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Abstract

We combine the newly-constructed Galerkin difference basis with the energy-based dis-
continuous Galerkin method for wave equations in second order form. The approximation
properties of the resulting method are excellent and the allowable time steps are large com-
pared to traditional discontinuous Galerkin methods. The one drawback of the combined
approach is the cost of inversion of the local mass matrix. We demonstrate that for constant
coefficient problems on Cartesian meshes this bottleneck can be removed by the use of a
modified Galerkin difference basis. For variable coefficients or non-Cartesian meshes this
technique is not possible and we instead use the preconditioned conjugate gradient method
to iteratively invert the mass matrices. With a careful choice of preconditioner we can
demonstrate optimal complexity, albeit with a larger constant.
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1 Introduction

Discontinuous Galerkin methods have become a method of choice for solving first order hy-
perbolic equations in Friedrichs form [14]. They possess many desirable properties such as
arbitrary order, robustness, geometric flexibility and explicit time evolution. Analogous meth-
ods for second order hyperbolic equations are less well established, despite the fact that many
governing equations arising in physics are in second order form. Even though it is often possible
to rewrite second order hyperbolic equations in first order form, the first order formulation has
some drawbacks. It almost always needs more boundary conditions and it is only equivalent
to the original second order equation for constrained data. In addition, not all second order
hyperbolic equations can be rewritten as a first order system which is in Friedrichs form. In
[3] Appelé and Hagstrom proposed an energy-based DG method for second order wave equa-
tions. The idea in [3] is to introduce a new variable v = % to transfer second order hyperbolic
equations to first order systems in time only, and then seek approximations which satisfy a
discrete energy equality. The method features a direct, mesh-independent approach to defining
interelement fluxes. Both energy-conserving and upwind discretizations have been devised and
their extension to elastic, advective and semi-linear wave equations can be found in [4, 5, 25].
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Galerkin difference methods were introduced by Banks and Hagstrom [6] to solve hyperbolic
initial-boundary value problems. The idea is to use a Galerkin construction to derive energy
stable finite difference methods. The basis functions are Lagrange functions associated with
continuous piecewise polynomial approximation on a computational grid. Salient features of
these methods are: the discrete approximations are uniform from grid-point to grid-point when
away from domain boundaries; no new degrees of freedom are added when the approximation
order increases; they do not require significantly smaller time steps as the order increases. Com-
paring them to summation-by-parts (SBP) difference schemes [24], they have the advantage of
being directly constructable at arbitrary order and can be seamlessly interfaced with standard
schemes on unstructured grids [17]. The relative disadvantage is that Galerkin difference oper-
ators typically require twice as many flops as SBP operators of the same order.

In this paper, we combine the energy based discontinuous Galerkin methods with the
Galerkin difference methods to solve the second order wave equation. The corresponding mass
and stiffness matrices are banded matrices because of the properties of the Galerkin difference
basis functions. For high dimensional problems on structured grids, the Galerkin basis functions
are the tensor product of the Galerkin basis functions in one dimension. Then the mass matrix
is a Kronecker product of the mass matrices in each dimension and the stiffness matrix is a
summation of the Kronecker product of the mass and stiffness matrices in each dimension. This
fact indicates that the inversion of the mass matrix can be computed with a computational cost
which is linear with respect to the total degrees of freedom, while the computational cost grows
rapidly for the inversion of the stiffness matrix. A result of this paper is the application of the
simultaneous diagonalization technique from [18] to derive a new class of Galerkin difference
basis functions to reduce the computational cost of the inversion of the stiffness matrix.

We note that the literature on high order methods for wave equations in second order
form is extensive. We will not try to review all methods here, but rather mention a few that
are representative of the state of the art. In the class of discontinuous Galerkin methods it is
worth mentioning the symmetric interior penalty (SIPG) method of [12], the local discontinuous
Galerkin (LDG) method of [11] and the nonsymmetric interior penalty method of [22]. Finite
difference methods include those using SBP operators [20, 19] as well as those using upwind
methods [8].

The rest of the paper is organized as follows. In Section 2, we introduce the construction
of the Galerkin difference basis functions and the energy based discontinuous Galerkin method
for the second order scalar wave equation. We derive the new basis functions from the Galerkin
difference basis functions and investigate the reduction in computational cost in Section 3. In
Section 4, we present the dispersion properties of the scheme. Section 5 shows the spectral
radii of the proposed scheme. Numerical experiments that illustrate optimal convergence in
both L? and energy norms are given in Section 6. In Section 7, we apply the method to a
problem with variable sound wave speed. Here the new basis construction does not apply, and
as an alternative we use preconditioned conjugate gradient iterations. Finally, our conclusions
summarized in Section 8.

2 Preliminaries

We consider the wave equation in first order form in time and second order form in space

up = v, (1)
vy = V-(EVu)+f, t>0, (z,9,2) €, (2)
complemented with initial data and boundary conditions.

In what follows we will consider energy based discontinuous Galerkin methods implemented
on d-dimensional tensor product elements. Each element will be mapped to the d-dimensional



unit cube which will be discretized by an equidistant Cartesian grid. Precisely, in each dimension
k and for each element we consider a grid discretizing the unit cube

Tk = thy, 1=0,...,Ng, hp= 1/Nk.

For simplicity here we will use the same number of intervals in each dimension, N, = N. In
the following n denotes the number of elements in one dimension, m denotes the number of
elements in multiple dimensions and p denotes the polynomial degree of the approximation. We
will only consider p odd, which corresponds to the locally continuous difference basis and will
often use the integer ¢ = (p +1)/2.

2.1 The Galerkin Difference Basis

We now describe the Galerkin difference (GD) basis we will use. Note that the description here
differs slightly different from the original description in [6], but the basis is identical.

We first consider grid points well-separated from a boundary. The goal is to construct a
polynomial basis of odd degree p on an equidistant grid with grid spacing h. The generating
basis function ®,(x) is centered around x = 0 and the basis itself is simply the union of the
translates of the generating basis function. Thus an element in the basis centered around x; = ih
becomes, ¢, ; = ®,(z — ih).
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Figure 1: To the left, the generating basis function ®,(z) for p =1,3,5,7,9. Note that ®,(z) =
®,(—x). Note that each function is vertically offset by ¢ — 1. In the middle, the “right” four
degree 7 Lagrange polynomials that make up ®7(x), the part of L; that is used is in bold. To

the right, a three dimensional representation of the generating basis function ®,(z) for p up to
39.

