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EM-WaveHoltz: A flexible frequency-domain

method built from time-domain solvers
Zhichao Peng and Daniel Appelö

Abstract—A novel approach to computing time-harmonic solu-
tions of Maxwell’s equations by time-domain simulations is pre-
sented. The method, EM-WaveHoltz, results in a positive definite
system of equations which makes it amenable to iterative solution
with the conjugate gradient method or with GMRES. Theoretical
results guaranteeing the convergence of the method away from
resonances are presented. Numerical examples illustrating the
properties of EM-WaveHoltz are given.

Index Terms—Maxwell equations, iterative method, elec-
tromagnetic analysis, frequency-domain analysis, time-domain
analysis, FDTD methods, discontinuous Galerkin time-domain
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TWO of the main challenges when solving the time-

harmonic Maxwell equations at high frequencies are the

indefinite nature of the Maxwell system and the high resolution

requirement. Without proper preconditioners, iterative solvers

such as GMRES and BICG may converge slowly. These

challenges are similar to the ones for solving the Helmholtz

equation at high frequencies. Recently, we introduced a scal-

able iterative method called WaveHoltz [1] for the Helmholtz

equation. In this paper, we introduce the electromagnetic-

WaveHoltz (EM-WaveHoltz) method, which can be seen as a

generalization of the WaveHoltz method to the time-harmonic

(or frequency-domain) Maxwell equations. The proposed EM-

WaveHoltz method converts the frequency-domain problem

to a fix point problem in the time-domain. The fixed point

iteration is linear and can be rewritten as a linear system of

equations with a system matrix that is positive definite and

that can therefore be efficiently inverted using standard Krylov

methods such as GMRES.

In the EM-WaveHoltz method, we convert the frequency-

domain problem to a time-domain problem by evolving and

filtering Maxwell’s equations with periodic forcing over one

time period. When applied, this filter results in the time-

domain solution converging to a fix point where the solution

becomes equivalent to the solution of the frequency-domain

problem. Salient features of the EM-WaveHoltz method are

as follows.

1) The resulting linear system is always positive definite

(sometimes symmetric).

2) The EM-WaveHoltz method can be driven by any scal-

able time-domain solver, for example the finite differ-

ence time-domain (FDTD) method [2] and discontinuous

Galerkin time-domain method (DGTD) [3].
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3) A unique feature of the EM-WaveHoltz method is that

it is possible to obtain frequency-domain solutions for

multiple frequencies at once but at the cost of a single

solve.

We note that properties of our method are to some extent

shared with the properties of the controllability method. In

particular the controllability method finds the solution to the

frequency-domain problem by using time-domain solvers like

our approach. However, while our formulation relies on a fixed

point iteration, the controllability method seeks to minimize

the deviation from time-periodicity of the initial and final data

of the time-domain simulation. The controllability method was

first proposed for a time-harmonic wave scattering problem

[4], and we refer readers to [5] for recent development.

The controllability method is also generalized to the time-

harmonic Maxwell equation in second order formulation [6]

and the first order formulation [7], [8]. One main difference

between our method and the controllability method is that

the controllability method needs backward solves, while our

method does not.

There are of course many other methods that have been de-

signed for efficiently solving the frequency-domain Maxwell’s

equations. For scattering and radiation problems in homoge-

nous media integral equation formulations are known to be

highly efficient and yield fast algorithms [9], [10]. Domain de-

composition methods (DDM) [11] have also achieved success

for the time-harmonic electromagnetic problems [12], [13],

[14], [15], [16]. The DDM method and the integral equation

method have been combined in [17]. Recently, [18] extends the

“shifted-Laplacian preconditioner” for the Helmholtz equation

to the high frequency time-harmonic Maxwell equations and

designs an optimal DDM method. Multigrid methods have

also been considered for the time-harmonic Maxwell equations

[19], [20]. A multigrid method for the high frequency time-

harmonic Maxwell equations is designed in [21]. Sweeping

preconditioners for time-harmonic Maxwell equations, which

utilize the intrinsic structure of the Green’s function, have

been developed for the Yee scheme [22] and the finite element

method [23]. We finally note that it also possible to directly

use a time-domain solver in other ways to find the frequency

domain solution. The most straightforward approach is to

save the solution for some time T and then take a Fourier

transform. The upside with this approach is that it produces an

approximate result to the frequency domain problem for many

frequencies at once. The drawbacks are that the solution is

approximate with an accuracy that, in the case of a continuous

wave sinusoidal source, scales as T−1 and that the need to save
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the solution makes this approach memory intensive. This slow

convergence can be improved if modulated sources are used

and the resulting method can be more efficient than a single

frequency solver if the frequency response is desired over a

broad spectrum of frequencies and the accuracy requirements

are less stringent. For open problems it is possible to appeal

to the limiting amplitude principle [24] and simply let a har-

monically forced problem converge to the frequency domain

problem by simulating long enough. The convergence of this

approach is severely impacted when trapping geometry is

present and the principle is not valid for closed domains. Also

for Fourier transformed methods the required simulation time

becomes prohibitive when closed domains with the quality

factor Q = ∞ are considered.

The rest of this paper is organized as follows. In Section I,

we present the EM-WaveHoltz formulation for the continuous

equations and discuss the properties of the resulting linear

system, the choice of the linear solver, and present how to

obtain solutions for multiple frequencies in one solve. In Sec-

tion II, to show the flexibility with respect to the choice of the

time-domain solvers, we couple the EM-WaveHoltz method,

first with the Yee scheme and then with the discontinuous

Galerkin (DG) method. In Section III, the performance of the

EM-WaveHoltz method is demonstrated through a series of nu-

merical examples. A simple implementation of the method in

1D to aid the reader in understanding the details of the method

can be found at https://zhichaopengmath.github.io/code/.

I. ELECTROMAGNETIC WAVEHOLTZ ITERATION FOR THE

MAXWELL’S EQUATION

We consider the frequency-domain Maxwell’s equation:

iωεE = ∇×H− J, (1a)

iωµH = −∇×E, (1b)

closed by boundary conditions corresponding to either a

perfect electric conductor or to an unbounded domain. Here

E and H are the complex valued electric and magnetic fields,

ε, µ are real valued permittivity and permeability and J is the

real valued current source. Taking the real and imaginary parts

we find

−ω={εE} = <{∇×H} − J, (2a)

ω<{εE} = ={∇×H}, (2b)

−ω={µH} = −<{∇×E}, (2c)

ω<{µH} = −={∇×E}. (2d)

We want to relate the fields E and H to real valued and

T = 2π/ω-periodic fields

Ẽ = Ê0 cos(ωt) + Ê1 sin(ωt), (3a)

H̃ = Ĥ0 cos(ωt) + Ĥ1 sin(ωt), (3b)

that are solutions of the time-domain equations

ε∂tẼ = ∇× H̃− sin(ωt)J, (4a)

µ∂tH̃ = −∇× Ẽ. (4b)

For such periodic solutions we can match the sin(ωt) and

cos(ωt) terms to find the relations

−ω(εÊ0) = ∇× Ĥ1 − J, (5a)

ω(εÊ1) = ∇× Ĥ0, (5b)

−ω(µĤ0) = −∇× Ê1, (5c)

ω(µĤ1) = −∇× Ê0. (5d)

Comparing (2a) with (5a) and (2c) with (5c), it now follows

that the initial data of Ẽ and H̃ matches the imaginary part

of the frequency-domain solution

={E} = Ê0, ={H} = Ĥ0.

