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ABSTRACT

Accurate multiple sequence alignment is challenging on many data sets, including those
that are large, evolve under high rates of evolution, or have sequence length hetero-
geneity. While substantial progress has been made over the last decade in addressing
the first two challenges, sequence length heterogeneity remains a significant issue for
many data sets. Sequence length heterogeneity occurs for biological and technological
reasons, including large insertions or deletions (indels) that occurred in the evolu-
tionary history relating the sequences, or the inclusion of sequences that are not fully
assembled. Ultra-large alignments using Phylogeny-Aware Profiles (UPP) (Nguyen
et al. 2015) is one of the most accurate approaches for aligning data sets that exhibit
sequence length heterogeneity: it constructs an alignment on the subset of sequences it
considers ‘‘full-length,” represents this ‘‘backbone alignment’’ using an ensemble of
hidden Markov models (HMMs), and then adds each remaining sequence into the
backbone alignment based on an HMM selected for that sequence from the ensemble.
Our new method, WelghTed Consensus Hmm alignment (WITCH), improves on UPP
in three important ways: first, it uses a statistically principled technique to weight and
rank the HMMs; second, it uses k > 1 HMMs from the ensemble rather than a single
HMM; and third, it combines the alignments for each of the selected HMMs using a
consensus algorithm that takes the weights into account. We show that this approach
provides improved alignment accuracy compared with UPP and other leading align-
ment methods, as well as improved accuracy for maximum likelihood trees based on
these alignments.
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1. INTRODUCTION

MULTIPLE SEQUENCE ALIGNMENT is a necessary precursor for many problems in biology, including
phylogeny estimation (Morrison and Ellis, 1997; Ogden and Rosenberg, 2006), protein family clas-
sification (Diplaris et al., 2005; Brown et al., 2007; Schwacke et al., 2019), and detection of selection
(Fletcher and Yang, 2010; Jordan and Goldman, 2012). However, accurate estimation of multiple sequence
alignments is challenging under many conditions, including large numbers of sequences and high rates of
evolution.

There are now several methods that provide high accuracy even for very large data sets with 10,000 or
more sequences (e.g., Katoh and Toh, 2008; Mirarab et al. 2015; Nguyen et al. 2015; Sievers and Higgins
2018; Smirnov and Warnow 2021a), but only a few have high accuracy under high rates of evolution.
However, another issue that creates difficulties for alignment is sequence length heterogeneity, which can
arise for many different reasons, such as the inclusion of reads or partially assembled sequences, or more
simply through evolutionary processes that include large indels. As seen in Figure 1, sequence length
heterogeneity is present in biological data sets (Cannone et al., 2002).

Studies evaluating alignment methods under conditions with many short sequences have shown that
many otherwise excellent alignment methods can degrade in accuracy substantially under those conditions
(Nguyen et al., 2015), and trees estimated on these alignments can also be poor (Smirnov and Warnow,
2021b). Thus, the alignment of large data sets with sequence length heterogeneity is an interesting and
important bioinformatic challenge.

A natural approach to aligning data sets with sequence length heterogeneity uses two stages: the first
stage selects and aligns sequences that are considered full-length, and the second stage adds the remaining
sequences into the alignment computed in the first phase. This approach allows methods that have high
accuracy on data sets that do not have substantial sequence length heterogeneity to be used in the first stage.
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FIG. 1. Sequence length histograms of five biological data sets and one simulated data set (1000M1) from Liu et al.
(2009). The biological data sets (16S.M, 23S.M, 5S.3, 5S.T, and 16S.B.ALL) are from the Comparative Ribosomal
Website (Cannone et al., 2002). Note that the simulated data set shows essentially no sequence length heterogeneity,
while each of the other data sets has many shorter sequences, and some have longer sequences as well.
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The second stage is performed using methods designed for adding sequences into alignments, and so can be
specifically designed to address sequence length heterogeneity.

Ultra-large alignments using Phylogeny-Aware Profiles (UPP) is a method that uses this two-stage
approach (Nguyen et al., 2015). UPP performs the second stage by representing the backbone alignment
with an ensemble of hidden Markov models (HMMs) [see Brown et al. (1993); Haussler et al. (1993);
Krogh et al. (1994) for the earliest articles on HMMs in bioinformatics, and Durbin et al. (1998) for a
standard textbook about HMMs in molecular sequence analysis]. Then, to add a given sequence into the
backbone alignment, the HMM in the ensemble of HMMs (eHMM) with the best bitscore is selected and
HMMALlign [one of the methods in HMMER (Finn et al., 2011)] is used to add the sequence into the
backbone alignment (i.e., to compute an ‘‘extended alignment””).

Finally, UPP uses transitivity to merge the extended alignments. UPP can run on very large data sets
(even up to 1 million sequences), and was shown to have better accuracy than the alignment methods
Muscle (Edgar, 2004), MAFFT (Katoh and Standley, 2013), Clustal-Omega (Sievers et al., 2011), and
PASTA (Practical Alignments using SATé and TrAnsitivity) (Mirarab et al., 2015), when aligning data sets
with large numbers of fragmentary sequences (Nguyen et al., 2015).

In this study, we present a novel method for aligning data sets with sequence length heterogeneity. We
follow the same basic two-stage method that is used by UPP, but we change how sequences are added into
the backbone alignment. An important component of this method is a statistically rigorous technique that
we derive for computing the probability that a given HMM generates a given sequence, and we use this
technique to weight each HMM-query pair. Then, to add a sequence x into the backbone alignment, we
select the top K HMMs (ranked by their weights); each such HMM defines a single extended alignment that
induces the backbone alignment and includes x, and each such extended alignment is weighted by the
probability that the selected HMM generates x.

Finally, we compute the weighted consensus of these query alignments using a graph clustering method
that is a modified version of Graph Clustering Merger (GCM), a method designed for use in MAGUS
(Multiple sequence Alignment using Graph clUStering) (Smirnov and Warnow, 2021a).

We refer to the method as WelghTed Consensus Hmm alignment (WITCH). We benchmark WITCH on
a collection of simulated and biological data sets and compare it with PASTA (Mirarab et al., 2015), UPP
(Nguyen et al., 2015), MAGUS (Smirnov and Warnow, 2021a), MAFFT (Katoh and Standley, 2013), and
Clustal-Omega (Sievers and Higgins, 2018). Our study shows that WITCH produces the best alignment
accuracy of these methods on data sets with high levels of fragmentation and matches or improves on the
other methods under low fragmentation conditions. In addition, trees estimated on WITCH alignments
match or improve accuracy compared with other methods under conditions with fragmentation.

