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EM-WaveHoltz: A flexible frequency-domain
method built from time-domain solvers

Zhichao Peng and Daniel Appelo

Abstract—A novel approach to computing time-harmonic solu-
tions of Maxwell’s equations by time-domain simulations is pre-
sented. The method, EM-WaveHoltz, results in a positive definite
system of equations which makes it amenable to iterative solution
with the conjugate gradient method or with GMRES. Theoretical
results guaranteeing the convergence of the method away from
resonances are presented. Numerical examples illustrating the
properties of EM-WaveHoltz are given.

Index Terms—Maxwell equations, iterative method, elec-
tromagnetic analysis, frequency-domain analysis, time-domain
analysis, FDTD methods, discontinuous Galerkin time-domain
(DGTD) methods, positive definite

WO of the main challenges when solving the time-

harmonic Maxwell equations at high frequencies are the
indefinite nature of the Maxwell system and the high resolution
requirement. Without proper preconditioners, iterative solvers
such as GMRES and BICG may converge slowly. These
challenges are similar to the ones for solving the Helmholtz
equation at high frequencies. Recently, we introduced a scal-
able iterative method called WaveHoltz [1] for the Helmholtz
equation. In this paper, we introduce the electromagnetic-
WaveHoltz (EM-WaveHoltz) method, which can be seen as a
generalization of the WaveHoltz method to the time-harmonic
(or frequency-domain) Maxwell equations. The proposed EM-
WaveHoltz method converts the frequency-domain problem
to a fix point problem in the time-domain. The fixed point
iteration is linear and can be rewritten as a linear system of
equations with a system matrix that is positive definite and
that can therefore be efficiently inverted using standard Krylov
methods such as GMRES.

In the EM-WaveHoltz method, we convert the frequency-
domain problem to a time-domain problem by evolving and
filtering Maxwell’s equations with periodic forcing over one
time period. When applied, this filter results in the time-
domain solution converging to a fix point where the solution
becomes equivalent to the solution of the frequency-domain
problem. Salient features of the EM-WaveHoltz method are
as follows.

1) The resulting linear system is always positive definite

(sometimes symmetric).

2) The EM-WaveHoltz method can be driven by any scal-
able time-domain solver, for example the finite differ-
ence time-domain (FDTD) method [2] and discontinuous
Galerkin time-domain method (DGTD) [3].
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3) A unique feature of the EM-WaveHoltz method is that
it is possible to obtain frequency-domain solutions for
multiple frequencies at once but at the cost of a single
solve.

We note that properties of our method are to some extent
shared with the properties of the controllability method. In
particular the controllability method finds the solution to the
frequency-domain problem by using time-domain solvers like
our approach. However, while our formulation relies on a fixed
point iteration, the controllability method seeks to minimize
the deviation from time-periodicity of the initial and final data
of the time-domain simulation. The controllability method was
first proposed for a time-harmonic wave scattering problem
[4], and we refer readers to [5] for recent development.
The controllability method is also generalized to the time-
harmonic Maxwell equation in second order formulation [6]
and the first order formulation [7], [8]. One main difference
between our method and the controllability method is that
the controllability method needs backward solves, while our
method does not.

There are of course many other methods that have been de-
signed for efficiently solving the frequency-domain Maxwell’s
equations. For scattering and radiation problems in homoge-
nous media integral equation formulations are known to be
highly efficient and yield fast algorithms [9], [10]. Domain de-
composition methods (DDM) [11] have also achieved success
for the time-harmonic electromagnetic problems [12], [13],
[14], [15], [16]. The DDM method and the integral equation
method have been combined in [17]. Recently, [18] extends the
“shifted-Laplacian preconditioner” for the Helmholtz equation
to the high frequency time-harmonic Maxwell equations and
designs an optimal DDM method. Multigrid methods have
also been considered for the time-harmonic Maxwell equations
[19], [20]. A multigrid method for the high frequency time-
harmonic Maxwell equations is designed in [21]. Sweeping
preconditioners for time-harmonic Maxwell equations, which
utilize the intrinsic structure of the Green’s function, have
been developed for the Yee scheme [22] and the finite element
method [23]. We finally note that it also possible to directly
use a time-domain solver in other ways to find the frequency
domain solution. The most straightforward approach is to
save the solution for some time 7' and then take a Fourier
transform. The upside with this approach is that it produces an
approximate result to the frequency domain problem for many
frequencies at once. The drawbacks are that the solution is
approximate with an accuracy that, in the case of a continuous
wave sinusoidal source, scales as 7! and that the need to save
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the solution makes this approach memory intensive. This slow
convergence can be improved if modulated sources are used
and the resulting method can be more efficient than a single
frequency solver if the frequency response is desired over a
broad spectrum of frequencies and the accuracy requirements
are less stringent. For open problems it is possible to appeal
to the limiting amplitude principle [24] and simply let a har-
monically forced problem converge to the frequency domain
problem by simulating long enough. The convergence of this
approach is severely impacted when trapping geometry is
present and the principle is not valid for closed domains. Also
for Fourier transformed methods the required simulation time
becomes prohibitive when closed domains with the quality
factor () = oo are considered.

The rest of this paper is organized as follows. In Section I,
we present the EM-WaveHoltz formulation for the continuous
equations and discuss the properties of the resulting linear
system, the choice of the linear solver, and present how to
obtain solutions for multiple frequencies in one solve. In Sec-
tion II, to show the flexibility with respect to the choice of the
time-domain solvers, we couple the EM-WaveHoltz method,
first with the Yee scheme and then with the discontinuous
Galerkin (DG) method. In Section III, the performance of the
EM-WaveHoltz method is demonstrated through a series of nu-
merical examples. A simple implementation of the method in
1D to aid the reader in understanding the details of the method
can be found at https://zhichaopengmath.github.io/code/.

