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Abstract

In this article, we consider a dynamic model for the spread of epidemics, in
particular of COVID-19, and the inverse problem of estimating sequentially
the time evolution of the unknown state and the model parameters based on
noisy observations of the new daily infections. A characteristic of COVID-
19 is the significant proportion of secondary infections though contacts with
asymptomatic or oligosymptomatic infectious individuals. Since most of these
individuals are not accounted for in the number of new daily infections, the size
of this cohort can be inferred only indirectly through the underlying model. The
evolution model used to propagate the current state from one data instance to the
next is a suitably modified SEIR compartment model, providing the expected
value for the new daily infection count that is modeled as a Poisson distributed
random variable. The estimation of the state and the model parameters is based
on a Bayesian particle filtering algorithm. The sequential Bayesian framework
naturally provides a quantification of the uncertainty in the estimates of the
model parameters, basic reproduction number, and size of the cohorts. Of par-
ticular interest is the fact that the algorithm makes it possible to estimate the size
of the asymptomatic cohort, a key component for understanding the COVID-
19 dynamics, and for planning mitigation measures. Alternative versions of the
classical basic reproduction number for estimating the speed of the propagation
of the disease are also proposed. The viability of the algorithm is demonstrated
through a set of computed examples with both simulated realistic data and actual
real data from selected US counties. The numerical tests show that the algorithm
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reproduces a ratio of asymptomatic vs symptomatic cohort sizes remarkably
close to what is currently suggested by the Center for Disease Control.

Keywords: COVID-19, basic reproduction number, state estimation, parameter
estimation, sequential Monte Carlo

(Some figures may appear in colour only in the online journal)

1. Introduction

In a little over four months since its emergence in Wuhan, China, at the end of 2019, the novel
coronavirus SARS-CoV-2, the cause of COVID-19, spread worldwide, evolving into a global
pandemic in spite of the measures taken to control and contain the contagion. SARS-CoV-2
is itself part of the family of coronaviruses that were responsible for the SARS and MERS
epidemics in 2003 and 2009, respectively, though there are significant differences between
these epidemics and the current COVID-19 pandemic. One major difference is the asymp-
tomatic/presymptomatic transmission of COVID-19, which has turned out to be a major hurdle
for containing the spread. Consequently, existing mathematical models for understanding the
dynamics of the epidemics needed to be updated to better account for the specific features of
the disease.

Since the dawn of mathematical epidemiology [1], SIR and SEIR compartment models have
played a central role in understanding the spread of infectious diseases, and the estimation of
the related model parameters from available data remains a central issue. The spread, speed, and
severity of the impact of the COVID-19 pandemic has been accompanied by a burst of modeling
activity, and a renewed interest in the estimation of model parameters of the dynamical system
describing the epidemics. A literature review of the parameter estimation and inverse problems
relevant for our discussion is included in the subsequent discussion. In the present article,
we propose a Bayesian particle filtering algorithm for estimating dynamically the state of the
epidemic and the related model parameters based on daily counts of new infected cases. The
estimation employs an underlying local SEIR-type model, which has been modified to address
the characteristic features of the COVID-19 contagion.

Currently, a wealth of testing data are available, however, the data are highly non-uniform
both spatially and temporally. In the beginning of the epidemics, in particular, COVID testing
was largely restricted to individuals displaying the COVID-19 symptoms, and this continues to
be the case with available data from many geographical regions. Therefore, the inverse problem
of estimating the state and the model parameters is formulated here in terms of the symp-
tomatic infection count data only. Observe that even if the model parameters were known, the
knowledge of the size of the symptomatic infected cohort is not sufficient for prediction, as it
is well understood that presymptomatic and asymptomatic individuals play a significant role
in transmitting this virus. Consequently, the importance of being able to assess the contribu-
tions of untested asymptomatic cases to the epidemic dynamics has been acknowledged in
COVID-19 research. Early in the pandemic outbreak, studies in the US [2] and Europe [3, 4]
pointed towards a significantly high ratio of asymptomatic to symptomatic cases, while cur-
rent estimates, based on more extensive testing suggest that roughly one out of three cases is
asymptomatic. The particle filtering algorithm proposed in this article, together with the local
dynamic model, provide a set of efficient tools to estimate this ratio from the daily count of
new, mostly symptomatic, confirmed infections.

Since the groundbreaking work of MacDonald on malaria [5], one of the key indicators
in epidemiology to monitor and predict the course of an epidemic is the basic reproduction
number Ry, or R, for a time dependent version of it, thoroughly discussed in the literature,
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see, e.g., [6—11]. The literature on estimating the basic reproduction number of COVID-19
is vast, see, e.g., [12] for a review of some of the literature. The proposed particle filtering
approach provides a means of estimating the evolution of R,, thus to monitor the current trend
in the epidemic while assessing the state of the epidemics. Characteristic to Bayesian methods,
uncertainty quantification of the estimated quantities are included.

1.1. Our contribution

In this work, we propose a novel modification of the standard SEIR model, referred to as
SE(A)IR model, comprising an added asymptomatic cohort and simultaneously reducing the
model so that the infection data are sensitive to the size of the asymptomatic cohort, which is
a key component of the inverse problem. The particle filtering approach to solve the inverse
problem in the Bayesian framework shows that it is possible to stably recover the state and the
parameters of the SE(A)IR model from publicly reported data. We demonstrate that the model
and the corresponding inverse solver applied to real data produce estimates that are well in
agreement with the current understanding of the infection dynamics and the recorded data.
We also show that the ratio of asymptomatic to symptomatic infections satisfy a novel Riccati
equation that can be used to define a stable equilibrium of this ratio. The equation turns out to
be more than a mathematical curiosity, as numerical experiments with synthetic and real data
indicate that when the epidemics is not propagating aggressively, the value of this ratio remains
close to the equilibrium value and falls below it in the waning phase, thus providing a new
predictive tool for the infection dynamics. Furthermore, having a way to estimate the dynamic
state, we define new easily interpretable alternatives for the basic reproduction number that
provide detailed information about the current trends in the dynamics of the symptomatic and
asymptomatic cohorts.