2. THE WITCH ALGORITHM
2.1. Overview

The input to WITCH is a set S of unaligned sequences and the output is a multiple sequence alignment.
WITCH follows the standard two-stage strategy as UPP (Nguyen et al., 2015), but differs in the details in
ways that enable it to be more accurate, although at an increase in the running time (Supplementary Fig. S4).
WITCH has two algorithmic parameters: a number z that impacts the construction of the ensemble of HMMs
and a number k that impacts how each query sequence is added to the backbone alignment. In this study, we
present the five phases of WITCH at a very high level, and provide details in the relevant subsections below.

e Phase 0: A subset S, of the input set S of unaligned sequences is selected as the ‘‘backbone se-
quences,” and an alignment and tree are computed on these backbone sequences [default: MAGUS
(Smirnov and Warnow, 2021a)]. The remaining sequences are referred to as ‘‘query sequences.”

e Phase 1: An ensemble of HMMs is computed on the backbone alignment.

e Phase 2: For every query sequence ¢, a ‘‘weight” is computed for every HMM in the ensemble,
reflecting the fit between the HMM and gq.

e Phase 3: For every query sequence ¢, the top kK HMMs are selected and then used to create an
“extended alignment” on {g} U Sp.

¢ Phase 4: The extended alignments are merged together into an alignment on the full data set using
transitivity.
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Phases 14 are illustrated in Figure 2, and Phase 3 is illustrated with additional detail in Figure 3.

Some comments about these phases should be helpful in explaining the techniques. First, Phase O is
identical to how it is performed in UPP, with the use of MAGUS instead of PASTA for constructing the
backbone alignment based on the recent study that showed this substitution improved accuracy (Shen et al.,
2022b). Phase 1 is identical to how it is performed in UPP. Phase 2 is unique to WITCH and is based on a
theoretical derivation provided in Section 2.4. Phase 3 is also unique to WITCH but builds on a technique
used in MAGUS called the ““Graph Clustering Merger.”” Phase 4 is the same as used in UPP and is a simple
use of transitivity of pairwise homologies.

Thus, Phases 2 and 3 are the most important innovations in WITCH compared with prior methods,
but all five phases contribute to the final results. In the subsections that follow, we describe each phase
in detail.

2.2. Phase 0: backbone alignment and tree construction

In this phase, a subset of the sequences is extracted to form the ‘‘backbone sequences’ and ‘‘backbone
tree.”” We use the same technique as in UPP for this step, which we now describe. The set of backbone
sequences can be indicated by the user, or else they can be selected based on their length: the median length
of the unaligned sequences is computed, and those sequences that are within 25% of the median length of
the sequences in the input are considered ‘‘full-length.”” Then, 1000 sequences are randomly selected from
the full-length sequences, which we denote as the backbone sequences (but if there are fewer than 1000
full-length sequences, all the sequences are selected). A MAGUS alignment is computed on the backbone
sequences and a maximum likelihood tree is computed on the backbone alignment using FastTree2 (Price
et al., 2010).

Phase 1: eHMM Construction Phase 3: Weighted GCM Alignment
Backbone alignment and tree
S| m— Alignments by HMMAlign
g; HMM, X Q) S (w=0.6)
S ¢ — Ensemble of HMMs
HMM X ————— (v=03)
5_\> ( ¥ § /S \} (/,,s, \ }weighted acM
% S - ‘*—E"/P-Il\;ll‘ﬂ ; Qs__, Weighted consensus for q,
Phase 2: HMM Weighting and Ranking Phase 4: Transitivity
(k=2)

Query sequences

) e—
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FIG. 2. Overview of the WITCH algorithm. The input is a set of unaligned sequences and values for k and z. Phase 0:
The input sequences are split into two sets: the backbone sequences and the query sequences and an alignment and tree
are built on the backbone sequences. Phase 1: An eHMM is built on the backbone alignment, stopping the decom-
position when the subtrees have at most z leaves (default: z=10). Phase 2: For every query sequence, the HMMs in the
eHMM are weighted and ranked, and the top k HMMs are selected (we illustrate this with k=2). Phase 3: For every
query sequence and for each of its k selected HMM, an extended alignment (containing the backbone sequences and the
query sequence) is computed using HMMALlign (Finn et al., 2011). A weighted consensus of these extended alignments
is computed using a weighted version of the GCM (Smirnov and Warnow, 2021a). Phase 4: The final alignment is
obtained by transitively merging all consensus alignments. Phases 1 and 4 are identical to the corresponding phases in
UPP, and Phases 2 and 3 are extensions of techniques from UPP (Nguyen et al., 2015) and MAGUS (Smirnov and
Warnow, 2021a). eHMM, ensemble of hidden Markov models; GCM, Graph Clustering Merger; MAGUS, Multiple
sequence Alignment using Graph clUStering; WITCH, WelghTed Consensus Hmm alignment.
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FIG. 3. An example of the weighted GCM alignment phase. We have two constraints, one the backbone alignment A
and the other a query sequence g. Here we show the case of having two extended alignments (i.e., k=2) obtained by
aligning g to the top two HMMs. An alignment graph is formed in the same way as GCM except that each extended
alignment contributes to edge weights differently. The remaining steps are the same as the GCM algorithm (i.e.,
clustering, cleaning, and finding a trace).

2.3. Phase 1: eHMM construction

Given the backbone alignment A and its maximum likelihood tree 7, an eHMM is constructed using the
same procedure as in UPP. UPP decomposes the backbone alignment A into subsets, and takes as input a
parameter z that specifies how small the subsets of sequences need to be before stopping the decomposition.
UPP produces the decomposition using T it repeatedly finds and removes a “‘centroid edge’ (i.e., an edge
that produces as balanced a split as possible) until all the parts have at most z leaves. This decomposition
produces a set of disjoint subtrees, each with at most z leaves, and so also a set of disjoint subsets of
sequences and the set of subset alignments induced by A.

The collection of subset alignments that UPP produces is hierarchical: it includes the alignment A on
the full set S of sequences, as well as the alignment induced by A on every subset that is produced during
the decomposition strategy. For example, if only one edge is deleted in constructing the ensemble, then
UPP will produce three alignments: the alignment on the full set, and the alignment induced on each of
the two subsets produced by deleting that edge. In particular, each edge deletion adds two alignments to
the set.

For each alignment in the set, we build a profile HMM using HMMBuild from HMMER (Finn et al.,
2011). The collection of HMMs is the eHMMs that represent the backbone alignment A.

2.4. Phase 2: HMM weighting and ranking

The input to Phase 2 is an ensemble of HMMs representing the backbone alignment and the set of query
sequences (which are not part of the backbone alignment). The output of this phase is a selection of k
HMMs for each query sequence, along with the weighting of each HMM-query pair.

The main innovation in Phase 2 is that the weighting we provide for a given HMM-query pair is designed
to equal the probability that the given HMM generates the given query sequence. This enables us to
rigorously select and then use k > 1 HMMs for each query sequence.