Also, from (2b), (5b) and (2d), (5d), we get

<{E} = Ê1 =
1

ε
∇× Ĥ0, <{H} = Ĥ1 = −

1

µ
∇× Ê0.

(6)

Our EM-WaveHoltz method finds the periodic solutions (3)

by iteratively determining the initial data to (4).

Define the filtering operator, Π, acting on the initial condi-

tions ν = (νE ,νH)T :

Πν = Π

(
νE

νH

)
=

2

T

∫ T

0

(
cos(ωt)−

1

4

)(
Ẽν

H̃ν

)
dt, (7)

with T = 2π/ω and Ẽν and H̃ν being the fields resulting

from the initial conditions ν = (νE ,νH)T .

By construction Π(={E},={H})T = (={E},={H})T ,

and as (<{E},<{H})T can be computed directly via (6), the

solution to the frequency-domain equation is the fix-point of

the operator Π.

The operator Π is contractive. Precisely, if a certain initial

data gives rise to a solution that, in addition to the sin(ωt) and

cos(ωt) terms in (3), has other time-harmonic components, e.g.

sin(ω′t), ω′ 6= ω, then in each iteration the filter reduces the

amplitude of those components.

Based on these facts, we define the EM-WaveHoltz iteration:

νn+1 = Πνn, with ν0 = (ν0
E ,ν

0
H)T = 0. (8)

The EM-WaveHoltz iteration converges to the imaginary parts

of the solution to the frequency-domain equation

lim
n→∞

νn = lim
n→∞

(νn
E ,ν

n
H)T = (={E},={H})T , (9)

and the real parts can be recovered via (6).

Remark 1. Alternatively we could formulate the time-domain

problem with a cosine forcing

ε∂tẼ = ∇× H̃− cos(ωt)J, (10a)

µ∂tH̃ = −∇× Ẽ. (10b)

Again, the real valued T = 2π/ω-periodic solutions to (10)

are of the form (3) but (see Appendix A) the solution to (10)

Ẽ and H̃ have a slightly different relation to the frequency-

domain solution

<{E} = Ê0, <{H} = Ĥ0, ={E} = −Ê1, ={H} = −Ĥ1.
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With the same filter and iteration process defined as the sin-

forcing case, we have

lim
n→∞

νn = lim
n→∞

(νn
E ,ν

n
H)T = (<{E},<{H})T . (11)

In our numerical tests, we find that the number of iterations

needed by the EM-WaveHoltz method are essentially identical

for the two alternatives. In this paper, we focus on the EM-

Waveholtz with the sin-forcing.

A. EM-WaveHoltz for the energy conserving case

For real-valued ε, µ and J, with PEC boundary conditions

and other boundary conditions that lead to a conservation

of the electromagnetic energy in a bounded domain, the

EM-WaveHoltz iteration can be simplified further. For such

problems, assuming that ω is not a resonance frequency of

the cavity, ={H} is identically zero and the EM-WaveHoltz

iteration is reduced to

νn+1
E = Πνn

E , νn
H = 0, ν0

E = 0, (12)

where now

ΠνE =
2

T

∫ T

0

(
cos(ωt)−

1

4

)
Ẽνdt. (13)

As long as ω is not a resonance this simplified EM-WaveHoltz

iteration converges

νn
E = ={E}, as n→ ∞. (14)

B. Krylov acceleration

For bounded problems where ω is close to a resonance

or for unbounded problems with trapping geometries, the

convergence of the WaveHoltz fix point iteration can be

slow [1]. Fortunately as the iteration is linear, it is easy to

rewrite it as a positive definite linear operator that can be

efficiently inverted by a Krylov subspace method. To see this

we introduce the operator:

Sν = Πν −Π0. (15)

Then, based on the definition of S, we have

Πν = Sν +Π0. (16)

Hence, finding the fix point of Π: Πν = ν is equivalent

to solving the equation (I − S)ν = Π0. Here, we want to

emphasize that Π0 6= 0 unless frequency-domain problem has

zero solutions (see (55) in Appendix B for more details). Here

0 stands for the zero initial condition in the time-domain, and

with a non-zero source, the filtered time-domain solution over

one period Π0 is very likely nonzero.

A Krylov method such as the conjugate gradient method,

GMRES or TFQMR can be applied to solve (I − S)ν = Π0
in a matrix-free manner. In practice, to obtain the right hand

side Π0, we just need to solve the time-domain problem (4)

with zero initial conditions ν = 0 from t = 0 to t = T and

use a numerical quadrature to approximate the filter Π0 as we

march in time. To calculate the matrix multiplication (I−S)ν,

we can utilize the fact that

(I − S)ν = ν − (Πν −Π0) = ν −Πν +Π0.

That is, for a given ν and Π0 precomputed, we just need to

compute Πν to obtain the action of (I − S) onto ν. Recall

that Πν is obtained by computing the filter by a numerical

quadrature incrementally as the solution to (4) is evolved for

one T = 2π/ω period with ν as the initial conditions. Thus

the cost to compute one Krylov vector is that of a wave solve

with one additional variable needed to sum up the projection

throughout the evolution.

When using GMRES there is always a concern about the

size of the Krylov subspace as the number of iterations grow.

Here our method has a significant upside to solving the

frequency-domain problem. Note that although we are looking

for a T = 2π
ω -periodic solution, there is nothing in the method

that prevents us from changing the filtering to extend over

a longer time, say, T = Nperiods
2π
ω , with Nperiods a positive

integer. As we show in the numerical examples below, for

moderate Nperiods this reduces the number of iterations by a

factor of roughly Nperiods so that the overall computational cost

is almost the same. But when Nperiods is large, the number

of iterations will decrease slower than linear in Nperiods and

computational cost grows. Thus, for GMRES without restart,

filtering over several periods reduces the memory needed. For

GMRES with restart, filtering over several periods reduces the

number of restart needed.

In Appendix B, we show that I−S is always a positive defi-

nite operator and for energy conserving boundary conditions it

is also self-adjoint. These results carry over to the discretized

equations in the sense that the matrix that needs to be inverted

is always positive definite and, if a symmetric and energy

conserving method (like the Yee scheme) is used, the matrix

is also symmetric for energy conserving boundary conditions

like PEC. For the SPD case our method becomes particularly

efficient and memory lean as the conjugate gradient method

can be used.