The paper is organized as follows. In section 2, we introduce a parametric local compart-
ment model for the COVID-19 epidemic and explain how it takes into account asymptomatic
transmission, which is a characteristic feature of the disease. Unlike most models proposed in
the literature, this compartment model is used only locally in time to describe the propagation
of the state vectors over a time interval of one day, which is the frequency at which the data
are updated. This way, the proposed particle filtering algorithm is not too committal on the
underlying model. Moreover, possible shortcomings of the model to describe the underlying
reality are continuously compensated for by a stochastic innovation process. Section 3 presents
two Bayesian particle filtering algorithms for estimating the state vectors and the parameters;
the details of the implementation are presented in the appendices A and B. Finally, section 4
contains computed examples based both on synthetic and real data.

2. COVID-19 epidemiology model

In this section, we describe the computational model that constitutes the forward model for the
inverse problem. Unlike in standard parameter estimation approaches, the differential equation
based dynamic model will be used only locally in time to describe the time evolution from one
observation instance to the next, therefore it is not to be understood as to a global evolution
model of the epidemics.

Compartment models [13—15] in mathematical epidemiology partition a presumably
homogenous and well-mixed population into cohorts of individuals at different stages of the
infection. Proposed nearly a century ago by Kermack and McKendrick [1], the popular SIR
model, with separate compartments for susceptible (S), infected (I) and recovered (R), incorpo-
rates population dynamics into the previous, purely phenomenological statistical models dating
back to the works of William Farr in early 19th century, which still have a life of their own
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in modeling the COVID-19 epidemic [16]. Variants to the compartmental SIR model have
also been developed, such as the SEIR model that include an exposed (E) compartment for
individuals that have been exposed to contagion but are not infectious.

A major challenge for the control and containment of the COVID-19 epidemic is the spread
of the infection by a large portion of asymptomatic or lightly symptomatic infectious individu-
als who are unaware of being vectors of the virus. This is especially problematic when testing
priority is given to symptomatic individuals and vulnerable populations, thus the size of the
asymptomatic cohort must be estimated indirectly. In the next subsection, we propose a com-
partment model that can be used to obtain such an estimate, and discuss its advantages and
limitations.

2.1 SE(A)IR model

We begin by considering a modification of the classical SEIR model where the infected cohort /
is subdivided into two infectious groups according to the manifestation of symptoms, denoting
by A the asymptomatic subcohort and by / the symptomatic subcohort. Hence, while £ and
A are both asymptomatic and infected, the E cohort is not infectious, as opposed to A that
sheds the virus and is infectious. This compartment model, schematically represented by the
branching flow diagram in the left panel of figure 1, is governed by the following system of
differential equations

ds

a

B o —pr— D)

d[ 1 2 3

dA o

ar =¢3 —¥3, (1)
a

dt - @2 SO4 SOS3

dr =3 + @4,

where the functional form of the fluxes will be specified below. A similar model was recently
investigated, e.g., in [17, 18]. In this article, we consider COVID-19 data consisting of the
daily count of newly reported symptomatic infections, corresponding to observations of the
flux ¢, in the absence of additional population-level inputs, this is the data that must be used
to estimate the cohort sizes and model parameters. In particular, if no data concerning the
asymptomatic cohort dynamics are available, the values of the fluxes cpgl) and <p(32) can be set
rather arbitrarily, since they are weakly connected with the fluxes in the lower branch of the
flow diagram, whose values are part of the observations. To estimate the size of the asymp-
tomatic cohort in the absence of additional information, we reduce the model while retaining
many of the features of the extended model that make it particularly well suited for COVID-
19. The logic guiding the modification is similar to that used in metabolic network model
reduction [19], when lumping enzymatic reactions whose parameters cannot be estimated
from the data.

In our reduced model, the fictitious compartment E(A) embeds the asymptomatic cohort
into the exposed one, as depicted in the right panel of figure 1, thus the size of the new cohort
is

E(A) =E + A,
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Figure 1. Left: the compartment diagram of the model that includes both symp-
tomatic and asymptomatic infected cohorts. After a non-infectious incubation period,
the exposed individuals branch either to symptomatic (/) or asymptomatic (A) infectious
compartments, with unknown frequencies and unknown reasons. Right: the modified
SE(A)IR model where the two compartments £ and A on the blue background are lumped
together to form the fictitious E(A) compartment comprising both the exposed and the
asymptomatic cohorts. The two fluxes <p(31) and <p(32) are merged to a single flux 3.

and from (1) it follows that

dE(A)_d_E+%_ o
i dt—% Y2 — P37

In this manner, the flux cpgl), that describes a variation internal to the lumped compartment,

is no longer part of the model governing equations. As in the right diagram of figure 1, we
denote the flux apgz) simply by ¢3. Assuming, for simplicity, that both asymptomatic and symp-
tomatic individuals move to the recovered compartment at the same relative rate, denoted by
7, it follows that

©3 = YE(A), w4 =l

The flux ¢ is proportional to the rate at which a portion of the exposed individuals develops
symptoms. For simplicity, we assume that the flux is proportional to the size of the compounded
cohort, that is,

P2 = NEA).