The generating basis function ®,(x) is symmetric, ®,(z) = ®,(—=z), and has compact sup-
port on x € [—qh,qh|, where p = 2q — 1 (recall that p is odd). In Figure 1 we display the
non-zero part of ®,(z) for p =1,3,5,7,9, and = > 0. In the lower left corner, where p = 1, we
recognize the classic finite element hat function and as p increases we see that ®,(z) becomes
increasingly similar to the Cardinal Sinc function.

An explicit formula for ®,,(x) inside each of the g positive intervals [jh, (j+1)h) is obtained as
follows. Let L;(x) is be the Lagrange interpolating polynomial on the grid G; = {—jh,...,(p—
j)h} with the property that L;(0) = 1, then

Op(x) = Lj(x), z€[(qg—J—1h,(q—3)h). 3)
A continuous function u(x,t) can then be approximated by a linear combination of basis
functions with weights corresponding to nodal values

k+q

wz,t)m > wpi(x), @€ [kh, (k+1)h), (4)
i=k—(¢—1)



where u; = u(z;,t).

2.1.1 Modification Near Boundaries

Near boundaries the basis must be modified. In [6], three approaches for handling boundaries
are described: ghost basis, extrapolation basis and use of modified equations. Here we will
exclusively use the extrapolation basis, which we describe next.

The extrapolation procedure draws from the standard practice to use ghost points in finite
difference methods. First, note that the ¢ — 1 additional ghost basis functions associated with
the ¢—1 first grid points outside the computational domain are the only ghost basis with support
inside the computational domain. In the ghost basis approach the degrees of freedom at the
ghost points are retained as unknowns but in the extrapolation approach they are eliminated
in favor of modifying the basis itself near the boundary.

As the name suggests, the elimination is done by extrapolating the nodal values inside the
computational domain to the ghost points. For example consider p = 3. Then ¢—1 = 1 and one
ghost point value, u_1, must be determined. As the basis is fourth order accurate, the ghost
point value is determined by fourth order accurate extrapolation,

u_1 = 4dug— 6u; + 4dus — us.

To understand how the modified basis is constructed, consider evaluating the approximation
u(z) inside the computational domain where the ghost basis has support. In this case this
means x € (xg, 1) and the approximation is

w(z) = u_1¢_1(x) + uppo(z) + w11 (x) + ugpa(x).

To obtain a value for u_; we use the extrapolation condition

u(xr) = (4ug — 6uy + 4us — u3)d_1(x) + uogo(x) + urd1(z) + uzg2(x)
= g [¢o(7) +49_1(z)] + u1 [p1(x) — 6¢_1()] + u2 [p2(7) + 4dp—1(7)] + us [~P-1(7)]
= g [po(®) +4¢—1(2)] + w1 [P1(z) — 66—1(2)] + uz [P2(z) + 4d—1(2)] + us [p3(2) — d—1(2)].

In the last step, we used the fact the support of ¢3 vanishes in (z¢, z1). Thus the modified basis
functions are

Go=do+40_1, b1 =¢1—66_1, o= +4b_1, b3=¢3— 1.

The extension to larger p requires the basis to be modified in a wider band near the boundaries
and the extrapolation is done at the order of accuracy that matches that of the interior scheme.
The handling of the right boundary is analogous.

2.1.2 Extension to Higher Dimensions

The extension to higher dimensions simply amounts to using the tensor product approximation
built off the one dimensional basis. For example, in two dimensions we have

ks+q ky+q
u(xayat) ~ Z Z ui,qup,i,j(x’y)a (ﬁ,y) € [kmha (km + 1)h) X [kyha (ky + 1)h)? (5)
i=ke—(q—1) j=ky—(q—1)

where u; ; = u(xi,yj,t) and

Gp,i(@)bpj(y), p<i<N—p, p<j<N-—p,
Gpi(2)bpi(y), P<i<N-—p, 0<j<N,
Ppii(T,y) = ’ ’ : : 6
pl]( y) Qép,i(x)?p,j(y), OSZSN, p<.] <N—pa ( )
¢p7i(x)¢p7j(y)a Zaj §p7 Zaj Z N_p



Below, for notational convenience, we will not explicitly distinguish between the modified
basis functions and the interior basis functions and simply drop the tilde notation. Also, we will
use the notation Q, n to denote the one dimensional space spanned by the (N + 1) Galerkin
difference basis functions associated with the nodal degrees of freedom.

2.1.3 Alternative Galerkin Difference Spaces

Lastly we note that instead of the locally (within element) continuous Galerkin basis, one can
use discontinuous even-degree polynomials constructed using cell-centered interpolation nodes
as in [13, 7]. In this case we would need to introduce fluxes not only at the boundaries of
the macro-elements as we do here, but also at the boundaries of the cells within each macro-
element. The construction of the energy-based discontinuous Galerkin method would follow in
the same way as presented below, and we could also construct the improved basis for elements
in regions where the wave speed is constant. We note that in this case it would be possible
to make different choices for the fluxes for the cell boundaries interior to each element and
those between the macro-elements. However, here we will focus solely on the use of the locally
continuous basis functions.

