree. Block-composition
has produced a treasure trove of results on polynomial representa-
tions of Boolean functions, yet it is of little use when it comes to con-
structing functions with high bounded-error approximate degree. To
illustrate the issue, consider arbitrary functions f : {�1,+1}n1 !
{�1,+1} and � : {�1,+1}n2 ! {�1,+1} with 1/3-approximate
degrees n�1

1 and n�2
2 , respectively, for some 0 < �1 < 1 and

0 < �2 < 1. It is well-known [33] that the composed function
f � � on n1n2 variables has 1/3-approximate degree O(n�1

1 n�2
2 ) =

O(n1n2)max{�1,�2 } . This means that relative to the new number
of variables, the block-composed function f � � is asymptotically
no harder to approximate to bounded error than the constituent

functions f and �. In particular, one cannot use block-composition
to transform functions on n bits with 1/3-approximate degree at
most n� into functions on N > n bits with 1/3-approximate degree
�(N � ).

Until recently, the best lower bound on the bounded-error ap-
proximate degree of AC0 was �(n2/3), due to Aaronson and Shi [1].
Breaking this n2/3 barrier was a fundamental problem in its own
right, in addition to being a hard prerequisite for threshold degree
lower bounds for AC0 better than �(n2/3). This barrier was over-
come in a brilliant paper of Bun and Thaler [11], who proved, for any
constant � > 0, an �(n1�� ) lower bound on the 1/3-approximate
degree of AC0. Their hardness ampli�cation for approximate de-
gree works as follows. Let f : {�1,+1}n ! {�1,+1} be given,
with 1/3-approximate degree n� for some 0 6 � < 1. Bun and
Thaler consider the block-composition F = f �AND�(logm) �ORm ,
for an appropriate parameter m = poly(n). As shown in earlier
work [8, 32] on approximate degree, dual block-composition wit-
nesses the lower bound deg1/3(F ) = �(deg1/3(ORm ) deg1/3(f )) =
�(pm deg1/3(f )). Next, Bun and Thaler make the crucial observa-
tion that the dual object for ORm has most of its `1 mass on inputs
of Hamming weight O(1), which in view of (2) implies that the
dual object for F places most of its `1 mass on inputs of Hamming
weight Õ(n). The authors of [11] then use the Razborov–Sherstov
corrector object to transfer the small amount of `1 mass that the
dual object for F places on inputs of high Hamming weight, to
inputs of low Hamming weight. The resulting dual object for F is
supported entirely on inputs of low Hamming weight and therefore
witnesses a lower bound on the 1/3-approximate degree of the re-
striction F 0 of F to inputs of low Hamming weight. By re-encoding
the input to F 0, one �nally obtains a function F 00 on Õ(n) variables
with 1/3-approximate degree polynomially larger than that of f .
This passage from f to F 00 is the desired hardness ampli�cation for
approximate degree. We �nd it helpful to think of Bun and Thaler’s
technique as block-composition followed by input compression,
to reduce the number of input variables in the block-composed
function. To obtain an �(n1�� ) lower bound on the approximate
degree of AC0, the authors of [11] start with a trivial circuit and
iteratively apply the hardness ampli�cation step a constant number
of times, until approximate degree �(n1�� ) is reached.

In follow-up work, Bun, Kothari, and Thaler [7] re�ned the tech-
nique of [11] by deriving optimal concentration bounds for the
dual object for ORm . They thereby obtained tight or nearly tight
lower bounds on the 1/3-approximate degree of surjectivity, ele-
ment distinctness, and other important problems. The most recent
contribution to this line of work is due to Bun and Thaler [12], who
prove an �(n1�� ) lower bound on the (1 � 2�n

1�� )-approximate
degree of AC0 by combining the method of [11] with Sherstov’s
work [31] on direct product theorems for approximate degree. This
near-linear lower bound substantially strengthens the authors’ pre-
vious result [11] on the bounded-error approximate degree of AC0,
but does not address the threshold degree.

1.5 Our Approach
Threshold Degree of AC 0. Bun and Thaler [12] refer to obtaining
an �(n1�� ) threshold degree lower bound for AC0 as the “main
glaring open question left by our work.” It is important to note
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here that lower bounds on approximate degree, even with the error
parameter exponentially close to 1 as in [12], have no implications
for threshold degree. For example, there are functions [34] with
(1 � 2��(n))-approximate degree �(n) but threshold degree 1. Our
proof of Theorem 1.1 is unrelated to the most recent work of Bun
and Thaler [12] on the large-error approximate degree of AC0 and
instead builds on their earlier and simpler “block-composition fol-
lowed by input compression” approach [11]. The centerpiece of
our proof is a hardness ampli�cation result for threshold degree,
whereby any function f with threshold degree n� for a constant
0 6 � < 1 can be transformed e�ciently and within AC0 into a
function F with polynomially larger threshold degree.

