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Abstract

Anderson acceleration (AA) is a technique for accelerating the convergence of fixed-point it-
erations. In this paper, we apply AA to a sequence of functions and modify the norm in its
internal optimization problem to the H−s norm, for some positive integer s, to bias it towards
low-frequency spectral content in the residual. We analyze the convergence of AA by quantifying
its improvement over Picard iteration. We find that AA based on the H−2 norm is well-suited
to solve fixed-point operators derived from second-order elliptic differential operators, including
the Helmholtz equation.
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1. Introduction

Anderson acceleration (AA) or Anderson mixing is an acceleration method for fixed-point
iterations. Given a continuous operator G : X → X , where X ⊆ L2(Ω) is a Hilbert space and
Ω ⊆ R

n, a basic method for finding a fixed-point of G, i.e., x = G(x), is Picard iteration

xk+1 = G(xk), k ≥ 1, x0 ∈ X given. (1.1)

AA can be used to speed up the convergence of x0, x1, . . . , to a fixed-point of G, or even calculate
a fixed point when the Picard iterates diverge [1, Thm. 4.1]. While Picard iteration only uses
the current iterate to calculate the next one, xk+1 in AA is a weighted sum of the previous
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min(k,m) + 1 iterates and residuals, where m is a memory parameter. The weighted sum is
chosen so that it minimizes a linearized residual [2, (4.16)] in the next iteration.

The application of AA includes flow problems [3], solving nonlinear radiation-diffusion equa-
tions [4], and accelerating certain optimization algorithms [5, 6, 7, 8]. It is closely related to
Pulay mixing [9] and DIIS (direct inversion on the iterative subspace) [10, 11], which are promi-
nent methods in self-consistent field theory (SCFT) [12, 13]. AA is also becoming popular in
the numerical analysis community [14, 15, 16, 17, 1]. AA is related to many other iterative
and acceleration methods. When m = 0, AA collapses to Picard iteration and when m = ∞,
AA is essentially equivalent to GMRES (for Generalized Minimal RESidual) when the fixed-
point operator is linear [14]. For any m, AA can be viewed as a multisecant quasi-Newton
method [18, 19] and is also related to traditional series acceleration methods [20].

As in Anderson’s paper [2], we primarily regard AA as an iteration performed on functions.
As an acceleration method on functions, calculating the weighted sum to minimize the linearized
residual involves an optimization problem that is often posed in the L2 norm. The L2 norm is
convenient because the optimization problem is then a continuous least-squares problem. For
practical computations, AA on functions must be discretized so that functions become vectors,
and the L2 norm becomes the discrete `2 norm. After discretization, the optimization problem
becomes a classical least-squares problem, which can be solved using fast rank-updated QR
factorizations [21, Sec. 6.5.1].

We follow a casual suggestion by Anderson [2, p. 554] and minimize the linearized residual
at each iteration in a norm other than the L2 norm. In particular, we seek further acceleration
for fixed-point iterations involving second-order elliptic differential operators by selecting a H−s

norm (see Section 2.1). After discretization, any H−s norm becomes a weighted least-squares
norm. In certain situations, this can provide an implicit spectral bias to counterbalance the
spectral biasing from a fixed-point operator. Other researchers have been motivated to modify
the norm in AA based on the contraction properties, as opposed to spectral biasing, of G [3].

AA based on the H−s norm is equivalent to a multisecant method in a weighted Frobenius
norm (see Section 2.3). We use this viewpoint to analyze its convergence behavior by comparing
it to AA based on the L2 norm and Picard iteration (see Section 3.2). The improvement depends
on the particular properties of the fixed-point operator. We present some analysis motivating the
choice of the norm (see Theorem 3.2) as well as providing numerical experiments to demonstrate
the benefit (see Section 4).

The paper is structured as follows. In Section 2, we provide background details on the AA
method, introduce AA based on the H−s norm, and show how it can be discretized. In Section 3,
we give a detailed analysis of the error reduction achieved by performing one step of the AA
iteration (see Theorem 3.1). In Section 4, we provide numerical experiments, including both
contractive and noncontractive fixed-point operators for the 1D Poisson equation and linear and
non-linear Helmholtz equations. Concluding remarks can be found in Section 5.

2. Anderson acceleration

The convergence of Picard iteration in (1.1) is only guaranteed when certain assumptions
hold on G as well as the initial iterate x0, and even then, its convergence is typically linear [22,
Chap. 4.2]. To promote faster convergence, AA computes xk+1 using the previous min(k,m)+1
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iterates and residuals. The original form of AA is given in Algorithm 1, and the main step is to
take a linear combination of the past min(k,m) + 1 iterates to minimize a linearized residual of
the form G(xi)− xi.

Algorithm 1 The basic AA technique with the L2 norm

Input: Given x0 ∈ X , mixing parameters 0 ≤ βk ≤ 1, and memory parameter m ≥ 1, this
algorithm computes a sequence x0, x1, . . . , intended to converge to a fixed-point of G : X → X .

for k = 0, 1, . . . until convergence do

mk = min(m, k).
Compute Fk = (fk−mk

, . . . , fk), where fi = G(xi)− xi.
Solve

α(k) = arg min
v∈Cmk+1,

∑mk

i=0
vi=1

‖Fkv‖L2 , α(k) = (α
(k)
0 , . . . , α(k)

mk
)T .

