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The classical communication complexity of testing closeness of discrete distributions has
recently been studied by Andoni, Malkin and Nosatzki (ICALP’19). In this problem,
two players each receive ¢ samples from one distribution over [n], and the goal is to
decide whether their two distributions are equal, or are e-far apart in the {;-distance. In
the present paper we show that the quantum communication complexity of this problem
is O(n/(te2)) qubits when the distributions have low la-norm, which gives a quadratic
improvement over the classical communication complexity obtained by Andoni, Malkin
and Nosatzki. We also obtain a matching lower bound by using the pattern matrix
method. Let us stress that the samples received by each of the parties are classical,
and it is only communication between them that is quantum. Our results thus give one
setting where quantum protocols overcome classical protocols for a testing problem with
purely classical samples.
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1 Introduction

Background. Property testing [1, 2] is the task of (approximately) distinguishing objects
having some specific property from those which are “far” from having it, without necessar-
ily looking at the objects in their entirety. An interesting subfield is discrete distribution
testing [3], where the objects are probability distributions.
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One of the main tasks in (discrete) distribution testing, namely closeness testing, is about
deciding whether two distributions p and ¢ over [n] are equal or e-far from each other in
the [;-norm, given access only to a limited number of samples of each distribution. Early
testers [4, 5] used a method based on collisions. Using improved estimators, testers with
optimal sample complexity have then been constructed [6, 7].

Very recently, Andoni, Malkin and Nosatzki [8] have, for the first time, considered distri-
bution testing in the two-party setting. Here two players, Alice and Bob, each own as input ¢
samples of the distributions p and ¢: Alice has t samples from p and Bob has ¢ samples from q.
The goal is for Alice and Bob to decide if the two distributions are equal or e-far from each
other in the [;-norm, using as little communication as possible. By adapting the techniques
from prior works [6, 7], Andoni, Malkin and Nosatzki have shown that this problem (named
2PCT),, 1. in [8]) can be solved with high probability using O(% + 1) bits of communica-
tion whenever ¢ is above the information-theoretic lower bound (given in Equation (1) below)
which is the minimum number of samples needed so that meaningful information about p
and ¢ can be extracted from them. They also showed a matching lower bound Q(?—;) on the
two-party communication complexity of 2PCT,, ¢ 1 /2.

Our results. In this paper we investigate the quantum communication complexity of this
problem. Our main result shows that a significant advantage can be obtained in the quantum
setting when at least one of the two distributions has low Ily-norm. Concretely, for any
v > 0, we consider the version of 2PCT,, ;. in which the inputs p, ¢ satisfy the condition
min(|[pll2,||gl|2) < ~yte*/n. We denote this problem 2pCT} ; .. The lower bound from (8]
shows that for v = Q( \/liin), this version is as hard as the original version of the problem.®
As in all previous works FS, 6, 7], we will assume throughout the paper that ¢ is above the

information-theoretic threshold:

t > Cmax(n?3. e 3 \/n-e2), (1)

where C' is a universal constant (see [8, 6] for details).

We first show the following theorem.

Theorem 1 There exists an absolute constant vy such that the following holds: for all
v < v, the problem 2PCT;L’7,5’6 can be solved with high probability by a quantum protocol that
uses O(t% + 1) qubits of communication.
Theorem 1 shows that a significant advantage (a quadratic improvement in the communication
complexity) can be obtained in the quantum setting when at least one of the two distributions
has low [;-norm. While we are not currently able to remove the low-norm requirement, we
believe that Theorem 1, which already covers a large class of distributions, is a first significant
step towards establishing quantum advantage for closeness testing for arbitrary distributions.

We also obtain the following lower bound, which shows that the upper bound of Theorem
1 is optimal, even for e = 1/2.

Theorem 2 There exists an absolute constant ¢ > 1 such that the following statement
holds for any value t < n/log®n and any v = Q(1/y/logn): any quantum protocol that solves
2PCT7L’M/2 with high probability requires Q(n/t) qubits of communication.

%Indeed, the lower bound Q(?—;) from [8] is shown for input distributions such that ||p||2 = ||¢||2 = O( nj%)
with e = 1/2.
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Precisely, the lower bound holds for any v greater than some vy = O( \/1;@) Therefore

there is a regime where vy < 7, for which our upper bound is then tight.