In more detail, let f : {�1,+1}n ! {�1,+1} be a function of in-
terest, with threshold degreen� .We consider the block-composition
f � MPm , where m = nO (1) is an appropriate parameter and
MPm = ANDm �ORm2 is the Minsky–Papert function with thresh-
old degree �(m). We construct the dual object for MPm from
scratch to ensure concentration on inputs of Hamming weight
Õ(m). By applying dual block-composition to the threshold degree
witnesses of f and MPm , we obtain a dual object � witnessing
the �(mn� ) threshold degree of f �MPm . So far in the proof, our
di�erences from [11] are as follows: (i) since our goal is ampli�-
cation of threshold degree, we work with witnesses of threshold
degree rather than approximate degree; (ii) to ensure rapid growth
of threshold degree, we use block-composition with inner function
MPm = ANDm � ORm2 of threshold degree �(m), in place of Bun
and Thaler’s inner function AND�(logm) �ORm of threshold degree
�(logm).

Since the dual object for MPm by construction has most of its
`1 norm on inputs of Hamming weight Õ(m), the dual object �
for the composed function has most of its `1 norm on inputs of
Hamming weight Õ(nm). Analogous to [7, 11, 12], we would like to
use the Razborov–Sherstov corrector object to remove the `1 mass
that � has on the inputs of high Hamming weight, transferring
it to inputs of low Hamming weight. This brings us to the novel
and technically demanding part of our proof. Previous works [7,
11, 12] transferred the `1 mass from the inputs of high Hamming
weight to the neighborhood of the all-zeroes input (0, 0, . . . , 0). An
unavoidable feature of the Razborov–Sherstov transfer process is
that it ampli�es the `1 mass being transferred.When the transferred
mass �nally reaches its destination, it overwhelms �’s original
values at the local points, destroying �’s sign-agreement with the
composed function f �MPm . It is this di�culty that most prevented
earlier works [7, 11, 12] from obtaining a strong threshold degree
lower bound for AC0.

We proceed di�erently. Instead of transferring the `1 mass of �
from the inputs of high Hamming weight to the neighborhood of
(0, 0, . . . , 0), we transfer it simultaneously to exponentially many
strategically chosen neighborhoods. Split this way across many
neighborhoods, the transferred mass does not overpower the origi-
nal values of� and in particular does not change any signs.Working
out the details of this transfer scheme requires subtle and lengthy
calculations; it was not clear to us until the end that such a scheme
exists. Once the transfer process is complete, we obtain a witness
for the �(mn� ) threshold degree of f �MPm restricted to inputs
of low Hamming weight. Compressing the input as in [7, 11], we

obtain an ampli�cation theorem for threshold degree. With this
work behind us, the proof of Theorem 1.1 for any depth k amounts
to starting with a trivial circuit and amplifying its threshold degree
O(k) times.

Sign-rank of AC 0. It is not known how to “lift” a threshold degree
lower bound in a black-box manner to a sign-rank lower bound. In
particular, Theorem 1.1 has no implications a priori for the sign-
rank of AC0. Our proofs of Theorems 1.2 and 1.3 are completely
disjoint from Theorem 1.1 and are instead based on a stronger
approximation-theoretic quantity that we call � -smooth thresh-
old degree. Formally, the � -smooth threshold degree of a Boolean
function f : X ! {�1,+1} is the largest d for which there is a
nonzero function � : X ! R with the following two properties:
�(x)f (x) > � · k�k1/|X | for all x 2 X ; and h�,pi = 0 for every
polynomial p of degree less than d . Taking � = 0 in this formalism,
one recovers the standard dual characterization of the threshold
degree of f . In particular, threshold degree is synonymous with
0-smooth threshold degree. The general case of � -smooth threshold
degree for � > 0 requires threshold degree witnesses � that are
min-smooth, in that the absolute value of � at any given point is at
least a � fraction of the average absolute value of � over all points.
A substantial advantage of smooth threshold degree is that it has
immediate sign-rank implications. Speci�cally, any lower bound
of d on the 2�O (d )-smooth threshold degree can be converted e�-
ciently and in a black-box manner into a sign-rank lower bound of
2�(d ), using a combination of the pattern matrix method [28, 30]
and Forster’s spectral lower bound on sign-rank [14, 15]. Accord-
ingly, we obtain Theorems 1.2 and 1.3 by proving an �(n1�� ) lower
bound on the 2�O (n1�� )-smooth threshold degree of AC0, for any
constant � > 0.

At the core of our result is an ampli�cation theorem for smooth
threshold degree, whose repeated application makes it possible to
prove arbitrarily strong lower bounds for AC0. Amplifying smooth
threshold degree is a complex juggling act due to the presence
of two parameters—degree and smoothness—that must evolve in
coordinated fashion. The approach of Theorem 1.1 is not useful here
because the threshold degree witnesses that arise from the proof of
Theorem 1.1 are highly nonsmooth. Inmore detail, when amplifying
the threshold degree of a function f as in the proof of Theorem 1.1,
two phenomena adversely a�ect the smoothness parameter. The
�rst is block-composition itself as a composition technique, which
in the regime of interest to us transforms every threshold degree
witness for f into a hopelessly nonsmoothwitness for the composed
function. The other culprit is the input compression step, which
re-encodes the input and thereby a�ects the smoothness in ways
that are hard to control. To overcome these di�culties, we develop
a novel approach based on what we call local smoothness.