Set

xk+1 = (1− βk)

mk∑

i=0

α
(k)
i xk−mk+i + βk

mk∑

i=0

α
(k)
i G(xk−mk+i).

end for

Algorithm 2 A reformulated AA technique for functions

Input: Given x0 ∈ X , memory parameter m ≥ 1, and measure of distance d : X × X →
[0,∞), this algorithm computes a sequence x0, x1, . . . , intended to converge to a fixed-point
of G : X → X .
Set x1 = G(x0).
for k = 1, 2, . . . until convergence do

mk = min(m, k).
Set Dk = (∆fk−mk

, . . . ,∆fk−1), where ∆fi = fi+1 − fi and fi = G(xi)− xi.
Solve

γ(k) = argmin
v∈Cmk

d(fk, Dkv), γ(k) = (γ
(k)
0 , . . . , γ

(k)
mk−1)

T . (2.1)

Set

xk+1 = G(xk)−
mk−1∑

i=0

γ
(k)
i [G(xk−mk+i+1)−G(xk−mk+i)] . (2.2)

end for

The mixing parameters βk at iteration k indicates how to combine the previousmk+1 iterates
and residuals. The usual choice is to select βk = β for k ≥ 0. AA with mixing parameter βk = β
is the same as applying AA with βk = 1 to the map Gβ(x) = (1 − β)x + βG(x) [23, p. 256].
Therefore, throughout this paper we use β = 1.
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In Algorithm 1, the coefficient vector α(k) is determined by a constrained optimization prob-
lem. To remove the constraint, and gain additional insight, one can set [14]

γ
(k)
i = α

(k)
0 + · · ·+ α

(k)
i , 0 ≤ i ≤ mk − 1.

By carefully rewriting Algorithm 1 with βk = 1 in terms of γ
(k)
i for 0 ≤ i ≤ mk − 1, we obtain

Algorithm 2. In this version of the algorithm, the coefficient vector γ(k) is determined by an
unconstrained optimization problem, which can be computationally more convenient.

In Algorithm 2, one has a choice on d : X ×X → [0,∞), which can be chosen as any distance
function. A standard choice is to take d(f, g) = ‖f − g‖L2(Rn) so that (2.1) can be efficiently
solved. To see this, note that (2.1) becomes γ(k) = argminv∈Cmk ‖fk −Dkv‖L2(Rn). This means
that, when Dk has linearly independent columns, we have

γ(k) = (D∗
kDk)

−1D∗
kfk, (D∗

kDk)ij = 〈∆fi,∆fj〉, (D∗
kfk)i = 〈∆fi, fk〉, (2.3)

where 〈·, ·〉 is the standard L2 inner-product. Moreover, (2.3) can be efficiently solved by a fast
rank-updated QR factorization of quasimatrices [24].

When m is finite, AA is distinct from restarted GMRES in that it gradually phases out old
residuals in favor of new ones while GMRES completely discards the history of the iterates every
m iterations. We demonstrate, by numerical experiments with the Helmholtz equation, that the
gradual replacement strategy used by AA exhibits better convergence properties than restarted
GMRES (see Section 4.4).

The computational efficiency and convergence rate of AA is affected by the distance function.
The majority of the literature focuses on the convergence of AA for vectors under the discrete `2

norm (Euclidean distance). In this setting, AA is known to have superlinear convergence [15, 3]
when accelerating fixed-point contraction operators. AA can also converge for sequences from
noncontractive fixed-point operators [1].

2.1. The Hilbert space H−s and its norm

We select the distance function in Algorithm 2 to be d(f, g) = ‖f − g‖H−s for some positive
integer s. We observe that this can speed up the convergence of AA for fixed-point operators
defined via second-order elliptic differential operators (see Section 4).

One can define H−s(Rn), for any real number s, as

H−s(Rn) =
{
f ∈ S ′(Rn) : F−1

[
(1 + |ξ|2)−s/2Ff

]
∈ L2(Rn)

}
,

where F denotes the Fourier transform on R
n and S ′(Rn) is the space of tempered distribu-

tions [25]. The Hilbert space H−s(Rn) can be equipped with the norm

‖f‖H−s(Rn) =
∥∥F−1

[
(1 + |ξ|2)−s/2Ff

]∥∥
L2(Rn)

, f ∈ H−s(Rn). (2.4)

It turns out that the solution to (2.1) with d(f, g) = ‖f − g‖H−s(Rn) can be expressed using a
weighted projection formula. To see this, note that (2.1) becomes

γ(k) = argmin
v∈Cmk

‖fk − v‖
H−s(Rn) = argmin

v∈Cmk

‖P(fk − v)‖L2(Rn) , Pf = F−1
[
(1 + |ξ|2)−s/2Ff

]
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and hence, when the columns of Dk are linearly independent, we have

γ(k) =
(
D∗

kP2Dk

)−1
D∗

kP2fk. (2.5)

Here, we have (D∗
kP2Dk)ij = 〈P∆fk−mk+i,P∆fk−mk+j〉 for 0 ≤ i, j ≤ mk − 1 and (D∗

kP2fk)i =
〈P∆fk−mk+i,Pfk〉 for 0 ≤ i ≤ mk − 1.

The Hilbert space H−s(Ω) for a bounded Lipschitz-smooth domain Ω ⊆ R
n is the set of

restrictions of functions from H−s(Rn) equipped with the norm

‖f‖H−s(Ω) = inf
{
‖g‖H−s(Rn) : g ∈ H−s(Rn), g|Ω = f

}
.

An equivalent and more explicit definition of ‖f‖H−s(Ω) is given via the Laplacian operator [26,
p. 586]. That is, when Ω is a bounded domain with infinitely differentiable boundary, we have

‖f‖H−s(Ω) = ‖u‖Hs(Ω), (2.6)

where u is the solution to (
∑s

r=0(−1)r∇2r)u = f with u satisfying zero Neumann boundary
conditions.

We can begin to appreciate the purpose of the H−s norm from (2.4) and (2.5). The norm
‖f‖H−s weights the low-frequency spectral content of f more than the high-frequency content.
Thus, γ(k) is focused on making the low-frequency spectral content of the residual smaller,
which can potentially counterbalancing the spectral biasing of a fixed-point operator. One can
select any type of frequency biasing—towards the low- or high-frequency spectral content of
the residual—by choosing d(f, g) = ‖f − g‖H−s for s ∈ R. We suspect that a good choice of s
depends on the spectral biasing of the fixed-point operator (see Section 4.1). While we focus on
the benefits of the H−s norm, the idea of acceleration through changing the distance function
is more general. One can select the distance function a priori or even modify it dynamically as
the iteration proceeds.