Overview of our main techniques. Our upper bound (Theorem 1) is obtained by fol-
lowing the framework used in [8], which relies on the estimator from [6] for the l-distance.
Indeed, as suggested by [4, 6] and then extensively studied in [7], there is a reduction from
closeness testing in the [;-distance to closeness testing in the l5-distance. The efficiency of the
reduction, however, depends on the lo-norm of the distributions. In the presentation below we
will assume that ||p||2 = ||g||2 (if this is not the case we can easily conclude that p # ¢). The
protocol in [8] thus proceeds in two steps. In the first step, Bob shares some information with
Alice about the observed shape of his distribution, so that they can recast their distributions
into two distributions p’ and ¢’ that have smaller lo-norm while preserving the /;-distance
(ie., [|p' = d'|lh = |lp — ¢|]1). In the second step, Alice and Bob use the reduction to close-
ness testing in the lo-distance mentioned and implement the estimator of [6] in the two-party
setting. This estimator requires estimating with good precision the l3-distance between two
vectors. This is done by using a two-party implementation of the sketching method by Alon,

Matias and Szegedy [9].

For the case of low-norm distributions (more precisely, when considering the problem
2pCT,, , . with v constant), the first step is unnecessary: the two distributions already have
a low enough ly-norm, so that the reduction to closeness testing in the ls-distance can be
used without any preprocessing. We thus only need to show how to implement the second
step from [8] more efficiently using quantum communication. The key idea is to use the
quantum algorithm by Montanaro [10] which gives a quadratic speedup over the classical
sketching method from [9] in the query complexity model. We show how to adapt this

quantum algorithm to the two-party setting in Section 3.2.

Our lower bound (Theorem 2) first applies the same reduction as in [8], which reduces
some specific version of the Gap-Hamming distance to 2PCTZ’M/2.
showed that the communication complexity of that version of the Gap-Hamming distance
is Q((n/t)?) bits. Our main technical contribution proves that the quantum communication
complexity of this problem is Q(n/t). We use the pattern matrix method [11]. To obtain our
lower bound, we show that the pattern matrix method, which is generally formulated only

for total functions, can be generalized to partial functions.

In the classical case, [8]

Relation with known quantum advantages in testing and learning. Several quan-
tum algorithms have been designed for property testing and learning theory (we refer to [12]
and [13] for excellent surveys of these fields). In most settings considered so far in quantum
learning theory, however, the quantum algorithms crucially exploit the fact that the data
can be accessed in a quantum way (e.g., we can query a quantum superposition of samples),
which makes it difficult to directly compare the performance of quantum algorithms with the
performance of classical methods (which can only access the data in a classical way). The
results of the present paper show a quantum advantage, in terms of communication cost, for
the setting where both classical and quantum protocols can access the data in the same way
— the input is given as a set of classical samples.



4 Quantum Communication Complexity of Distribution Testing

Open problem. An intriguing question is whether a similar quantum advantage is achiev-
able when both input distributions have higher ls-norm, i.e., whether the upper bound we
obtain in Theorem 1 holds not only for constant « but also for larger values of v. Currently,
we do not know how to improve the complexity of the first part of the classical protocol
from [8], which (as mentioned above) converts the input distributions into distributions of
sufficiently small lo-norm, using quantum communication. We leave this question as an open
problem.

2 Preliminaries

2.1 Definitions and Notations

A typical communication task for Alice and Bob is to compute (sometimes only with some
probability of success) a function f on some inputs x, y where x is given to Alice and y to Bob.
A communication protocol is an algorithmic description of message sending between Alice and
Bob that solves the task for any possible pair of inputs. The communication complexity [14]
of such a function is the minimum required numbers of bits the most efficient protocol solving
the task must exchange in the worst case (regarding inputs).

The quantum communication complexity [15, 16] of a function is the equivalent using
qubits instead of bits. Qubits correspond to elements of some Hilbert space of dimension 2.
We will use the bra-ket notation |¢) 5 to denote a qubit (and by extension an n-qubit string)
¢ of a register R.