One of the most relevant parameters to describe the spread of an epidemic is the rate at which
susceptible individuals are infected. In the classical SEIR model, the transmission flux assumes
the form

1

p1=0 N, S,
where (3 is the transmission rate and N, is the population size. Our model accounts for the
possibility that virus transmission can occur through contact with the asymptomatic cohort
within E(A), as is the case in COVID-19, while most infected individuals who have developed
symptoms are either hospitalized or in self-isolation, thus playing a limiting role in the exposure
of susceptible individuals to contagion. Acknowledging the differing roles that symptomatic
and asymptomatic virus shedders play in transmission to susceptibles, we postulate

PE(A) + gl

= S,
1 =0 N,
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where p and ¢ are frequencies, 0 < p, g < 1. The frequency p may be interpreted as the frac-
tion of individuals in the compound cohort E(A) who are infectious, while g reflects the limited
exposure to self-isolated or hospitalized symptomatic individuals as compared to the asymp-
tomatic ones. Classical SEIR models, where usually it is assumed that the exposed cohort is
not infectious, can be obtained by setting p = 0, ¢ = 1. When using our model to understand
COVID-19 dynamics, we assume that p > ¢. The transmission rate 3, which is the quantity
of primary interest when it comes to assessing how fast epidemics spread, integrates elements
related to the characteristics of the pathogen determining the probability of infection of a given
susceptible contact, and factors related to social behavior, including the number and nature of
daily contacts. In summary, the governing equations of the proposed model are

di(?) _ BpE(f;\)I; 9§ pEA) — vEA), 3)
S ) 91—, @
% — VEA) 41, )

where (3 is the transmission rate, -y is the recovery rate, 7 is the rate at which symptoms develop
that integrates the incubation process E — I, and p is the death rate.

As pointed out, the transmission rate 3 reflects not only properties of the pathogen, but
also factors related to human behavior that change in the course of an epidemic, therefore
in the filtering approach that we propose below to estimate the course of the epidemic, [ is
modeled as a time dependent parameter. In the absence of a known deterministic dynamical
evolution model for /3, its changes will be described in terms of a stochastic geometric random
walk.

Before describing the computational methodology at the heart of our model predictions,
some qualitative comments about the model are in order. In classical SEIR models, the presence
of the exposed cohort E adds a time delay corresponding to the incubation period that could
not be accounted for in SIR models. While our expression for ¢, implicitly assumes that the
infected and asymptomatic individuals are immediately infectious, the flux ¢, introduces a
slight delay in changes to the / cohort when the transmission rate changes. Moreover, if p # 0,
we may write

EA) +(a/p) ¢

v =PBp N,

)

and redefining 3 so as to comprise scaling by p, the model can be written in terms of the ratio
q/ p- Hence, without a loss of generality, we may set p = 1, and assume ¢ < 1. In our numerical
examples we set ¢ = 0.1. A discussion of how the value of ¢ affects the estimated quantities
is presented in the context of the computed results. We remark that the assumption that the
symptomatic and asymptomatic individuals recover at the same rate is not essential for the
methodology developed below, and can be easily removed.

The merging of the compartment £ and A into the E(A) compartment is in agreement with
the observation that the transition from exposed non-infective (E) to asymptomatic infective
(A) is not fully understood for COVID-19, as it has been observed that the virus load increases
gradually after contagion, regardless of whether symptoms develop. The choice of having
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separate compartments for symptomatic and asymptomatic cohorts follows from the obser-
vation that it is the onset of symptoms, rather that the increase in viral load, that affects the
behavior of the infected individual (self-isolation, hospitalization) and dramatically changes
their role in the spread of the infection, as reflected in our model.

2.2. The forward model and the inverse problem

The data that are used to inform our parameterized model, as well as to update the estima-
tion of the size of the cohorts over time comprise the number of confirmed, symptomatic new
daily cases. Assuming that the time is given in units of one day, the observed data are noisy
realizations of the flux,

/ o)A = () = nEA)@), t=1,2,...
—1

The daily case count constituting the data is an integer, and we model it as a Poisson distributed
random variable,

B, ~ Poisson(px(f)), t=1,2,...

Denoting by z, the state vector, z, = (S;, E(A)s, I;, R;) and by (3,,7,) the model parameters,
the forward model can be described as

(0, {ﬁt}zT:p 7,7) = {Zt}szl - {SOZ(I)}szl — {Bt}zT:h

for some 7 > 0. Here the mortality rate is assumed to be fixed and known. The inverse
problem of estimating the size of the cohorts and the parameter values from the observations is
solved here in a sequential manner, estimating simultaneously z,; and /3, | using the previous
estimates z, and /3, together with the new data B, ;.

The sequential estimation process, based on a Bayesian statistical model described in detail
in the following section, has a couple of features worth highlighting. First, the estimation pro-
cess produces a distribution of values z, and /3,, allowing us to compute derived quantities and
to obtain credibility estimates for these quantities. Second, the estimation process assumes that
the state vector satisfies the model (2)—(5) only approximately, acknowledging that a simpli-
fied well-mixed closed dynamical model cannot represent accurately the full complexity of
a heterogeneous population which is in interaction with the surrounding world. The implicit
integration of the model discrepancy [20] into the computational scheme makes the approach
more flexible than those based on a deterministic forward model, and consequently less prone
to be biased by model assumptions.