Formally, let � : Nn ! R be a function of interest. For a subset
X ✓ Nn and a real numberK > 1,we say that � isK-smooth onX if
|�(x)| 6 K |x�x 0 | |�(x 0)| for all x ,x 0 2 X . Put another way, for any
two points ofX at `1 distanced, the corresponding values of� di�er
in magnitude by a factor of at most Kd . In and of itself, a locally
smooth function � need not be min-smooth because for a pair of
points that are far from each other, the corresponding �-values
can di�er by many orders of magnitude. However, locally smooth
functions exhibit extraordinary plasticity. Speci�cally, we show
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how to modify a locally smooth function’s metric properties—such
as its support or the distribution of its `1 mass—without the change
being detectable by low-degree polynomials. This apparatus makes
it possible to restore min-smoothness to the dual object � that
results from the block-composition step and preserve that min-
smoothness throughout the input compression step, eliminating the
two obstacles to min-smoothness in the earlier proof of Theorem 1.1.
The new block-composition step uses a locally smooth witness for
the threshold degree of MPm , which needs to be built from scratch
and is quite di�erent from the witness in the proof of Theorem 1.1.

Our described approach departs considerably from previous
work on the sign-rank of constant-depth circuits [10, 12, 26]. The
analytic notion in those earlier papers is weaker than � -smooth
threshold degree and in particular allows the dual object to be
arbitrary on a � fraction of the inputs. This weaker property is
acceptable when the main result is proved in one shot, with a
closed-form construction of the dual object. By contrast, we must
construct dual objects iteratively, with each iteration increasing the
degree parameter and proportionately decreasing the smoothness
parameter. This iterative process requires that the dual object in
each iteration be min-smooth on the entire domain. Perhaps unex-
pectedly, we �nd � -smooth threshold degree easier to work with
than the weaker notion in previous work [10, 12, 26]. In particular,
we are able to give a new and short proof of the exp(�(n1/3)) lower
bound on the sign-rank of AC0, originally obtained by Razborov
and Sherstov [26] with a much more complicated approach. The
new proof can be found in the full version of our paper [39], where
it serves as a prelude to our main result on the sign-rank of AC0.

2 PRELIMINARIES
2.1 General
For a string x 2 {0, 1}n and a set S ✓ {1, 2, . . . ,n}, we let x |S
denote the restriction of x to the indices in S . In other words, x |S =
xi1xi2 . . . xi |S | ,where i1 < i2 < · · · < i |S | are the elements of S . The
characteristic function of a set S ✓ {1, 2, . . . ,n} is given by

1S (x) =
(
1 if x 2 S,

0 otherwise.

For a logical condition C, we use the Iverson bracket

I[C] =
(
1 if C holds,
0 otherwise.

We let N = {0, 1, 2, 3, . . .} denote the set of natural numbers.
We adopt the extended real number system R [ {�1,1} in

all calculations, with the additional convention that 0/0 = 0.We
use the comparison operators in a unary capacity to denote one-
sided intervals of the real line. Thus, <a, 6a, >a, >a stand for
(�1,a), (�1,a], (a,1), [a,1), respectively. We let lnx and logx
stand for the natural logarithm of x and the logarithm of x to base 2,
respectively. We use the following two versions of the sign function:

sgnx =

8>>><
>>>:

�1 if x < 0,
0 if x = 0,
1 if x > 0,

gsgnx =
(
�1 if x < 0,
1 if x > 0.

The term Euclidean space refers to Rn for some positive integer n.
We let ei denote the vector whose ith component is 1 and the others
are 0. Thus, the vectors e1, e2, . . . , en form the standard basis for
Rn . For vectors x and �, we write x 6 � to mean that xi 6 �i for
each i . The relations >, <, > on vectors are de�ned analogously.

We frequently omit the argument in equations and inequalities
involving functions, as in sgnp = (�1)f . Such statements are to
be interpreted pointwise. For example, the statement “f > 2|� |
on X ” means that f (x) > 2|�(x)| for every x 2 X . The positive
and negative parts of a function f : X ! R are denoted pos f =
max{ f , 0} and neg f = max{�f , 0}, respectively.

2.2 Boolean Functions and Circuits
We view Boolean functions as mappings X ! {0, 1} for some
�nite set X . More generally, we consider partial Boolean func-
tions f : X ! {0, 1, ⇤}, with the output value ⇤ used for don’t-
care inputs. The negation of a Boolean function f is denoted as
usual by f = 1 � f . The familiar functions ORn : {0, 1}n ! {0, 1}
and ANDn : {0, 1}n ! {0, 1} are given by ORn (x) =

‘n
i=1 xi and

ANDn (x) =
”n
i=1 xi .We abbreviate NORn = ¬ORn . The general-

ized Minsky–Papert function MPm,r : ({0, 1}r )m ! {0, 1} is given
by MPm,r (x) =

”m
i=1

‘r
j=1 xi, j . We abbreviate MPm = MPm,m2 ,

which is the right setting of parameters for most of our applications.
We adopt the standard notation for function composition, with

f �� de�ned by (f ��)(x) = f (�(x)). In addition, we use the � oper-
ator to denote the componentwise composition of Boolean functions.
Formally, the componentwise composition of f : {0, 1}n ! {0, 1}
and � : X ! {0, 1} is the function f � � : Xn ! {0, 1} given by
(f � �)(x1,x2, . . . ,xn ) = f (�(x1),�(x2), . . . ,�(xn )). To illustrate,
MPm,r = ANDm � ORr . Componentwise composition is consis-
tent with standard composition, which in the context of Boolean
functions is only de�ned for n = 1. Thus, the meaning of f � � is
determined by the range of � and is never in doubt. Compositions
f1 � f2 � · · · � fk of three or more functions, where each instance of
the � operator can be standard or componentwise, are well-de�ned
by associativity and do not require parenthesization.