As described in the introduction, Alice’s input consists of ¢ samples from a discrete dis-
tribution p: [n] — (0,1). Bob’s input consists of ¢ samples from a discrete distribution
q: [n] = (0,1). We call X; (resp. ¥;) the number of samples of Alice (resp. Bob) correspond-
ing to element . We call X, Y € [t]” the occurrence vectors of Alice and Bob, i.e., the vectors
with i-th coordinate X; and Y;, respectively.

For a vector x € R", we will denote by || - ||; the l;-norm, which is defined as ||z||; =

> 7 |z;], and denote by || - ||2 the lp-norm, which is defined as ||z||2 = 1/>_; 2Z. We use O,
instead of O, 2 when we neglect factors of logarithmic order in the parameters of the problem
(n,t,e). We denote by Poi(X) the Poisson distribution with parameter A € N.

2.2 Classtical Protocol

We now describe the protocol from [8] for the case of small lo-norm.

The main idea behind the protocol is based on the estimator from [6], combined with
a reduction from [;-distance estimation to ls-distance estimation. Considering as well the
errors of the estimator, after rescaling and shifting the estimator from [6], Andoni, Malkin
and Nosatzki found that it is actually enough to compare some approximation of the term
A = ||X — Y||? to some threshold 7 to distinguish the two cases. As discussed in the
introduction, the original protocol from [8] has a communication step to recast the probability
distributions into ones with smaller [o-norms. Since this step is not necessary for the case of
distributions with small /s-norms, we omit it in the following description.
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Algorithm 1 Classical Protocol for Distribution Closeness Testing from [8]

1: Fix a = O(< 4+ 1);

2: Alice and Bob each estimate ||p||2 and ||¢||2 up to a factor 2; if the two estimates are not
within a factor 4, output “e-FAR”;

3: Alice and Bob approximate A = || X —Y||3 up to a (1+«) factor using standard techniques;

4: If A is less than 7 = E;f: + 2t output “SAME”, and otherwise output “e-FAR”;

The analysis from [8], in particular Lemma 6, shows the correctness of the protocol. More
precisely, the following statement can be obtained for the case of input distributions with low
lo-norms.

Theorem 3 [8] There exists an absolute constant vy such that the following holds: for any
input distributions p and q such that min(||p||z, ||ql|2) < Yote?/n, the above protocol correctly
distinguishes between the case p = q and the case ||p — q||1 > € with probability at least 2/3.
The communication complexity is dominated by the third step, which requires O (1 / a2) =
O (n?/(t%€*) + 1) bits.

3 Quantum Protocol

~

In this section we describe our quantum protocol for the problem 2pCT,, ,; .,

orem 1.

and prove The-

3.1 Description of the Whole Protocol
Algorithm 2 Quantum Protocol for Distribution Closeness Testing
I Fix a = 9(% +1);
2: Alice and Bob each estimate ||p||2 and ||g||2 up to a factor 2; if the two estimates are not
within a factor 4, output “e-FAR”;
3: Alice and Bob approximate A = ||X — Y||3 up to a (1 + «) factor using the procedure of
Section 3.2;

4: If A is less than 7 = E;fj + 2t output “SAME”, and otherwise output “e-FAR”;

The communication complexity is again dominated by the third step, which requires only
O(1/a) = O (n/(t€?) + 1) qubits, as described in the next subsection. The correctness is
guaranteed by the analysis of Theorem 3, since the quantum protocol performs identical
calculations as the classical protocol. This proves Theorem 1.

3.2 Montanaro’s Approximation

The classical protocol [8] uses standard techniques, such as the AMS algorithm [9], in order
to approximate A = || X —Y||3. The AMS algorithm uses a family H of O(n?) hash functions
h; : [n] = {—=1,4+1} that are 4-wise independent. Given a list of numbers ¢ = ({1,...,4,),
which we interpret as a vector £ € R", the AMS algorithm gives an estimate of ||¢||3 by
computing random estimates f(¢) with the following subroutine many times and taking the
median of the results.®

bThe idea behind the AMS algorithm is that by developing the square, the “crossed” product terms’ influence
should vanish, i.e., E[h;(§)¢; - hi(j')€;/] = 0 for j # j' because then E[h;(j) - hi(j')] = 0, while the terms
hi(5)85 - hi(G)l; = Z? will always stay.