The choice of distance function in AA is similar to preconditioning in an iterative method.
The work in this paper began with the idea that integration reformulation [27, 28] or integral
preconditioning [29] might be a way to speed up the convergence of AA for certain fixed-point
operators. We suspect that there are possible connections of our work to operator precondition-
ing [30], continuous Krylov methods [31], and Riesz operators [32].

2.2. Discretizing Anderson acceleration based on the H−s norm

One must first discretize Algorithm 2 before running it on a computer. In principle, any
reasonable discretization scheme is appropriate. In this paper, we discretize functions and
operators with finite difference schemes so that the iterates xk ∈ X in Algorithm 2 are replaced
by vectors that sample xk at equispaced points.

The most subtle quantity to discretize in Algorithm 2 is d(f, g). For example, if Ω = (0, 1),
then a discrete analogue of d(f, g) = ‖f − g‖H−1(Ω) is given by

d(v, w) =
√
h
∥∥(In − Bn)

−1/2(v − w)
∥∥
2
, Bn =

1

h2




−1 1

1 −2
. . .

. . . . . . 1
1 −2 1

1 −1



, (2.7)
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where h = 1/(n − 1). Here, In is the n × n identity matrix and Bn is the n × n second-order
finite difference matrix for the Laplacian with zero Neumann conditions. From (2.6), we know
that (d(f, g))2 = ‖u‖2

H1(Ω) = 〈u, u〉 + 〈∇u,∇u〉 = 〈u, u−∇2u〉. Therefore, we take the discrete

analogue as d(v, w) =
√
h‖(In−Bn)

1/2(In−Bn)
−1(v−w)‖2 =

√
h‖(In−Bn)

−1/2(v−w)‖2. Here,
the integral in the definition of the L2 norm is discretized by a low-order Riemann-like sum.

We have selected the so-called half-sample discretization for u′(0) = 0 and u′(1) = 0 so that
the matrix is symmetric [33, Sec. 3]. For d(f, g) = ‖f − g‖H−2(Ω), similar to (2.7), we take the
discretization as

d(v, w) =
√
h‖(In − Bn +B2

n)
−1/2(v − w)‖2.

Therefore, once AA in an H−s norm is discretized for a nonzero s, it becomes AA in a weighted
`2 norm.

2.3. The connection with the multisecant method

A useful interpretation of AA for vectors is as a multisecant method [18, 34]. In particular,
when d(v, w) = ‖v − w‖2, the update in (2.2) can be expressed in the following form:

xk+1 = xk + (I − Sk)fk,

where Sk ∈ C
n×n, xk is the kth iterate from AA, and fk = G(xk)− xk. It is shown in [18] that

if one defines ∆xi = xi+1 − xi, ∆fi = fi+1 − fi, and

Xk =
[
∆xk−mk

, . . . ,∆xk−1

]
∈ C

n×mk , Dk =
[
∆fk−mk

, . . . ,∆fk−1

]
∈ C

n×mk , (2.8)

then Sk is the solution to the following constrained optimization problem:

min
Sk∈C

n×n

‖Sk‖F , subject to SkDk = Xk +Dk. (2.9)

Here, ‖ · ‖F denotes the matrix Frobenius norm, i.e., ‖Sk‖2F =
∑n

i,j=1 |(Sk)ij|2. Furthermore, (2.9)
has an explicit solution given by

Sk = (Xk +Dk) (D
∗
kDk)

−1 D∗
k,

when the columns of Dk are linearly independent [18, 19].
The H−s norm can be discretized to a weighted `2 norm when s is an integer, i.e., d(v, w) =

‖P (v −w)‖2, where P is a symmetric positive definite matrix. For example, P = (In −Bn)
−1/2

for H−1 norm and P = (In − Bn + B2
n)

−1/2 for H−2 norm. Similar to the `2 norm, one can
also write AA based on the H−s norm as a multisecant method. From a weighted projection
formula, we find that

xk+1 = xk + (I − S̃k)fk,

where S̃k solves the following constrained optimization problem

min
S̃k

||PS̃kP
−1||F , subject to S̃kDk = Xk +Dk. (2.10)

Furthermore, (2.10) has an explicit solution given by

S̃k = (Xk +Dk)
(
D∗

kP
2Dk

)−1
D∗

kP
2, (2.11)

which is derived in Lemma 2.1 below.
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Lemma 2.1. Let P be a positive definite matrix and let Dk, Xk ∈ C
n×mk such that Dk has

linearly independent columns. Then, the solution to

min
Sk

||Sk||F , subject to SkPDk = PXk + PDk,

is Sk = PS̃kP
−1, where S̃k = (Xk +Dk) (D

∗
kP

2Dk)
−1

D∗
kP

2 is the solution to (2.10).

Proof. The solution to

min
S′

k

||S ′
k||F , subject to S ′

kD
′
k = X ′

k +D′
k,

is given by S ′
k = (X ′

k +D′
k) ((D

′
k)

∗D′
k)

−1 (D′
k)

∗ [19]. The statement of the lemma follows by
setting D′

k = PDk and X ′
k = PXk.

The interpretation of AA based on the H−s norm as a multisecant method is useful for
understanding its convergence behavior in Section 3.

3. Error analysis of Anderson acceleration

In this section, we analyze AA based on the H−2 norm. Suppose that we have the following
fixed-point iteration

xk+1 = G(xk) = Axk + b, k ≥ 0,

where A is an n×n real symmetric matrix and b is an n×1 vector. Let x∗ denote a fixed-point,
i.e., G(x∗) = x∗. The dependence between the error ek = xk−x∗ and the residual fk = G(xk)−xk

in any two consecutive iterates can be written as

ek+1 = Aek, fk+1 = Afk, k ≥ 0.