For Boolean strings x ,� 2 {0, 1}n , we let x � � denote their
bitwise XOR. The strings x ^ � and x _ � are de�ned analogously,
with the binary connective applied bitwise. A Boolean circuit C in
variables x1,x2, . . . ,xn is a circuit with inputs x1,¬x1, . . . ,xn ,¬xn
and gates ^ and _. The circuit C is monotone if it does not use
any of the negated inputs ¬x1,¬x2, . . . ,¬xn . The fan-in ofC is the
maximum in-degree of any ^ or _ gate. Unless stated otherwise, we
place no restrictions on the gate fan-in. The size ofC is the number
of ^ and _ gates. The depth of C is the maximum number of ^ and
_ gates on any path from an input to the circuit output. With this
convention, the circuit that computes (x1,x2, . . . ,xn ) 7! x1 has
depth 0. The circuit class AC0 consists of function families { fn }1n=1
such that fn : {0, 1}n ! {0, 1} is computed by a Boolean circuit of
size at most cnc and depth at most c , for some constant c > 1 and
all n.We specify small-depth layered circuits by indicating the type
of gate used in each layer. For example, an AND-OR-AND circuit
is a depth-3 circuit with the top and bottom layers composed of ^
gates, and middle layer composed of _ gates. A Boolean formula
is a Boolean circuit in which every gate has fan-out 1. Common
examples of Boolean formulas are DNF and CNF formulas.
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2.3 Norms and Products
For a set X , we let RX denote the linear space of real-valued
functions on X . The support of a function f 2 RX is denoted
supp f = {x 2 X : f (x) , 0}. For real-valued functions with �nite
support, we adopt the usual norms k f k1 = maxx 2supp f | f (x)|
and k f k1 =

Õ
x 2supp f | f (x)|, as well as inner product hf ,�i =Õ

x 2supp f \ supp� f (x)�(x). This covers as a special case functions
on �nite sets. The tensor product of f 2 RX and � 2 RY is de-
noted f ⌦ � 2 RX⇥Y and given by (f ⌦ �)(x ,�) = f (x)�(�). The
tensor product f ⌦ f ⌦ · · · ⌦ f (n times) is abbreviated f ⌦n . For
a subset S ✓ {1, 2, . . . ,n} and a function f : X ! R, we de�ne
f ⌦S : Xn ! R by f ⌦S (x1,x2, . . . ,xn ) =

Œ
i 2S f (xi ). As extremal

cases, we have f ⌦? ⌘ 1 and f ⌦{1,2, ...,n } = f ⌦n . Tensor product
notation generalizes naturally to sets of functions: F ⌦G = { f ⌦ � :
f 2 F ,� 2 G} and F ⌦n = { f1 ⌦ f2 ⌦ · · · ⌦ fn : f1, f2, . . . , fn 2 F }.

Analogous to functions, we adopt the familiar norms for vectors
x 2 Rn in Euclidean space: kx k1 = maxi=1, ...,n |xi | and kx k1 =Õn
i=1 |xi |. The latter norm is particularly prominent in this paper,

and to avoid notational clutter we use |x | interchangeably with kx k1.
We refer to |x | = kx k1 as the weight of x . For any sets X ✓ Nn
andW ✓ R, we de�ne X |W = {x 2 X : |x | 2W }. In the case of a
one-element setW = {w}, we further shorten X |{w } to X |w . To
illustrate, Nn |6w denotes the set of vectors whose components are
natural numbers and sum to at mostw , whereas {0, 1}n |w denotes
the set of Boolean strings of length n and Hamming weight exactly
w . For a function f : X ! R on a subsetX ✓ Nn ,we let f |W denote
the restriction of f toX |W .A typical instance of this notationwould
be f |6w for some real numberw .

2.4 Orthogonal Content
For a multivariate real polynomial p : Rn ! R, we let degp denote
the total degree of p, i.e., the largest degree of any monomial of
p. We use the terms degree and total degree interchangeably in
this paper. It will be convenient to de�ne the degree of the zero
polynomial by deg 0 = �1. For a real-valued function � supported
on a �nite subset of Rn , we de�ne the orthogonal content of �,
denoted orth�, to be the minimum degree of a real polynomial p
for which h�,pi , 0.We adopt the convention that orth� = 1 if no
such polynomial exists. It is clear that orth� 2 N [ {1}, with the
extremal cases orth� = 0 , h�, 1i , 0 and orth� = 1 , � =
0. Our next result, whose proof is available in the full version [39],
records additional facts about orthogonal content.

P���������� 2.1. Let X and Y be nonempty �nite subsets of Eu-
clidean space. Then:

(i) orth(� +� ) > min{orth�, orth� } for all �,� : X ! R;
(ii) orth(�⌦� ) = orth(�)+orth(� ) for� : X ! R and� : Y ! R;
(iii) orth(�⌦n �� ⌦n ) > orth(� �� ) for �,� : X ! R and n > 1.