The weighting formula is an extension of the alignment support calculation provided in Nguyen et al. (2014).
Given a query sequence g and HMM H;, HMMSearch calculates the corresponding bitscore BS(H;, g) by

P(q|Hy)

BS(H,‘, q) = 10g2 m

ey
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where P(g|H;) is the probability that H; generates ¢, and P(q|H,,;) is the probability that a random (null)
HMM generates g. Assuming that g is generated by exactly one of the HMMs and that there are d HMMs,
we can express the probability P(H;|q) that H; generates g by

P(q|H))P(H;)

P(Hi|q)=
“ S\ Pq|H)P(H))

2

where we assume that the prior probability P(H;) is only affected by the number of sequences in the
alignment used to construct HMM H;. For the case where every two HMMs in the ensemble are constructed
on disjoint sets of sequences, the prior probability P(H;) is

S
P(H)=— 3
(H)) 3 3)
where s; is the number of sequences in the alignment used to build H; and S= Zj‘-i: | §j is the total number of
unique sequences across all these alignment subsets. For the case where the HMMs are based on over-
lapping sets of sequences (e.g., eHMMs in this study), the prior P(H;) is

P(H;)= ;— )

where S* = Ele s; is the sum of total appearances of sequences in the HMMs.

Therefore, using Equation (4) we can reduce Equation (2) to

1
P(H;|q) = ———— 5)

Ed 21°g2P(q\Hi>sf
j=1

By Equation (1), we have

P(q|H)) | P(q|H;)

BS(H;, g)—BS(H;, q)= log, Pl ngm

P(q|H))
=108, i
P(q|H;)
P(g|H;)
g2 Q‘ J (7)
P(q|H;)
Substituting Equation (7) in (5) we have
1
Wi, ¢ =P(Hi|q)= i 3
d BS(H;, q) — BS(H;, q) + log,~
2j=12 "

where wy, , is the probability that g is generated by H; and is denoted as the weight for the pair g, H;.
It is trivial to show that for any given query sequence ¢, Zil wh, o= 1. Thus, given a query sequence
g, these weights define probabilities on the HMMs in the ensemble.
We refer to these weights as ‘“‘adjusted bitscores,”” and the original use within UPP (which uses the
bitscores without any modification) as ‘‘raw bitscores.”

2.5. Phase 3: weighted GCM alignment

For every query sequence g, we use HMMAlign to align g to its top k HMMs. This produces k
alignments, each of which includes the sequences in Sy and g. Note also that by construction, each induces
the backbone alignment A. Hence, we refer to these as “‘extended alignments.”

This step is based on the GCM from MAGUS (Smirnov and Warnow, 2021a), and so, a brief description
of GCM is helpful. GCM is a technique for merging an input set of ‘“‘constraint alignments’ on disjoint sets
of sequences; hence, the output merged alignment must induce the constraint alignments. GCM first
computes a set of additional alignments (each on a subset of the input sequences sampled from different
constraint alignments), and uses these additional alignments to define an ‘“‘alignment graph.”” This align-
ment graph has a node for each site in each constraint alignment, and the edges are obtained from the
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additional alignments. The nodes in this graph are then clustered using a two-step process that begins with
the Markov Clustering Algorithm (Van Dongen, 2000) and then modifies the clustering to enforce the
requirement of being a valid alignment (also called a valid “‘trace’).

As shown in Zaharias et al. (2021), this approach is a good heuristic for the Maximum Weight Trace
problem posed in Kececioglu (1993), extended for use in merging disjoint alignments.

For WITCH, we slightly modify GCM so that it can be used as a method for combining extended
alignments, each provided with its weight. We enforce the requirement that the backbone alignment
(whether produced by MAGUS or by PASTA) be maintained so that the final set of extended alignments
produced in Phase 3 (one for each query sequence) can be merged into an alignment of the entire data set
using transitivity in Phase 4.

For each query sequence g, we create a ‘‘weighted alignment graph’ based on the technique in GCM.
Each column (site) in the backbone alignment A and each letter in ¢ define a node in the alignment graph;
thus, there are L+ L' nodes, where L is the length of the backbone alignment and L' is the length of the
query sequence g. We denote the vertices derived from the backbone alignment by v; (where i denotes the
index of the site in the backbone alignment) and the vertices derived from the query sequence by g; (where j
denotes the index of the letter in the query sequence). The edges in the alignment graph are defined by the &
extended alignments (each of which induces A and also contains gq).

Specifically, given an extended alignment in which site i in the backbone alignment is aligned with the
Jjth letter from ¢, we include an edge between v; and g;. The weight of the edge is the weight of the HMM
(i.e., its adjusted bitscore) that was used to define this extended alignment; thus, every edge is given with a
positive weight that is bounded by 1.

Given the weighted alignment graph, we then follow the steps used in GCM to produce a new extended
alignment that combines the information from the k extended alignments. The remaining steps of GCM are
unchanged (i.e., clustering, cleaning, and finding a trace), and the final merged alignment reported by GCM
is the weighted consensus alignment on Sp U {g} (see Fig. 3 for an example).

2.6. Phase 4: transitivity

The last phase also follows the UPP procedure after we obtain consensus alignments for all query
sequences. Since all consensus alignments induce the backbone alignment A, we transitively add each
query sequence ¢ into A using the weighted consensus alignment for ¢, introducing gaps when necessary.

3. EXPERIMENTAL DESIGN
3.1. Overview

We performed three experiments. In our first experiment, we use fragmentary versions of biological and
simulated testing data sets to set defaults for the algorithmic parameters k and z and to determine whether
using adjusted bitscores is beneficial. In the second experiment, we compare WITCH using these default
parameters with leading multiple sequence alignment methods on additional simulated data sets with
introduced fragmentation, while the third experiment performs this analysis on additional biological data
sets. In all cases, we evaluate the methods for alignment and tree estimation error. We separate the training
data sets (used in Experiment 1 for setting the algorithmic parameters) from the test data sets (used in
Experiments 2 and 3 for comparing WITCH with other methods).

All analyses were run on the UIUC Campus Cluster, with 16 cores and 32 GB memory, and the runtime
limit was set to 24 hours. For tree estimation, we ran RAXML-NG (Kozlov et al., 2019), a maximum
likelihood-based tree estimation method, on 16 cores and 32 GB memory for up to 4 hours, and the last tree
reported within the time limit was used for comparison. See Supplementary Materials section S1 for
commands needed to reproduce the experiments.