6  Quantum Communication Complexity of Distribution Testing

Algorithm 3 Alon-Matias-Szegedy algorithmic subroutine
1: Draw a random index ¢ to choose a hash function h; € H;

2: Return f(i) = (Z;‘L:I hi(j) - 45)%;

In the classical setting, this subroutine has to be repeated O(1/a?) times to get a (1 + a)-
approximation.

Montanaro showed how to achieve the same approximation quantumly using this subrou-
tine only O(1/a) times (see Theorems 12 and 14 in [10]). The subroutine, however, needs
to be called in superposition, i.e., Montanaro’s approach requires a quantum oracle Oy that
performs the following map:

O =10} ly) = 1) ly + f(2)) -
It also requires access to its inverse O]Tl.

In our communication setting, we want to use this approach with £ := X —Y. A difficulty
is that the data is split between the two parties: only Alice knows X and only Bob knows Y.
We now explain how to overcome this difficulty. For a particular index i, Alice can compute
04(i) = 22‘;1 hi(j)X;, and then transmit it to Bob. Bob can similarly do his own computation
op(i) = Z?:l hi(j)Y;, then subtract o, () and square in order to get

2

(0a(i) = 00(i)* = | D halh) - (X5 =Y5) | = f(i). (2)
j=1

We describe below our implementation of the oracle O, based on these ideas. In the following
description, Bob’s input is the quantum state |i), |y), for some bit-strings i and y, where I
and Y are two quantum registers.

Algorithm 4 Protocol for building the oracle Oy

1: Bob maps |i); |y)y to |i); |y)y |0s(i)) 5 and sends register I to Alice.
2: Alice creates another register A, computes the value o, (%) in it, and sends the two registers
A and I to Bob. At the end of this step, Bob thus owns

01 19)y |oa (i) 4 lon(D) g -

3: Bob performs the computation of Equation (2) using the arguments from A and B, to
get the state

D)1 1y + F(@)y loa(@) 4 lov(i) g -

4: Bob erases the contents of register B, and sends registers A and I to Alice.
5: Alice erases the contents of register A and sends back register I to Bob.

Note that it is the linear property of the AMS computation (more precisely, Equation (2))
that allows the approximation to be computed even when the data are shared by several
parties. Transmitting register I requires O(logn) qubits. Transmitting register A requires
O(logt) qubits. The overall communication complexity of the oracle protocol is thus O(log n+
logt).

An implementation of the inverse O;l can be obtained similarly, by subtracting instead
of adding the value of f(i) at Step 3. We can thus apply Montanaro’s algorithm [10], simply
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by replacing each oracle query in Montanaro’s algorithm by our distributed implementation
of Oy (or O;l). This enables us to obtain, with high probability, a (1 + «)-approximation of
16113 = A using

O((1/a)(logn +logt)) = O(1/a)

qubits of communication, as claimed.

4 Quantum Lower Bound

In this section we prove Theorem 2.

4.1 Hamming Reduction

For bit-strings x,y € {0,1}", we denote by x Ny the set of indices where = and y both have
a one, and write |z N y| for its size. Note that for bit-strings the l;-norm corresponds to
Hamming weight, i.e., the number of ones in the string, and the /;-distance corresponds to
the Hamming distance.

In the classical communication setting, Andoni, Malkin and Nosatzki [8] proved a lower
bound for some closeness testing problem by considering the following problem involving the
Hamming distance of two binary strings.

Let n > 1 be a multiple of 4. Let 8 = f(n) = \/m, and x > 1. With
probability at least 0.9, for z,y € {0,1}" with ||z||y = [|ly|l1 = n/2,
distinguish between the case where ||z — y||1 = n/2 versus ||z — y||1 —
n/2 € B, kG

Notice that if ||z||1 = ||y||1 = n/2 then the equality

|z =yl =2(n/2 = |z Oy[) =n -2z Nyl

holds. The above problem then can be reformulated as the following communication problem
that we call PromisedGHD(n, x):

PromisedGHD (n, k)

For x,y € {0,1}", where n is a multiple of 4, with ||z|]1 = ||y|l1 = n/2,

B =pB(n) =+/n/32, and k > 1, with probability at least 0.9 distinguish
n n__ kB n_ B

between [z Ny| =} and [z Ny € [} —F, 7 — 3]

Particularly, the reduction of [8] only concerns the regime where k = O(y/logn).