2.2 The Energy Based Discontinuous Galerkin Method for the Wave Equa-
tion

We consider a mesh that discretizes 0 into non-overlapping box shaped elements QF with
Q = UL, QF. On each element OF = @ [LF, R}], where S = {z,y} if d = 2 and S = {z,y, 2}
if d = 3. Let (Qp, ~)?% be the space of functions spanned by the tensor product of the one
dimensional Galerkin difference basis on an element. Then a test function ¢ in (Q, y)? can be
expressed (in three dimensions) as

Qp(x’y’ Z) = H ¢p7ip (p)

peES

Here we assume the same degree of approximation and the same number of degrees of freedom
in each dimension, but remark that these can also be chosen independently.
Now following [3] we define our discretization by the element-wise variational statement

/Qk AV, - (% - Vv) ok = /agk (7t - V) (v* —v) dQF, (7)
0
/Qk gova—: + AV, - VudF = /mk Py (- (Vu)*) dQF, (8)

for all (¢u,en) € (Qpn)? x (Qp )% As equation (7) vanishes for constants we augment it by

the independent equation
ou
— —v ) dF =0. 9
NG )

Following the notation in [3] we take 8,7 > 0, 0 < o < 1. Now, let the superscript 1 represent
data from inside an element and the superscript 2 represent data from the outside of an element.
Then we can write the numerical fluxes as

2.2.1 Numerical Fluxes

v* = av' + (1 -a)? - B(Vu' -n' +Vi? - n?),
(Vu)* = (1 —a)Vu! +aVu® — 7(vn! 4+ vn?).

The above fluxes are energy-conserving when f = 7 = 0, and upwind and dissipative when
B,7 > 0. In the rest of the analysis, we focus on the three popular choices:



Central flur: o = %, B=1=0,

Alternating flur: a =1, 6 =7=0,

Upwind flur: o = %, 8= %, T= 2—15
In the last flux £ is a flux splitting parameter with the same dimensional units as the speed of
sound c.

We note that the possibility of choosing simple mesh-independent flux parameters is a feature

of the energy-DG formulation.

3 Efficient Formulation on Cartesian Grids

In this section we restrict our attention to the case of constant speed of sound within an
un-mapped Cartesian element. Using the tensor products of the compactly-supported basis
functions described in Section 2.1 we will see that the complexity of computing the time deriva-
tives is unacceptable for N large due to the structure of the lift matrix associated with (7).
However, if we use a simple simultaneous diagonalization of the mass and stiffness matrix we
can construct practical implementations of (7), (8) and (9) whose cost scales linearly with the
total number of degrees of freedom.

On each element QF, we approximate the solution by tensor product expansions (here for
the case of three dimensions)

N N N

w@,y, 2t = > DY w00 6p () bpt, W) bp. (2),

1:=01,=01,=0
N N N

V(@Y 5t) = Y3 > U0 G (T)Ept, () bp. (2).

1:=01,=01,=0

On element QF, let U, V¥ be column vectors containing the nodal values of u and v, that is

U, 1,1 and vy, g, 1., respectively. Then, in d-dimensions we may write the nodal based version
of the method as the system of ordinary differential equations
AU .
i SV
d
+Z(O‘ ~1) {(DR,R _ DL,L)Vlc _ DRLyk+1 DL,RVk—l}
j=1
d
_ Zﬁ [(CR,R _ CL,L)Uk 1+ ORLypk+1 _ CL,RUk—l} , (10)
j=1
k
Mﬂ = —2su*
dt
d
12 Z(l —a) (ER,R _ EL,L) U* 4 a <ER,LUk+1 _ EL,Rqu)
j=1
d
—2 ZT [(BR,R _ BL,L) vk 4 BRLyK+L _ BL,RVk—l] . (11)
j=1

Here we abuse the notation in that for each coordinate direction in the sums we use the su-
perscript k £ 1 denote the element “left” and “right” of element k& in the jth direction. The
definitions of the mass matrix M, the stiffness matrix S and the lift matrices B ,C, D, E will be
given below.



3.1 Complexity with Galerkin Difference Basis

Now, in order to compute the time derivatives % and % we must evaluate the matrix vector
products on the right hand side and the action of the lift matrices on U* and V*. As the
matrices are sparse it is possible to do this at a cost that scales as ~ f(p)N*, with f(p) being a
low degree polynomial in p and x = d for the volume terms and x = d — 1 for the surface terms.
In other words the cost scales linearly with the number of degrees of freedom.

Further, due to the tensor product structure of the mass matrix we have that the element
mass matrix M can be composed as a Kronecker product of the one dimensional matrix, which
we denote M,

M = &}_, M;,

with M = fﬁj ®jk®j1dz;. Now, as the one dimensional mass matrices have bandwidth p so
will its LU-factors. Let L;U; = M;. Then by the Hadamard product property we have

M = ®?=1Mj = ®?=1LJUJ = (®?=1Lj)(®§l=1Uj) = LU.

Thus, as the cost of each substitution is O(p(N+1)) the cost of solving Mx = bis O((p(N+1))4),

which again is linear in the degrees of freedom. Unfortunately, the stiffness matrix S is a sum
of Kronecker products

S=5®M;®Ms+ M @S, ®Ms+ M & My ® Ss,
with SJ"M = LR;] dgmj;k djgj,
of solving such a system directly is generally superlinear in the number of degrees-of-freedom,
although recent advances combining nested dissection ordering with low rank approximations
can reduce this to near linear cost but with a significant prefactor [23]. The structure of (10)
can be exploited to rewrite it in the form:

supplied by an extra equation from (9). As is well-known, the cost

k
% _ Yk L QUL VL gk, vk gkt T

where G may be viewed as a lift matrix. As G maps boundary data to volume data the cost
of this operation will scale as O((N + 1)2?~1) per time step, with the larger cost of inverting S
restricted to a precomputation. As N may be much larger than p, this scaling implies that the
resulting method would not be competitive with an implementation using a standard continuous
Galerkin difference formulation of [6] or the more recent method using a SIPG formulation [7].
We must thus seek an improved method.

3.2 Optimal Computational Complexity by Simultaneous Diagonalization

The above mentioned complexity for evolving U is not competitive for practical computations
unless we limit the element sizes, e.g. with N = O(p(@=D/4). In this section we follow [18]
and show that it is possible to make a simple (computational) change of basis that results in
a method with linear complexity. Precisely the new basis is found by solving the generalized
eigenvalue of problem for each of the one dimensional matrices, S, j = 1,...,d. That is, the
new basis vectors are solutions to,

S]’T,Z)j,kj = Aj7k‘ij¢j7k'j’ kj=0,....,N;, j=1,...,d
We normalize the eigenvectors according to

wj,kj
()T Mijapj g, )12

Vik;



Let ¥; be the matrix containing the new one dimensional basis

U= (0 ¥i1 - YN ).