3.2. Data sets

We evaluate WITCH on both simulated and biological nucleotide data sets, including versions with
introduced fragmentation. The simulated data sets include nine model conditions generated using the ROSE
(Stoye et al., 1998) software, each with 1000 sequences per replicate and 20 replicates per model condition,
which have been used in prior studies to evaluate alignment methods (Liu et al., 2009, 2012; Mirarab et al.,
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2015; Smirnov and Warnow, 2021a). The biological data sets include five ribosomal RNA data sets from
the Comparative Ribosomal Website (CRW) (Cannone et al., 2002) (see Section 3.2.2.). Most data sets
come from prior studies and are available in public databases, while the remaining data sets are available in
the Illinois Data Bank (see the Data Availability section). The empirical statistics for all data sets can be
found in Table 1, which includes numbers of sequences, average and maximum p-distances, percentages of
gaps, average sequence lengths, and alignment lengths.

In addition, Figure 1 presents histograms about the sequence length distribution for the five biological
data sets and a representative simulated data set.

The simulated data sets have known true alignments and trees, which allows us to evaluate alignment and
tree accuracy. The biological data sets have reliable reference alignments based on the RNA structure
(Cannone et al., 2002). However, the biological data sets do not have reliable reference trees, and so, we
can only evaluate alignment accuracy on the biological data sets.

We made versions of these simulated data sets that had fragmentary sequences, with relative long
fragments (~500bp) and shorter fragments (~250bp). All in all, we computed alignments on 18 model
conditions (9 basic model conditions, each with low-fragmentary [LF] or high-fragmentary [HF] se-
quences) and each model condition had 19 or 20 replicates, making for 358 1000-sequence data sets (since
we removed one replicate from one basic model condition).

3.2.1. Simulated data sets. We use nine 1000-sequence model conditions from prior studies to
evaluate alignment methods SATéE, PASTA, and MAGUS (Liu et al., 2009; Mirarab et al., 2015; Smirnov
and Warnow, 2021a); these were simulated using the ROSE (Stoye et al., 1998) software, and so are named
“ROSE” data sets. We used the 1000L4, 1000S4, 1000M3, 1000S2, 1000M2, 1000L1, 1000L3, 1000S1,
and 1000M1 model conditions, which evolve with indels and also substitutions (under the GTRGAMMA
model).

These models range in difficulty depending on the rate of evolution and probability of indels, with
1000S4 among the easiest models and 1000M1 among the most difficult. The letters *“L/M/S’’ in the model
name denote the indel length in the alignment, where ‘L’ is for long indel, ““M”’ for medium, and ‘S’ for
short. Each model condition has 20 replicates [although we removed one replicate from the 1000M1
condition as it was considered an outlier in a prior study (Smirnov and Warnow, 2021a)].

TABLE 1. EMPIRICAL STATISTICS FOR ALL DATA SETS

p-distance
Data set No. of sequences  Average Max % gaps  Average sequence length  Alignment length
Simulated
1000M1(19)* 1000 0.694 0.781 74.3 1011 3960
1000S1(20) 1000 0.694 0.782 53.0 1002 2141
1000L3(20) 1000 0.687 0.770 85.2 1031 7042
1000L.1(20) 1000 0.695 0.782 73.2 1015 3817
1000M2(20)* 1000 0.684 0.775 74.2 1014 3972
1000S2(20) 1000 0.693 0.776 35.0 1001 1546
1000M3(20) 1000 0.660 0.754 62.8 1007 2722
1000L4(20) 1000 0.500 0.627 58.6 1007 2446
1000S4(20) 1000 0.501 0.625 24.6 1000 1328
Biological
16S.M(1)* 901 0.359 0.887 78.1 1035 4722
23S.M(1)* 278 0.377 0.703 83.7 1746 10,738
58.3 5507 0.418 1.000 74.5 105 414
58.T 5751 0.425 1.000 75.6 106 436
16S.B.ALL 27,643 0.210 0.769 80.0 1372 6857

Statistics are computed and averaged over all replicates (numbers of replicates are marked next to data set names) and before
introducing any fragmentation. The p-distance denotes the fraction of sites between two aligned sequences that have different
nucleotides and % gaps denote the percentage of the alignment that is occupied by dashes (gaps). All data sets are made high/low
fragmentary (see Section 3.2 for definitions of high/low levels of fragmentation). Replicate 16 for 1000M1 is not included in this study
because it is identified as a persistent outlier in Smirnov and Warnow (2021b). The training data sets are indicated by asterisks (*).
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3.2.2. Biological data sets. We use five data sets from the CRW (Cannone et al., 2002), which are based
on structural alignments. Two of these data sets (i.e., 16S.M and 23S.M) are used in Experiment 1 (training), and
the remaining three are used in Experiment 3 (testing). Their sequence length histograms are shown in Figure 1.

3.2.3. Introduced fragmentation. The training data sets from Experiment 1 are from a prior study
(and publicly available), and have fragmentation introduced using a protocol described in Nguyen et al.
(2015). To create the testing data sets in Experiment 2, we used the same approach as was used to create the
training data sets used in Experiment 1. Both Experiment 1 and Experiment 2 have two levels of frag-
mentation, referred to as HF and LF:

e HF means that 50% of the sequences are made into fragments. Fragment lengths are sampled from a
normal distribution A"(M, 60), where M corresponds to 25% of the original median sequence length.
e LF is similar to HF and uses A4"(M, 60) to sample fragment lengths, except that only 25% of the
sequences are made into fragments and M corresponds to 50% of the original median sequence length.

On the simulated data sets we used, the HF versions produced fragments of mean between 250 and
260 bp in length, and the LF versions had fragments of mean between 490 and 510 in length. In Experiment
3 we also introduced fragmentation into the 16S.B.ALL data set, but with shorter fragments averaging
100 bp in length. The script to generate an alignment with fragments is available at https://git.io/JOGO1

3.2.4. Training versus testing data. We use HF/LF versions of 1000M1, 1000M2, 16S.M, and
23S.M as the training data for Experiment 1 (algorithmic parameter selection), and the remaining data sets
for the experiments where we evaluate methods.

3.3. Other alignment methods

We compare WITCH with MAFFT (Katoh and Standley, 2013), Clustal-Omega (Sievers and Higgins,
2018), PASTA (Mirarab et al., 2015), MAGUS (Smirnov and Warnow, 2021a), and UPP (Nguyen et al.,
2015). This collection includes methods that are closely related to WITCH (i.e., MAGUS and UPP) and
other methods that have performed well in prior studies (i.e., Clustal-Omega, MAFFT, and PASTA).

The current default version of MAGUS uses a recursive approach on subset alignments if they contain
>200 sequences; however, Smirnov (2021) noted that “‘recursion does not improve accuracy.... recursion
should be avoided if possible, and only engaged when the dataset becomes too large for the subsets to be
reasonably aligned with the base method.”” Therefore, we use MAGUS without recursion in this study.
Also, since UPP has better accuracy using the MAGUS backbone instead of PASTA (Shen et al., 2022b),
we use UPP in this way, and denote this usage by MAGUS+UPP.