Since the outbreak of COVID-19, there has been a significant amount of literature related
to compartment models and parameter estimation. Global optimization algorithms for esti-
mating the parameters of a SIR model from infection data were discussed in [21, 22]. An
analytical method based on special function representations was discussed in [23], and a clus-
ter analysis was proposed in [24]. Time dependent parameter functions in the SIR model were
estimated in [25] using Tikhonov regularization and a Levenberg—Marquardt approach, and
similar approaches were proposed and discussed in [26, 27]. More complex SEIR-like model
and further extensions were proposed in [28], where the inverse problem was solved using
stochastic optimization methods such as simulated annealing. Similarly, a SEIR model was
used in [18], and its parameters were estimated using particle swarm optimization. A number
of methods based on the Bayesian paradigm for solving inverse problems have been proposed:
in [29], the early infection data from China was analyzed using a SEIR model using sequen-
tial Monte Carlo methods, and variational Bayesian methods with a SIR model were used in
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[30]. A more complex SEIR-based model (SAPHIRE) was proposed in [31], and Markov chain
Monte Carlo (MCMC) methods were used to estimate the parameters. The article [32], which is
methodologically closer to ours, proposes a stochastic SEIR model and uses ensemble Kalman
filtering to estimate the model parameters. For other contributions using Bayesian techniques
with different modeling approaches, see, e.g., [33, 34].

In the discussion to follow, we simplify the notation by using E, instead of E(A), to denote
the exposed/asymptomatic cohort size.

3. Bayesian particle filtering

Bayesian filtering methods estimate the time evolution of state vectors of a dynamic model
from limited observations in a sequential manner. In keeping with the Bayesian paradigm for
inverse problems, all unknown quantities, hence the state vector and possibly any unknown
parameters, are modeled as random variables. The solution computed via Bayesian filtering
is the time evolving posterior density of the state vector and parameters, while the evolution
model can be viewed as part of the prior. We use the convention of denoting random variables
with upper case letters and their realizations with the corresponding lower case letters. We
refer to [35-37] for an overview of particle filtering, and to [38—40] for the particular type
of applications to ODE systems. For a recent review of particle filters in the context of data
assimilation, see [41].

Let {X;} denote a discrete time Markov process, =0, 1,2,. .., the time step being one
day, with the transition probability distribution y,, | |x, (x;+1 |x;). Furthermore, let {B;} denote
the stochastic process representing the observations, and let 7| x,(b/|x;) denote the likelihood
density, where we implicitly assume that the current observation B, depends on the past only
through the current state X,. Finally, let 8, denote the cumulative data up to time ¢, that is,

‘%t = {BI’BZa e aBt}a

and by B, the set of observed realizations, B, = {by,b,, ..., b,}. In Bayesian filtering algo-
rithms the update of the posterior distribution from time ¢ to time 7 + 1 is carried out in two
consecutive steps,

ﬂ-Xt"%t - 7TX,+1\.%’, - 7TXH—I‘%’H—I ’

where the first step is referred to as the propagation, or prediction step and the sec-
ond as the analysis, or correction step. The propagation step is accomplished through the
Chapman—Kolmogorov formula,

X, 1|2, (X1 Br) = /WX,H x, (X1 X0y, 8, (| B1)dox;,
while the analysis step builds on Bayes’ formula,

X, 11 Byy Kot 1[Br1) = 7x 18, (1 BOTB, x4 Brgt [Xe41),

with the predicted distribution of X,y acting as the prior when the next observation arrives.
We now proceed to specify the transition probability kernel and the likelihood for our model,
and describe the computational steps for the numerical implementation of the Bayesian filter.
We then extend the discussion to include the estimation of static parameters.

8
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3.1. Particle filtering with fixed static parameters

Consider the SE(A)IR model introduced in the previous section, and let
i =

be the corresponding state vector at time 7. We assume that the infectivity parameter 5 may
vary over time and denote its value at time 7 by 3,. We collect the other model parameters in
the vector 0 = (v, 7, ), which is assumed to be static and, for the time being, known.

We denote formally by 1/ the numerical propagator advancing the state variable from one
day to the next, t — ¢ + 1,

(2, Br) = 2413

with the dependency on the static parameters suppressed because they remain constant in time.
In our computations, the time integration of the system (2)—(5) is performed by means of a
standard ODE solver such as Runge—Kutta, keeping the value of the infectivity parameter /3,
fixed during the one day propagation step.

Formally, we write a propagation model of the form

X = [g’t ] — Fx) = V(thﬁ’)} =%, ©

and we account for uncertainties both in the state vector z, and the parameter vector 3, by
introducing an innovation term. We guarantee that all components of the state vector and
the parameter 5 remain nonnegative by introducing a multiplicative innovation that follows
a geometric random walk model,

log Xi41 ~ N(logZi41,C), 7)

where C € R* is a positive definite diagonal matrix. Thus the transition probability density
7x,1 1%, (Xr+1|x,) is defined though (6) and (7).

In the definition of the likelihood, we assume that the data consist of realizations b, of the
daily count of new infections, denoted by B;. This count is assumed to be Poisson distributed,
with the expectation equal to the flux (), that is

B, ~ Poisson(p»()), where @) () = nE,.
Therefore, the likelihood of the observed number b, of new infections is

by
ma by = T e
!