Then the d-dimensional basis is
U =®7%,7;.

Now, we define U and V by
U=9U, V=YV,

then equation (7) and (8) become

U
visw (— -V ) =/, 12
( i ) fu (12)
\IITM\II% + AUTSOU = f,. (13)

where,

d
fu = Z(O‘ _ 1)\I,T [(DR,R _ DL,L)\I,Vk _ DRLyyk+L 4 DL,R\I,‘*/kfl}

.

d
Zﬂ [ CRR _ CL,L)\IJUIC 1 ORLgpk+! _ CL,R\Ilﬁk—l} 7
7j=1

d
fo = X (1-a)u” (BRF - phE) WOt 4 au” (ERETR - phRyTh)
]:1

_e? ZT\I/T {(BR,R _ BL,L) Ok & BRLgyA+L _ BL,R\I/Vk—l] .
j=1

In the new basis we have that the mass matrix diagonalizes
T d T
VMY = @5, (¥ M;¥;) =1,
as does the differentiation matrix

d
VST =) (T M) @ @ (U] My 1T, 1) @ (U] S;05) @ (U] M1 541) - -
j=1
@ (UMW) =) A,
J
where,
Aj=1® - ®@Ixdiag(Njo. - AjN) @@ @ 1.

In the above equations we use I to denote the identity matrix of size inferred by the context.

Note that as one of the eigenvalues of S is zero one of the equations in (12) vanishes. Suppose
we have ordered the unknowns so that this corresponds to the first entry in U, then we simply
enforce the additional independent equation

dU _
L= 7.
dt
We thus conclude that the cost of all the volume terms scales linearly with the number of
degrees of freedom. We now turn to the evaluation of the surface terms in the new basis.



Consider first the surface terms in the Galerkin difference basis. In a single dimension the
elements in the four different surface terms are of the form

Adox
dx
where {X,Y'} € {{L,L},{L,R},{R, L}, {R, R}}.

Now due to the local support properties of the Galerkin difference basis the number of

nonzero elements in the above matrices are 1 for BXY | (p41) for DY and EXY, and (p+1)?
CXY,

~ d N d
(X)u(Y), Elsz _ ¢k(X)di;l(Y), Cﬁy _ %(X)

doy

BYY = on(X)4i(Y), DY = o

(Y)7

for
The d-dimensional version of the surface matrices can again be constructed by Kronecker
products. For example we have that

Dj(’y :Ml®"'®Mj—1®DJX7Y®Mj+1®”'®Md-
Applying the change of basis we have that
VDI W = (WM ) @ @ (U] My W) @ (WD ) @ (W] My W) @ -
@ (W MgUg) =@ @1 @ (VD ) @Ie- @ 1.
Thus applying \IITD]X’Y\I’ to the (N +1)% dimensional vector V can be done at a cost that scales

with (p+ 1)(N +1)%. Similarly, the cost of applying \IITB]X’Y\I’, \IITC]X’Y\I’, and \IITEJX’Y\I’ can
be done at a cost of (N + 1)¢, (p+ 1)2(N + 1)%, and (p + 1)(N + 1)?, respectively.
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Figure 2: Plots of CPU time (in seconds) in the Galerkin difference basis obtained by simulta-
neous diagonalization as a function of degrees of freedom (DOF) in two space dimensions. The
graph on the left is for one DG element (n = 1) and on the right for 36 DG elements (n = 6).
The speed of sound is ¢ = 1 and the splitting parameter for the upwind flux is £ = c.

3.3 Numerical Verification of the Computational Complexity

We now present timing results that illustrate above analysis. We consider a two dimensional
problem in the domain [0, 1] x [0, 1] and use the upwind flux (the other fluxes give similar timing
results). For this problem we choose forcing and boundary conditions so that the solution is

u(z,t) = sin(167t) sin(16mx) 4 cos(167t) cos(167y).

We present results for both one DG element (n = 1) and 36 DG elements (n = 6). The degrees
of freedom are N + 1 for both the z and the y direction, i.e, the total degrees of freedom is



n?(N + 1)2. Specifically, we choose N =3,4,5--- ,42 when n =1 and N = 3,4,5--- ,29 when
n = 6 for the improved basis. We also choose p = 3 which results in a fourth order accurate
method.

To time the code we use the built-in function CPU_TIME() in FORTRAN to record the elapsed
CPU time which is used to evolve the solution using the classic fourth order acurate Runge-
Kutta method for 10 timesteps steps.

In Figure 2, we observe that the CPU time is proportional to n?(N + 1) for the Galerkin
difference basis obtained by the simultaneous diagonalization, which is orders of magnitude
smaller than what would be required for the standard Galerkin basis.

4 Dispersion Analysis

To investigate how well the scheme proposed in Section 2.2 preserves the wave propagation
properties, we use the standard Bloch wave analysis as in [1, 2, 15, 21, 14]. Here, we consider

Pu 0%

w—C@, a<$<b, (14)

with initial condition u(x, 0) = €*** and periodic boundary conditions u(a,t) = u(b,t), %(a, t) =
%(b, t). We then seek spatially periodic solutions of the form

u(x,t) _ ei(lillifwt)’

from which the exact dispersion relation w = +ck for (14) can be found.

Next, partition the computational domain into non-overlapping uniform DG elements I*¥ =
[2F, 21 k=0,--- ,n—1with H = 2**! — 2% = (b—a)/n. For each DG element I*, there are
N +1 equidistant nodal degrees of freedom with spacing h = H/N. The semi-discretization in I*
becomes then follows from (10) and (11) with d = 1. Let the vectors U* = (UF,U¥F,--- | U%) and
VFE = (VF,VE -, VE) hold the nodal approximations of u(x,t) and v(z,t) in I*, respectively.