Let f : X ! {0, 1} be a given Boolean function, for a �nite
subset X ⇢ Rn . The threshold degree of f , denoted deg±(f ), is
the least degree of a real polynomial p that represents f in sign:
sgnp(x) = (�1)f (x ) for each x 2 X . One of the �rst results on
polynomial representations of Boolean functions was the following
tight lower bound on the threshold degree of MPm , due to Minsky
and Papert [21].

T������ 2.2 (M����� ��� P�����). deg±(MPm ) = �(m).

2.5 Basic Dual Objects
As described in the introduction, we prove our main results con-
structively, by building explicit dual objects that witness the cor-
responding lower bounds. An important tool in this process is the
following lemma, which is used to adjust a dual object’s metric
properties while preserving its orthogonality to low-degree poly-
nomials.

L���� 2.3. Fix a point u 2 Nn and a natural number d < |u |.
Then there is �u : Nn ! R such that

supp �u ✓ {u} [ {� 2 Nn : � 6 u and |� | 6 d},
�u (u) = 1,

k�u k1 6 1 + 2d
✓ |u |
d

◆
,

orth �u > d .

This result is a symmetrized version of Lemma 3.2 of Razborov and
Sherstov [26]; a detailed proof is available in the full version [39] of
this paper. The next lemma is an adaptation of a result due to Bun
and Thaler [11] that serves to identify the dominant components
of a vector. Its proof is also available in the full version [39] of this
paper.

L���� 2.4. Fix � > 0 and let � 2 Rn be an arbitrary vector with
k� k1 > � . Then there is S ✓ {1, 2, . . . ,n} such that

|S | > k� k1
2k� k1

,

min
i 2S

|�i | >
1
|S | ·

�

2(1 + lnn) ,’
i<S

|�i | < � .

3 THE THRESHOLD DEGREE OF AC0

This section is devoted to our results on threshold degree. While we
are mainly interested in the threshold degree ofAC0, the techniques
developed here apply to a much broader class of functions. Specif-
ically, we prove an ampli�cation theorem that takes an arbitrary
function f and builds from it a function F with higher threshold
degree. The transformation f 7! F is e�cient with regard to cir-
cuit depth and size and in particular preserves membership in AC0.
To deduce our main results for AC0, we start with a single-gate
circuit and iteratively apply the ampli�cation theorem to produce
constant-depth circuits of higher and higher threshold degree. We
develop this general machinery in Sections 3.1–3.3, followed by the
applications to AC0 in Section 3.4.

3.1 Shifting Probability Mass in Product
Distributions

Consider a product distribution� onNn whereby every component
is concentrated near 0. The centerpiece of our threshold degree
analysis, presented here, is the construction of an associated prob-
ability distribution �̃ that is supported entirely on inputs of low
weight and cannot be distinguished from � by a low-degree polyno-
mial. More formally, de�ne B(r , c,�) to be the family of probability
distributions � on N such that supp � = {0, 1, 2, . . . , r 0} for some
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nonnegative integer r 0 6 r , and in addition

ct+1

(t + 1)2 2� t 6 �(t) 6 1
c(t + 1)2 2� t , t 2 supp �. (3)

Distributions in this family are subject to pointwise constraints,
hence the symbol B for “bounded.” In this notation, our analysis
handles any distribution � 2 B(r , c,�)⌦n . The precise statement
of our result is as follows.

T������ 3.1. Let � 2 B(r , c,�)⌦n be given, for some integer
r > 0 and reals c > 0 and � > 0. Let d and � be positive integers
with

� > 2d, (4)

� > 4en(1 + lnn)
c2

. (5)

Then there is a function �̃ : Nn ! R such that

supp �̃ ✓ (supp�)|<2� , (6)

orth(� � �̃) > d, (7)

|� � �̃| 6
✓
8nr
c

◆d
2�d�/r e�� d�/2e+2 � on Nn |<2� . (8)

In general, the function �̃ constructed in Theorem 3.1 may not
be a probability distribution. However, when � is large enough
relative to the other parameters, the pointwise property (8) forces
|� � �̃| 6 � on the support of �̃, and in particular �̃ > 0. Since
orth(� � �̃) > 0 by construction, �̃ is a probability distribution in
that case.

P���� �� T������ 3.1. For c > 1, we have B(r , c,�) = ? and
the theorem holds vacuously. Another degenerate possibility is
r = 0, in which case � is the single-point distribution on 0n , and
therefore it su�ces to take �̃ = �. In what follows, we treat the
general case when c 2 (0, 1], r > 1.