Now, we summarize how to implement the EM-WaveHoltz

method given a time-domain solver and a GMRES iterative

solver. The filtering is presented as Algorithm 1 and Algorithm

2 describes the GMRES/Krylov acceleration.

Algorithm 1: Given initial data ν and a time-domain

solver, compute Πν.

1: Set ν = (νT
E ,ν

T
H) as the initial condition for the

time-domain solver.

2: Use the time domain solver to evolve the time-domain

equation (4) for one/multiple periods. In each time step,

incrementally compute Πhν by the trapezoid rule for

numerical integration.

3: After the solution has been evolved for one/multiple

periods in time return Πhν.
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Algorithm 2: GMRES accelerated EM-WaveHoltz it-

eration.

1: Compute Π0 by Algorithm 1.

2: procedure MATMUL(ν) . Compute (I − S)ν.

3: Use Algorithm 1 to compute Πν.

4: return (I − S)ν = ν −Πν +Π0.

5: end procedure

6: procedure SOLVE(TOL) . Solve (I − S)ν = Π0
7: Set the initial guess as ν0 = (0,0)T .

8: Apply GMRES with matrix free MATMUL

procedure. Stop if the relative residual is smaller than

TOL.

9: end procedure

10: The solution produced by SOLVE is the imaginary part

of the frequency-domain solution.

C. Multiple frequencies in one solve

Similar to the WaveHoltz method for the Helmholtz equa-

tion [1], the EM-WaveHoltz method can be applied to obtain

the solutions for multiple frequencies in one solve.

Precisely, let ωk = nkω0, k = 1, . . . , N for some ω0 > 0
and n1 < n2 < · · · < nN being positive integers. Then in

a traditional frequency-domain solver each frequency requires

the solution of N different systems

iωkεEk = ∇×Hk − Jk, (17a)

iωkµHk = −∇×Ek. (17b)

Now, assuming that each frequency solve has the same type

of boundary condition and material properties (the forcing Jk

can be different for each k), we can solve for all frequencies

at once. We take the energy conserving case as an example,

then the single time-domain problem we must solve is

ε∂tẼ = ∇× H̃−

N∑

k=1

sin(ωkt)Jk, (18a)

µ∂tH̃ = ∇× Ẽ. (18b)

The converged solution to (18) can be decomposed as

Ẽ =

N∑

k=1

Êk,0 cos(ωkt), (19)

where Êk,0 = ={Ek} gives the solution to the original

frequency-domain problem (17) corresponding to ωk. To ob-

tain the “all k” solution through EM-WaveHoltz is easy, the

filtering operator simply needs to be modified as

ΠνE =
2

T

∫ T

0

(
N∑

k=1

cos(ωkt)−
1

4

)
Ẽνdt. (20)

Here, the final time T is chosen such that T/( 2πωk
) is an integer

for all k.

Once the EM-WaveHoltz iteration has converged to (19) we

separate the different solutions by evolving (17) for one more

Tk-period while applying the filters

=(Ek) =
2

Tk

∫ Tk

0

(
cos(ωkt)−

1

4

)
Ẽdt, (21)

<(Ek) =
2

Tk

∫ Tk

0

sin(ωkt) Ẽdt. (22)

II. DISCRETIZATION OF THE EM-WAVEHOLTZ METHOD

We have presented how the EM-WaveHoltz iteration con-

verts a frequency-domain problem to a time-domain problem.

In this section, we will use the Yee scheme [25], [26] and

the discontinuous Galerkin (DG) method [3], [27], [28] as

examples of integrating the EM-WaveHoltz iteration in ex-

isting time-domain solvers. We also want to point out that

it is possible to couple the EM-WaveHoltz method to other

type time-domain solvers such as spectral element method and

continuous finite element method. Further, although we don’t

consider it here, our approach directly generalizes to linear

dispersive frequency-domain models such as the generalized

dispersive materials modeled through an auxiliary differential

equation approach in [29].

A. Yee-EM-WaveHoltz

The Yee scheme [25], [26] or the finite-difference-time-

domain (FDTD) method, is one of the most popular and

successful methods in computational electromagnetics and can

be easily turned into a fast FDFD method, the Yee-EM-

WaveHoltz method, as follows.

For brevity we consider the two dimensional TM model,

then Ex = Ey = Hz = 0. Assume a uniform time step

size ∆t = T/M and denote a grid function at a point

(i∆x, j∆y, n∆t) by Fn
i,j and denote tn = n∆t. Then the

Yee scheme to solve the time-domain problem in the EM-

WaveHoltz formulation is:

εi,j
(Ẽz)

n+1
i,j − (Ẽz)

n
i,j

∆t
=
( (H̃y)

n+ 1
2

i+ 1
2
,j
− (H̃y)

n+ 1
2

i− 1
2
,j

∆x

−
(H̃x)

n+ 1
2

i,j+ 1
2

− (H̃x)
n+ 1

2

i,j− 1
2

∆y

)
− sin(ωtn+

1
2 )(Jz)i,j (23a)

(H̃x)
n+ 1

2

i,j+ 1
2

− (H̃x)
n− 1

2

i,j+ 1
2

∆t
= −

1

µi,j+ 1
2

(Ẽz)
n
i,j+1 − (Ẽz)

n
i,j

∆y
,

(23b)

(H̃y)
n+ 1

2

i+ 1
2
,j
− (H̃y)

n− 1
2

i+ 1
2
,j

∆t
=

1

µi+ 1
2
,j

(Ẽz)
n
i+1,j − (Ẽz)

n
i,j

∆x
,

(23c)

For the initial step H̃
−

1
2

x is initialized as

(H̃x)
−

1
2

i,j+ 1
2

= (H̃x)
0
i,j+ 1

2

−
∆t

2µi,j+ 1
2

(
−

(Ẽz)
0
i,j+1 − (Ẽz)

0
i,j

∆y

)
,

(24)

and H̃
−

1
2

y is initialized similarly.
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To approximate the filter operator Π in (7) we use the

composite trapezoidal rule

Πh

(
νE

νH

)
=

2∆t

T

M∑

n=0

ηn

(
cos(ωtn)−

1

4

)(
Ẽν

n

H̃
n+1

2
ν

+H̃
n−

1
2

ν

2

)
,

(25)

where

ηn =

{
1
2 , n = 0 or M,

1, otherwise.
(26)

Due to the second order time discretization, the solu-

tion obtained by the above iteration introduces an additional

O(∆t2) error from time marching. Of course since ∆t ∼
min{∆x,∆y} the EM-WaveHoltz solution is converging at

the same rate as the spatial discretization but nevertheless it

does have an additional error. This error is easily eliminated by

a small modification which we discuss next. We only present

the 2D TM model here but note that EM-WaveHoltz can be

straightforwardly generalized to the full 3D model.