We seek solutions in terms of Bloch waves

Ulk — Ulkel(n(g;kJrlh)*wt)’ ‘/Zk — ‘A/lkei(/{(;pkﬁ*lh)*wt)’ l — O, . 7N7 (15)
and thus assume periodicity of the solution. That is
Wéﬁ-{—l _ einHWéc, W]l\c[—l _ efinHW]lf[, (16)

where W represents either U or V. To condense the notation, we have omitted the superscript
k for the rest of this section. Let Z = (U,V)? and combine with (10)-(11), (15)-(16) to obtain
the following eigenvalue problem

A~

AZ = —iQZ, A=A, A,

where -1 1 712
IR GRYR) NS O+ g
with
A%l — T(CL’L o CR,R) o T(eiKcR,L o e*i[(ch,R)7
A%Q — Sv + (—0)(DR’R _ DL,L) + H(GiKDR,L . e_iKDL’R),
A2 = PS4 OR(ERE — EVL) 4 (1 — 0)2(KERL — oK pLR),
AR = _BA(BRE _ BLL) _ g2 (K BRI _ o~iK pL.R)

10



and K = kH. Note that the values of Q2 = Q,. +i{}; are, in general, complex valued. Here €); is
non-positive and represents the numerical damping of the corresponding scheme, and the real
part €2, is the approximation to %

For the numerical simulations in this section, the computational domain is chosen to be
x € [0,1]. The order of the approximation space is set to be p = 3. The number of degrees of

freedom in each DG element is N + 1 = 10.
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Figure 3: In this simulation, we choose n = 2 DG elements and N = 9 GD cells in each DG
element. On the left we show the numerical dispersion relation for the central flux. On the right
we show the numerical dispersion relation for the alternating flux. Black dot lines are the exact
dispersion relation, p.-mode represents physical modes, dashed lines are for spurious modes.
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Figure 4: In this simulation, we choose n = 2 DG elements and N = 9 GD cells in each DG
element. On the left we show the numerical dissipation for the central flux for all modes. On
the right we show the numerical dissipation for the alternating flux for all modes. ’p.-mode’
represents the physical, dashed lines are for spurious modes.

Figure 5 presents the dispersion relation of the upwind flux. When K is small, the numerical
phase velocity also reflects the physical wave speed. Comparing the results in Figure 5 and
Figure 3-4, we find that both conservative (central flux and alternating flux) and dissipative
schemes (upwind flux) recover the physical mode for small K. The conservative schemes admit
more complicated phenomena: the spurious modes do not damp for small values of K; for the
dissipative scheme, however, the unphysical modes are strongly damped.

In Figure 6, we show the dispersion relation of physical modes of the dissipative scheme
(upwind flux) for a range of orders of approximation p = (1,3,5,7,9) and N = 19 for all
different approximation degrees p. We see that the numerical phase velocity is very close to the
physical wave speed when K is small and improves for a broader range of K as the order of the
approximation increases.

Lastly we consider direct comparisons of the proposed method with both alternating and
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Figure 5: In this simulation, we choose n = 2 DG elements and N = 9 GD cells in each DG
element. On the left, we show the numerical dispersion relation for the upwind flux. Black dot
lines are the exact dispersion relation, p.-mode represents the physical and dash lines are for
spurious modes. On the right, we illustrate the dissipation associated with the twenty modes.
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Figure 6: On the left, we show the numerical dispersion relation for the upwind flux. The black
dashed line is the exact dispersion relation. We present the numerical dispersion relation for
the physical mode at different orders p = (1,3,5,7,9) with N = 19. On the right, we illustrate
the dissipation associated with the different orders p = (1,3,5,7,9) with N = 19.

upwind flux choices to the interior penalty discontinuous Galerkin method (IPDG). We also
consider the effect of increasing the number of nodes within the element. The dispersion relation
for the IPDG method is discussed extensively in [2], and we use the Bloch wave formulation
and penalty parameter suggested there. On the left in Figure 7 we take p = 3 and apply the
method proposed here with 9 and 39 cells per element along with IPDG. In all cases we use a
single element and compute the dispersion relation for a range of wave numbers with the largest
wave number corresponding to 5 degrees-of-freedom per wavelength. Note that this implies a
significant disparity in the wave numbers considered. Here we see that the dispersion error for
the upwind method is significantly smaller than for the conservative alternating flux scheme,
but keep in mind that the graph does not take the dissipation error of the upwind discretization
into account. Both our conservative method and IPDG have oscillatory dispersion relations,
but perhaps because of the larger wave number range involved we see more oscillations for the
proposed method. Increasing the number of nodes per element improves the results. Here IPDG
is the best performer at the coarsest discretization level, though we do recall that the proposed
scheme admits larger time steps than IPDG.

On the right we display the analogous plot for p = 7 and largest wave number corresponding
to 3 degrees-of-freedom per wavelength. Now the results for the proposed methods are shown
with 19 and 39 cells per element. The comparisons between them follow the same pattern as

12
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Figure 7: On the left we compare the dispersion errors with p = 3 for the alternating and
upwind fluxes with 10 and 40 points per element as well as for IPDG scheme. On the right we
show the same for p = 7 where the alternating and upwind fluxes are considered for 20 and 40
points per element.

in the case p = 3. However in this case the dispersion errors are larger for IPDG at the coarse
resolutions.

5 Spectral Radius

In this section, we study the spectral radius of the semi-discretization of our scheme. Consider
the problem in one dimension

Pu  ,0%u

o2 = a?
with either periodic boundary conditions or a homogeneous Dirichlet boundary condition at
the left boundary and a homogeneous Neumann boundary condition at the right boundary. We
emphasize that an expected advantage of Galerkin difference methods compared with standard
DG schemes is a milder growth in the spectral radius as the order is increased, and the results
below confirm this expectation.

As above, the computational domain [a,b] is divided into non-overlapping uniform DG
elements I* = [2%, 2¥T1] k =1, ,n with element size H = (b — a)/n. Each DG element I* is
partitioned into N equidistant subcells with cell size h = H/N. Namely, we have N + 1 degrees
of freedom for each DG element. Then the displacement u(z,t) and the velocity v(x,t) in I*
are approximated by the nodal values Ulk and Vlk with

x € la,b],

N N
u(x’ t) = Z UleSpJ(x)’ v(m, t) = Z Vlk¢p,l(x),
=0 =0

respectively. Here, ¢,; are p-th order Galerkin difference basis functions. In this experiment
the speed of sound is ¢ = 1 and we choose the splitting parameter in the upwind flux to be
¢E=c.