3.4. Criteria

Alignment error is calculated using sum-of-pairs false-negative (SPFN) and sum-of-pairs false-positive
(SPFP) rates, where the SPFEN rate is the fraction of pairs of homologies that are in the reference alignment
but missing in the estimated alignment, and the SPFP rate is the fraction of pairs of homologies that are in
the estimated alignment but missing in the reference alignment. We also report the average of these two
values. These error rates are obtained using FastSP (Mirarab and Warnow, 2011).

We also compute trees on the estimated alignments using RAXML-NG (Kozlov et al., 2019), a popular
maximum likelihood-based tree estimation method. We report tree error by computing the missing branch
FN, or false negative error rate, which is the fraction of the branches in the reference tree (i.e., model tree for
the simulated data sets) missing from the estimated tree. Since the true tree is not known in the biological data
sets and the reference trees are unreliable, we do not report tree error for the biological data sets.

4. RESULTS AND DISCUSSION
4.1. Experiment 1: algorithmic parameter selection
We explore the following three algorithmic parameters for use within WITCH:

¢ z: the subtree size that determines the decomposition stopping condition. We vary z between 2, 5, 10,
and 50. This impacts Phase 1.



Downloaded by University Of Illinois At Urbana-champaign from www liebertpub.com at 05/29/22. For personal use only.

10 SHEN ET AL.

e k: the number of HMMs selected to align a given query sequence. We vary k between 1, 2, 4, and 10.
This impacts Phases 2 and 3.

¢ HMM ranking: unweighted or weighted. ‘“Unweighted”” means that the HMMs are ranked using raw
bitscores, and then each created extended alignment has unit weight in the alignment graph.
“Weighted” means that the HMMs are ranked using adjusted bitscores, and then, these weights are
used when constructing the alignment graph. This impacts Phases 2 and 3.

These parameter settings thus impact Phases 1, 2, and 3. Phase 0, which selects the backbone sequences
and then aligns them, is performed as in MAGUS+UPP, and Phase 4, which combines the extended
alignments (one for each query sequence), is performed as in UPP.

We let z range from 2 to 50 and k range from 1 to 10. Note that setting z=10, k=1, and using
unweighted HMMs is identical to MAGUS+UPP. We explore the impact of these choices on our training
data sets: the HF and LF versions of 1000M1, 1000M2, 16S.M, and 23S.M. In Supplementary Materials,
section S2 contains full results across these training data sets (Supplementary Tables S1-S5) as well as a
detailed discussion. Here we summarize that discussion, and note how we used the results to set the
algorithmic parameters for WITCH.

The impact of the parameters depends on the model condition, as we now discuss. The only noteworthy
differences in alignment accuracy and tree accuracy mainly appear in the HF conditions (where the fragments
are ~250bp in length) and even then the degree of difference depends on the average p-distance in the data set
(where the p-distance between two sequences is the fraction of the sites where they have different nucleotides).
Focusing therefore only on the HF conditions, we examine how the average p-distance in the data set affects
algorithmic parameter selection. Of the four data sets, the highest p-distance is in the 1000M1 condition
(0.694), followed by 1000M2 (0.683) and then by the 23S.M (0.377) and 16S.M (0.359).

We find essentially no impact from the choice of algorithmic parameters on the 16S.M and 23S.M data
sets, even under HF conditions, indicating that data sets with low p-distances where the fragmentary
sequences are ~25% of full-length are still easy to align using MAGUS+UPP. We see that the algorithmic
parameters have a larger impact on the 1000M1 condition than on the 1000M2 condition. Thus, results on
these training data sets demonstrate that the impact is greatest when p-distances are large and there are a
large number of short sequences (our HF condition).

Finally, we saw that the somewhat small differences in alignment error can nevertheless result in
somewhat larger differences in tree error, indicating that algorithmic parameter selection may have a larger
impact on tree estimation than on alignment estimation error (at least as measured using SPFN and SPFP).

However, we also noted that certain settings of the parameters provided consistent advantages over the
other settings under challenging conditions and matched the other settings under easier conditions. Spe-
cifically, we found that setting k=10 and z=2, and using adjusted bitscores provided the best results. Some
other settings came close to the same accuracy, with z=5 or even z= 10 often close in accuracy as long as
k=10 was used. Switching from adjusted bitscores to raw bitscores often had only a small impact on
alignment accuracy, but reduced tree accuracy on the HF conditions.

We also saw that the improvement in alignment accuracy obtained by this setting was mainly through an
improvement in recall (i.e., reduction in SPFN), indicating that the WITCH technique of using multiple HMMs
and adjusted bitscores rather than raw bitscores is better at detecting true homologies than the technique in
UPP. Based on these trends, we set default values for the WITCH parameters to be z=2, k=10, and using
adjusted rather than raw bitscores, and used these settings in the subsequent experiments.

We provide a direct comparison of WITCH with the selected parameters to MAGUS+UPP (i.e., UPP
with MAGUS backbone) on these training data sets (Fig. 4). Note that WITCH has improved alignment
accuracy and tree accuracy on the HF versions of 1000M1 and 1000M2, while the impact on the LF
condition is extremely small. We do not show results for 16S.M and 23S.M as there was no visible
difference in alignment error between WITCH and MAGUS+UPP on these data sets, and it is not possible
to evaluate tree error as the true evolutionary trees are not known.

4.2. Experiment 2: evaluation of WITCH on simulated data sets

4.2.1. Overview. We compare WITCH (using the default settings for the parameters from Experi-
ment 1) with MAGUS+UPP (i.e., UPP with MAGUS backbone), MAGUS, two MAFFT variants (default
and L-INS-i), and Clustal-Omega, evaluating all methods with respect to alignment error and tree esti-
mation error.



Downloaded by University Of Illinois At Urbana-champaign from www liebertpub.com at 05/29/22. For personal use only.

WITCH: WEIGHTED CONSENSUS HMM ALIGNMENT 11

a 030 - - bos— —
B WITCH + E WITCH
| MAGUS+UPP ) MAGUS+UPP
0.25
el 0.4
0.20 T
0.3
20.15 £
@
0.2
0.10 o
0.05 D
0-00 o0om1-HF 1000M2-HF 0-0" " 00oM1-HF 1000M2-HF
HF alignment error HF tree error
Co0.30 dos
m WITCH m WITCH
1 MAGUS+UPP 1 MAGUS+UPP
0.25
0.4
0.20 . ' : :
- 0.3
S
£0.15 — e
[:H]
0.2 ' .
0.10 E %
0.05 L E %
0-00 7 6oom1-LF 1000M2-LF 0-0" 1 000M1-LF 1000M2-LF
LF alignment error LF tree error

FIG. 4. Experiment 1: Alignment error (average of SPFN and SPFP) and tree error (FN, or false negative) of WITCH
with selected parameters (z=2, k=10, and using adjusted bitscores) and MAGUS+UPP on ROSE 1000M1 and 1000M2
data sets in high and low fragmentation conditions. HF, high fragmentary; LF, low fragmentary; SPFN, sum-of-pairs
false negative; SPFP, sum-of-pairs false positive. (a) Alignment error for HF condition. (b) Tree error for HF condition.
(c) Alignment error for LF condition. (d) Tree error for LF condition.