B. Eliminating the temporal error in EM-WaveHoltz

For brevity we consider the energy conserving two dimen-

sional TM model. To eliminate the time-marching error, we

first slightly modify the source term in the time-domain. We

replace sin(ωtn+
1
2 ) in (23a) with

S
1
2 =

ω∆t

2
, Sn+ 1

2 = Sn− 1
2 +∆tω cos(ωtn). (27)

Here, Sn+ 1
2 is a second order approximation to sin(ωtn+

1
2 ).

Using Sn+ 1
2 instead of sin(ωtn+

1
2 ) gives us a chance to

eliminate the error due to the time discretization.

Eliminating Hx and Hy in (23), we have

(Ẽz)
n+1
i,j − 2(Ẽz)

n
i,j + (Ẽz)

n−1
i,j

∆t2
+ Lh(Ẽz)

n
i,j

=−
1

εi,j
(Jz)i,j

Sn+ 1
2 − Sn− 1

2

∆t

=−
1

εi,j
(Jz)i,jω cos(ωtn), (28)

where

−LhFi,j =
1

εi,j∆x

(Fi+1,j − Fi,j

µi+ 1
2
,j∆x

−
Fi,j − Fi−1,j

µi− 1
2
,j∆x

)

+
1

εi,j∆y

(Fi,j+1 − Fi,j

µi,j+ 1
2
∆y

−
Fi,j − Fi,j−1

µi,j− 1
2
∆y

)
. (29)

(28) is an approximation to the second order form of the time-

domain equation in EM-WaveHoltz. We now have the fol-

lowing theorem guaranteeing the convergence of the discrete

iteration (for the energy conserving case)

Theorem 1. Let ν∞ be the solution to

ω̃2ν∞ − Lhν
∞ = ω

(
1

ε
J

)
, (30)

where

ω̃ =
sin(ω∆t/2)

∆t/2
= ω +O(∆t2). (31)

Further, let {−λ2j}
N
j=1 and {ψj}

N
j=1 be the eigenvalues and

corresponding eigenfunctions of Lh, and 0 < λ1 < λ2 <
· · · < λN . Assume that ω is not a resonance and denote the

relative distance to the closest resonance

δh = min
j

|λj − ω|/ω > 0. (32)

Then, for the energy conserving method (23), with the filter

(25), the Yee-EM-WaveHoltz iteration ν(k+1) = Πhν
(k) with

ν(0) = 0 converges to ν∞ as long as

∆t ≤
2

λN + 2ω/π
, ω∆t ≤ min(δh, 1). (33)

Moreover, the convergence rate is at least ρh = max(1 −
0.3δ2h, 0.6).

The proof of this Theorem is presented in Appendix C.

We note that the first constraint on the timestep is essentially

the standard CFL condition for an explicit method while the

second condition could be very strict. In fact, for all our

numerical experiments, we only choose the ∆t based on the

CFL condition, and the violation of the second condition does

not lead to problems. Hence, we conjecture that the second

condition is not a practical limitation.

Now, if we replace cos(ωtn) with cos(ω̄tn) in (27) with

ω̄ =
2

∆t
sin−1

(
ω∆t

2

)
, (34)

and modify the trapezoidal weights in the filter as

Π̂hν =
2∆t

T

M∑

n=0

(
cos(ωtn)−

1

4

)
cos(ωtn)

cos(ω̄tn)
Ẽn

z . (35)

Then Theorem 1 holds but the convergence is to ν∞ being the

solution to the standard discretized frequency-domain problem

ω2ν∞ − Lhν
∞ = ω

(
1

ε
J

)
. (36)

The derivation of this strategy is discussed in Appendix D

along with the proof of Theorem 1. An alternative strategy to

eliminate the temporal error is suggested in [30].

C. DG-EM-WaveHoltz

The discontinuous Galerkin (DG) method, due to its high

order accuracy, flexibility to use nonconforming meshes and

its suitability for parallel implementation, has become in-

creasingly popular for the simulation of time-domain wave

propagation. As for the Yee scheme, DGTD can easily be

turned into a frequency-domain solver using our approach.

Here we use the time-domain DG method of [3], [27].

Consider Maxwell’s equation in d-dimensions. Let Ωj be

an element, and P s(Ωj) be the space of polynomials at

most degree s. Define V s
h (Ωj) =

(
P s(Ωj)

)d
to be the

corresponding vector polynomial space. The DG method seeks

the solution Ẽh ∈ V s
h (Ωj), H̃h ∈ V s

h (Ωj) such that for any

φ ∈ V s
h (Ωj), ψ ∈ V s

h (Ωj)∫

Ωj

∂tẼh · φdV =

∫

Ωj

H̃h · ∇ × (
1

ε
φ)dV

+

∫

∂Ωj

(Ĥ× n) · (
1

ε
φ)ds−

∫

Ωj

sin(ωt)J · φdV, (37a)
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∫

Ωj

∂tH̃h ·ψdV = −

∫

Ωj

Ẽh · ∇ × (
1

µ
ψ)dV

−

∫

∂Ωj

(Ê× n) · (
1

µ
ψ)ds. (37b)

Here, n is the outward pointing normal of a face and Ĥ and

Ê are numerical fluxes. A stable and accurate choice for the

numerical fluxes is

Ĥ = {H̃}+ α[Ẽ], Ê = {Ẽ}+ β[H̃]. (38)

Here v
± denotes the two values on each side of a face, {v} =

1
2 (v

+ + v
−) is the average and [v] = n

+ × v
+ + n

− × v
−

is the jump. The semi-discretization (37) can be evolved in

a method of lines fashion, using for example a Runge-Kutta

or Taylor method as the time stepper. Depending on the time

discretization it may be possible to eliminate the time error

as discussed above but we don’t pursue this here. Further,

in the examples below we always use the trapezoidal rule to

discretize the filter.

III. NUMERICAL RESULTS

In this section we demonstrate the performance of the

EM-WaveHoltz methods on several examples in two and

three dimensions. The sin-forcing formulation is used in

two dimensions and the cos-forcing formulation is used in

three dimensions, unless otherwise specified. For all numerical

examples, the time step size ∆t is chosen based on the CFL

conditions of the time-domain methods. Again we note that

such timesteps violates the second condition in Theorem 1 but

that this condition appears to be a technicality as none of the

examples below are affected by this. In this section we always

use the Krylov accelerated version of the iteration.

A. Comparison with the MEEP FDFD solver

We compare our Yee-EM-WaveHoltz code with the iterative

FDFD solver of the open source C++ package MEEP [31]. Our

code is implemented by combining EM-WaveHoltz with the

FDTD code of the C library rbcpack [32]. Our code uses a

self-implemented GMRES solver without restart. The FDFD

solver of MEEP uses BICG-Stab(l) method [33]. Both codes

are executed in a serial-manner on a 2015 MacBook with 2.2

GHz Quad-Core Intel Core i7 cpu.