Since A is a real symmetric matrix, it has an orthogonal eigendecomposition given by

A = WΛW ∗, Λ = diag(λ1, . . . , λn),

where W is an orthogonal matrix. After k Picard iterations, ek = Ake0 = WΛkW ∗e0 for k ≥ 0,
where e0 = x0 − x∗ is the initial error. There is an extensive literature on the convergence of
AA [15, 1, 3], but an explicit convergence rate that depends on m is missing. It is nontrivial to
derive an explicit convergence rate as a function of m since in every iteration the weights in AA
are derived from an optimization problem.

In this paper, we are particularly interested in the relation between the convergence of AA
and the memory parameter as well as the choice of distance function in (2.1). The setting of
our analysis is the following. We first apply Picard iteration for k iterations (where k ≥ m),
and then we perform one step of the AA algorithm with memory parameter m to obtain the
(k+1)th iterate. We analyze the solution error ek+1 after one step of AA and compare it to the
solution error after k+1 Picard iterations. We refer to this as the one-step analysis of AA. The
improvement in the solution error is the one-step acceleration of AA.

Alternating between Picard and AA is proposed as the alternating Anderson–Jacobi method
in [34]. Although it is convenient for the analysis, we do not advocate using an alternating
scheme in practice since, in our experience, applying AA at every iteration usually has an
improved convergence behavior.
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3.1. Error analysis of Anderson acceleration in the `2 norm

In Section 2.3, AA is viewed as a multisecant-type method with iterates defined as

xk+1 = xk + (I − Sk)fk, Sk = (Dk +Xk)(D
∗
kDk)

−1D∗
k, (3.1)

where the matrices Dk and Xk are defined in (2.8) and fk = G(xk) − xk. We note that Picard
iteration takes Sk to be the zero matrix, and we hope that (3.1) promotes faster convergence
to a fixed-point of G. The error and residual between any two consecutive iterates satisfy the
following recurrence:

ek+1 = (I − (I − Sk)(I − A)) ek, fk+1 = (I − (I − A)(I − Sk)) fk. (3.2)

The matrix Sk in (3.2) depends on the fixed-point operator as well as the previousmk iterates
and residuals. Therefore, we find it difficult to imagine a full and explicit convergence analysis of
AA for general m. Instead, we analyze the acceleration effect when one runs Picard iteration for
the first k iterations (where k ≥ m) and then performs one step of AA to obtain the (k + 1)th
iterate. We start our error analysis by expressing the solution error explicitly in terms of a
Krylov matrix. For an n× n matrix A and an n× 1 vector b, a Krylov matrix is defined as

Km(A, b) =
[
b Ab · · · Am−1b

]
∈ C

n×m.

We have the following lemma that relates the error after doing Picard for k + 1 steps,
denoted by Aek, to the error after doing Picard for k steps and then one step of AA with
memory parameter m, denoted by ek+1.

Lemma 3.1. Let A be an n × n real symmetric matrix with eigenvalue decomposition A =
WΛW ∗ and b be an n × 1 vector. Suppose that xj+1 = Axj + b for 0 ≤ j ≤ k − 1, 0 and 1
are not eigenvalues of A, and that xk+1 is produced from AA based on the discrete `2 norm with

memory parameter 1 ≤ m ≤ n. Then, when KH has linearly independent columns, we have

ek+1 = WEW ∗Aek, E = Dµ

(
I −KH (K∗

HKH)
−1 K∗

H

)
D−1

µ , (3.3)

where Dµ = Λ(Λ− I)−1, KH = Km(Λ, HW ∗e0), and H = (Λ− I)2Λk−m.

Proof. Note that ej+1−ej = (Aj+1−Aj)e0 = WΛj(Λ−I)W ∗e0 and fj+1−fj = (A−I)(ej+1−ej)
for 0 ≤ j ≤ k − 1. Thus, for Dk and Xk given in (2.8), we have

Dk = WΛk−m(Λ− I)2Km(Λ,W
∗e0) (3.4)

and Xk = WΛk−m(Λ− I)Km(Λ,W
∗e0). By substituting (3.4) into (3.1), we find that

Sk = WΛ(Λ− I)−1KH (K∗
HKH)

−1 K∗
H , KH = Km(Λ, HW ∗e0), (3.5)

where H = (Λ−I)2Λk−m. Furthermore, by substituting (3.5) into (3.2), we obtain the following:

ek+1 = WΛ(Λ− I)−1
(
I −KH (K∗

HKH)
−1 K∗

H

)
(Λ− I)W ∗ek.

The result follows by noting that W ∗ek = W ∗A−1Aek = Λ−1W ∗Aek.

8



The main observation from Lemma 3.1 is that E is a projection matrix. Furthermore,
D−1

µ EDµ is an orthogonal projection onto the space spanned by the column space of the Krylov
matrix KH . Since H is known explicitly, one can precisely quantify the difference between
‖D−1

µ W ∗Aek‖2 and ‖D−1
µ W ∗ek+1‖2.

Theorem 3.1. Under the same setup, notation, and assumptions of Lemma 3.1, suppose that

the eigenvalues of A are contained in an interval [a, b] that does not contain 0 or 1. Then,

‖D−1
µ W ∗ek+1‖2 ≤ C(a, b,m)‖D−1

µ W ∗Aek‖2, C(a, b,m) =

∣∣∣∣Tm

(
2ab− a− b

b− a

)∣∣∣∣
−1

,

where Tm(x) is the Chebyshev polynomial of degree m.