An examination of the HF model conditions (Fig. 5 and Table 2) shows that the methods vary sub-
stantially with respect to both alignment error and tree error (see Supplementary Fig. S1 for SPFN and
SPFP). The two-most accurate methods are WITCH and MAGUS+UPP, followed by MAGUS, then by
PASTA and MAFFT L-INS-i, and then by Clustal-Omega and MAFFT in default mode (but with a small
advantage to Clustal-Omega). There is a large gap between the two-most accurate methods (WITCH and
MAGUS+UPP) and MAGUS, and an even larger gap between MAGUS and the remaining methods,
especially for the more difficult model conditions (i.e., the ones with higher rates of evolution).

However, all methods except for default MAFFT and Clustal-Omega produce alignments and trees of
comparable accuracy with the best methods for the two easiest model conditions (1000L4 and 1000S4).
Although WITCH generally produces more accurate alignments and trees than MAGUS+UPP, the im-
provement is restricted to the harder model conditions; on the easiest model conditions (i.e., the ones with
lower rates of evolution), the two methods are extremely close. Specifically, WITCH has lower alignment
error and tree error than MAGUS+UPP for the five harder conditions (1000S1, 1000L3, 1000L1, 1000S2, and
1000M3) and then is slightly higher (by 0.1%) on the two easier model conditions (1000L4 and 1000S4).

An evaluation of the low-fragmentation conditions (Supplementary Fig. S2 and Supplementary
Table S6) reveals the same relative performance between methods, although in some cases with smaller
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FIG. 5. Experiment 2: Comparison of WITCH with other methods on the ROSE 1000-taxon data sets with high
fragmentation. Top: Alignment error. Bottom: Tree error. Results are shown across 20 replicates for each model
condition (except for 1000M1, which is missing one replicate). Alignment error is the average of SPFN and SPFP, and
tree error is the missing branch (FN) rate.

differences. Clustal-Omega and default MAFFT are still the least accurate, WITCH and MAGUS+UPP are
still the most accurate, and all methods (other than Clustal-Omega and default MAFFT) have essentially the
same accuracy for the two easiest model conditions. WITCH has an advantage over MAGUS+UPP on the
model conditions with higher rates of evolution, and then ties (with no advantage to WITCH) under the two
easiest model conditions.

TABLE 2. EXPERIMENT 2: COMPARISON OF THE THREE-MOST ACCURATE METHODS
(WITCH, MAGUS+UPP, aAND MAGUS) oN THE HIGH-FRAGMENTATION MODEL CONDITIONS

100081 1000L3 1000L1 100082 1000M3 1000L4 100084

Alignment error

WITCH 0.142 0.135 0.085 0.070 0.042 0.007 0.006

MAGUS+UPP 0.147 0.140 0.091 0.075 0.045 0.008 0.006

MAGUS 0.281 0.246 0.198 0.150 0.066 0.007 0.005
Tree error

WITCH 0.327 0.299 0.324 0.276 0.226 0.165 0.163

MAGUS+UPP 0.346 0312 0.345 0.290 0.234 0.164 0.162

MAGUS 0.610 0.559 0.582 0.528 0.369 0.167 0.166

Top: average alignment error. Bottom: average tree error. Results shown are for the ROSE 1000-sequence data sets with high
fragmentation. Alignment error is the average of SPFN and SPFP, and tree error is the missing branch FN, or false negative rate. The
best result for each data set is boldfaced (methods are considered tied if the difference is at most 0.001).

MAGUS, Multiple sequence Alignment using Graph clUStering; SPFN, sum-of-pairs false negative; SPFP, sum-of-pairs false
positive; UPP, ultra-large alignments using Phylogeny-Aware Profiles; WITCH, WelghTed Consensus Hmm alignment.
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FIG. 6. Experiment 2: Average alignment error (average of SPFN and SPFP) of WITCH and MAGUS+UPP on
alignments induced on the fragmentary sequences. Top: ROSE 1000-sequence HF conditions (i.e., 500 fragmentary
sequences with average length ~250bp); Bottom: ROSE 1000-sequence LF conditions (i.e., 250 fragmentary se-
quences with average length ~ 500 bp).

4.2.2. Comparison of WITCH and MAGUS+UPP. Since WITCH and MAGUS+UPP had better
accuracy than the remaining methods, we directly compared them with respect to alignment and tree error,
as well as with running time.

4.2.2.1. Alignment error

The difference in alignment error between WITCH and MAGUS+UPP is very small on the full data sets
for both HF and LF conditions. The explanation is the obvious one: these two alignment methods always
start with the same backbone alignments and so differ only in terms of how they add the remaining
sequences to the backbone alignment. Therefore, we examine alignment error on the fragmentary se-
quences alone.

When restricted to alignments induced on the fragmentary sequences, WITCH has lower alignment error
than MAGUS+UPP for both HF and LF conditions (Fig. 6). The improvement in alignment accuracy for
WITCH under the individual HF model conditions is not statistically significant (Supplementary Table S10,
p 0.055), but becomes statistically significant when pooling only the five hardest model conditions together
(p 0.006). This suggests that the limited number of samples—at most 20 per individual model condition—
is insufficient. In contrast, the improvement in alignment error on the LF conditions is not statistically
significant for all seven conditions pooled, nor when pooling the five-most difficult conditions ( p-values of
0.307 and 0.158, respectively, Supplementary Table S10).

We then decomposed alignment error on fragmentary sequences into SPFN and SPFP. WITCH is
slightly higher than MAGUS+UPP for SPFP (by at most 0.7% per model condition), but distinctly lower
with respect to SPFN, by up to 5.6% per model condition (Supplementary Table S7). Thus, the decrease in
SPEN (increased recall) is larger than the increase in SPFP (decreased precision), which is why WITCH has
an overall improvement in alignment accuracy over MAGUS+UPP. Furthermore, the increase in SPFP is
not statistically significant (p-values of 0.29 and 0.37 for pooled HF and LF conditions, respectively,
Supplementary Table S11), while the decrease in SPEN is statistically significant ( p-values of 0.001 and
0.025 for pooled HF and LF conditions, respectively, Supplementary Table S12).