For every vector � 2 Nn with k� k1 > � , let S(�) ✓ {1, 2, . . . ,n}
denote the corresponding subset identi�ed by Lemma 2.4. To restate
the lemma’s guarantees,

|S(�)| > �

r
, � 2 (supp�)|>2� , (9)

min
i 2S (�)

�i >
�

2|S(�)|(1 + lnn) , � 2 (supp�)|>2� , (10)

k� |S (�)k1 < � . � 2 (supp�)|>2� . (11)

Property (11) implies that

k� |S (�)k1 > � , � 2 (supp�)|>2� , (12)

and in particular

k� |S (�)k1 > d, � 2 (supp�)|>2� . (13)

For each i = 1, 2, . . . ,n and each u 2 Ni |>d , Lemma 2.3 gives a
function �u : Ni ! R such that

supp �u ✓ {u} [ {� 2 Ni : � 6 u and |� | 6 d}, (14)
�u (u) = 1, (15)

k�u k1 6 1 + 2d
✓kuk1

d

◆
, (16)

orth �u > d, (17)

and in particular

k�u k1 6 max{|�u (u)|, k�u k1 � |�u (u)|}

6 2d
✓kuk1

d

◆

6 2kuk1d . (18)

The central object of study in our proof is the following func-
tion � : Nn ! R, built from the auxiliary objects S(�) and �u just
introduced:

� (x) =
’

� 2(supp�) |>2�

�(�) �� |S (� ) (x |S (�)) I[x |S (�) = � |S (�)]. (19)

The expression on the right-hand side is well-formed because, to
restate (13), each string � |S (�) has weight greater than d and can
therefore be used as a subscript in �� |S (� ) . Specializing (17) and (18),

orth �� |S (� ) > d, � 2 (supp�)|>2� , (20)

k�� |S (� ) k1 6 2(nr )d , � 2 (supp�)|>2� . (21)

Property (14) ensures that �� |S (� ) (x |S (�)) I[x |S (�) = � |S (�)] , 0 only
when x 6 � . It follows that

supp � ✓
ÿ

� 2supp�
{x 2 Nn : x 6 �}

= supp�, (22)

where second step is valid because � 2 B(r , c,�)⌦n .
Before carrying on with the proof, we take a moment to simplify

the de�ning expression for � . For any � 2 Nn |>2� , we have

�� |S (� ) (x |S (�)) I[x |S (�) = � |S (�)]
= �� |S (� ) (x |S (�)) I[x |S (�) = � |S (�) or kx |S (�)k1 6 d]

⇥ I[x |S (�) = � |S (�)]
= �� |S (� ) (x |S (�))(I[x |S (�) = � |S (�)]

+ I[kx |S (�)k1 6 d])I[x |S (�) = � |S (�)]
= �� |S (� ) (x |S (�))I[x = �]

+ �� |S (� ) (x |S (�))I[kx |S (�)k1 6 d] I[x |S (�) = � |S (�)]
= I[x = �] + �� |S (� ) (x |S (�))I[kx |S (�)k1 6 d] I[x |S (�) = � |S (�)],

where the �rst, second, and fourth steps are valid by (14), (13),
and (15), respectively. Making this substitution in the de�ning equa-
tion for � ,

� (x) = ©≠
´

’
� 2(supp�) |>2�

�(�)�� |S (� ) (x |S (�))I[kx |S (�)k1 6 d]

⇥ I[x |S (�) = � |S (�)]
™Æ
¨
+

’
� 2(supp�) |>2�

�(�)I[x = �]. (23)

We proceed to establish key properties of � .
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S��� 1: O������������. By Proposition 2.1(ii), each term in the
summation on the right-hand side of (19) is a function orthogonal
to polynomials of degree less than orth �� |S (� ) . Therefore,

orth � > min
� 2(supp�) |>2�

orth �� |S (� )

> d, (24)

where the �rst step uses Proposition 2.1(i), and the second step
applies (20).

S��� 2: H���� ������. We now examine the behavior of � on
inputs of weight at least 2� , which we think of as “heavy.” For any
string � 2 (supp�)|>2� , we have

x 2 Nn |>2� =) kx k1 > d + �

=) kx |S (�)k1 > d _ kx |S (�)k1 > �

=) kx |S (�)k1 > d _ x |S (�) , � |S (�),

where the �nal implication uses (11). We conclude that the �rst
summation in (23) vanishes on Nn |>2� , so that

� (x) = �(x), x 2 Nn |>2� . (25)

This completes the analysis of heavy inputs.

S��� 3: L���� ������. We now turn to inputs of weight less
than 2� , the most technical part of the proof. Fix an arbitrary string
x 2 (supp�)|<2� . Then

|� (x)|
�(x) =

������
’

� 2(supp�) |>2�

�(�)
�(x)�� |S (� ) (x |S (�)) I[kx |S (�)k1 6 d]

⇥ I[x |S (�) = � |S (�)]

������
6

’
� 2(supp�) |>2�

�(�)
�(x) |�� |S (� ) (x |S (�))|I[kx |S (�)k1 6 d]

⇥ I[x |S (�) = � |S (�)]

6 2(nr )d
’

� 2(supp�) |>2�

�(�)
�(x) I[kx |S (�)k1 6 d]

⇥ I[x |S (�) = � |S (�)]

= 2(nr )d
’

S ✓{1, ...,n }:
|S |>�/r

I[kx |S k1 6 d]
’

� 2(supp�) |>2� :
S (�)=S

�(�)
�(x)

⇥ I[x |S = � |S ]

6 2(nr )d
’

S ✓{1, ...,n }:
|S |>�/r

I[kx |S k1 6 d]
’

� 2Nn :Õ
i2S �i>�,

mini2S �i> �
2|S |(1+lnn)

�(�)
�(x)

⇥ I[x |S = � |S ], (26)

where the �rst step uses (23); the second step applies the triangle
inequality; the third step is valid by (21); the fourth step amounts
to collecting terms according to S(�), which by (9) has cardinality
at least �/r ; and the �fth step uses (10) and (12).