I. ELECTROMAGNETIC WAVEHOLTZ ITERATION FOR THE
MAXWELL’S EQUATION

We consider the frequency-domain Maxwell’s equation:

(1a)
(1b)

weE =V xH—-J,
wpH = -V X E,

closed by boundary conditions corresponding to either a
perfect electric conductor or to an unbounded domain. Here
E and H are the complex valued electric and magnetic fields,
€, v are real valued permittivity and permeability and J is the
real valued current source. Taking the real and imaginary parts
we find

—wS{eE} = R{V x H} - J, (2a)
wR{eE} = 3{V x H}, (2b)
—wS{pH} = —R{V x E}, (2¢)
wiR{pH} = —3{V x E}. (2d)

We want to relate the fields E and H to real valued and
T = 27 /w-periodic fields

E = Eg cos(wt) + By sin(wt), (3a)
H = H, cos(wt) + Hj sin(wt), (3b)
that are solutions of the time-domain equations
€0, E =V x H — sin(wt)J, (4a)
po,H = -V x E. (4b)

For such periodic solutions we can match the sin(wt) and
cos(wt) terms to find the relations

—w(eBy) =V x Hy —J, (5a)
w(ek;) = V x Hy, (5b)
—w(pHy) = -V x Eq, (5¢)
w(pH,) = -V x Eg (5d)

Comparing (2a) with (5a) and (2¢) with (5c¢), it now follows
that the initial data of E and H matches the imaginary part
of the frequency-domain solution

S{E} = E,, S{H}=H,.
Also, from (2b), (5b) and (2d), (5d), we get

R{E} = By = 2V x Hy, R{H}=H, = _%v « By,
€
(6)

Our EM-WaveHoltz method finds the periodic solutions (3)
by iteratively determining the initial data to (4).

Define the filtering operator, II, acting on the initial condi-
tions v = (vg,vy)l:

o (ve\ 2 [T 1\ (E,

with T' = 27 /w and E, and H, being the fields resulting
from the initial conditions v = (vg,vg)T.

By construction II(S{E}, S{H}HT = (S{E},S{H})T,
and as (R{E}, R{H})T can be computed directly via (6), the
solution to the frequency-domain equation is the fix-point of
the operator II.

The operator II is contractive. Precisely, if a certain initial
data gives rise to a solution that, in addition to the sin(wt) and
cos(wt) terms in (3), has other time-harmonic components, e.g.
sin(w't), w’ # w, then in each iteration the filter reduces the
amplitude of those components.

Based on these facts, we define the EM-WaveHoltz iteration:

v =TI, with v° = (0%, 0v%)T =o0. (8)

The EM-WaveHoltz iteration converges to the imaginary parts
of the solution to the frequency-domain equation

lim v™ = lim (v, vy)" = (S{E},S{HHT, ()
n—oo n— oo

and the real parts can be recovered via (6).

Remark 1. Alternatively we could formulate the time-domain
problem with a cosine forcing

€0, E =V x H — cos(wt)J,
,uatﬁ =-Vx E

(10a)
(10b)
Again, the real valued T = 2w /w-periodic solutions to (10)
are of the form (3) but (see Appendix A) the solution to (10)

E and H have a slightly different relation to the frequency-
domain solution

R{E} = Eo, R{H} =H,, S{E} =-E,, S{H}=-H,.
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With the same filter and iteration process defined as the sin-
forcing case, we have

lim v" = lim (v, vy)" = (R{E}, R{H})T.

n— oo n—roo

(1)

In our numerical tests, we find that the number of iterations
needed by the EM-WaveHoltz method are essentially identical
for the two alternatives. In this paper, we focus on the EM-
Waveholtz with the sin-forcing.

A. EM-WaveHoltz for the energy conserving case

For real-valued €, p and J, with PEC boundary conditions
and other boundary conditions that lead to a conservation
of the electromagnetic energy in a bounded domain, the
EM-WaveHoltz iteration can be simplified further. For such
problems, assuming that w is not a resonance frequency of
the cavity, S{H} is identically zero and the EM-WaveHoltz
iteration is reduced to

V%H = I,

n 0
vy =0, vp=0,

2 [T 1\ =
vy = T/o (cos(wt) - 4) E.dt.

As long as w is not a resonance this simplified EM-WaveHoltz
iteration converges

(12)

where now

(13)

vy = S{E}, asn — oo. (14)

B. Krylov acceleration

For bounded problems where w is close to a resonance
or for unbounded problems with trapping geometries, the
convergence of the WaveHoltz fix point iteration can be
slow [1]. Fortunately as the iteration is linear, it is easy to
rewrite it as a positive definite linear operator that can be
efficiently inverted by a Krylov subspace method. To see this
we introduce the operator:

Sv = Ilv — 110. (15)
Then, based on the definition of S, we have
IIv = Sv + 110. (16)

Hence, finding the fix point of II: Il = v is equivalent
to solving the equation (I — S)v = II0. Here, we want to
emphasize that 110 # 0 unless frequency-domain problem has
zero solutions (see (55) in Appendix B for more details). Here
0 stands for the zero initial condition in the time-domain, and
with a non-zero source, the filtered time-domain solution over
one period II0 is very likely nonzero.

A Krylov method such as the conjugate gradient method,
GMRES or TFQMR can be applied to solve (I — S)v =110
in a matrix-free manner. In practice, to obtain the right hand
side I10, we just need to solve the time-domain problem (4)
with zero initial conditions ¥ = 0 from ¢ = 0 to ¢ = T and
use a numerical quadrature to approximate the filter I10 as we

march in time. To calculate the matrix multiplication (I —S)v,
we can utilize the fact that

(I =Sy =v-— v -10) =v —Iv +II0.

That is, for a given v and II0 precomputed, we just need to
compute ITv to obtain the action of (I — S) onto v. Recall
that Il is obtained by computing the filter by a numerical
quadrature incrementally as the solution to (4) is evolved for
one T' = 27 /w period with v as the initial conditions. Thus
the cost to compute one Krylov vector is that of a wave solve
with one additional variable needed to sum up the projection
throughout the evolution.

When using GMRES there is always a concern about the
size of the Krylov subspace as the number of iterations grow.
Here our method has a significant upside to solving the
frequency-domain problem. Note that although we are looking
foraT = %”-periodic solution, there is nothing in the method
that prevents us from changing the filtering to extend over
a longer time, say, T = Nper,-ods%”, with Nperiogs @ positive
integer. As we show in the numerical examples below, for
moderate Nperiods this reduces the number of iterations by a
factor of roughly Nperiogs SO that the overall computational cost
is almost the same. But when Npeiogs i large, the number
of iterations will decrease slower than linear in Nperogs and
computational cost grows. Thus, for GMRES without restart,
filtering over several periods reduces the memory needed. For
GMRES with restart, filtering over several periods reduces the
number of restart needed.