The main result of this subsection is:

Theorem 4 The quantum communication complexity of PromisedGHD(n, k) is Q(y/n).

In order to prove Theorem 4, we will consider a similar problem defined on smaller inputs.
More precisely, define the following problem SmallPGHD(r/, g):
SmallPGHD(n’, g)
For o/,y € {0,1}" where n’ is a multiple of 4, with ||2/||, = ||¢/||1 =
n'/2, with probability at least 2/3 distinguish between |z’ Ny'| = n'/4
and |2’ Ny'| € [n'/4—g,n' /4 — 1]

We first show a reduction from SmallPGHD(n/, g) to PromisedGHD(n, k) for appropriate
parameters.

Lemma 1 For any g < 2\/”5, SmallPGHD(n', g) reduces to PromisedGHD(n'?, k).
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Proof. Assume z’,y’ are inputs of size n’ to the SmallPGHD(n/, g) problem. By repeating
them n’ times in a padding fashion, we build inputs z,y for the PromisedGHD(n, k) problem

where n = n’? and therefore 8 = % If |2/ Ny'| = n'/4, we have |z Ny| = n'?/4 = n/4.
Otherwise, if |2/ Ny'| € [%/ —gq, ”Z' —1], we have [z Ny € [2 — 52 2 _ 5] 55 long as g <

K

1~ 204 2 232"
Indeed, for the upper part of the interval:

n B an n’ , n'

———=—— >n'(——1

4 2 24/32 ( 4 )

while for the lower part, we need:

12 !/ n/

~ oy
ov32 a9
which is equivalent to the bound on g mentioned just above. 0
The hardness of SmallPGHD(n/,g) will follow from the hardness of a more restricted

problem stated in Theorem 5. The latter theorem is the main technical contribution of this
section, and we devote Section 4.2 to its proof.

n_sB_n
4 2

4.2 Main Technical Result

We will model partial functions as mappings f: X — R U {*}, where X is a finite set and
the range element x represents undefined output. We let dom f = {x : f(x) # *}. It will be
convenient here to represent the Boolean values “true” and “false” by —1 and +1, respectively.
This departure from the classical representation (of using 0 and 1) has no effect on quantum
communication complexity. For a communication problem F: X xY — {—1,+1,*}, we
let QF(F) denote the e-error quantum communication complexity of F' with arbitrary prior
entanglement. Note that an e-error protocol for F' is allowed to behave arbitrarily on inputs
outside dom F.
We are now ready to prove the main technical result used in the proof of Theorem 2.

Theorem 5 Let n be an integer divisible by 4. Consider the partial communication prob-
lem F,: {0,1}" x {0,1}™ — {—1,+1, x} given by

=1 if|z| =|y| =n/2 and |z Ny| = n/4,
Fo(z,y) = +1 if |z| = |y = n/2 and |z Ny| = n/4— 1,
* otherwise.

Then Q7 /3(Fn) = Q(n).

The remaining part of this section is devoted to the proof of this theorem. We start by
reviewing relevant background on the pattern matrix method [11] for quantum communication
lower bounds. Let k and n be positive integers, where k < n and k | n. Partition [n] into k
contiguous blocks, each with n/k elements:

[n]—{1,2,...,Z}U{Z+1,...,2;L}U-~-U{(kkl)nJrl,...,n}.

Let V(n,k) denote the family of subsets V' C [n] that have exactly one element in each of
these blocks (in particular, |V| = k). Clearly, [V(n, k)| = (n/k)*. For a bit string x € {0,1}"
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and a set V € V(n, k), define the projection of x onto V by z|v = (x4, T4y, . .-, 7i,) € {0,1}F,
where i1 < iy < --- < iy are the elements of V. For ¢: {0,1}¥ — RU {x}, the (n, k, ¢)-pattern
matriz is the matrix A given by