Following MEEP package’s benchmark example for the

FDFD code (see [34]), we consider a ring resonator and

the 2D TM model. The computational domain is [−6, 6]2

with nonreflecting boundary conditions. A ring resonator with

εr = 3.42 is located at {(x, y) : 1 ≤
√
x2 + y2 ≤ 2}. The

permittivity outside the ring is ε = 1, and the permeability

µ = 1 in the whole computational domain. Two point sources

are placed at (1.1, 0) with magnitude 1 and (−1.1, 0) with

magnitude −1. Let ω0 = 0.118× 2π.

We first consider ω = ω0, 2.24ω0 and 2.7ω0. We use

N = 120, 240 and 480 grids in each direction. For both

solvers, we set the relative tolerance as 10−7. For the Yee-

EM-WaveHoltz, we use cos-forcing and filter over 10 periods.

To obtain convergent results for all frequencies, we use l = 10
in the BICG-Stab-(l) FDFD solver. In the results displayed
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Fig. 1. The real part of the Ez field (normalized) and the number of iterations
as a function of frequencies. Top left figure, ω = ω0, top right figure
ω = 2.24ω0, bottom left figure: ω = 2.7ω0, bottom right figure: number of
iterations v.s. ω/ω0. Left: Yee-EM-WaveHoltz. Right: MEEP’s FDFD solver.

TABLE I
COMPUTATIONAL TIME (SEC)

N ω = ω0 ω = 2.24ω0 ω = 2.7ω0

EM-WH
120 20 12 12
240 94 55 60
480 562 326 350

MEEP
120 11 21 34.14
240 109 180 229
480 1095 1531 2000

in Figure 1, we observe that the EM-WaveHoltz and the

FDFD agree well. Table I presents the computational time

needed. The Yee-EM-WaveHoltz code is always faster except

for ω0 and N = 120. Its advantage increases with mesh

refinement and the size of the frequency. In Table II, we

present the total number of iterations needed for convergence.

The Yee-EM-WaveHoltz always needs fewer iterations for

convergence. Moreover, for a fixed frequency, the number of

iteration needed by Yee-EM-WaveHoltz almost does not grow

as the grid is refined, while the BICG-Stab-(10) needs more

iterations.

We also sweep over different frequencies in [2ω0, 3.8ω0]
with a step size equal to 0.2. The number of grids in each

direction is 60ω/ω0 so that the number of grid points per

wavelength is fixed. We use l = 20 in the BICS-Stab-(l).
For both solvers, we set the relative tolerance as 10−5 and

the maximum number of iterations as 2500. As shown in the

bottom right figure of Figure 1, for the chosen resolution, the

number of iterations scales better as a function of frequencies.
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TABLE II
TOTAL NUMBER OF ITERATIONS WITH 10−7 RELATIVE RESIDUAL

N ω = ω0 ω = 2.24ω0 ω = 2.7ω0

EM-WH
120 8 11 14
240 8 11 15
480 8 11 15

BICG-Stab(l)
120 144 256 405
240 280 449 557
480 586 800 1092
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Fig. 2. Peak memory for EM-WaveHoltz and a direct solver based on sparse
multifrontal LU factorization for a 3D problem with PEC boundary conditions

B. Comparison with a direct FDFD solver

Sparse multifrontal direct FDFD solvers are fast, however,

for the full 3D problem and with increasing frequency such

solvers quickly become too large to fit in memory. To demon-

strate this we consider a 3D problem with ω = 12.5, PEC

boundary conditions and a source Jx = ωy(y − 1)z(z − 1) +
2
ω (y(y−1)+z(z−1)), Jy = ωx(x−1)z(z−1)+ 2

ω (x(x−1)+
z(z−1)) and Jz = ωx(x−1)y(y−1)+ 2

ω (x(x−1)x+y(y−1)).
We use N grid points in each direction. We implement an Yee-

EM-WaveHoltz code and a direct FDFD code in Julia. Both

codes share exactly the same spatial discretization subroutines

based on sparse matrices. GMRES solver with relative toler-

ance 10−8 is applied in the EM-WaveHoltz code. The direct

solver uses Julia’s sparse multifrontal LU factorization, which

calls SuiteSparse [35]. As shown in Figure 2, we observe that

the peak memory needed by the EM-WaveHoltz scales roughly

as O(DOF ) = O(N3), and the peak memory needed by the

direct solver scales roughly as O(DOF 4/3) = O(N4).

C. Grid convergence of Yee-EM-WaveHoltz

We consider the 2D TM model and non-dimensionalize the

equations so that ε = µ = 1 and manufacture a forcing

J= 16ωx2(x− 1)2y2(y − 1)2 +
32

ω

(

(6x2 − 6x+ 1)y2(y − 1)2 + (6y2 − 6y + 1)x2(x− 1)2
)

so that the exact solution is Ez(x, y) = 16x2(x − 1)2y2(y −
1)2. This solution is compatible with perfect electric conductor

(PEC) boundary conditions on the domain [0, 1]2. We apply
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Fig. 3. Grid convergence of a manufactured solution. Here “o” stands for
one frequency in one solve, and “m” stands for multiple frequencies in one
solve. The errors displayed are for Ez for a 2D TM model.

the Yee scheme and the EM-WaveHoltz iteration with GMRES

acceleration. The relative tolerance of the GMRES solver is

set as 10−10.

To test the convergence for a) one frequency in one solve,

and b) multiple frequencies in one solve, we perform a grid

refinement study at fixed frequencies ω1 = 5.5, 3ω1 and

7ω1. In Figure 3, without eliminating the temporal error, we

display how the error is decreased as the grid size is reduced.

As expected, for both of one frequency in one solve and

multiple frequencies in one solve, we observe second order

convergence. For the same frequency and the same mesh,

the magnitude of the errors for one frequency and multiple

frequencies in one solve are close to each other.

We also use this example to investigate the influence of the

temporal error in the EM-WaveHoltz method. In Table III, due

to the temporal error, we observe that the error of the direct

FDFD solver is smaller than the Yee-EM-WaveHoltz for for

ω = 16.5 and ω = 37.5, but slightly bigger for ω = 5.5. For

ω = 5.5, it is likely that the sign for the temporal error and

the spatial error are different.

Finally, we verify the effectiveness of our strategy to elimi-

nating the temporal error. As shown in Table IV, the difference

between the FDFD solution and the Yee-EM-WaveHoltz so-

lution after eliminating temporal error are at most O(10−12),
which is much smaller than the numerical error.

D. Plane wave scattering and p-convergence of DG-EM-

WaveHoltz

Next we combine the EM-WaveHoltz iteration with the

upwind nodal discontinuous Galerkin method [3]. We consider

the 2D TM-model and the scattering wave from a PEC disk

due to the incident plane wave Einc
z = e−iωx with ω = 15.