In Appendix B, we show that ] —.S is always a positive defi-
nite operator and for energy conserving boundary conditions it
is also self-adjoint. These results carry over to the discretized
equations in the sense that the matrix that needs to be inverted
is always positive definite and, if a symmetric and energy
conserving method (like the Yee scheme) is used, the matrix
is also symmetric for energy conserving boundary conditions
like PEC. For the SPD case our method becomes particularly
efficient and memory lean as the conjugate gradient method
can be used.

Now, we summarize how to implement the EM-WaveHoltz
method given a time-domain solver and a GMRES iterative
solver. The filtering is presented as Algorithm 1 and Algorithm
2 describes the GMRES/Krylov acceleration.

Algorithm 1: Given initial data v and a time-domain
solver, compute ITv.

1: Set v = (vL,v])) as the initial condition for the
time-domain solver.

2: Use the time domain solver to evolve the time-domain
equation (4) for one/multiple periods. In each time step,
incrementally compute 11, by the trapezoid rule for
numerical integration.

3: After the solution has been evolved for one/multiple
periods in time return II;v.
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Algorithm 2: GMRES accelerated EM-WaveHoltz it-
eration.
1: Compute II0 by Algorithm 1.
: procedure MATMUL(v)

2

3 Use Algorithm 1 to compute IIv.

4 return ([ — S)v = v — IIv 4 110.

5: end procedure

6: procedure SOLVE(TOL)

7 Set the initial guess as v° = (0,0)7.

8 Apply GMRES with matrix free MATMUL
procedure. Stop if the relative residual is smaller than
TOL.

9: end procedure

10: The solution produced by SOLVE is the imaginary part
of the frequency-domain solution.

C. Multiple frequencies in one solve

Similar to the WaveHoltz method for the Helmholtz equa-
tion [1], the EM-WaveHoltz method can be applied to obtain
the solutions for multiple frequencies in one solve.

Precisely, let wy, = ngwo, £k = 1,..., N for some wg > 0
and n; < nmg < --- < ny being positive integers. Then in
a traditional frequency-domain solver each frequency requires
the solution of N different systems

wreBEr =V x Hg — Jk,
iwk,qu =-V X Ek.

(17a)
(17b)

Now, assuming that each frequency solve has the same type
of boundary condition and material properties (the forcing Jy
can be different for each k), we can solve for all frequencies
at once. We take the energy conserving case as an example,
then the single time-domain problem we must solve is

N
e@t]:] =VxH- Z sin(wgt)J g,

(18a)
k=1
woH =V x E. (18b)
The converged solution to (18) can be decomposed as
~ N A
E= Z Ej, o cos(wygt), (19)
k=1

where ]:Jk,o = ${E;} gives the solution to the original
frequency-domain problem (17) corresponding to wy. To ob-
tain the “all £ solution through EM-WaveHoltz is easy, the
filtering operator simply needs to be modified as

2 (T (& 1) ~
Mvg = —/ cos(wit) — = | E,dt. (20)
2 (enn

Here, the final time T is chosen such that 7'/ (i—:) is an integer
for all k.

> Compute (I — S)v

> Solve (I — S)v =110

Once the EM-WaveHoltz iteration has converged to (19) we
separate the different solutions by evolving (17) for one more
T}.-period while applying the filters

2 [Tk 1\ =

S(Ex) = ﬁ/ (cos(wkt) - 4) Edt, 21
2 i ~

R(Eg) = Tk/o sin(wyt) Edt. (22)

II. DISCRETIZATION OF THE EM-WAVEHOLTZ METHOD

We have presented how the EM-WaveHoltz iteration con-
verts a frequency-domain problem to a time-domain problem.
In this section, we will use the Yee scheme [25], [26] and
the discontinuous Galerkin (DG) method [3], [27], [28] as
examples of integrating the EM-WaveHoltz iteration in ex-
isting time-domain solvers. We also want to point out that
it is possible to couple the EM-WaveHoltz method to other
type time-domain solvers such as spectral element method and
continuous finite element method. Further, although we don’t
consider it here, our approach directly generalizes to linear
dispersive frequency-domain models such as the generalized
dispersive materials modeled through an auxiliary differential
equation approach in [29].

A. Yee-EM-WaveHoltz

The Yee scheme [25], [26] or the finite-difference-time-
domain (FDTD) method, is one of the most popular and
successful methods in computational electromagnetics and can
be easily turned into a fast FDFD method, the Yee-EM-
WaveHoltz method, as follows.

For brevity we consider the two dimensional TM model,
then £, = E, = H, = 0. Assume a uniform time step
size¢ At = T/M and denote a grid function at a point
(iAz, jAy,nAt) by F[; and denote t" = nAt. Then the
Yee scheme to solve the time-domain problem in the EM-
WaveHoltz formulation is:

~ ~ o n—i—% o n+%
(Ez)Zjl — (EZ)ZLJ _ (Hy)er%J - ( y)i,%}j
Cind At - ( Az
(H,)" %, — (A3,
_ Tliits 5 ”‘5) —sin(wt™3)(L);  (23a)
~ n+l ~ n—1%
(H‘T)i,j—f% - (HGC)i,jfé _ 1 (E:)i — (B2
At Hig+1 Ay ’
(23b)
~ gl ~ o1 - -
(Hy)i-‘r;,j - (Hy)i-s—%z,j _ 1 (B, — (B2}
At Miyl Ax ’
(23c¢)

~_1
For the initial step H, * is initialized as

At
L _ _
(Ha)i g = (Ha)ijry 20544 (

~ 1 ~ 0

(EZ)zQ,j+1 - (Ez)zo,j )
Ay ’
(24)

1

and H, ? is initialized similarly.
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To approximate the filter operator II in (7) we use the
composite trapezoidal rule

Vg 2At " 1 Eun
I, (VH> Tn 077n <COS(th ) 1 w 7

where

,n=0or M,
nn={2 (26)

1, otherwise.