Bounding (26) requires a bit of work. To start with, write � =Àn
i=1 �i for some �1, �2, . . . , �n 2 B(r , c,�). In the full version [39]

of this paper, we prove the following for every nonempty S ✓
{1, 2, . . . ,n} :

I[kx |S k1 6 d]
÷
i 2S

1
�i (xi )

6 c� |S |
✓
2� e2

c

◆d
, (27)

’
� 2Nn :Õ
i2S �i>�,

mini2S �i> �
2|S |(1+lnn)

�(�)
�(x) I[x |S = � |S ]

6 2���
✓
2|S |(1 + lnn)

c�

◆ |S | ÷
i 2S

1
�i (xi )

. (28)

It remains to put together the bounds obtained so far. We have:

|� (x)|
�(x) 6 2(nr )d

’
S ✓{1, ...,n }:
|S |>�/r

I[kx |S k1 6 d] · 2���
✓
2|S |(1 + lnn)

c�

◆ |S |

⇥
÷
i 2S

1
�i (xi )

6 2(nr )d
’

S ✓{1, ...,n }:
|S |>�/r

2���
✓
2|S |(1 + lnn)

c2�

◆ |S |
·
✓
2� e2

c

◆d

6 2 · (e
2nr/c)d
2� d�/2e

’
S ✓{1, ...,n }:
|S |>�/r

✓
2|S |(1 + lnn)

c2�

◆ |S |

= 2 · (e
2nr/c)d
2� d�/2e

1’
s= d�/r e

✓
n

s

◆ ✓
2s(1 + lnn)

c2�

◆s

6 2 · (e
2nr/c)d
2� d�/2e

1’
s= d�/r e

✓
en
s

· 2s(1 + lnn)
c2�

◆s

6 2 · (e
2nr/c)d
2� d�/2e

1’
s= d�/r e

2�s

= 4 · (e2nr/c)d
2� d�/2e+ d�/r e ,

where the �rst step follows from (26) and (28); the second step
substitutes the bound from (27); the third step uses (4); and the
next-to-last step uses (5). In summary, we have shown that

|� (x)| 6 4 · (e2nr/c)d
2� d�/2e+ d�/r e �(x), x 2 (supp�)|<2� . (29)

S��� 4: F�������� ��� �����. De�ne �̃ = � � � . Then the
support property (6) follows from (22) and (25); the analytic indis-
tinguishability property (7) follows from (24); and the pointwise
property (8) follows from (22) and (29).
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3.2 A Bounded Dual Polynomial for MP
We now turn to the construction of a gadget for our ampli�cation
theorem. Let B⇤(r , c,�) denote the family of probability distribu-
tions � on N such that supp � = {0, 1, 2, . . . , r 0} for some nonnega-
tive integer r 0 6 r , and moreover

c

(t + 1)2 2� t 6 �(t) 6 1
c(t + 1)2 2� t , t 2 supp �.

In this family, a distribution’s weight at any given point is prescribed
up to the multiplicative constant c , in contrast to the exponentially
large range allowed in the de�nition of B(r , c,�). For all parameter
settings, we have B⇤(r , c,�) ✓ B(r , c,�). Indeed, the containment
holds trivially for c 6 1, and remains valid for c > 1 because the
left-hand side and right-hand side are both empty in that case. It will
be helpful to have shorthand notation for translates of distributions
in B(r , c,�): we de�ne B⇤(r , c,� ,�) for � > 0 to be the family of
probability distributions � on N such that �(t) = �0(t � a) for some
�0 2 B⇤(r , c,�) and a 2 [0,�].

As our next step toward analyzing the threshold degree of AC0,
we will construct a dual object that witnesses the high threshold
degree of MP⇤m,r and possesses additional metric properties in the
sense of B⇤.

T������ 3.2. For some absolute constants c1, c2 2 (0, 1) and all
positive integersm and r , there are probability distributions �0,�1
such that

�i 2 conv

 
B⇤

✓
r , c1,

c2p
r
, 1

◆⌦m !
, i = 0, 1, (30)

supp�i ✓ (MP⇤m,r )�1(i), i = 0, 1, (31)

orth(�1 � �0) > min{m, c1
p
r }. (32)

A proof of this theorem is available in the full version [39] of our
paper.

3.3 Hardness Ampli�cation
We now present a black-box transformation that takes any given
circuit in n variables with threshold degree n1�� into a circuit with
polynomially larger threshold degree, �(n1� �

1+� ). This hardness
ampli�cation procedure increases the circuit size additively by
nO (1) and the circuit depth by 2, preserving membership in AC0.

T������ 3.3. Let n,m,N be positive integers. Then there is an
(explicitly given) transformation H : {0, 1}N ! {0, 1}n , computable
by an AND-OR-AND circuit of size (Nnm)O (1) with bottom fan-in
O(log(nm)), such that for all functions f : {0, 1}n ! {0, 1},

min{deg±(f � H ), deg±(f � ¬H )}

> min
⇢
cm deg±(f ),

cN

50m log2(n +m)
� n

�
log(n +m),

where 0 < c < 1 is an absolute constant independent of n,m,N .

The proof of this central result combines Theorems 3.1 and 3.2 and
can be found in the full version [39]. For the function H with multi-
bit output, the notation ¬H above refers to the function obtained
by negating each of H ’s outputs.