To initialize the process, we need to specify the value of the state vector at the time = 0 prior to
observing the first infections. If the initial state is unknown, it becomes part of the estimation
problem also. We postulate that before the first infection is observed, there is an unknown
number of asymptomatic and symptomatic individuals in the community and that the initial
number of asymptomatic cases follows a Poisson distribution with a uniformly distributed
expected value Ag, A; ~ Uniform([0, Amax]). Moreover, we assume that /3, follows a uniform
distribution over some interval [5,i,s Bmaxl-
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We are now ready to outline the particle filter (PF) algorithm for estimating the state vector
X, based on the daily new infection count. Assume that at time ¢ a sample {x],x7,...,x"}
drawn from the distribution 7y, &, is available, and that wy is the weight associated with the

sample point x/, so that we can approximate the underlying density by

N
x5, (| Bo) & Y wl ().

=1

Substituting this particle approximation of the density in the Chapman—Kolmogorov formula
gives

X, 1|2, (X1 B) = /7Tx,+1\x,(xz+1|xz)7Tx,\%(xz\%;)dx;

N
~ > wimy i (e X)), )

j=1
and subsequently, substituting in Bayes’ formula, we obtain the updating formula
N
T 1%y Gt [Bee) = > wlmy, i GoptlxD s,y Bt lxig). (9)
J=1
Let ?{ -1 denote a propagated predictor particle associated with x,j , that is,
/x\t_l,_l - F('x{)a

where F is defined in (6). At the arrival of the next observation by, the likelihood
B,y 11X,y (Drt1 |x/ 1) expresses how good the predictor is at explaining the data and can be
used to reformulate (9) as

N

X, 1| Byy Kr1 [ Brg1) = Z {wtjﬁB,H\X,+1(bt+l|3€\;]+1)}
=

(a)

T8, 1 Xy (Dey1 [ Xeg1)

J
- o \fj ) 7Tx,+1\x,(xz+1|xz)~ (10)
Biy11X41 \Pr+11X 4 1) | e~ ——
(©)

(b)

The three factors whose product accounts for each particle contribution have natural inter-
pretations in terms of the fitness of the particle at explaining the data. The factor (a) expresses
the relevance of the particle x/ 1 in explaining the new data, by combining the importance of
its predecessor, encoded in wtj , and the likelihood of the observed data point; the transition
kernel (c) accounts for the fact that the next generation particle is generated from its predic-
tor according to (7); the factor (b) weighs the importance of the new particle relative to the
predictor. This hierarchical organization is the backbone of the particle filter algorithm. For
completeness, we present the details of the implementation from (10) in appendix A.

10
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Particle filtering algorithm with known static parameters
Initialize: draw N independent realizations of 3, ~ Uniform([S;,, 5
Ag, Ap ~ Uniform([0, Amax]),

{ﬁ(l),ﬁ(Z)’,ﬁ{)V}’ {)\EU)\%’,)\%]}, {>\]1$)\%,7)\§V}7

generate N realizations of the initial state Z,

) and

max]

N =X\, — X
A
N
0

and define the initial particle cloud

J
{xbx3, Y x) = il -
By

Setr=0.
While ¢ < t,,,,x do
(a) Propagate the particles according to (6) to generate the predictive particle cloud

=l =2 =N
Xip 1 Xig 1o Xy}

(b) Extract the second component E,/ .1 of each propagated particle, and compute the weights,

i b iy i

o jEL ) " g

S — gy ] 77 J 141
= w; —7———e¢ 't} =

St T b! S 2084

(c) Sample with replacement N indices ¢; € {1,2,...,N}, j=1,2,...,N, using the normalized
weights g/ 1 as probabilities. Define the new resampled predictive cloud,

~J =t
X X0

Generate a new particle cloud through the innovation process,
log x/, =log &, , + C?w/, w/ ~ N(0,1s).
(d) Extract the second component E{H from each new particle, evaluate the normalized likelihood,

- ,
_mE[

j . o
J B J Sit1
81 — ] g -
+ brt1! T e
and update the weights,
J
o St
Wi =
8141

Advance the counter r — ¢ + 1.
end do

In this version of the PF algorithm, the model parameters ~, n and i are assumed to be
fixed and known. It is also possible to modify the algorithm to estimate these parameters. In
that case, to estimate the death rate y, the information about the deceased must be included in
the data, as the new infection count is essentially insensitive to that parameter. The parameters
~ and 7 are less time-dependent than the infectivity (3, and we set their values according to
what is suggested in the literature.
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3.2. Particle filter with unknown static parameters

The algorithm outlined in the previous section assumes that the static parameters v, n and
1 are fixed and known. A coarse estimate of these parameters can be obtained using the
average recovery time T as well as the estimated time 7'y, from exposure to onset of symp-
toms. However, these times are ill-defined and difficult to observe directly, with the variability
between individuals contributing to the uncertainty. Therefore, we outline an extension of the
PF algorithm to also estimate the static parameters that is an adaptation of the particle fil-
ter/sequential Monte Carlo (PF-SMC) algorithm discussed in [35, 39]. In this version, the
vector x; in (6) is augmented by the parameter vector 6, = (vy,,7,), whose components are
assumed, a priori, to be constants or almost constants, but unknowns. To prevent the algorithm
for compensating for changes in the time dependent (3, erroneously by varying significantly
the values of «, and 7,, we define a propagation model of the form

! 8} l‘?et -~ 0
X = [gt] — F(x) = {w(gtegw, )} = X1, Orr1 = 0, (1D

where o > 0 is a parameter controlling the variability of 3, from one time step to the next, and
w; ~ N(0, 1), that is, the propagation model has a random component.