Proof. From Lemma 3.1 and since KH is a Krylov matrix, we find that

‖D−1
µ W ∗ek+1‖2 = ‖(I −KH (K∗

HKH)
−1 K∗

H)D
−1
µ W ∗Aek‖2

= min
c∈Cm

‖D−1
µ W ∗Aek −KHc‖2

= min
p∈Pm−1

‖D−1
µ W ∗Aek − p(Λ)HW ∗e0‖2,

where Pm−1 is the space of polynomials of degree ≤ m − 1. Since H = (Λ − I)2Λk−m and
D−1

µ = (Λ − I)Λ−1, we know that HW ∗e0 = Λk−m(Λ − I)2W ∗e0 = Λ−m(Λ − I)D−1
µ W ∗Aek.

Therefore, we find that

‖D−1
µ W ∗ek+1‖2 ≤ min

p∈Pm−1

‖I − p(Λ)Λ−m(Λ− I)‖2‖D−1
µ W ∗Aek‖2

≤ min
p∈Pm−1

max
x∈[a,b]

∣∣1− p(x)x−m(x− 1)
∣∣ ‖D−1

µ W ∗Aek‖2.

We note that

min
p∈Pm−1

max
x∈[a,b]

∣∣1− p(x)x−m(x− 1)
∣∣ = min

p∈Pm−1

max
x∈[

1
b
,
1
a
]

∣∣1− p( 1
x
)xm−1(1− x)

∣∣

= min
p∈Pm−1

max
x∈[

1
b
,
1
a
]

|1− p(x)(1− x)|

= min
q∈Pm,q(1)=1

max
x∈[

1
b
,
1
a
]

|q(x)| .

For any |x∗| > 1, we know that |Tm(x∗)| ≥ |p(x∗)| for any polynomial p of degree ≤ m such
that |p(x)| ≤ 1 for x ∈ [−1, 1], where Tm(x) is the Chebyshev polynomial of degree m [35].
Therefore, since 1 6∈ [1/b, 1/a], we have

min
q∈Pm,q(1)=1

max
x∈[

1
b
,
1
a
]

|q(x)| = max
x∈[

1
b
,
1
a
]

∣∣∣∣∣∣∣∣

Tm

(
2(x−

1
b
)

1
a
−
1
b

− 1

)

Tm

(
2(1−

1
b
)

1
a
−
1
b

− 1

)

∣∣∣∣∣∣∣∣
≤

∣∣∣∣Tm

(
2(1− 1

b
)

1
a
− 1

b

− 1

)∣∣∣∣
−1

,

where in the last inequality we used the fact that |Tm(x)| ≤ 1 for x ∈ [−1, 1]. The result now
follows as 2(1− 1/b)/(1/a− 1/b)− 1 = (2ab− a− b)/(b− a).
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The vector given by Aek is the solution error after k + 1 Picard iterations, while ek+1 is
the solution error after k Picard iterations and then one step of AA. Therefore, Theorem 3.1
provides a bound on the acceleration effect by performing one-step AA. If 0 < a < b < 1, the
weighting matrix D−1

µ = Λ(I−Λ)−1 enforces large weights on components of the error related to
eigenvalues that are close to 1. Therefore, this particular weighting suggests that one-step AA
is improving precisely the components of the residual that are making Picard iteration converge
slowly.

The number C(a, b,m) in Theorem 3.1 only depends on a, b, and m, where [a, b] is an interval
containing the eigenvalues of the fixed-point iteration matrix and m is the memory parameter
in AA. For example, C(0.3, 0.9, 10) ≤ 0.024 and C(2, 100, 10) ≤ 3.84 × 10−8. For any interval
[a, b], not containing 0 and 1, the number |(2ab− a− b)/(b− a)| > 1, and hence C(a, b,m) is a
monotonically decreasing function of m (for fixed a and b). In fact, as a function of m, C(a, b,m)
decays exponentially to zero as m → ∞.

3.2. Error analysis of Anderson acceleration in a weighted `2 norm

One can derive explicit formulas for AA when performed in a weighted `2 norm. That is,
the distance function in (2.1) is d(v, w) = ‖P (v − w)‖2 for some positive definite matrix P .
From (2.11), we find that

S̃k = (Xk +Dk)(D
∗
kP

2Dk)
−1D∗

kP
2.

Since Dk = WΛk−m(Λ− I)2Km(Λ,W
∗e0) and Xk = WΛk−m(Λ− I)Km(Λ,W

∗e0), we have

S̃k = JWKH(K
∗
HW

∗P 2WKH)
−1K∗

HW
∗P 2, (3.6)

where H = (Λ − I)2Λk−m, J = WΛ(Λ − I)−1W ∗, and KH = Km(Λ, HW ∗e0). Equation (3.6)
allows us to derive an analogous formula to (3.3) for AA in a weighted `2 norm.

Lemma 3.2. Under the same setup, notation, and assumptions of Lemma 3.1, except that xk+1

is produced from AA with d(v, w) = ‖P (v − w)‖2 for some positive definite matrix. Then, we

have

ek+1 = WẼW ∗Aek, Ẽ = Dµ

[
I −KH(K

∗
HW

∗P 2WKH)
−1K∗

HW
∗P 2W

]
D−1

µ .

Proof. The proof is essentially identical to the proof of Lemma 3.1.

Here, Ẽ is a projection matrix and hence we know that ||ek+1||2 ≤ ||Aek||2. However, now
D−1

µ ẼDµ is not an orthogonal projection (unless P = I). This makes it very difficult to do the
analysis of one-step AA with a weighted `2 norm.