Due to the second order time discretization, the solu-
tion obtained by the above iteration introduces an additional
O(At?) error from time marching. Of course since At ~
min{Az, Ay} the EM-WaveHoltz solution is converging at
the same rate as the spatial discretization but nevertheless it
does have an additional error. This error is easily eliminated by
a small modification which we discuss next. We only present
the 2D TM model here but note that EM-WaveHoltz can be
straightforwardly generalized to the full 3D model.

B. Eliminating the temporal error in EM-WaveHoltz

For brevity we consider the energy conserving two dimen-
sional TM model. To eliminate the time-marching error, we
first slightly modify the source term in the time-domain. We
replace sin(wt™t2) in (23a) with

gi _ wAt
2
Here, S™*2 is a second order approximation to sin(w¢"2).
Using S"2 instead of sin(wt™*2) gives us a chance to
eliminate the error due to the time discretization.
Eliminating H, and H, in (23), we have

.St = ST 4 Atw cos(wt™). 27)

(E.)iT —2(E.)r + (B0
At2 +L (E )zg
1 Snty — g3
- _ A Vi A
Ei,j( )i At
1
=— (J2)s,jw cos(wt™), (28)
€i,j
where
L F = (Fi+17j —Fy; Fij— Fi—m)
5] Ei,ij /j/i+%,ij Mz‘f%,ij
1 (fQJ+1-—f1J __}%J'_}ngl). 29)
€AY /U‘i,j+%Ay um_%Ay

(28) is an approximation to the second order form of the time-
domain equation in EM-WaveHoltz. We now have the fol-
lowing theorem guaranteeing the convergence of the discrete
iteration (for the energy conserving case)

Theorem 1. Let v°° be the solution to
. 1
D> — Lpyv™® =w (J) , (30)
€
where
sin(wAt/2) 9
= - At . 1
w AL w4+ O( ) 31D

Further, let {—=X3}0, and {1;}}_, be the eigenvalues and
corresponding ezgenfuncttons of Lh, and 0 < A < Ay <

- < AN. Assume that w is not a resonance and denote the
relative distance to the closest resonance

0p, = min |A; — w|/w > 0. (32)
J

Then, for the energy conserving method (23), with the filter
(25), the Yee-EM-WaveHoltz iteration v*t1) = 11,0*) with
v(©) = 0 converges to v>° as long as

2
At<— 2
AN + 2w /7T
Moreover, the convergence rate is at least p, = max(1 —
0.35}%, 0.6).

wAt < min(dp, 1). (33)

The proof of this Theorem is presented in Appendix C.
We note that the first constraint on the timestep is essentially
the standard CFL condition for an explicit method while the
second condition could be very strict. In fact, for all our
numerical experiments, we only choose the At based on the
CFL condition, and the violation of the second condition does
not lead to problems. Hence, we conjecture that the second
condition is not a practical limitation.

Now, if we replace cos(wt™) with cos(@t™) in (27) with

2 At
o= st (430, (34)
and modify the trapezmdal weights in the filter as
1Y\ cos(wt™) ~
= — t") — - | ————=FE7. 35
Z < s(w 4> cos(wtn) * (35)

Then Theorem 1 holds but the convergence is to v being the
solution to the standard discretized frequency-domain problem

1
WX — L™ = w (J) .
€

The derivation of this strategy is discussed in Appendix D
along with the proof of Theorem 1. An alternative strategy to
eliminate the temporal error is suggested in [30].

(36)

C. DG-EM-WaveHoltz

The discontinuous Galerkin (DG) method, due to its high
order accuracy, flexibility to use nonconforming meshes and
its suitability for parallel implementation, has become in-
creasingly popular for the simulation of time-domain wave
propagation. As for the Yee scheme, DGTD can easily be
turned into a frequency-domain solver using our approach.
Here we use the time-domain DG method of [3], [27].

Consider Maxwell’s equation in d-dimensions. Let €); be
an element, and P*®({};) be the space of polynomials at
most degree s. Define V;’(Q);) = (PS(Qj))d to be the
corresponding vector polynomial space. The DG method seeks
the solution Ej, € V;?(Q;), Hy € V;*(£;) such that for any

D € Vi3 (), ¥ € ViP(Q)
. ~ 1
/QjatEh~¢dV/Qth~V><(€¢)dV

+ /an (H X n) . (Etb)ds 7/ Sm(wt),] - pdV, (37a)

2y



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION

~ ~ 1
6,5Hh ’(de = —/ Eh -V x (*'l/))dv
Q; Q; K

~ 1
— / (E xn)-(—1)ds. (37b)
o0 w
Here, n is the outward pointing normal of a face and H and
E are numerical fluxes. A stable and accurate choice for the
numerical fluxes is

H = {H} + o[E], E = {E} + 5[H]. (38)

Here v* denotes the two values on each side of a face, {v} =
(vt +v7) is the average and [v] = n" x vF 4+ n~ x v~
is the jump. The semi-discretization (37) can be evolved in
a method of lines fashion, using for example a Runge-Kutta
or Taylor method as the time stepper. Depending on the time
discretization it may be possible to eliminate the time error
as discussed above but we don’t pursue this here. Further,
in the examples below we always use the trapezoidal rule to
discretize the filter.

III. NUMERICAL RESULTS

In this section we demonstrate the performance of the
EM-WaveHoltz methods on several examples in two and
three dimensions. The sin-forcing formulation is used in
two dimensions and the cos-forcing formulation is used in
three dimensions, unless otherwise specified. For all numerical
examples, the time step size At is chosen based on the CFL
conditions of the time-domain methods. Again we note that
such timesteps violates the second condition in Theorem 1 but
that this condition appears to be a technicality as none of the
examples below are affected by this. In this section we always
use the Krylov accelerated version of the iteration.

A. Comparison with the MEEP FDFD solver

We compare our Yee-EM-WaveHoltz code with the iterative
FDFD solver of the open source C++ package MEEP [31]. Our
code is implemented by combining EM-WaveHoltz with the
FDTD code of the C library rbcpack [32]. Our code uses a
self-implemented GMRES solver without restart. The FDFD
solver of MEEP uses BICG-Stab(l) method [33]. Both codes
are executed in a serial-manner on a 2015 MacBook with 2.2
GHz Quad-Core Intel Core i7 cpu.