Let the vectors U and V' contain the nodal values Ulk and VE’“
U = [U017... 7U]1V7"' ,U(?,--- ’U]V\H’ V = [Vblf” ’V]\lh... 7{/0”’... ’VNn]_

Then the semi-discretization (10)-(11) can be written as a system of ordinary differential equa-
tions

dz
— =1z Z=(UWVT.
dt ’ (U, V)
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In the experiments in this section, the computational domain is chosen to be x € [0, 1], the
number of DG elements is set to be n = 1, the degree of approximation space is given by
p = (1,3,5,7,9,11), and the number of degrees of freedom in the DG element is given by
N +1=(31,61,121).
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Figure 8: Spectral radius as a function of the approximation degree p for three different fluxes.
The figures are for periodic boundary conditions (left) and Dirichlet and Neumann conditions
(right).

Denote the central flux by C.-flux, the alternating flux by A.-flux and the upwind flux by
U.-flux. Figure 8 displays the amplitude of the largest eigenvalue as a function of the degree
p for three different values of IN. The subfigures display results for periodic and non-periodic
boundary conditions. We observe that the spectral radius is linearly proportional to the degree
p for all three different numerical fluxes. This is in contrast to standard discontinuous finite
elements where the spectral radius grows quadratically with p. As a consequence the method
proposed here can march in time with p times larger time steps.

6 Convergence

In this section, we present numerical results to investigate the convergence of our method in
both the L? norm, |u — u"||z2, and the energy norm, (||V(u —u")[%; + |lv — vhH2)1/2. We
consider both one dimensional and two dimensional problems. As we have discussed in earlier
papers [3, 5, 25], the energy norm is the starting point for theoretically establishing stability
and rates of convergence of the energy DG method, and the results there apply directly to the
proposed scheme. In all experiments below we use a nodal formulation associated with the basis
functions in Section 2.1 and march in time by the classic fourth order accurate Runge-Kutta
method. We choose the speed of sound to be ¢ = 1 and the flux splitting parameter £ in the
upwind scheme to be c.

6.1 Periodic Boundary Conditions in One Dimension

To investigate the order of accuracy of our method, we solve

Pu  ,0%u

W_CW7 1'6(0,1), tZO,

with periodic boundary conditions u(0,t) = u(1,¢) and with initial data so that the solution is
the exact traveling wave
u(z,t) = sin(8w(x — ct)). (17)

The discretization is performed on a uniform mesh with DG element vertices z; = iH, i =
0,---,n, H=1/n. The vertices of the subcells for the i-th DG element are z;; = x; + jh with
i=0,---,n—1,75=0,---,N and h = H/N. The problem is evolved until the final time
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Figure 9: Plots of the L? norm error |[u — u"||;2 and the ener norm error
L Y

(IV(u—u")|2s + v — vh||%2)1/2 as functions of h in one dimension with upwind flux, cen-
tral flux and alternating flux for periodic boundary conditions. In the legend, p is the degree
of the approximation space of u and v. The filled circles are the results for the fixed degrees of
freedom N + 1 = 11 and the hollow circles are the results for the fixed number of DG elements
n = 10.

T = 1.075 with the time step size At = CFL x h, CFL = 0.075/(27) to guarantee the error is
dominated by the spatial error.

We present results for the degree of the approximation space of u”, v being p = (1,3,5,7).
The mesh size h is refined by either increasing the number of DG elements n and fixing the
degrees of freedom N + 1 in each DG element or increasing the degrees of freedom N + 1 in
each DG element and fixing the number of DG elements n.

The L? norm error ||u —u"||;2 and the energy norm error (||V(u —u")||2; + [jv — vhHig)l/z
are plotted against the grid spacing h in Figure 9 with the upwind flux, the alternating flux
and the central flux, respectively. Linear regression estimates of the rate of convergence can
be found in Table 1 for fixed number of DG elements n = 10 and in Table 2 for fixed degrees
of freedom N + 1 = 11 in each DG element. Note that we use the same (on element) mesh
size h = 1/n/N for these two cases when we generate the results in Figure 9. From Figure 9,

15



U.-flux A -flux C.-flux

degree p for u" 1 3 5 7 1 3 5 7 1 3 5 7

L? norm rate 1.97 429 6.26 823|096 488 6.42 831|190 435 643 845

energy norm rate | 1.65 3.13 528 7.33 | 090 2.50 4.50 6.50 | 1.36 3.45 5.47 7.44

Table 1: Linear regression estimates of the convergence rate in the L? norm |lu — u"| ;2 and en-
1/2
ergy norm (| ¥ (u — u*) [, + o —"}.)"/

for fixed number of DG elements n = 10.

in one dimension with periodic boundary condition

U.-flux A -flux C.-flux

degree p for u” 1 3 5 7 1 3 5 7 1 3 5 7

L? norm rate 1.06 4.29 6.01 795 | 0.27 4.00 598 795|187 432 6.09 8.15

energy norm rate | 1.02 3.01 5.00 7.01 | 0.00 2.00 4.00 6.02 | 1.27 299 498 7.01

Table 2: Linear regression estimates of the convergence rate in the L? norm |lu — u"| ;2 and en-
ergy norm (||V(u — uM)[|2; + [lv — v"|2,) "2 i1 one dimension with periodic boundary condition
for fixed degrees of freedom N + 1 = 11 in each DG element.

we observe that the L? error ||u — u”|| 2 becomes oscillatory when it reaches 10~'3 for p = 7,
thus we only use the first 31 data points to estimate the convergence rate for this case. For
the other cases we use all data to estimate the convergence rate. Generally speaking, the errors
are comparable for the two modes of refinement (N fixed and n fixed), with slightly smaller
errors if we fix n and refine within each element. From the comparisons of the dispersion errors
we do see that refinement within an element is likely to be preferable in most cases. Note
that the existing theory for the method in one space dimension only establishes convergence in
the energy norm and only proves optimal convergence for the upwind flux. That is, we only
have proofs of convergence at the optimal order p in the energy norm for the upwind flux; for
the other fluxes the existing theory only guarantees a rate of p — 1 and in particular it does
not guarantee convergence for the conservative fluxes when p = 1. Specifically we observe the
following, which in most cases is better than what we can prove.