The trend that WITCH has a better overall alignment accuracy than MAGUS+UPP, and that this is due to
improved SPEN but slightly worse SPFP, shows that the consensus alignment WITCH computes for each
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query sequence detect additional homologies than the alignment MAGUS+UPP computes for each query
sequence. Since these differ in terms of the number of HMMs used by each method and how they are
weighted, this shows that these algorithmic changes implemented in WITCH improve recall, with a small
decrease in precision, and lead to an overall improvement in accuracy.

4.2.2.2. Tree error

As seen in Figure 7, WITCH provides improved accuracy under the more difficult conditions (i.e., HF
model conditions with high rates of evolution), but not under the easier model conditions (i.e., the HF
conditions with very low rates of evolution and all the LF conditions).

We evaluate the statistical significance of the difference in tree error on the HF conditions. The dif-
ferences on the pooled five hardest data sets on HF conditions are statistically significant (p 0.044), but
otherwise not (Supplementary Table S9). Each of the five hardest data sets on HF conditions has a p-value
<0.3, but in other individual cases, p-values are larger than 0.5. These trends suggest that the number of
replicates per model (20) may not be enough to establish statistical significance for hard individual models
on HF conditions, and that both methods may be just as good in terms of tree estimation error when data
sets are easy.

4.2.2.3. Running time

For all the data sets in this experiment, MAGUS+UPP is strictly faster than WITCH (Supplementary
Fig. S4). This is expected since WITCH does strictly more work than MAGUS+UPP given that k=10.
However, the differences in runtime are not very large: MAGUS+UPP ranges from about 6 minutes to
about 15 minutes per data set, and WITCH ranges from about 11 minutes to about 20 minutes, each
assuming 16 cores. Thus, both methods are reasonably fast on these 1000-sequence data sets.

4.3. Experiment 3: evaluation of WITCH on biological data sets

In this experiment, we compare WITCH with MAGUS+UPP on three biological data sets (5S.3, 5S.T,
and 16S.B.ALL). These data sets range in size from 5507 sequences (5S.3) to 27,643 sequences
(16S.B.ALL), and also in average sequence length (105bp for 5S.3, 106 bp for 5S.T, and 1272bp for
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FIG.7. Experiment 2: Tree error (FN rate) of WITCH and MAGUS+UPP. Top: ROSE 1000-sequence HF conditions
(i.e., 500 fragmentary sequences with average length ~250bp); Bottom: ROSE 1000-sequence LF conditions (i.e., 250
fragmentary sequences with average length ~ 500 bp).
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FIG. 8. Experiment 3: SPFN and SPFP of MAGUS+UPP and WITCH alignments on query sequences only for 5S.3,
5S8.T, 16S.B.ALL, and 16S.B.ALL-100-HF data sets, both using the same backbone alignment and eHMM. (a) SPEN;
(b) SPFP. Note that WITCH and MAGUS+UPP are nearly indistinguishable for SPFP (precision), but WITCH im-
proves on MAGUS+UPP for SPFN (recall).

16S.B.ALL). Although these biological data sets have reference alignments, they do not have established
phylogenies, and so, we can only evaluate alignment errors on these data sets. We also consider a version of
16S.B.ALL with introduced fragmentation where the fragmentary sequences averaged 100 bp in length and
refer to it as 16S.B.ALL-100-HF. Because the sequences in the two 5S data sets are very short, we do not
introduce fragmentation into them.

We report SPFN and SPFP for alignments induced on the query sequences for each data set (Fig. 8).
WITCH provides an advantage over MAGUS+UPP for alignment error on the two 5S data sets and the
16S.B.ALL-100-HF data set, and it matches MAGUS+UPP on the 16S.B.ALL data set. The improvement
in accuracy is mainly through improvement in SPEN (i.e., recall), indicating that WITCH is able to recover
more true homologies than MAGUS+UPP.

Overall, this comparison shows an advantage for SPFN to WITCH over MAGUS+UPP on three of the
four data sets (5S.3, 5S.T, and 16S.B.ALL-100-HF). SPFP is essentially unchanged on all four data sets,
and analyses of 16S.B.ALL without introduced fragmentation also do not show any differences worth
noting between WITCH and MAGUS+UPP.

To more fully explore differences between WITCH and MAGUS+UPP, we evaluated WITCH and
MAGUS+UPP when using the reference alignments (instead of the MAGUS alignments) for the backbone
alignments on these data sets (see Supplementary Materials section S4). Although the alignment error drops
for both methods, WITCH continues to demonstrate improved overall alignment accuracy compared with
MAGUS+UPP, largely through reducing SPEN (i.e., improving recall) more than SPFP is increased (i.e.,
reducing precision). We illustrate the difference between WITCH and MAGUS+UPP by showing how a
single query sequence from 5S.T is aligned differently by the two methods when using the reference
alignment as the backbone (Fig. 9). Note that both WITCH and MAGUS+UPP come very close to fully
recovering the reference alignment for the query sequence, but that MAGUS+UPP misses more homologies
than WITCH does.

4.4. Alignment method selection

A consistent finding across Experiments 1 and 2 is that WITCH always matches or improves on
MAGUS+UPP for both alignment and tree accuracy, but that the degree of improvement depends on the
data set properties. Specifically, under the LF condition on the simulated data sets, the data sets have only a
few fragmentary sequences (and the fragments have average length ~500bp), WITCH alignments and
MAGUS+UPP alignments do not differ substantially in terms of SPFN and SPFP error, and trees estimated
on these alignments also do not differ substantially.

In contrast, under the HF condition, the fragments are shorter (about 250 bp for the simulated data sets)
and there are more such fragments. Thus, the degree of fragmentation impacts whether WITCH improves
on MAGUS+UPP. In addition, the degree of improvement also depends on the sequence similarity within
the data set, so that data sets with higher average p-distances are more impacted by this choice, and WITCH
provides a greater advantage over MAGUS+UPP.

Experiment 3 results are helpful in interpreting these trends. On the three data sets without any intro-
duced fragmentation, WITCH provides an accuracy advantage over MAGUS+UPP on 5S.3 and 5S.T, but
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FIG. 9. Experiment 3: A visualization using Wasabi (Veidenberg et al., 2016) of three alignments, showing how a
query sequence in 5S.T is aligned differently by WITCH and MAGUS+UPP. From top to bottom, we have the
reference alignment, WITCH alignment, and MAGUS+UPP alignment, each induced on sequences sl1, s2, s3, s4 and
AAAAFXC. Sequences s1, 52, s3, s4 (namely AAAAAWP, AAAAAFV, AAAAEIS, and AAAAGKE) are from the
reference backbone alignment, which is the same for both MAGUS+UPP and WITCH. Note that MAGUS+UPP
underaligns, missing some homologies that WITCH is able to recover correctly.

not on 16S.B.ALL, where it matches MAGUS+UPP. Each of these data sets exhibits sequence length
heterogeneity (Fig. 1). In examining their p-distances, we see that 5S.3 and 5S.T have higher average
p-distances than 16S.B.ALL (i.e., mean p-distances for 5S.3 and 5S.E are both at least 0.418, whereas the
mean p-distance for 16S.B.ALL is only 0.21). These trends together suggest that 16S.B.ALL (due to its low
average p-distance and modest amount of sequence length heterogeneity) should be easily aligned by both
WITCH and MAGUS+UPP, but that 5S.T and 5S.3 may benefit from using WITCH instead of MAGU-
S+UPP. This prediction matches what we see on these data sets.