Following MEEP package’s benchmark example for the
FDFD code (see [34]), we consider a ring resonator and
the 2D TM model. The computational domain is [—6,6]2
with nonreflecting boundary conditions. A ring resonator with
€ = 3.4% is located at {(z,y) : 1 < /22 +y2 < 2}. The
permittivity outside the ring is € = 1, and the permeability
1 =1 in the whole computational domain. Two point sources
are placed at (1.1,0) with magnitude 1 and (—1.1,0) with
magnitude —1. Let wp = 0.118 x 27.

We first consider w = wp,2.24wy and 2.7wy. We use
N = 120,240 and 480 grids in each direction. For both
solvers, we set the relative tolerance as 10~7. For the Yee-
EM-WaveHoltz, we use cos-forcing and filter over 10 periods.
To obtain convergent results for all frequencies, we use [ = 10
in the BICG-Stab-(I) FDFD solver. In the results displayed
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Fig. 1. The real part of the E, field (normalized) and the number of iterations
as a function of frequencies. Top left figure, w = wp, top right figure
w = 2.24wq, bottom left figure: w = 2.7wp, bottom right figure: number of
iterations v.s. w/wo. Left: Yee-EM-WaveHoltz. Right: MEEP’s FDFD solver.

TABLE I
COMPUTATIONAL TIME (SEC)

N w=wo | w=224wy | w=2Two
120 20 12 12
EM-WH | 240 94 55 60
480 562 326 350
120 11 21 34.14
MEEP 240 109 180 229
480 1095 1531 2000

in Figure 1, we observe that the EM-WaveHoltz and the
FDFD agree well. Table I presents the computational time
needed. The Yee-EM-WaveHoltz code is always faster except
for wop and N = 120. Its advantage increases with mesh
refinement and the size of the frequency. In Table II, we
present the total number of iterations needed for convergence.
The Yee-EM-WaveHoltz always needs fewer iterations for
convergence. Moreover, for a fixed frequency, the number of
iteration needed by Yee-EM-WaveHoltz almost does not grow
as the grid is refined, while the BICG-Stab-(10) needs more
iterations.

We also sweep over different frequencies in [2wp, 3.8wp]
with a step size equal to 0.2. The number of grids in each
direction is 60w/wg so that the number of grid points per
wavelength is fixed. We use [ = 20 in the BICS-Stab-(l).
For both solvers, we set the relative tolerance as 10~° and
the maximum number of iterations as 2500. As shown in the
bottom right figure of Figure 1, for the chosen resolution, the
number of iterations scales better as a function of frequencies.
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TABLE II
TOTAL NUMBER OF ITERATIONS WITH 107 RELATIVE RESIDUAL

N w=wo | w=224wy | w=2.Twy
120 8 11 14
EM-WH 240 8 11 15
480 8 11 15
120 144 256 405
BICG-Stab(l) 240 280 449 557
480 | 586 800 1092
8000 | —e—EM-WaveHoltz
—a&— Direct solver
5000 | |~"~"793+1.6e-3N°
. - - 793+2.85¢-3N*
o)
=3
>
(@]
& 2000 -
= )
1000 ¢

108 10°

NS

Fig. 2. Peak memory for EM-WaveHoltz and a direct solver based on sparse
multifrontal LU factorization for a 3D problem with PEC boundary conditions

B. Comparison with a direct FDFD solver

Sparse multifrontal direct FDFD solvers are fast, however,
for the full 3D problem and with increasing frequency such
solvers quickly become too large to fit in memory. To demon-
strate this we consider a 3D problem with w = 12.5, PEC
boundary conditions and a source J, = wy(y — 1)z(z — 1) +
2(y(y—1)+2(2—1)), J, = wa(e—1)z(z— 1)+ 2 (a(e—1)+
z(2—1)) and J, = wz(z—1)y(y—1)+ 2 (z(z—1)z+y(y—1)).
We use N grid points in each direction. We implement an Yee-
EM-WaveHoltz code and a direct FDFD code in Julia. Both
codes share exactly the same spatial discretization subroutines
based on sparse matrices. GMRES solver with relative toler-
ance 1078 is applied in the EM-WaveHoltz code. The direct
solver uses Julia’s sparse multifrontal LU factorization, which
calls SuiteSparse [35]. As shown in Figure 2, we observe that
the peak memory needed by the EM-WaveHoltz scales roughly
as O(DOF) = O(N3), and the peak memory needed by the
direct solver scales roughly as O(DOF*/3) = O(N*).

C. Grid convergence of Yee-EM-WaveHoltz

We consider the 2D TM model and non-dimensionalize the
equations so that ¢ = ;4 = 1 and manufacture a forcing

2
J=16wz?(z — 1)%y*(y — 1)* + %(
(62° — 62 + 1)y*(y — 1)* + (6y* — 6y + 1)a”(z — 1)*)

so that the exact solution is E,(z,y) = 162%(z — 1)%y?(y —

1)2. This solution is compatible with perfect electric conductor
(PEC) boundary conditions on the domain [0,1]?. We apply

Max Error
o
S

e ——w=2>5.5,m
- w=2>5.5,0
——w = 16.5, m
10_5’ -0 w=16.5,0 |]
. —A—w = 38.5, m
- -A& w=38.5,0
7 —-—-Slope = 2
10°® ‘ ‘ ‘
0.005 0.01 0.05
Mesh Size

Fig. 3. Grid convergence of a manufactured solution. Here “o0” stands for
one frequency in one solve, and “m” stands for multiple frequencies in one
solve. The errors displayed are for E. for a 2D TM model.

the Yee scheme and the EM-WaveHoltz iteration with GMRES
acceleration. The relative tolerance of the GMRES solver is
set as 10710,

To test the convergence for a) one frequency in one solve,
and b) multiple frequencies in one solve, we perform a grid
refinement study at fixed frequencies w; = 5.5, 3w; and
Twy. In Figure 3, without eliminating the temporal error, we
display how the error is decreased as the grid size is reduced.
As expected, for both of one frequency in one solve and
multiple frequencies in one solve, we observe second order
convergence. For the same frequency and the same mesh,
the magnitude of the errors for one frequency and multiple
frequencies in one solve are close to each other.