a). When the number of DG elements n = 10 is fixed, from Table 1, we observe convergence
at rates exceeding (p + 1) in the L? norm for p = (3,5,7) with all three choices for
the flux; p-th order convergence for the alternating flux and optimal convergence (p + 1)
for the upwind flux and the central flux when p = 1. In the energy norm, we again
observe convergence at rates exceeding p for both the upwind flux and the central flux
with p = (1, 3,5,7), but suboptimal convergence for the alternating flux with p = (3,5, 7).
We note that we do not expect the asymptotic convergence rates to exceed p+1 in L? and
p in the energy norm. However, as we refine within each element, the effect of the 2pth
order interior formulas is felt, and it is possible to observe convergence at higher rates for
some range of resolutions. This effect is observed for the continuous Galerkin difference
methods in [6].

b). When the degrees of freedom per element N + 1 = 11 is fixed, from Table 2, we note
optimal convergence (p + 1) in the L? norm for p = (3,5,7) with all three fluxes; there
is order reduction for p = 1. From the energy norm, we have p-th order convergence for
p = (1,3,5,7) with both the upwind flux and the central flux; for the alternating flux, we
observe the suboptimal (p — 1) convergence rate for all p, and in particular no convergence
when p = 1.
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6.2 Dirichlet Boundary Conditions in Two Dimensions
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Figure 10: Plots of the L? norm error |u — u"||;2 and the energy norm error

(IV(u—u™)|2s + v — vh||%2)1/2 as functions of h in two dimensions with upwind flux, cen-

tral flux and alternating flux for the Dirichlet boundary condition.

In the legend, p is the

degree of the approximation space of u and v. The filled circles are the results for the fixed

degrees of freedom (N + 1)2 = 112 and the hollow circles are the results for the fixed number
of DG elements n? = 102.

In this section, we examine the rate of convergence for our scheme applied to the following
two dimensional problem

Pu
ot?

(P
\ Oa2

a—y2> . (=) €(0,1) x(0,1), t>0,

with initial data and boundary conditions chosen such that the exact solution is

u(z,y,t) = cos(15v/2met) sin(157x) sin(157y).

The computational domain is discretized into Cartesian DG elements whose vertices are
xi=1H,y;=jH,i,j=0,1,---n, H=1/n. The vertices of subcells for the ij-th DG element



U.-flux A -flux C.-flux

degree p for u" 1 3 5 7 1 3 5 7 1 3 5 7

L? norm rate 1.99 396 6.23 846 | 1.34 4.18 6.24 847 | 192 433 6.37 8.58

energy norm rate | 1.00 3.09 5.35 7.51 | 1.06 2.63 4.68 680 | 1.34 3.42 545 7.39

Table 3: Linear regression estimates of the convergence rate in the L? norm |ju — u"||;2 and
energy norm (||V(u—u")||2, + [[v — vh||%2)1/2 in two dimensions with Dirichlet boundary con-
dition for fixed degrees of freedom per element N + 1 = 11.

U.-flux A -flux C.-flux

degree p for u" 1 3 5 7 1 3 5 7 1 3 5 7

L? norm rate 1.99 4.00 595 797|039 3.74 585 7.86 | 214 433 6.14 7.96

energy norm rate | 1.00 2.99 5.00 7.04 | 0.27 2.07 4.18 6.34 | 1.28 3.06 5.00 6.99

Table 4: Linear regression estimates of the convergence rate in the L? norm |ju — u”| 2 and

)1/2

energy norm (||V(u — u")||2, + [lv — v"||2, in two dimensions with Dirichlet boundary con-

dition for fixed number of DG elements n = 10.

are x;, = x; + kh and y;; = y; + lh with 4,j = 0,--- ,n — 1 and k,l = 0,--- ,N, h = H/N.
The problem is evolved until final time T = 0.2 and the time step size is At = CFLA, with
CFL = 0.075/(27) to guarantee the temporal error is dominated by the spatial error.

As in the one dimensional test in Section 6.1, we consider three different numerical fluxes:
the upwind flux, the alternating flux, and the central flux. We again use two different ways to
refine the spatial mesh size: one is to fix the degrees of freedom in each element, (N +1)% = 112
and change the number of DG elements n?. The other is to fix the number of DG elements
n? = 10? and change the degrees of freedom in each DG element. Again, we have the same (on
element) mesh size h = 1/n/N for these two cases.

The L? norm error |u —u"||;2 and the energy norm error (||V(u — u)[|2, + [jv — vhHig)l/Q
are presented in Figure 10 for the upwind flux, the central flux and the alternating flux, respec-
tively. The corresponding convergence rates from linear regression are shown in Table 3 for a
fixed number of DG elements n? = 10? and in Table 4 for fixed degrees of freedom (N+1)? = 112
on each DG element. We use all data to generate the convergence rate here, but for the alter-
nating flux with fixed degrees of freedom (N + 1)? = 112, we use the data from the 25 coarsest
grids which excludes the outliers where the error is very small. Generally speaking, the results
are similar to the one dimensional results in Section 6.1. We observe optimal convergence when
p = (3,5,7) for all cases. However, we observe a rate of convergence p + 1 in the L? error norm
for the upwind flux when p = 1 with fixed degrees of freedom (N + 1)? = 112 on each DG
element. This is slightly better than the corresponding one dimensional result.

7 Problems with Variable Coefficients

As was demonstrated in Section 3 when applied to constant coefficient problems on Cartesian
meshes the proposed method has the same complexity as a traditional finite difference method.
Unfortunately the simultaneous diagonalization cannot be expected to work when the speed
of sound varies in space or for a constant coefficient problem on non-Cartesian meshes (in
the latter case the transformation from a physical element to the reference element will result
in a variable coefficient problem). For such variable coefficient problems we will stay with
the standard Galerkin difference basis and invert the matrices on the left of the element-wise
equations (10) and (11) using the preconditioned conjugate gradient (pcg) method. In a first
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Degrees of freedom (N + 1)? in one DG element 121 441 1681 6561
L? error in u 3.14e-2 | 1.58e-3 1.07e-4 6.89¢-6
o convergence rate - 4.31 3.88 3.96
relative tolerance in PCG iterative method 1073 | 1073/16 | 1073/16% | 1073/16°
PCG for dU /dt | average number of iterations 1.58 2.13 3.18 5.03
PCG for dV /dt | average number of iterations 1 1 1 1

Table 5: The average number of iterations for preconditioned conjugate gradient methods in

solving % and % for variable ¢?(z,y) in two dimensions with fixed number of DG elements
2

n* =4.

experiment we demonstrate that the number of pcg iterations needed in each time step is small.
In a second experiment we demonstrate the ability of the method to compute the solution to a
more complex application-type problem.