An examination of results on 16S.B.ALL-100-HF (i.e., with short sequences of average length only
100 bp) shows that WITCH provides an accuracy advantage over MAGUS+UPP in this case. In con-
trast, recall that the HF conditions in Experiments 1 and 2 produced fragments that were ~25% of the
full-length sequences (e.g., about 250 bp for the simulated data sets). In other words, the HF conditions
in Experiments 1 and 2 produced fragments that were substantially longer than the HF condition in
Experiment 3. This may suggest that when the fragmentary sequences are sufficiently short, even data
sets with low p-distances can become difficult to align, and WITCH may provide an advantage over
MAGUS+UPP.

With this in mind, we consider the properties of biological data sets that might be important when
choosing between methods. As Supplementary Materials section S3 shows, when there is no sequence
length heterogeneity (e.g., on simulated data sets without introduced fragmentation), WITCH and MA-
GUS+UPP are both very accurate, but not the most accurate of the tested methods. Instead, MAGUS is the
most accurate on these data and is slightly more accurate than WITCH, MAGUS+UPP, and PASTA (which
are close in terms of alignment accuracy and better than MAFFT and Clustal-Omega).

However, as seen in Figure 1, biological data sets exhibit much higher levels of sequence length heterogeneity
than these simulated data sets, so that these simulated data sets without introduced fragmentation are not typical
of biological data. Therefore, the choice of alignment method clearly should be governed by a consideration of
the sequence length heterogeneity and the average p-distance. However, additional research is needed to better
understand the conditions under which each method provides the best accuracy.

5. CONCLUSIONS

We have presented WITCH, a method for multiple sequence alignment of data sets that contain
fragmentary sequences. WITCH has the same two-stage structure as MAGUS+UPP, the previous
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most accurate method for this problem: it builds an alignment and an eHMM on selected full-
length sequences, and then adds the remaining ‘‘query’’ sequences into the alignment using the
ensemble.

However, WITCH improves on MAGUS+UPP through two algorithmic innovations. First, WITCH
computes an adjusted bitscore for each query-HMM pair, where the adjusted bitscore is an estimate of the
probability that the HMM generates the query. Second, to add in a query sequence into the alignment on the
full-length sequence, WITCH uses an ensemble approach that allows it to combine information from all of
the HMMs in the ensemble. In contrast, MAGUS+UPP considers only one HMM for each query sequence
and uses the raw bitscores. The ensemble approach itself is interesting: to add a single query sequence into
the backbone alignment, WITCH uses the information from the HMMs to define a weighted graph (where
weights are defined using the adjusted bitscores) and then clusters the graph.

Thus, the ability to use more than one HMM in the ensemble and to interpret the information provided by
each HMM in a statistically rigorous manner (because of the use of the adjusted bitscore) are the reasons
that WITCH provides improved accuracy over MAGUS+UPP.

Although WITCH provides an advance in alignment estimation given sequence length heterogeneity,
fully addressing the challenge of improving alignment estimation for such data sets most likely will require
additional algorithmic innovations. For example, this study did not modify how UPP selects the backbone
sequences, which is likely to be an important aspect of this two-stage approach. For the simulated data sets
explored in this study, all the sequence length heterogeneity is due to the inclusion of fragmentary se-
quences, which makes the selection of full-length sequences very easy. Future work will need to consider
how to select the backbone sequence data sets where sequence length heterogeneity may be characterized
by the inclusion of excessively long sequences as well as fragmentary sequences.

Another potential improvement is changing how sequences are added into backbone alignments. In
WITCH, as in UPP, we used HMMER tools to add sequences into selected HMMs; this technique may
work well under many conditions, but was only tested for adding sequences that are short. Since data sets
with sequence length heterogeneity also contain very long sequences, it is possible that the HMM-based
methods in HMMER may not provide sufficient accuracy, and new approaches may be needed. The success
in using the weighted version of GCM to compute an extended alignment for each query sequence suggests
that other ways of computing consensus alignments, potentially equipped with statistically defined weights,
would yield improved alignment estimation beyond what is already achieved through WITCH.

In particular, other methods for computing consensus alignments have been developed (Prasad et al.,
2003; Wallace et al., 2006; Collingridge and Kelly, 2012), and future work could explore the use of these
methods instead of the GCM step in WITCH.

A basic problem that we have not touched on is how to estimate a tree when there is sequence length
heterogeneity. While some studies have shown that FastTree 2 (a very fast heuristic for maximum like-
lihood) can be highly accurate for tree topology estimation, competitive with RAXML (a much slower
heuristic) in many cases (e.g., Liu et al. 2011), other studies have shown that FastTree 2 can be much less
accurate than RAXML given the alignments with substantial sequence length heterogeneity (Smirnov and
Warnow, 2021b; Park et al., 2021). Moreover, the poor accuracy for FastTree 2 compared with RAXML
holds even if the true alignment is provided (Sayyari et al., 2017). Thus, tree estimation itself is a problem
of concern, when working with sequence length heterogeneity.

The approach presented in Ashkenazy et al. (2019) is relevant to this question, when alternative multiple
sequence alignments are available. Specifically, given a collection of multiple different alignments for the
same sequences, Ashkenazy et al. (2019) concatenated the alignments and then estimated the tree on the
concatenated alignment, and found that this improved phylogenetic accuracy. Thus, the technique in
Ashkenazy et al. (2019) could be used as a way to estimate a tree on a set of unaligned sequences with
sequence length heterogeneity: first, estimate multiple sequence alignments using a variety of methods
(e.g., WITCH or MAGUS+UPP run in different ways, MAGUS, MAFFT), then concatenate the alignments
and estimate a tree on the concatenated alignment.

In closing, given how common sequence length heterogeneity is in biological data sets, multiple se-
quence alignment methods should be evaluated on data sets that exhibit this heterogeneity, and we predict
that future studies will identify limitations in the existing alignment methods and suggest additional
opportunities for method development. WITCH provides a few useful techniques for alignment of data sets
with substantial sequence length heterogeneity, but additional techniques are needed to obtain highly
accurate alignments and subsequent phylogeny estimation under these challenging circumstances.
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