The radius of the disk is a = 0.25. The exact solution of this

problem is a Mie series (see e.g. [36]), and is presented in

Fig. 4). The incident wave is imposed by setting the boundary

value Ebc
z equal to the exact solution. In the EM-WaveHoltz
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TABLE III
ERRORS FOR THE MANUFACTURE SOLUTION OF 2D TM MODEL WITH

N = 160 GRIDS IN EACH DIRECTION.

ω 5.5 16.5 35.5

EM-WH with temporal error 1.21e-5 3.09e-5 8.45e-5

Direct-FDFD 1.73e-5 2.24e-6 2.26e-7

TABLE IV
DIFFERENCE BETWEEN YEE-EM-WAVEHOLTZ SOLUTION AFTER

ELIMINATING THE TEMPORAL ERROR AND THE FDFD SOLUTION WITH

N = 160 GRIDS IN EACH DIRECTION

ω 5.5 16.5 37.5

Difference 7.38e-15 9.22e-14 2.24e-12

formulation, the boundary condition of the time-domain prob-

lem is defined as <{Ebc
z } cos(ωt)+={Ebc

z } sin(ωt). With this

choice, one can show that the EM-WaveHoltz converges to the

real part of the frequency-domain solution. For a p-th degree

polynomial spatial discretization we use a p+1-th order Taylor

series method in time and filter over 5 periods.

We perform a p-convergence study with the unstructred

mesh in Fig. 4. The maximum error and the number of

iterations for convergence with relative tolerance 10−8 are

shown in Table V. As the polynomial order p increases, the

error decays, and high order schemes achieves O(10−6) error

on this relatively coarse mesh. As the polynomial order p
increases, number of points per wavelength grows, but the

total number of iterations for convergence does not grow.

TABLE V
MAXIMUM ERROR AND THE TOTAL NUMBER OF ITERATIONS FOR THE

SCATTERING WAVE FROM A PEC DISK, WITH DG-EM-WAVEHOLTZ AND

p-TH ORDER POLYNOMIAL

p 3 4 5 6 7 8

Error 2.86e-2 4.65e-3 6.89e-4 6.40e-5 7.89e-6 1.37e-6

Iterations 45 39 38 38 37 37
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Fig. 4. Left figure: exact solution for ω = 15.0 of the scattering problem.
Right figure: Unstructured mesh.

E. Plane wave scattering with incident fields and Yee scheme

We consider the same plane wave scattering problem as

Section III-D with the incident plane wave Einc
z = e−iωx and

ω = 15. To show the capability of using a field source, we

apply the Yee-EM-WaveHoltz method and impose the incident

fields following the total field/scattered field formulation in [2].

We split the computational domain into a total field region

[−0.5, 0.5]2 and a scattered field region. The incident wave

is imposed through the interface condition between the two

regions, and the double absorbing boundary layer (DAB) by

Hagstrom et al. [37] is applied to impose the nonreflecting

boundary conditions. The setup of the Yee scheme is illustrated

in the left figure of Fig. 5. To impose the right going incident

wave, we follow similar arguments to (5) and define the

corresponding time-domain incident fields as

Ẽ
inc
z = cos(ωx) sin(ωt)− sin(ωx) cos(ωt)

= sin(ω(t− x)) = ={eiω(t−x)},

H̃
inc
x = 0, H̃

inc
y = −Ẽ

inc
z . (39)

We use a 401 × 401 uniform mesh, and set the relative

tolerance of the GMRES solver as 10−8. The numerical

solution matches the exact solution very well (see right figure

of Fig. 5).

Fig. 5. Left figure: the set-up of the total field/scattered field formulation.
Right figure: the real part of the scattered wave with ω = 15, numerical
solution on the top and exact solution on the bottom.

F. Number of iterations for different frequencies and boundary

conditions in two dimensions

In this experiment we solve the 2D TM model with the

source

Jz = −ω exp
(
−σ((x− 0.01)2 + (y − 0.015)2)

)
, (40)

where σ = max(36, ω2), ε = µ = 1, and the computational

domain is [−1, 1]2. Here we sweep over the frequencies

ω = k + 1
2 , 1 ≤ k ≤ 100. We use the GMRES accelerated

Yee-EM-WaveHoltz iteration and to keep the solution reason-

ably well resolved we use 8dωe grids in each directions, where

dωe is the smallest integer larger than ω.

We solve this problem with 6 different boundary conditions:

(1) 4 open boundaries, (2) 1 PEC boundary and 3 open bound-

aries, (3) 2 parallel PEC boundaries and 2 open boundaries, (4)

2 PEC boundaries next to each other forming a PEC corner

and 2 open boundaries, (5) 3 PEC boundaries and 1 open

boundary, (6) 4 PEC boundaries. The rationale here is that in

problems (1), (2) and (4) there will not be any opposing PEC

walls where waves can be “trapped” while in the other three

problems there are.

We also note that in the open directions we employ the

optimally accurate double absorbing boundary layer (DAB) by

Hagstrom et al. [37]. The order of approximation in the DAB

layers we use is 10 which virtually makes the non-reflecting

boundary conditions exact.



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 9

10
1

10
2

ω

10
1

10
2

10
3

N
u

m
b

e
r 

o
f 

It
e

ra
ti
o

n
Free Space
3 Free Sides
PEC Corner
Waveguide
1 Free Side
Closed PEC Box
Slope = 0.9
Slope = 1.8

Fig. 6. Number of iterations as a function of frequency for the six different
2D TM problems.

In the EM-WaveHoltz iteration, we use 10 periods so that

T = 10 2π
ω . This reduces the memory consumption in GMRES

by a factor 10 and reduces the number of iterations by nearly

a factor of 10 (the cost per iteration of course goes up by 10

as well). In Fig. 6, the number of iteration required to reduce

the relative residual below 10−7 are presented. We observe

that for the problems without trapped waves, the number of

iterations scales approximately as ω0.9. For the problems with

trapped waves, the iteration converges slower and the number

of iterations scales as approximately ω1.8.

G. Number of iterations for different frequencies and bound-

ary conditions in three dimensions

In this example we solve the 3D Maxwell’s equation with

a source

Jx = −ω exp
(
−σ(x2 + y2 + z2)

)
, Jy = Jz = 0. (41)

Here σ = max(36, ω2), ε = µ = 1 and the computational

domain is [−1, 1]3.

To measure how the number of iterations grow with the

frequency, three different problems are considered: (1) an open

domain, (2) two parallel PEC plates, (3) five PEC boundaries

and one free side on the most left side. Again, we still apply

the highly accurate double absorbing boundary layer (DAB)

for non-reflecting boundary conditions. The order of the DAB

layers is set as 5 guaranteeing that the error of the non-

reflecting boundary conditions is well below the discretization

error.

We sweep over frequencies and use the GMRES accelerated

Yee-EM-WaveHoltz method with the cos-forcing. To have a

well resolved solution we use 4dωe elements in each direction,

where dωe is the smallest integer larger than ω. In the EM-

WaveHoltz iteration, we set T as 5 periods.