7.1 Efficiency of PCG for Inverting Mass Matrices

Here, we consider the second order wave equations with a variable coefficient ¢?(z,y) in two
dimensions as follows

9%u

W =V. (02($,y)VU) + f(x,y)a (:C,y) € [0’ 1] X [0’ 1]’ t >0, (18)

where ¢?(z,y) = 1 + 22 + y?2. The initial conditions and the external forcing function are
determined by the manufactured solution

u(x,y,t) = sin(8v/2nt) sin(8mz) sin(8my).

We impose periodic boundary conditions.

The key point for the success of the new basis functions proposed in Section 3.2 is the
mass matrix and stiffness matrix in d-dimensions are constructed by the tensor products of the
corresponding mass and stiffness matrices in one dimension. From the scheme (7)-(8), though
the mass matrix for the problem (18) still keeps the tensor product form, the elements of the

stiffness matrix S, are derived from

which does not have a tensor product form for general c?(z,y). In [9, 10], the authors proposed
weight-adjusted discontinuous Galerkin (WADG) method to handle the variable coefficient in
the mass matrix. The idea there is to replace the weighted L? inner product with a weight-
adjusted inner product. Unfortunately this approach is not applicable here.

As an alternative for the variable coefficient c?(z,y) problem, we compute the time deriva-
tives in the scheme (10)—(11) iteratively by the preconditioned conjugate gradient. As a pre-
conditioner we use the zero fill-in incomplete Cholesky factorization of Scz(, ) and M as the
preconditioning matrix of the system (10) and (11), respectively. In particular we use the For-
tran subroutines of Jones and Plassmann [16]. The mesh, time stepping and other parameters
are the same as in the two dimensional example above. The degree of the approximation space
of w and v is chosen to be p = 3.

In Table 5, we show the L? errors in u, the corresponding convergence rate and the av-
erage number of the iterations for solving systems of ‘il—(tj and dd—‘{. We observe the 4-th order
convergence in the L? norm for « which is the same with results for the constant variable ¢.
In addition, the average number of iterations is comparably small for all different degrees of
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Figure 11: Time snapshots at times 0.25s, 0.5s, 0.75s, 1.0s and 1.25s. As the waves progress from
left to right the guiding due to the variable speed of sound becomes increasingly pronounced.
The black inlay is a sketch of the sound speed profile.

freedom (N +1)% on each DG element. The average number of the iterations for % is less than
6 and the average number of the iterations for % is always 1. From these results (which are
largely representative for many experiments that we have conducted), we see that the iterative
methods for solving the scheme (10)—(11) with variable stiffness matrix or variable mass ma-
trix work well and are not cost-prohibitive. However the observed increase in the number of
iterations with the number of degrees-of-freedom per element, which is expected for the sort of
preconditioner we are using, suggests that this number should be held fixed and the number of
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DG elements increased as we refine the mesh.

7.2 Propagation of waves in an ocean channel

As a final and more applied example we consider the propagation of sound from a point source
100 meters below the surface in the ocean. The point source has a sin(4007t) sinusodial time
dependence. The speed of sound in water is taken to be depth dependent with the formula for
the speed of sound in water being

100 D — 300
= 1450 + 50 tanh [ —— 22 ) ) |
¢ + <D+40+ o ( 50 >>

Here D is the depth (with a positive value) below the surface. As the sound speed profile has
an inflection point the waves will be guided as they propagate in the direction parallel to the
surface. Depending on the “strength” of the guiding the effect will become visible at a few or
many wavelengths. The profile we use here is relatively weak and thus it is important to have
a numerical method that is able to accurately propagate waves with minimal error over long
distances.

Here the computational domain is taken to be (x,y) € [0m,4000m] x [—2000m, 0m] and is
discretized by 100 x 50 elements each with 41 x 41 grid points. We take p = 3 and use the same
Runge-Kutta method as above. In Figure 11 we display the solution u at different snapshots in
time. As the wave fronts evolve to the right in the domain they concentrate in side the minima
of the sound speed profile illustrating that the method is able to capture these phenomena well.

We note that for the purely depth-dependent sound speed profile considered here the diag-
onalization method used for constant coefficient problems can be used. However, to illustrate
its utility for a more complex problem we used the iterative method in this case also.

8 Summary

In conclusion, we have demonstrated the energy-based DG method with Galerkin difference
basis functions for second-order wave equations. In particular:

a) We derived a new basis by simultaneous diagonalization of the mass and the stiffness
matrices from the Galerkin difference basis functions. The new basis reduces the compu-
tational cost of evolving the solution from superlinear complexity with respect to degrees
of freedom to optimal linear complexity.

b) Using Bloch wave analysis we computed the dispersive and dissipative properties of the
method.

c) By numerical experiments we showed that the spectral radius of the semi-discretization
of our scheme is linearly proportional to the degree of the approximation space p. This
translates to the ability to march in time using p times larger time steps compared with
traditional element based methods such as spectral-, continuous- and discontinuous finite
elements.

d) Optimal convergence was observed for problems in both one and two dimensions for all
numerical fluxes when the degree p > 3. The results apply both when the number of
points-per-element is refined with the number of elements fixed and when the number of
points-per-element is fixed and the number of elements is increased.

e) We illustrated that the method is not dramatically slower for variable coefficient problems
if the mass matrices are inverted using the preconditioned conjugated gradient method. In
this case fixing the number of points-per-element while increasig the number of elements
may be the most efficient refinement strategy.
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