The innovation process for x; uses a geometric random walk model similar to (7). However,
to avoid artificial diffusion of the static parameters, the component 6, is treated slightly differ-
ently. Given the predictive sample 5} s @Z‘ﬁr 1> we calculate the mean and the covariance of
the logarithms of the particles,

N N
&1 = Z wi log 0/, Y1 = Z w/(log 0], — & y1)(log 0/, | — i)'

=1 =1

Let 0 < i < 1 be a parameter controlling the variance of the innovation, and a = v/1 — h2.
With these notations, we introduce the innovation model

log Oy ~ N(a log 0, + (1 — a)§;+1, h22t+1)~

For completeness and for convenience of the reader, a detailed justification of this formula is
provided in appendix B.
We are now ready to summarize the steps in algorithmic form.

Particle filtering algorithm with unknown static parameters
Initialize: draw N independent realizations of 3, ~ Uniform([Bins Bmax])s Yo ~ Uniform([Ymin> VmaxD)»
1o ~ Uniform([7pin, max]) and Ag, Ay ~ Uniform([0, Amax 1),

{80,868 {1096 Amomg - omoh AR AR LA AT

generate N realizations of the initial state of Zy,
N— M. — )

J

Ap

and define the initial cloud of the particles

(continued on next page)
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73]

J
. Z .
1.2 N R _
{x0s X5 -+ -» %0 } xé = |:6j:| > ‘% = { j
0 o
Sett = 0.
While t < tpax do

(a) Propagate the particles according to (11) to generate the predictive particle cloud

~1 =2 ~N Y N
{xH—l’xH—l""’xH—l}’ {0t+1’0t+1""’0f+1}'

(b) Extract the second component E’. | of each of the propagated particles % and compute

1+1 t41°
the weights
~i b s _j
_j jE[ )L R —j Z
J — J 41 7). J 41
=w e rtl — .
gt+l ! bryy! ’ gr+1 Z[g\f+1

(c) Sample with replacement N indices ¢; € {1,2,...,N}, j=1,2,...,N, with the probability
weights g/ 1~ Define the new resampled predictive cloud

X X Ol 01

Generate a new particle cloud through the innovation process

log x/,, =log &, + C"w/, w/ ~N(.15),

log 0/, =alog 0, + (1 — 1 + 7w/, wl ~ N, 1),
J J . and evaluate the normalized

(d) Extract the second component £, ; from each new particle x

41 +1°
likelihood
B P j . J
g = WE ) e*nE{H g« 8141
= SR
Update the weights,
J
Jo St
Wiy = 55 -
8141

Advance the counter r — ¢ + 1.
end do

We close this section by noting that the proposed algorithm is slightly simpler than the one
in [39], where an additional repropagation step was included. Numerical test indicate that in the
present framework, there are no notable difference in results with and without the repropagation
step.

3.3. Basic reproduction numbers

When assessing and predicting the evolution of an epidemic, the estimated parameters have
the drawback that they are meaningful only in the framework of the model, while derived
dimensionless parameters, or [I-numbers of the model [15] may be more informative, as they
have a wider interpretation. The most significant II-number for epidemiological models is the
basic reproduction number R,. The standard definition of R, is based on the concept of the
next generation matrix, see [6—11]. In addition to the classical R,, we will consider below
two dimensionless quantities that are directly related to the derivatives of the compartments £
and / of the model, referred to as disease compartments in the discussion about reproduction
number.

13
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3.3.1. Next generation matrix based R;. The first step in the derivation of the formula for the
standard basic reproduction number is to write equations (3) and (4) describing the dynamics
of the infection-carrying, or disease compartments as

21-F5 -1 2ol
dr |1 0 0 1 -  y+p| ! 10’
—_———— —_—

F \Y

where vg = vg(f) denotes the frequency S/N, of the susceptible cohort. The matrix F
describes the flux into the disease compartments E and I, and V the clearance of the disease
compartments. The next generation matrix G is defined as

1 (p%_ qn ) Bus q
G=FV = YHu)vEn v+p |
0 0

see, e.g. [11] for further explanations. The basic reproduction number is defined as the spectral
radius of the next generation matrix, thus for the current model

1%
RO (p T) (12)
vHup) v+

where the superscript indicates that the derivation is based on the next generation matrix.

3.3.2. Control of infected and exposed compartments. The basic reproduction number RNS
defined above relies on the linearization around a hypothetical disease-free state. Alternative
tools to analyze a spreading epidemic can be related to the instantaneous growth rates of the
disease compartments at the current state of the epidemic, without a reference to a disease-free

state. To this end, we denote by p = p(?) the ratio of the exposed/asymptomatic and infected
cohort sizes,

=7 13)

Combining (3) and (4) we obtain

dr
=—(y+n) (1 -R)E,

-1
1_ﬁ@+qp)>E

dE
—mw+wwvwwmw=—w+m<
Y+

and, likewise,

d/ np !
— =nE — /= — 1l——— ) I=— 1—-R)I,
3 = TE- (b (7+u)< 7+u> (v+mw (1-R))
indicating that, similarly to the classical basic reproduction number for the SIR model, the
dimensionless quantities

e_ Bptap™ e
' T+ oyt
describe whether the corresponding diseased cohorts are increasing or decreasing, the critical

value being RE = R! = 1. Observe that unlike the classical basic reproduction number, these
quantities do not define naturally a critical community size of susceptible individuals.

R (14)

14
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We point out that to estimate (14) from the daily infection data, it is necessary to estimate
the cohort sizes, a task for which the proposed PF is particularly well suited. Moreover, for
monitoring and controlling the spread of an epidemic where asymptomatic individuals may
be the main vectors of contagion, as is the case in COVID-19, the ratio (13) is a quantity of
interest and worthy of a closer look.