In Figure 7, iteration numbers to reduce the relative residual

below 10−6 are presented. The total number of iterations is

estimated to scale as ω0.9 for the open problem, ω1.9 for the

parallel PEC plate problem and ω2.5 for the problem with one

free side.

We also use the the sin-forcing to simulate the open domain

problem with the same mesh and the error tolerance. We

observe that the number of iteration is exactly the same as the

cos-forcing, though the relative residual is slightly different

for high frequencies.
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Fig. 7. Number of iterations as a function of frequency for different 3D
problems.

H. Number of iterations for different points per wavelength

TABLE VI
NUMBER OF ITERATIONS FOR DIFFERENT NUMBER OF POINTS PER

WAVELENGTH, 2D-TM MODEL, dωe = CEIL(ω).

Boundaries N 2dωe 4dωe 6dωe 8dωe
open ω = 12.5 9 9 9 9

PEC ω = 12.5 11 11 11 11

open ω = 25.5 13 12 12 12

PEC ω = 25.5 25 24 24 24

Here, we fix the frequency and more systematically inves-

tigate the number of iterations needed for convergence for

different number of grid points per wavelength. We use the

Yee-EM-WaveHoltz method with GMRES acceleration, and

ε = µ = 1 is considered. For the 2D-TM model, we consider

the computational domain [−1, 1]2 and the source

Jz = ω exp(−144(x2 + y2)), (42)

with either 4 open boundaries or 4 PEC boundaries. For the

3D model, we consider the computational domain [−1, 1]3 and

the source

Jx = −ω exp
(
−144(x2 + y2 + z2)

)
, Jy = Jz = 0, (43)

with either 6 open boundaries or 6 PEC boundaries. In each

direction, we use N + 1 grid points. We take T = 10 2π
ω . The

stopping criteria is that the relative residual falls below 10−8

for the 2D TM-model and 10−5 for the 3D model.

The results are presented in Table VI and Table VII. When

considering an open problem at a fixed frequency, we observe
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that the number of iterations does not change as the number

of grid points per wavelength is increased. For the PEC

problem in three dimensions the number of iterations are

reduced sightly as the resolution is increased and for the 2D

PEC problem it does not change significantly. Based on this

experiment and other experiments, our observation is that the

algorithm is robust with respect to resolution (but of course

the discretization error will depend on the resolution.)

TABLE VII
NUMBER OF ITERATIONS FOR DIFFERENT NUMBER OF POINTS PER

WAVELENGTH, 3D.

Boundaries N 2dωe 4dωe 6dωe 8dωe
open ω = 12.5 5 5 5 6

PEC ω = 12.5 26 24 23 22

open ω = 25.5 7 7 7 7

PEC ω = 25.5 174 153 150 135

I. Smaller Krylov subspaces by longer filter time

As we mentioned before, we can filter over multiple periods

T = N 2π
ω , which allows the further propagation of the wave.

We consider T = N 2π
ω with N = 1, 3, 5 for 2D and 3D

open domain problem. The setup of this test is the same as

Section III-F for 2D and Section III-G for 3D. We scan over

different frequencies and apply the GMRES accelerated Yee-

EM-WaveHoltz. The total number of iteration allowed is set

as 200 in 2D and 100 in 3D. As can be seen in Figure 8

for high frequencies both the 2D and the 3D solver, when

using T = 2π
ω , fails to converge to the desired tolerance before

reaching the maximum number of iterations.

In Figure 8, we present unscaled number of iterations

against the frequency and observe that the number of iterations

decays as the propagation time T in the time-domain grows.

To further quantify the relation between the computational cost

and T = Nperiods
2π
ω , we scale the number of iterations by

Nperiods and present the result in Figure 9. We observe that

for Nperiods = 3 and Nperiods = 5 the scaled curves visually

collapse, implying that the the total computational time is

approximately the same. Thus, for moderate Nperiods, without

increasing the computational cost, filtering over moderate

longer time can decrease the number of iterations, which

in turn reduces the size of the Krylov subspace used by

GMRES. However, if Nperiods is large the decrease in number

of iterations does not keep up with the linearly increasing cost.

For example, for ω = 45.5, and for Nperiods = 3, 5, 10, 20, 50
the scaled number of iterations are: 165, 160, 180, 220 and 400.

Here we only display results an open problem but note that

similar observations can be made for problems with trapping

geometries.

J. SPD structure and condition numbers for energy conserving

2D TM-model

Here, we consider the 2D TM model with PEC boundary

conditions, ε = µ = 1, ω = 10 and the Gaussian source

Jz = −ω exp
(
−ω2(x2 + y2)

)
, (44)

10
1

10
2

ω

10

100

200

U
n
s
c
a
le

d
 n

u
m

b
e
r 

o
f 
it
e
ra

ti
o
n
s

1T
3T
5T
Slope=0.9

5 15 30 60

ω

10
1

10
2

U
n

s
c
a

le
d

 n
u

m
b

e
r 

o
f 

it
e

ra
ti
o

n
s 1T

3T
5T
Slope=0.9

Fig. 8. Unscaled number of iterations as a function of frequency for different
filtering time. Left: 2D open problem. Right: 3D open problem.

10 25 50 100

ω

10

25

100

400

S
c
a

le
d

 n
u

m
b

e
r 

o
f 

it
e

ra
ti
o

n
s

1T
3T
5T
Slope=0.9

5 15 30 60

ω

10
1

10
2

S
c
a

le
d

 n
u

m
b

e
r 

o
f 

it
e

ra
ti
o

n
s

1T
3T
5T
Slope=0.9

Fig. 9. Scaled number of iterations = N× number of iterations, if T = N 2π

ω
.

Scaled number of iterations as a function of frequency for different filtering
time. Left: 2D open problem. Right: 3D open problem.

on the computational domain [−1, 1]2. We apply the Yee-EM-

WaveHoltz method, and filter over 10 periods in the time-

domain. We use this example to verify that our method results

in a SPD linear system. The code is implemented in a matrix

free manner. The matrix I − S is constructed column by

column through the calculation of matrix-vector multiplication

(I − S)ei where ei is a column vector whose i-th element is

1 and all other elements are 0.

We use N = 10, 20, . . . , 100 elements in each direction.

We first compare I −S and (I −S)T . The L∞ norm of their

difference is always on the level of machine accuracy. The

smallest eigenvalue of the resulting linear system is always

positive. Moreover, when N is large enough to resolve the

wave structure, the condition number of the resulting matrix

does not increase as N grows. The condition numbers are

79.1305 for N = 90, 75.5935 for N = 95 and 72.7603 for

N = 100. This matches our previous observation that the total

number of iterations does not grow with increased number of

points per wavelength.

IV. CONCLUSION

In this paper, we proposed the EM-WaveHoltz method,

which converts the frequency-domain problem into a time-

domain problem with time periodic forcing. The main advan-

tages of the proposed method are as follows.

1) The resulting linear system is positive definite, and the

GMRES iterative solver converges reasonably fast even

though no preconditioning was used.