We also use this example to investigate the influence of the
temporal error in the EM-WaveHoltz method. In Table III, due
to the temporal error, we observe that the error of the direct
FDFD solver is smaller than the Yee-EM-WaveHoltz for for
w = 16.5 and w = 37.5, but slightly bigger for w = 5.5. For
w = 5.5, it is likely that the sign for the temporal error and
the spatial error are different.

Finally, we verify the effectiveness of our strategy to elimi-
nating the temporal error. As shown in Table IV, the difference
between the FDFD solution and the Yee-EM-WaveHoltz so-
lution after eliminating temporal error are at most O(10712),
which is much smaller than the numerical error.

D. Plane wave scattering and p-convergence of DG-EM-
WaveHoltz

Next we combine the EM-WaveHoltz iteration with the
upwind nodal discontinuous Galerkin method [3]. We consider
the 2D TM-model and the scattering wave from a PEC disk
due to the incident plane wave E™ = ¢~ with w = 15.
The radius of the disk is a = 0.25. The exact solution of this
problem is a Mie series (see e.g. [36]), and is presented in
Fig. 4). The incident wave is imposed by setting the boundary
value E% equal to the exact solution. In the EM-WaveHoltz
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TABLE 111
ERRORS FOR THE MANUFACTURE SOLUTION OF 2D TM MODEL WITH
N = 160 GRIDS IN EACH DIRECTION.

w 5.5 16.5 35.5
EM-WH with temporal error | 1.21e-5 | 3.09e-5 | 8.45e-5
Direct-FDFD 1.73e-5 | 2.24e-6 | 2.26e-7
TABLE IV

DIFFERENCE BETWEEN YEE-EM-WAVEHOLTZ SOLUTION AFTER
ELIMINATING THE TEMPORAL ERROR AND THE FDFD SOLUTION WITH
N = 160 GRIDS IN EACH DIRECTION

w 5.5
Difference | 7.38e-15

16.5
9.22e-14

37.5
2.24e-12

formulation, the boundary condition of the time-domain prob-
lem is defined as R{E%} cos(wt) +S{E} sin(wt). With this
choice, one can show that the EM-WaveHoltz converges to the
real part of the frequency-domain solution. For a p-th degree
polynomial spatial discretization we use a p+ 1-th order Taylor
series method in time and filter over 5 periods.

We perform a p-convergence study with the unstructred
mesh in Fig. 4. The maximum error and the number of
iterations for convergence with relative tolerance 10~% are
shown in Table V. As the polynomial order p increases, the
error decays, and high order schemes achieves O(10~°) error
on this relatively coarse mesh. As the polynomial order p
increases, number of points per wavelength grows, but the
total number of iterations for convergence does not grow.

TABLE V
MAXIMUM ERROR AND THE TOTAL NUMBER OF ITERATIONS FOR THE
SCATTERING WAVE FROM A PEC DISK, WITH DG-EM-WAVEHOLTZ AND
p-TH ORDER POLYNOMIAL

P 3 4 5 6 7 8
Error 2.86e-2 | 4.65e-3 | 6.89¢-4 | 6.40e-5 | 7.89e-6 | 1.37e-6
Iterations 45 39 38 38 37 37

NOVAVAv
: - - tﬁ%ﬂ%ﬁﬂ%ﬁ

\VAVAVAVAVAVAVAN
sl

i 05 o 05 1 T 05 o 05 1

Fig. 4. Left figure: exact solution for w = 15.0 of the scattering problem.
Right figure: Unstructured mesh.

E. Plane wave scattering with incident fields and Yee scheme

We consider the same plane wave scattering problem as
Section III-D with the incident plane wave E'™ = e~%% and
w = 15. To show the capability of using a field source, we
apply the Yee-EM-WaveHoltz method and impose the incident
fields following the total field/scattered field formulation in [2].
We split the computational domain into a total field region
[—0.5,0.5]2 and a scattered field region. The incident wave

is imposed through the interface condition between the two
regions, and the double absorbing boundary layer (DAB) by
Hagstrom et al. [37] is applied to impose the nonreflecting
boundary conditions. The setup of the Yee scheme is illustrated
in the left figure of Fig. 5. To impose the right going incident
wave, we follow similar arguments to (5) and define the
corresponding time-domain incident fields as

Eiznc = cos(wz) sin(wt) — sin(wz) cos(wt)
= sin(w(t — z)) = S{ew =D},

H =0, HI=-EI (39)

We use a 401 x 401 uniform mesh, and set the relative
tolerance of the GMRES solver as 10~8. The numerical
solution matches the exact solution very well (see right figure
of Fig. 5).

Scattered Fields 0.8
0.6

Total Fields Non-reflecting 0.4
Boundary

Conditions 0.2

S
PEC cylinder 02
-0.4

-0.6

-0.8

-1 -0.5 0 0.5 1
X

Fig. 5. Left figure: the set-up of the total field/scattered field formulation.
Right figure: the real part of the scattered wave with w = 15, numerical
solution on the top and exact solution on the bottom.

F. Number of iterations for different frequencies and boundary
conditions in two dimensions

In this experiment we solve the 2D TM model with the
source

J. = —wexp (—o((z — 0.01)*> + (y — 0.015)%)), ~ (40)

where 0 = max(36,w?), ¢ = u = 1, and the computational
domain is [—1,1]2. Here we sweep over the frequencies
w=k+ %, 1 <k <100. We use the GMRES accelerated
Yee-EM-WaveHoltz iteration and to keep the solution reason-
ably well resolved we use 8[w] grids in each directions, where
[w] is the smallest integer larger than w.

We solve this problem with 6 different boundary conditions:
(1) 4 open boundaries, (2) 1 PEC boundary and 3 open bound-
aries, (3) 2 parallel PEC boundaries and 2 open boundaries, (4)
2 PEC boundaries next to each other forming a PEC corner
and 2 open boundaries, (5) 3 PEC boundaries and 1 open
boundary, (6) 4 PEC boundaries. The rationale here is that in
problems (1), (2) and (4) there will not be any opposing PEC
walls where waves can be “trapped” while in the other three
problems there are.