3.4. Ratio of asymptomatic to symptomatic cohorts: a closer look
Differentiating p with respect to time,

dp 1dE EdI

dt  Idt I2dr’
expressing the derivatives of E and [ in terms of the governing equations (3) and (4), and
simplifying, we find that p satisfies the Riccati equation

dp p+aqp >
- S — — —
& B N, n+p—np— O+ wp
+2v+ S
=- (p2 + (W - ﬁéWs) p- 5PVS> L = (15)
n 7 n Np

The ratio of the sizes of the asymptomatic and symptomatic cohorts has been a topic of intense
discussion from the beginning of the COVID-19 pandemic, with hypothetical values ranging
from as high as 50-80 (see, e.g., [2]) at the onset of the pandemic, to the current C.D.C. estimate
of around 0.5. For this reason, it is of interest to investigate if the proposed model suggests the
existence of an equilibrium value p* for the ratio. The value of p at which its derivative vanishes
can be expressed in closed form as

. 1427+ 1/n+2y+ :
p=—s (w—éqvS)ﬂ/—(w—gqm) +§va, (16)

2 Ul 7 4 Ul

Moreover, since the right-hand side of the equation (15) switches its sign from positive to
negative as p is increased past the critical value p*, this is a stable equilibrium. In the section
of computed examples, we will discuss the significance of the equilibrium value in the light of
the state of the epidemic.

4. Computed examples
We test the performance of the proposed inversion framework with both synthetic and real data.

4.1. Testing with synthetic data

Example 1. In the first experiment, three sets of simulated data are generated with the same
model (2)—(5) that the PF algorithm is based on, under the assumption that the parameter 3 is
time dependent, while the parameters y and 7 are constants. The functional form the parameter
B in the generative model,

Bos for0 <r < T,
B) = {

(17)
Boo + (Bo — Bo)e DT, fort>T,
15
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Table 1. The parameter values used in the particle filter algorithm with fixed static
parameters.

Particle filter parameters

a priori lower bound transmission rate [1/days] Binin 0.1

a priori upper bound for transmission rate max 0.8
a priori upper bound of initial infectious individuals Amax 5
Number of particles N 20000
Standard deviation of innovation of the state o2 0.01
Standard deviation of innovation of the transmission rate 1) 0.1

Static model parameters

Recovery rate ¥ 1/14
Symptomatic rate n 1/7
Death rate m 0.004

where 3, = 0.4, 8,, = 0.1, T =20d and 7 = 5 d, remains unchanged in all simulated data
sets. The time interval of the simulation is 120 d. In the three test protocols (A)—(C), the values
of the parameters ~ and 7 used to generate the data were set to, respectively,

v =1/14, v =1/10, v =1/20,
(A):{ (B):{ (C)i{
n=1/7, n=1/5, n=1/10.

The death rate is set to i = 0.004.

The values of the model parameters and of the prior densities, as described in the algorithm
in section 3, are listed in table 1. In this set of tests, the static parameters are held fixed in the
PF algorithm, and they are set at the values used in protocol (A). The number of particles is
N = 20000, and the initial sample for 5 was drawn from

50 ~ Uniform([ﬁmm, Bmax]);

with upper and lower bounds as listed in table 1. The total population size in the simulation
is set to N, = 100000, which is supposed to be approximately known, and the initial values
(So, Eo, 1y, Ry) for the state vectors are drawn from the distribution

Iy, Ey ~ Uniform([0, Amax]), So =N, —Ip —Eo, Ro=0,

see table 1 for the numerical value. The innovation covariance matrix C is a diagonal matrix
of the form

: 2 2 2 2 2 2
C = diag(oy/N;, 07, 07,07,0%),

where o and o3 are the variances of the uncertainty in the logarithm of the state vector Z, and
in the logarithm of the transmission rate /3,, respectively. We point out that the population size
N, is assumed to be only approximately known, and it is not enforced. Observe further that
for the susceptible population, the variance is weighted by the population squared to keep the
innovation for this cohort from becoming excessive. We have

<
) Ny o . S .
i J ~ O t+1, j
S,+1 = StJrl exp (Nth) /2 StJrl + oy N Wy,
p p
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Figure 2. Simulated data corresponding to the protocols A (left), B (center) and C
(right), shown as bar plots. The darker and lighter envelopes indicate the 50% and 75%
estimated credible intervals of the mean of the new cases ¢, = nE, and the red curve is
the median value.
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Figure 3. The particle estimates of the infection rate 5 corresponding to protocol A
(left), B (middle) and C (right). The true generative model is plotted as a dashed curve,
and the envelopes indicate the 50% and 75% credible intervals, the red curve being the
median.

and without the scaling by N, the innovation in a large population could be significantly large.
Numerical tests indicate that with too large of an innovation, the algorithm may go astray.

The bar plots in figure 2 show the simulated numbers of new daily infections that are, from
left to right, the data for protocols A, B and C. As expected, when the values of the static
parameters increase, i.e., when the rate at which exposed/asymptomatic individuals become
symptomatic or recover, is higher, the number of new daily infections is smaller, as shown
by the bar plot in the middle panel (protocol B). When the rates decrease, hence individuals
remain infectious longer, the number of new daily infections is higher, as shown in the right
panel (protocol C). The red curves are the median values of the predicted mean of the data
p» = nE, with the shadowed regions marking the 50% (darker) and 75% (lighter) credibility
envelopes. In all three cases, the predicted state estimation is in very good agreement with the
data, regardless of whether or not the values of the static parameters were set to the values used
in the generative model.