2) The method is flexible and straightforward to implement,

it only requires a time-domain solver. In this paper,

we illustrated how either the classical Yee scheme or a

discontinuous Galerkin method can be used to construct

frequency-domain solvers.
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3) A unique feature of our EM-WaveHoltz method is that

the solution to multiple frequencies can be obtained in

a singe solve.

Potential future research directions are to design precondi-

tioning strategies to further accelerate the convergence of the

proposed iterative method. It would also be interesting to apply

the method to more advanced dispersive material models.

APPENDIX A

DERIVATION OF THE EM-WAVEHOLTZ ITERATION WITH

cos-FORCING

The real valued T = 2π/ω-periodic solutions to (10) is in

the form:

Ẽ = Ê0 cos(ωt) + Ê1 sin(ωt), (45)

H̃ = Ĥ0 cos(ωt) + Ĥ1 sin(ωt). (46)

Matching the sin(ωt) and cos(ωt) term, we reach

εω(−Ê0) = ∇× Ĥ1,

εω(Ê1) = ∇× Ĥ0 − J,

µω(−Ĥ0) = −∇× Ê1,

µω(Ĥ1) = −∇× Ê0.

Based on (2), it follows that

Ê0 = <{E}, Ĥ0 = <{H}, Ê1 = −={E}, Ĥ1 = −={H}.

By construction, one can further verify that

Π(={E},={H})T = (<{E},<{H})T .

APPENDIX B

ANALYSIS OF ENERGY CONSERVING EM-WAVEHOLTZ

ITERATION

Similar to [1], we analyze the convergence of the simplified

EM-WaveHoltz iteration for the energy conserving case and

show that I − S is a self-adjoint positive definite operator.

Eliminating H in the frequency-domain equation (1), we

have

−ω2εE = −∇×

(
1

µ
∇×E

)
− iωJ. (47)

With the real-valued current source J , we further have

−εω2=(E) = −∇×

(
1

µ
∇×=(E)

)
− ωJ. (48)

Eliminating H̃ in the time-domain equation (4), we obtain

ε∂ttẼ = −∇×

(
1

µ
∇× Ẽ

)
− ω cos(ωt)J, (49)

with Ẽ|t=0 = νE and Ẽt = 0.

Suppose there is an orthonormal basis of L2(Ω) consisted

by the eigenfunctions of the operator − 1
ε∇ ×

(
1
µ∇×

)
(For

example this holds under the assumptions of Theorem 8.2.4 in

[38]). Let the eigenfunctions {φj}
∞
j=1 consist an orthonormal

basis of the L2 space. Let {−λ2j}
∞
j=1 denote the corresponding

nonpositive eigenvalues. For simplicity of notations, we let

νE = ν. Then, E, Ẽ, J, ν can be expanded as:

E =

∞∑

j=1

Ejφj , Ẽ =

∞∑

j=1

Ẽjφj ,

J =
∞∑

j=1

Jjφj , ν =
∞∑

j=1

νjφj .

(50)

Solve (47) and (49):

Ej =
1
εωJj

λ2j − ω2
, (51)

Ẽj = Ej (cos(ωt)− cos(λjt)) + νj cos(λjt). (52)

Then,

Πν =

∞∑

j=1

ν̄jφj , ν̄j = (1− β(λj))Ej + β(λj)νj , (53)

where

β(λ) =
2

T

∫ T

0

(
cos(ωt)−

1

4

)
cos(λt)dt. (54)

Realizing that

Π0 =
∞∑

j=1

((1− β(λj))Ej + β(λj)0)

=
∞∑

j=1

(1− β(λj))Ej , (55)

we have

S

∞∑

j=1

νjφj = Πν −Π0 =

∞∑

j=1

β(λj)νjφj . (56)

Furthermore, as proved in [1], the spectral radius ρ of S is

strictly smaller than 1:

ρ ∼ 1− 6.33δ2, δ = inf
j

λj − ω

ω
. (57)

As a result, when ω is not a resonance,

lim
n→∞

(Πνn −E) = lim
n→∞

Sn(ν0 −E) → 0. (58)

Furthermore,

((I − S)ν,ν) ≥ (1− ρ)||ν||2 > 0. (59)

This also verifies that I−S is positive definite. One can easily

verify that I − S is self-adjoint based on the expansion (56).

APPENDIX C

PROOF OF THEOREM 1

Proof of Theorem 1. Proof of Theorem 1 is similar to the

proof of Theorem 2.4 of [1]. Here, we only point out the

key steps. We expand all functions as

Ẽn
z =

N∑

j=1

(Ẽz)
n
j ψj , Jz =

N∑

j=1

(Jz)jψj ,

(Ez) =

N∑

j=1

(Ez)jψj , ν
∞ =

N∑

j=1

ν∞j ψj .

(60)
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Then,

(Ez)j =
1
εω(Jz)j

ω2 − λ2j
, ν∞j =

1
εω(Jz)j

ω̃2 − λ2j
. (61)

Moreover, for n 6= 0

(Ẽz)
n+1
j − 2(Ẽz)

n
j + (Ẽz)

n−1
j +∆t2λ2j (Ẽz)

n
j

=− ω∆t2 cos(ωtn)
1

ε
Jz, (62)

and

(Ẽz)
0
j = νj , (Ẽz)

1
j = (1−

1

2
λ2j∆t

2)νj −
ω

2
∆t2(

1

ε
Jz)j .

(63)

Following Appenndix B of [1], one can verify that

(Ẽz)
n
j = (νj − ν∞j ) cos(λ̃jt

n) + ν∞j cos(ωtn), (64)

where

sin(λ̃j∆t/2)

∆t/2
= λj . (65)

Let Πhν =
∑

j ν̄jψj . Then, one can obtain

ν̄j = νjβh(λ̃j) + (1− βh(λ̃j)), (66)

where

βh(λ) =
2∆t

T

M∑

n=0

ηn cos(λt
n)

(
cos(ωtn)−

1

4

)
. (67)

Lemma 2.5 of [1] shows that |βh(λ̃j)| ≤ ρh := max(1 −
0.3δ2, 0.63). Utilizing the fact that the composite trapezoidal

rule is exact for pure periodic trigonometric functions of order

less than the number of grid points, we complete the proof.

APPENDIX D

VERIFICATION OF TIME ERROR ELIMINATION IN

YEE-EM-WAVEHOLTZ

With the modification in (34), ω̃ in Theorem 1 becomes

sin(ω̄∆t/2)

∆t/2
= ω.

Meanwhile, (64) becomes

(Ẽz)
n
j = (νj − ν∞j ) cos(λ̃jt

n) + ν∞j cos(ω̄tn), (68)

and the original composite trapezoidal quadrature is no longer

exact for ν∞j cos(ω̄tn). Hence, the modification (35) to the

numerical quadrature is needed to eliminate time error from

the numerical integration.
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