3.4 Threshold Degree and Discrepancy of AC0

We have reached our main result on the sign-representation of
constant-depth circuits. For any � > 0, the next theorem constructs
a circuit family in AC0 with threshold degree �(n1�� ). The proof
amounts to a recursive application of the hardness ampli�cation
procedure of Section 3.3.

T������ 3.4. Fix an integer k > 1. Then there is an (explicitly
given) family of functions { fk,n }1n=1, where fk,n : {0, 1}n ! {0, 1}
has threshold degree

deg±(fk,n ) = �
⇣
n
k�1
k+1 · (logn)� 1

k+1 d
k�2
2 e b k�22 c

⌘
(33)

and is computable by a monotone Boolean circuit of size nO (1) and
depth k . In addition, the circuit for fk,n has bottom fan-in O(logn)
for all k , 2.

P����. The proof is by induction on k . The base cases k = 1
and k = 2 correspond to the families

f1,n (x) = x1, n = 1, 2, 3, . . . ,
f2,n (x) = MP bn1/3 c , n = 1, 2, 3, . . . .

For the former, the threshold degree lower bound (33) is trivial. For
the latter, it follows from Theorem 2.2.

For the inductive step, �x k > 3. Due to the asymptotic nature
of (33), it is enough to construct the functions in { fk,n }1n=1 for n
larger than a certain constant of our choosing. As a starting point,
the inductive hypothesis gives an explicit family { fk�2,n }1n=1 in
which fk�2,n : {0, 1}n ! {0, 1} has threshold degree

deg±(fk�2,n ) = �
⇣
n
k�3
k�1 · (logn)� 1

k�1 d
k�4
2 e b k�42 c

⌘
(34)

and is computable by a monotone Boolean circuit of size nO (1) and
depth k � 2.We view the circuit for fk�2,n as composed of k � 2
layers of alternating gates, where without loss of generality the bot-
tom layer consists of AND gates. This last property can be forced by
using ¬fk�2,n (¬x1,¬x2, . . . ,¬xn ) instead of fk�2,n (x1,x2, . . . ,xn ),
which interchanges the circuit’s AND and OR gates without a�ect-
ing the threshold degree, circuit depth, or circuit size.

Now, let c > 0 be the absolute constant from Theorem 3.3. For
every N larger than a certain constant, we apply Theorem 3.3 with

n =
l
N

k�1
k+1 (logN )� 1

k+1 d
k�4
2 e b k�42 c� 2(k�1)

k+1 · c

100

m
, (35)

m =
l
N

2
k+1 (logN ) 1

k+1 d
k�4
2 e b k�42 c� 4

k+1
m
, (36)

f = fk�2,n (37)

to obtain a function HN : {0, 1}N ! {0, 1}n such that the compo-
sition FN = fk�2,n � HN has threshold degree

deg±(FN )

> min
⇢
cm deg±(fk�2,n ),

cN

50m log2(n +m)
� n

�
log(n +m)

= �
⇣
N

k�1
k+1 (logN )� 1

k+1 d
k�4
2 e b k�42 c� k�3

k+1
⌘

= �
⇣
N

k�1
k+1 (logN )� 1

k+1 d
k�2
2 e b k�22 c

⌘
, (38)
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where the second step uses (34)–(36). Moreover, Theorem 3.3 en-
sures that HN is computable by an AND-OR-AND circuit of poly-
nomial size and bottom fan-inO(logN ). The bottom layer of fk�2,n
consists of AND gates, which can be merged with the top layer of
HN to give a circuit for FN = fk�2,n �HN of depth (k�2)+3�1 = k .

We have thus constructed, for some constant N0, a family of
functions {FN }1N=N0

in which each FN : {0, 1}N ! {0, 1} has
threshold degree (38) and is computable by a Boolean circuit of
polynomial size, depth k, and bottom fan-in O(logN ). Now, take
the circuit for FN and replace the negated inputs in it with N new,
unnegated inputs. The resulting monotone circuit on 2N variables
clearly has threshold degree at least that of FN . This completes the
inductive step.

Theorem 3.4 settles Theorem 1.1 from the introduction. In the full
version of this paper, we use the pattern matrix method to “lift”
Theorem 3.4 to communication complexity.

4 THE SIGN-RANK OF AC0

We now turn to our second main result, a near-optimal lower bound
on the sign-rank of constant-depth circuits. Our approach here is
based on the notion of local smoothness and is unrelated to the
threshold degree analysis. We start by de�ning local smoothness
and recording basic properties of locally smooth functions. Next,
we develop techniques for manipulating locally smooth functions
to achieve desired global behavior, without the manipulations being
detectable by low-degree polynomials. To apply this machinery to
constant-depth circuits, we design a locally smooth dual polynomial
for the Minsky–Papert function. We then use this dual object to
prove an ampli�cation theorem for smooth threshold degree. We
apply the ampli�cation theorem iteratively to construct, for any � >
0, a constant-depth circuit with exp(�O(n1�� ))-smooth threshold
degree �(n1�� ). Finally, we conclude with a proof of our main
result on the sign-rank of AC0.

Due to the page limit, we defer the remainder of this section to
the full version of this paper [39].
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