3.2.1. When P and A share the same eigenvectors

To make progress here, we make a strong assumption that the fixed-point operator and the
matrix P share the same eigenvectors. That is, we suppose that A = WΛW ∗ and P = WΣW ∗

for the same orthogonal matrix W . Under this assumption, we can analyze the acceleration
effect of one-step AA when performed with d(v, w) = ‖P (v − w)‖2. The following theorem is a
generalization of Theorem 3.1.
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Theorem 3.2. Under the same setup, notation, and assumptions as Lemma 3.2, with eigen-

value decompositions A = WΛW ∗ and P = WΣW ∗, we have

‖ΣD−1
µ W ∗ek+1‖2

max1≤i≤n |Σii|
≤ C(a, b,m)‖D−1

µ W ∗Aek‖2, C(a, b,m) =

∣∣∣∣Tm

(
2ab− a− b

b− a

)∣∣∣∣
−1

.

Proof. Since P = WΣW ∗, that statement of Lemma 3.2 becomes

ek+1 = WDµ

[
I −KH(K

∗
HΣ

2KH)
−1K∗

HΣ
2
]
D−1

µ W ∗Aek.

Therefore, we have

‖ΣD−1
µ W ∗ek+1‖2 = ‖Σ(I −KH(K

∗
HΣ

2KH)
−1K∗

HΣ
2)D−1

µ W ∗Aek‖2
= min

c∈Cm
‖Σ(D−1

µ W ∗Aek −KHc)‖2
= min

p∈Pm−1

‖Σ(D−1
µ W ∗Aek − p(Λ)HW ∗e0)‖2,

where the second equality follows from the formula for weighted projection [21, Sec. 6.1.1]. Here,
Pm−1 is the space of polynomials of degree ≤ m − 1. Since HW ∗e0 = Λ−m(Λ − I)D−1

µ W ∗Aek
(see the proof of Theorem 3.1), we have

‖ΣD−1
µ W ∗ek+1‖2 ≤ min

p∈Pm−1

‖Σ(I − p(Λ)Λ−m(Λ− I))‖2‖D−1
µ W ∗Aek‖2

≤ max
1≤i≤n

|Σii| min
p∈Pm−1

‖(I − p(Λ)Λ−m(Λ− I))‖2‖D−1
µ W ∗Aek‖2

≤ max
1≤i≤n

|Σii| min
p∈Pm−1

max
x∈[a,b]

∣∣(I − p(x)x−m(x− I))
∣∣ ‖Σ‖2‖D−1

µ W ∗Aek‖2.

The result follows as the polynomial optimization problem is identical to the one in the proof
of Theorem 3.1.

To get a sense of Theorem 3.2, suppose that Σjj = 1/j2. Then, max1≤i≤n |Σii| = 1 so that
the inequalities in Theorem 3.1 and Theorem 3.2 are almost identical. The only difference is
that Theorem 3.2 is bounding ‖ΣD−1

µ W ∗ek+1‖2, not ‖D−1
µ W ∗ek+1‖2. This means that AA in

the weighted `2 norm is penalizing the first entry of D−1
µ W ∗ek+1 more than the last entry. Since

ΣD−1
µ W ∗ek+1 contains the term W ∗ek+1, one can view this as biasing towards certain spectral

content of A.

4. Numerical experiments

In this section, we present numerical experiments to demonstrate the acceleration effects of
AA based on the H−2 norm. We show this with both contractive and noncontractive fixed-point
operators that involve second-order differential operators.
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Figure 1: Solving Poisson’s equation in (4.1) with the weighted Jacobi method, AA based on the L
2 norm, and

AA based on the H−2 norm. Left: The weighted Jacobi method compared to one-step AA. Right: The weighted
Jacobi method compared to full AA.

4.1. A contractive operator for solving Poisson’s equation

Our first example illustrates the theorems in Section 3 and the convergence behavior of AA.
For this example, we recommend solving (4.1) using direct methods as the linear system is a
tridiagonal Toeplitz matrix. We only use this example to illustrate our theorems.

Consider 1D Poisson’s equation with zero Dirichlet boundary conditions on (0, 1), i.e.,

− u′′(x) = f(x), u(0) = u(1) = 0. (4.1)

We discretize (4.1) by using a second-order finite difference scheme to obtain the n × n linear
system

1

h2




−2 1

1
. . . . . .
. . . . . . 1

1 −2




︸ ︷︷ ︸
=M




u1

u2
...
un


 =




f(x1)
f(x2)

...
f(xn)




︸ ︷︷ ︸
=b

, xj = jh, h =
1

n+ 1
. (4.2)

As our fixed-point iteration, we consider the weighted Jacobi method given by

xn+1 = G(xn) = (I − 2

3
D−1

M M)xn +
2

3
D−1

M b, DM = diag(M).

Here, G is a contractive operator because A = I − 2
3
D−1

M M has eigenvalues

λj(A) =
1

3
+

2

3
cos

(
jπ

n+ 1

)
, 1 ≤ j ≤ n,

which satisfy |λj(A)| < 1 for 1 ≤ j ≤ n. For each j, the eigenvector corresponding to λj(A) is
also known in closed form as

(vj)i = sin

(
ijπ

n+ 1

)
, 1 ≤ i ≤ n,
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and the eigenvector components of the residual corresponding to λj(A) have size O(|λj(A)|k)
after k iterations [36, Chapter 2]. If e0 =

∑n
j=1 cjvj is the initial error in the weighted Jacobi

method, then

ek = Ake0 =
n∑

j=1

cjλj(A)
kvj, fk = (I − A)ek =

4

3

n∑

j=1

sin2

(
jπ

2(n+ 1)

)
cjλj(A)

kvj.

Thus, one can see a spectral biasing in the weighted Jacobi method: after a few iterations,
‖fk‖2 might be small while ‖ek‖2 is not (due to the sin2((jπ)/(2(n + 1))) term). In particular,
the eigenvector components associated with large j are more heavily weighted in fk than in
ek. In Fig. 1, we show the convergence of the weighted Jacobi method and illustrate its poor
convergence.