A= |:¢)(.73|V @ w)} ze{0,1}", (V,w)eV(n,k)x {0,1}* ’
In words, A is the matrix of size 2" by (n/k)*2* whose rows are indexed by strings = € {0, 1},
whose columns are indexed by pairs (V,w) € V(n, k) x {0,1}*, and whose entries are given
by AJ;,(V,w) = ¢(I|V ¥ w)

The pattern matrix method gives a lower bound on the quantum communication com-
plexity of a pattern matrix in terms of the approximate degree of its generating function.
We now define this notion formally. Let f: X — R be given, for a finite subset X C R".
The e-approzimate degree of f, denoted deg,.(f), is the least degree of a real polynomial 7
such that |f(z) — 7(z)| < e for all x € X. One generalizes this definition to partial functions
f: X = RU{x} by letting deg,(f) be the least degree of a real polynomial = with

|f(z) —7m(2)] <, x € dom f,
|m(z)] < 1+e, z € X\ dom f.
We will need the following version of the pattern matrix method for quantum lower bounds.

Theorem 6 Let F be the (n,k, f)-pattern matriz, where f: {0,1}* — {—1,+1,%} is
given. Then for every € € [0,1) and every 6 < €/2,

Qi(F) > idege(f) log (%) - %k’g (6 _325> '

Theorem 6 is a generalization of the original pattern matrix method of [11] to partial functions.
For the reader’s convenience, we give a detailed proof of Theorem 6 in the appendix.

Proof of Theorem 5. The communication complexity of Fj, is monotone in n, due to F,,(z,y) =
F,44(20011,y0101). As a result, it suffices to prove the theorem for n divisible by 3. Under
this divisibility assumption, define & = n/6 and consider the function PMAJ;: {0,1}* —
{—1,+1, %} given by
-1 if |z| = k/2,
PMAJ,(2) = { +1 if |a| = k/2 — 1,
* otherwise.

Let P be the (2k, k, PMAJ)-pattern matrix. It is a well-known fact [17, 18] that deg; ;3(PMAJ) =

Q(k). As a result, Theorem 6 implies that Q7 ;(P) = (k) and hence also Q7 ,(P) = Q(k).
Writing P = [PMAJy (21712272 - - - Tk Tok) |V )]s {0,132, vev(ak,k) Makes it clear that P is

a restriction of the more general communication problem G: {0, 1}4% x {0, 1}** — {—1,+1, *}

defined by

—1 if |x| =2k, |y| =k, and |z Ny| = k/2,
G(z,y) = +1 if |x| =2k, |y| =k, and [z Ny| =k/2 -1,
*  otherwise.
As a result, Q7 3(G) = Q] 3(P) = Q(k). This in turn implies that Q7 5(F7) = Q(k) because
G(z,y) = F,(x1F0F y12¥). O
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4.3 Closeness Testing Reduction

In this subsection we explain how the lower bound on the quantum communication complexity
of PromisedGHD(n, x) (Theorem 4) implies Theorem 2.

Proof of Theorem 2. In [8], Andoni, Malkin and Nosatzki show a reduction from the problem
PromisedGHD(m, x) to the problem 2PCT, ;/, with parameters m = % and kK =
O(+/logn).cTheorem 4 thus gives us the claimed lower bound. In the remaining of the proof,
we show that the distributions used to prove the lower bound have low lo-norm.

The input distributions of 2PCT),, ; 12 used in the reduction shown in [8], which we will
denote a and b, are of the following form: half of the mass is uniformly distributed on d = n/10
elements, and the other half of the mass on [ = Cj - t - logn other elements, where Cj is some

constant. Therefore:

llallz = [Ibll2 = 1/ d(

1
2
1 /10 1
2V n Cotlogn
1 1
* Uo)tlogn7

I
| =
—~
— 3
o

since + < because t < —
n tlogn log¢n

Define vz as the smallest v such that min(||a||2,||b|]2) < ~te2/n holds. The above
calculations show that

lallan 1 [ o 10
LW = e 2 CO te%/@ - 203/2 \/logn

because t > Cn?/3 . ¢4/3 by (1). Thus yzw = O(1/+/logn). This concludes the proof. O
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Appendix A: The Pattern Matrix Method for Partial Functions

The purpose of this appendix is to provide a detailed proof of Theorem 6 for partial functions.
Our proof closely follows the original proof of the pattern matrix method in [11], developed
there for total functions.