We also note that in the open directions we employ the
optimally accurate double absorbing boundary layer (DAB) by
Hagstrom et al. [37]. The order of approximation in the DAB
layers we use is 10 which virtually makes the non-reflecting
boundary conditions exact.
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Fig. 6. Number of iterations as a function of frequency for the six different
2D TM problems.

In the EM-WaveHoltz iteration, we use 10 periods so that
T = 1027”. This reduces the memory consumption in GMRES
by a factor 10 and reduces the number of iterations by nearly
a factor of 10 (the cost per iteration of course goes up by 10
as well). In Fig. 6, the number of iteration required to reduce
the relative residual below 10~7 are presented. We observe
that for the problems without trapped waves, the number of
iterations scales approximately as w. For the problems with
trapped waves, the iteration converges slower and the number
of iterations scales as approximately w!.

G. Number of iterations for different frequencies and bound-
ary conditions in three dimensions

In this example we solve the 3D Maxwell’s equation with
a source

Jo = —wexp (—o(z® +y* +2%), J,=J.=0. (4]

Here 0 = max(36,w?), ¢ = p = 1 and the computational
domain is [—1,1]3.

To measure how the number of iterations grow with the
frequency, three different problems are considered: (1) an open
domain, (2) two parallel PEC plates, (3) five PEC boundaries
and one free side on the most left side. Again, we still apply
the highly accurate double absorbing boundary layer (DAB)
for non-reflecting boundary conditions. The order of the DAB
layers is set as 5 guaranteeing that the error of the non-
reflecting boundary conditions is well below the discretization
error.

We sweep over frequencies and use the GMRES accelerated
Yee-EM-WaveHoltz method with the cos-forcing. To have a
well resolved solution we use 4[w] elements in each direction,
where [w] is the smallest integer larger than w. In the EM-
WaveHoltz iteration, we set 7" as 5 periods.

In Figure 7, iteration numbers to reduce the relative residual
below 1076 are presented. The total number of iterations is
estimated to scale as w’ for the open problem, w!-? for the
parallel PEC plate problem and w?-® for the problem with one
free side.

We also use the the sin-forcing to simulate the open domain
problem with the same mesh and the error tolerance. We
observe that the number of iteration is exactly the same as the
cos-forcing, though the relative residual is slightly different
for high frequencies.

10°
—e—Free Space
—e—2 Parallel PEC Plates
) —e—One Free Side
S - - Slope 0.9
= 102 |- - Slope 1.9
g - - Slope 2.5
5
3
[ 10’
S = e
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L - 7
7
4
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0
1 0 L L L L
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w

Fig. 7. Number of iterations as a function of frequency for different 3D
problems.

H. Number of iterations for different points per wavelength

TABLE VI
NUMBER OF ITERATIONS FOR DIFFERENT NUMBER OF POINTS PER
WAVELENGTH, 2D-TM MODEL, [w] = CEIL(w).

Boundaries N 2[w] | 4Jw] | 6[w] | 8[w]
open w=12.5 9 9 9 9
PEC w=12.5 11 11 11 11
open w=25.5 13 12 12 12
PEC w=25.5 25 24 24 24

Here, we fix the frequency and more systematically inves-
tigate the number of iterations needed for convergence for
different number of grid points per wavelength. We use the
Yee-EM-WaveHoltz method with GMRES acceleration, and
€ = =1 is considered. For the 2D-TM model, we consider
the computational domain [—1,1]? and the source

J, = wexp(—144(gv2 + yz)), (42)

with either 4 open boundaries or 4 PEC boundaries. For the
3D model, we consider the computational domain [—1, 1]® and
the source

Jy = —wexp (—144(2* +y* + 2%)), J, = J. =0, (43)

with either 6 open boundaries or 6 PEC boundaries. In each
direction, we use [N + 1 grid points. We take T' = 10%’7. The
stopping criteria is that the relative residual falls below 1078
for the 2D TM-model and 10~° for the 3D model.

The results are presented in Table VI and Table VII. When
considering an open problem at a fixed frequency, we observe
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that the number of iterations does not change as the number
of grid points per wavelength is increased. For the PEC
problem in three dimensions the number of iterations are
reduced sightly as the resolution is increased and for the 2D
PEC problem it does not change significantly. Based on this
experiment and other experiments, our observation is that the
algorithm is robust with respect to resolution (but of course
the discretization error will depend on the resolution.)

TABLE VII
NUMBER OF ITERATIONS FOR DIFFERENT NUMBER OF POINTS PER
WAVELENGTH, 3D.

Boundaries N 2[w] | 4]w] | 6]w] | 8[w]
open w=12.5 5 5 5 6
PEC w =125 26 24 23 22
open w =255 7 7 7 7
PEC w=25.5 174 153 150 135

1. Smaller Krylov subspaces by longer filter time

As we mentioned before, we can filter over multiple periods
T=N %’T, which allows the further propagation of the wave.
We consider T° = N%” with N = 1,3,5 for 2D and 3D
open domain problem. The setup of this test is the same as
Section III-F for 2D and Section III-G for 3D. We scan over
different frequencies and apply the GMRES accelerated Yee-
EM-WaveHoltz. The total number of iteration allowed is set
as 200 in 2D and 100 in 3D. As can be seen in Figure 8
for high frequencies both the 2D and the 3D solver, when
using T' = %’T fails to converge to the desired tolerance before
reaching the maximum number of iterations.

In Figure 8, we present unscaled number of iterations
against the frequency and observe that the number of iterations
decays as the propagation time 7' in the time-domain grows.
To further quantify the relation between the computational cost
and T = Nperiods%”, we scale the number of iterations by
Nperiods and present the result in Figure 9. We observe that
for Nperiods = 3 and Nperiogs = 5 the scaled curves visually
collapse, implying that the the total computational time is
approximately the same. Thus, for moderate Nperiods, Without
increasing the computational cost, filtering over moderate
longer time can decrease the number of iterations, which
in turn reduces the size of the Krylov subspace used by
GMRES. However, if Nperiogs is large the decrease in number
of iterations does not keep up with the linearly increasing cost.
For example, for w = 45.5, and for Nperioas = 3,9, 10, 20,50
the scaled number of iterations are: 165, 160, 180, 220 and 400.
Here we only display results an open problem but note that
similar observations can be made for problems with trapping
geometries.