A natural idea is to use the choice of distance function in AA to counterbalance the spectral
biasing in the weighted Jacobi method. In this case, the H−2 norm is a good choice because the
eigenvalues of P = (In − Bn +B2

n)
−1/2 (see Section 2.2) are given by

λj(P ) =

(
1 +

4

h2
sin2

(
π(j − 1)

2n

)
+

16

h4
sin4

(
π(j − 1)

2n

))−1/2

.

Therefore, the spectral biasing in the H−2 norm approximately counterbalances the spectral
biasing in the residual. This is only heuristic reasoning because the eigenvectors of P and A are
not the same. Still, in practice, we observe that AA in the H−2 norm converges rapidly.

In Fig. 1, we compare the convergence of the weighted Jacobi method to one-step AA as well
as the full AA algorithm. For these tests we use n = 63, the memory parameter m = 10, and
use the initial solution error of

(e0)j =
20∑

i=1

sin(2ijπ), 1 ≤ j ≤ n.

As can be seen in the figures, applying AA successively at every iteration is preferred over
one-step AA.

4.2. Noncontractive operator for solving Poisson’s equation

One can also attempt to solve (4.1) using Richardson iteration. That is,

xn+1 = GR(xn) = (I −M)xn + b.

Now, the fixed-point operator, GR, is noncontractive as there are eigenvalues of I − M larger
than one in absolute value. Generally speaking, the Richardson iteration computes a divergent
sequence. Nonetheless, to illustrate the surprising acceleration effects of AA, we repeat the
experiment from Section 4.1 with the weighted Jacobi method replaced by Richardson iteration.
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Figure 2: Solving Poisson’s equation in (4.1) with Richardson iteration, AA based on the L2 norm, and AA based
on the H−2 norm. This experiment highlights that AA can be used for noncontractive fixed-point operators.

4.3. Nonlinear Helmholtz equation

AA is highly useful for nonlinear fixed-point operators. In this example, we present a nonlin-
ear fixed-point operator designed to find u : [0, 1] → C, which solves the following 1D nonlinear
Helmholtz equation [1]

d2u

dx2
+ k2

0(1 + ε(x)|u|2)u = 0, 0 < x < 1,

du

dx
+ ik0u = 2ik0, x = 0,

du

dx
− ik0u = 0, x = 1.

(4.3)

The nonlinear Helmholtz equation governs the propagation of linearly-polarized, time-harmonic
electromagnetic waves in Kerr-type dielectrics [37]. We set ε(x) to be a piecewise constant
function on [0, 1], which approximates a realistic grated Kerr medium [37, p. 3]:

ε(x) =





0, 0 ≤ x ≤ 0.1,

1, 0.1 < x ≤ 0.2,

2, 0.2 < x ≤ 0.3,

3, 0.3 < x ≤ 0.7,

4, x > 0.7.

In the numerical tests, the system (4.3) is discretized by the same second-order finite difference
method as described in [1, Sec. 6.2]. The resulting iterative scheme can be seen as a fixed-point
operator: uk+1 = GNHL(uk). Following [1], we set the initial guess to be u0 = eik0x, where k0 is
the linear wavenumber and x is the discretized interval [0, 1] with grid spacing h = 0.002.

Fig. 3 shows the numerical results of solving the nonlinear Helmholtz equation with k0 = 20
(left) and k0 = 70 (right), respectively. In both cases, the Picard iteration fails to converge, and
the residual remains constant for 100 iterations, while AA in the L2, H−1, and H−2 norm all
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Figure 3: Solving the nonlinear Helmholtz equation by Picard iteration, AA with m = 1 using the L
2 norm, the

H−1 norm, and the H−2 norm with k0 = 20 (left) and k0 = 70 (right). The residuals are presented for the first
100 iterations.
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Figure 4: Solutions for the three different wave speeds ca (left), cb (middle) and cc (right); see (4.8).

decrease the residual rapidly. As the wavenumber k0 increases, the nonlinear Helmholtz problem
becomes more challenging, and H−2 norm becomes more beneficial.

Although (4.3) is nonlinear, there is spectral biasing from the second-order spatial derivative.
Thus, one expects that the H−2 norm could be counterbalancing the spectral bias of the fixed-
point operator in (4.3). Nonetheless, the spectral properties might change drastically with
different ε(x), so one must be careful. Also, we note that the convergence behavior highly
depends on the initial guess u0. We also observe interesting convergence behavior asm increases.
In particular, there seems to be essentially no benefit in taking large m, which we believe could
be related to the nonlinearity in (4.3).

4.4. Solving the Helmholtz equation using the WaveHoltz iteration

In this experiment, we explore AA for the WaveHoltz iteration [38]. In the WaveHoltz
iteration, we consider the Helmholtz equation in a bounded open Lipschitz domain Ω, i.e.,

∇ · (c2(x)∇u) + ω2u = f(x), x ∈ Ω, (4.4)

together with the energy conserving homogeneous Dirichlet boundary conditions. That is,

iωu = 0, x ∈ ∂Ω. (4.5)
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As a result, the solution to (4.4) with the boundary condition (4.5) is a real-valued function. To
find a solution to (4.4)-(4.5), we use the fixed-point iteration given by

uk+1 = Πuk, u0 ≡ 0,

where (see [38])

Πu =
2

T

∫ T

0

(
cos(ωt)− 1

4

)
w(t, x)dt, T =

2π

ω
. (4.6)

Here, w(t, x) depends on u(x) via the following wave equation:

wtt −∇ · (c(x)2∇w) = f(x) cos(ωt), x ∈ Ω, 0 ≤ t ≤ T,

w(0, x) = u(x), wt(0, x) = 0, x ∈ Ω,

w(t, x) = 0, x ∈ ∂Ω, 0 ≤ t ≤ T.