We start by recalling the Fourier transform for functions f: {0,1}" — R. For S C

{1,2,...,n}, define yg: {0,1}" — {—=1,+1} by xs(z) = (=1)%ies % Then every function
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f:{0,1}™ — R has a unique representation of the form

f= > f9xs,

SC{1,2,...,n}

where f(S) = 27" >zefoyn f(@)xs(x). The reals f(S) are called the Fourier coefficients
of f.

For a real matrix A, we let ||Al|; denote the sum of the absolute values of the entries of
A. We let [|A]| denote the spectral norm of A. Recall that [|A| = max,.|,|,—=1 [[Az|]2. The
following theorem [11, Theorem 4.3] determines the spectral norm of a pattern matrix in
terms of the Fourier spectrum of its generating function.

Theorem A.1 Let ¢: {0,1}* — R be given. Let A be the (n, k, $)-pattern matriz. Then

4l = o (2 glg%{m%sn (fl)sw}.

We will also need the following dual characterization of approximate degree of partial
functions, analogous to the dual characterization for total functions used in [11].

Theorem A.2 Let f: {0,1}" — R U {x} be a given function, d > 0 an integer. Then
deg (f) > d if and only if there exists ¥: {0,1}" — R such that

ST f@w@) - D> @) = ellllh > o,

zedom f x¢dom f

and (S) = 0 for |S| < d.
Theorem A.2 follows from linear programming duality; see [11, 19] for details.

Next, we derive a version of the generalized discrepancy method for partial functions, by
adapting the analogous proof in [11, Theorem 2.8] for total functions.

Theorem A.3 Let X,Y be finite sets and F': X XY — {—1,+1,*} a given function. Let
U = [V, lsex, yey be any real matriz with ||¥|y = 1. Then for each € > 0,

. 1
R — U, Fz,y) — |y — 2€
BIVIXTIYTA 2 ‘ 2 ‘

z,y)Edom F (z,y)¢dom F

Proof. Let P be a quantum protocol with prior entanglement that computes F' with error e
and cost C'. Let II be the matrix of acceptance probabilities of P, so that II , is the probability
that P accepts the input (z,y). It is shown in the proof of [11, Theorem 2.8] that

SN W, (1 -20,,) < ) (249 +1) VIX[]Y]. (A1)

rzeX yey

Now observe that 1 — 2II, , ranges in [F(z,y) — 2¢, F'(z,y) + 2¢] on dom F, and is bounded
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in absolute value by 1 otherwise. This gives

SN W, (-2,

zeX yeyY

2 Z (Vo F(2,y) — 26|y y|) — Z (Vo

(z,y)edom F' (z,y)¢dom F
> Z \Ijm,yF(xa y) —2e— Z |\I/ac,y|’ (A2)
(z,y)€dom F' (z,y)¢dom F

where the last step uses ||¥]|; < 1. The theorem follows by comparing the upper bound (A.1)
with the lower bound (A.2). O

We are now in a position to prove Theorem 6, which we restate here for the reader’s
convenience.

Theorem A.4 (restatement of Theorem 6) Let F be the (n, k, f)-pattern matrixz, where
f:{0,1}% — {—1,+1, %} is given. Then for every e € [0,1) and every § < ¢/2,

1 1 3
Q3(F) = Jaer.(9)1os () ~ g1ox (55 (A.3)
Proof. Let d = deg (f) > 1. By Theorem A.2, there is a function v: {0,1}* — R such that:
¥(S)=0 (1S < d), (A4)
> )=t (A.5)
2€{0,1}%
Y. f@wE@ - Y )l > (A-6)
z€dom f z¢dom f

Let ¥ be the (n, k, 27" (n/k)~k1))-pattern matrix. Then (A.5) and (A.6) show that

S FyVey— > [Tayl>e (A.8)
(z,y)€dom F' (z,y)¢dom F

Our last task is to calculate ||¥||. It follows from (A.5) that

n -k
max [p(S) < 27" (A.9)

Theorem A.1 yields, in view of (A.4) and (A.9):

1| < (i)d/z (wk (Z)k)l/z, (A.10)

Now (A.3) follows from (A.7), (A.8), (A.10), and Theorem A.3. O