J. SPD structure and condition numbers for energy conserving
2D TM-model

Here, we consider the 2D TM model with PEC boundary
conditions, € = 4 = 1, w = 10 and the Gaussian source

J., = —wexp (7w2(1:2 + y2)) , (44)
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Fig. 8. Unscaled number of iterations as a function of frequency for different
filtering time. Left: 2D open problem. Right: 3D open problem.
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Fig. 9. Scaled number of iterations = [N X number of iterations, if 7' = N 27”
Scaled number of iterations as a function of frequency for different filtering
time. Left: 2D open problem. Right: 3D open problem.

on the computational domain [—1, 1]2. We apply the Yee-EM-
WaveHoltz method, and filter over 10 periods in the time-
domain. We use this example to verify that our method results
in a SPD linear system. The code is implemented in a matrix
free manner. The matrix I — S is constructed column by
column through the calculation of matrix-vector multiplication
(I — S)e; where e; is a column vector whose i-th element is
1 and all other elements are 0.

We use N = 10,20,...,100 elements in each direction.
We first compare I — S and (I — S)T. The L, norm of their
difference is always on the level of machine accuracy. The
smallest eigenvalue of the resulting linear system is always
positive. Moreover, when N is large enough to resolve the
wave structure, the condition number of the resulting matrix
does not increase as N grows. The condition numbers are
79.1305 for N = 90, 75.5935 for N = 95 and 72.7603 for
N = 100. This matches our previous observation that the total
number of iterations does not grow with increased number of
points per wavelength.

IV. CONCLUSION

In this paper, we proposed the EM-WaveHoltz method,
which converts the frequency-domain problem into a time-
domain problem with time periodic forcing. The main advan-
tages of the proposed method are as follows.

1) The resulting linear system is positive definite, and the
GMRES iterative solver converges reasonably fast even
though no preconditioning was used.

2) The method is flexible and straightforward to implement,
it only requires a time-domain solver. In this paper,
we illustrated how either the classical Yee scheme or a
discontinuous Galerkin method can be used to construct
frequency-domain solvers.
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3) A unique feature of our EM-WaveHoltz method is that
the solution to multiple frequencies can be obtained in
a singe solve.

Potential future research directions are to design precondi-
tioning strategies to further accelerate the convergence of the
proposed iterative method. It would also be interesting to apply
the method to more advanced dispersive material models.

APPENDIX A
DERIVATION OF THE EM-WAVEHOLTZ ITERATION WITH
cos-FORCING

The real valued T' = 27 /w-periodic solutions to (10) is in
the form:

E = Eg cos(wt) + By sin(wt),
H = H, cos(wt) + Hy sin(wt).

45
(46)
Matching the sin(wt) and cos(wt) term, we reach

ew(—Eo) =V x Hy,

ew(B)) =V xHy—J,
( Ho) =-V x El,
pw(Hy) = =V x E.

Based on (2), it follows that

By = R{E}, Hy=R{H}, E, =

By construction, one can further verify that
I(S{E}, S{HNT = (R{E}, R{H})".
APPENDIX B
ANALYSIS OF ENERGY CONSERVING EM-WAVEHOLTZ
ITERATION

Similar to [1], we analyze the convergence of the simplified
EM-WaveHoltz iteration for the energy conserving case and
show that I — S is a self-adjoint positive definite operator.

Eliminating H in the frequency-domain equation (1), we
have

—w2eE = -V x (1 47)

1

With the real-valued current source J, we further have

Vv ><E> —wd.

1
—ew?J(E) = -V x <v X %(E)) —wl. 48
"
Eliminating H in the time-domain equation (4), we obtain

€OuE = —V x <iv X E) —weos(wt)J,  (49)
with E|;—o = v and E, = 0.

Suppose there is an orthonormal basis of L?(Q2) consisted
by the eigenfunctions of the operator _,v X %Vx (For
example this holds under the assumptlons of Theorem 8.2.4 in
[38]). Let the eigenfunctions {¢] . consist an orthonormal
basis of the L? space. Let {— )\2} 1 denote the corresponding

~S${E}, H; = -S{H}.

nonpositive eigenvalues. For simplicity of notations, we let
vgp =v. Then, E, E, J, v can be expanded as:

E=) Ej¢;, E=) E;¢;,
j=1 j=1

oo o (50)
J = ZJj¢j, vV = ZVj¢j.
j=1 j=1
Solve (47) and (49):
le
E = )\2 w2’ (51)
E; = E; (cos(wt) — cos(\;t)) + v cos(\;t). (52)
Then,
v =Y 0;¢;, 7= (1- BN))E; + B(N\)v,,  (53)
j=1
where
9 (T
BA) = —/ (cos(wt) ) cos(At)d 34
T Jo
Realizing that
0 =Y ((1 - B(X)E; + B(%)0)
j=1
= > (1= B\)E;, (55)
Jj=1
we have
S vig;=Tv 110 = Zﬁ b (56)

j=1
Furthermore, as proved in [1], the spectral radius p of S is
strictly smaller than 1:

A —
p~1—63302 &=inf 2 ¥ (57)
J w
As a result, when w is not a resonance,
lim (Ilv" —E) = lim S"(v* —E) = 0.  (58)
n—oo n— o0
Furthermore,
(I =S)w.v) > (1-p)llv[]* > 0. (59)

This also verifies that 7 — S is positive definite. One can easily
verify that I — S is self-adjoint based on the expansion (56).

APPENDIX C
PROOF OF THEOREM 1

Proof of Theorem 1. Proof of Theorem 1 is similar to the
proof of Theorem 2.4 of [1]. Here, we only point out the
key steps. We expand all functions as

" N B N

=1 =1

J . J (60)
(B.) =Y (E.)ji;, v Zv“wj

j=1
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Then,
l""’(JZ)]' ) l“)(JZ)J’
Moreover, for n # 0
(B.)r T = 2(E.)7 + (B.) 7 + ABNA(E.)!
1
= — wAt? cos(wt™) = J., (62)
€

~ 1 w 1
(E.)) =vj, (E.)j=(1— §A§At2)uj — §At2(ng)j.
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