(4.7)

First, we take c(x) to be a variable wave speed and Ω = [0, 1]. We discretize the problem
with an equispaced grid xj = jh for 0 ≤ j ≤ n and h = 1/(n + 1). We approximate the wave
equation in (4.7) using a second-order finite difference scheme in space and time. If one takes
wk

i ≈ w(tk, xi), then we have the following discretization:

w−1
i = vni +

∆t2

2

(
(ci+1 + ci)v

n
i+1 − (ci+1 + 2ci + ci−1)v

n
i + (ci + ci−1)v

n
i−1

2h2
− f(xi)

)
, ∀i,

w0
i = vni , ∀i,

wk+1
i − 2wk

i + wk−1
i

∆t2
=

(ci+1 + ci)w
k
i+1 − (ci+1 + 2ci + ci−1)w

k
i + (ci + ci−1)w

k
i−1

2h2

− cos(ωtk)f(xi), i = 1, . . . , n− 1, k ≥ 0.

wk
i = 0, i = 0, i = n, ∀k.

Here, the integral in the projection (4.6) is discretized by the trapezoidal rule. Since this is
a linear problem, the discretized solution to the nonlinear Helmholtz equation in (4.4) can be
shown to solve a linear system, i.e., Au = b.

Denoting the eigenpairs of the operator u 7→ −∇ · c(x)2∇u by (λi, φi(x)), the eigenvalues of
the fixed-point iteration satisfy the implicit relationship

β(λi) =
2

T

∫ T

0

(
cos(ωt)− 1

4

)
cos(λit),

where β(λ) is a function such that β(λ) ∈ [−1/2, 1). For the discretized problem one can show
that A has eigenvalues in the interval (0, 3/2] and shares its eigenvectors with the tridiagonal
matrix in (4.2).

In our numerical experiments, we use n = 513 and set ω = 25
√
2. The forcing term is zero

everywhere, except at the 128th gridpoint. At the 128th gridpoint, we set it to be a constant
scaled so that the numerical solution is ≈ 2 in magnitude. The solutions are displayed in Fig. 4.
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Figure 5: Comparison of AA in the L2 and H−2 norm with GMRES. Top row (m = 3) and bottom row (m = 10).
Left column, wave speed ca, middle column, wave speed cb, and bottom column, wave speed cc(x).

To compare AA in the L2 norm with AA in the H−2 norm, we consider three different wave
speeds

ca = 1, cb = 1− 0.55e−144(x−0.5)2 , cc =

{
1 |x− 0.5| > 0.125,
0.3 |x− 0.5| < 0.125.

(4.8)

We supply AA with the fixed-point operator associated to Au = b obtained by performing
Richardson iteration. We also compare with restarted GMRES, which restarts everym iterations
(see Fig. 5). We find that AA in the H−2 norm outperforms GMRES as well as AA in the L2

norm for all cases except when the wave speed is cc and m = 3. In this exceptional case, none
of the methods manage to decrease the error substantially within 500 iterations.

The theory for the WaveHoltz iteration predicts that components of the solution that cor-
respond to eigenpairs with eigenvalues closest to the Helmholtz frequency, ω, have the slowest
converge rate. When the numerical solution has a small discretization error, these modes are
typically well-resolved, and the spectral biasing due to the H−2 norm appears to improve the
convergence of AA. To compare the H−1 and H−2 norm more closely in AA, we compare the
acceleration methods for m = 3 and m = 10 with the three different wave speeds (see Fig. 6).
For small m, AA in the H−2 norm converges faster than in the H−1 norm.
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Figure 6: Comparison of AA in the H−1 norm and the H−2 norm for m = 3 (left) and m = 10 (right).
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(c) m = 100

Figure 7: Convergence histories for the two-dimensional Helmholtz example with (a) m = 30, (b) m = 50 and
(c) m = 100.

4.4.1. WaveHoltz iteration in two dimensions

Next we consider an example in two dimensions with a wave speed given by

c2(x, y) =

{
0.3, 0.4 ≤ x ≤ 0.6 or 0.4 ≤ y ≤ 0.6,

1, otherwise,

on Ω = [0, 1]2. We, again, use second-order finite difference discretization with an 65 × 65
equispaced grid. We set the angular frequency to be ω = 11. The forcing term is zero everywhere
except at the gridpoint closest to (0.25, 0.75) where it has an amplitude adjusted so that the
solution is around 1 in magnitude.

We employ Richardson iteration to generate a fixed-point operator and then use AA in the
L2 and H−2 norm. Note that the degrees of freedom of the solution in this example are ordered
as a long vector with lexicographical ordering and that we employ the one dimensional H−2
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Figure 8: The solution for the Helmholtz equation in two dimensions.

norm to the two-dimensional data. We compare against restarted GMRES with restarts every
mth iteration for m = 30, m = 50 and m = 100 (see Fig. 7). We observe that AA in the H−2

norm outperforms restarted GMRES as well as AA in the L2 norm. In this 2D setting, AA
in the L2 norm is also performing better than GMRES. Not surprisingly, the advantage of the
“sliding memory” of AA is reduced as the restart depth increases. The solution to the problem
is displayed in Fig. 8.

This experiment is encouraging, as the benefits of the H−2 norm persist. Even though it
might be possible to use a two-dimensional definition of the H−2 for this simple geometry, its
computation can be more costly and, in the case of complex geometry, quite cumbersome to
compute.

5. Conclusion

In this paper, we propose the idea of using Anderson acceleration based on the H−s Sobolev
norm. We observe that this can counterbalance the implicit spectral biasing in certain fixed-
point operators. We rigorously analyze the convergence behavior of one-step AA, providing an
explicit error bound using Chebyshev polynomials that decreases exponentially in the memory
parameter m. Numerical experiments for both contractive, noncontractive, and non-linear op-
erators demonstrate the acceleration effects of AA based on different norms. In practice, the
choice of distance function in AA should be selected depending on the spectral biasing of the
fixed-point operator.
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