The panels in figure 3 show the (5 used in the generative model, formula (17) (dashed curve),
together with the median, and 50% and 75% credible intervals computed from the particles
corresponding to the data shown in figure 2. We observe that at the beginning of the simulation
when the case count is low, and in protocol B in particular, the estimate of 3 varies a lot,
while otherwise the estimated parameter follow well the generative model. When the static
parameters in the solver were fixed to smaller values than in the generative model, the estimate
of 3 is also smaller than the true value, as can be seen in the middle panel (protocol B). As
expected, when the values of the static parameters used in the solver are larger than those in
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Figure 4. Upper row indicates the estimated ratio p = E/I of asymtomatic and symp-
tomatic cases in protocols A (left), B (middle) and C (right). The dashed curve is the
true value of the generative model that the data were based on, and the red curve is the
estimated median, enveloped by the 50% and 75% credible envelopes. In the lower row,
the red and dashed curves are as in the upper row, while the blue dotted curve represents
the equilibrium value p* computed from the estimated median value of 8 and vs.

the generative model, the PF compensates by estimating a larger 3: in the right panel (protocol
C), the generative 3 is consistently fairly below the credible intervals.

The top row in figure 4 shows the evolution of the ratio p between the cohorts E and [
as estimated from the state vectors via the PF with static v and n parameters set, from left to
right, equal to, smaller or larger than the values used in the generative model. As in the previous
figure, the red curve shows the median, the shaded areas indicate the credibility intervals, and
the dashed curve is the true ratio that the data simulations are based on. In all three cases,
after the initial oscillations corresponding to few data, the behavior of the generative model is
captured by the PF estimation with a delay of a few days, approximately matching the time
needed to see a decrease of new daily infections. The bottom row shows, in addition to the
median and true curves, also the equilibrium value p*, formula (16), evaluated by using the
estimated median values of 3 and vs. The plot indicates that at least in the waning phase of the
infection, the ratio settles at or near the equilibrium value.

One of the most popular predictors of the course of an epidemic is the number of secondary
infections per infectious capita. The time courses of the credible envelopes of the reproduc-
tion numbers RNY, R/ and Rf defined in section 3.3 for the three protocols are displayed in
figure 5. In each panel, the dashed line is the R, computed from the generative model, while
the red curve and shaded regions are the median and credible intervals based on the PF esti-
mates. In all cases, the estimate of R, at the beginning of the epidemic is not stabilizing to
the generative value, as could be expected because of the delay in the manifestation of the
severity of the contagion in terms of individuals in the 7 cohort, and the low case count that is
strongly affected by the Poisson noise. The same delay argument explains the shift by a few
days of the median estimate with respect to the generative values, most noticeable at around
day 20, when the number of secondary infections starts decreasing rather sharply. Indeed, for
all three reproduction numbers, when the correct values of the static parameters are used, the
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Figure 5. The different non-dimensional reproduction numbers estimated from the data
in protocol A (left), B (middle) and C (right). From top to bottom, the R?IG based on
the next generation matrix approach, the R! controlling the local growth exponent of the
symptomatic compartment /, and RE controlling that of the asymptomatic cohort. As
before, the median, the 50% and 75% credible envelopes are shown as well as the true
generative value as a dashed curve.

generative curve is well within the credibility region, modulo a slight delay after peak inci-
dence, as shown in the panels in the first column. The effect of using incorrect values of the
static parameters can be seen during the uptick phase, when a putative longer time in the infec-
tious pool leads to an overestimate of the secondary infections (second column) and a putative
shorter time in the infectious pool leads to an overestimate (third column). Interestingly, the
PF estimates capture quite accurately all three types of reproduction numbers in the waning
phase of the epidemic, when the per capita number of secondary infections is less than one,
regardless of whether the correct or incorrect values of the static parameters are used, corrob-
orating that dimensionless quantities better compensate for modeling errors than dimensional
ones such as 3. A day-by-day comparison of the reproduction numbers for the same data
set suggests that R! is the most sensitive of the three to changes in the infectivity rate, with
values up to 50% higher than the other two in the uptick phase, and smaller in the waning
phase. The reproduction number RNC, calculated on the basis of the next generation matrix,
also captures well the trend of the pandemic, its decreasing following, with the delay of a few
days, the slowing down of the infection rate, while the range of numerical values of RE is
the narrowest.
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Figure 6. Effect of immigration: at times #; = 50 and 7, = 80, 300 and 280 exposed
(asymptomatic) individuals are imported from outside the system directly into the E
compartment.

Example 2. The propagation model of the PF algorithm assumes implicitly a closed popu-
lation, in which no exchange of individuals with the surrounding world takes place, a hardly
tenable position in reality. The aim of the second example is to see, with simulated data, the
effect on the state and parameter estimation of external influxes in the E pool, tantamount to
importing a number of infectious asymptomatic individuals from a different, not tracked, pool.
To isolate the effect, we assume that « and 7 are known, and in our PF we set their values equal
to those used for the generative model (protocol A). At time ¢, = 50 d, 300 asymptomatic
individuals are imported into the £ pool from outside the system, thus supplementing the flux
coming from the susceptible compartment, to simulate the effect of traveling across different
geographical regions, and the phenomenon is repeated at time , = 80 d, when another bout of
280 asymptomatic cases is imported from outside the system. The PF for estimating the state
and g parameter is not modified to account for the two bouts of immigration, and it receives
the information only indirectly through the data. The two injections of asymptomatic cases are
reflected, with a delay proportional to 7!, in the data in the form of a bump in new daily symp-
tomatic infections. A comparison of the top left panel of figure 6 and the left panel of figure 2
shows two bumps in the former shortly after # = 50 and r = 80. Although the immigration size
is larger at t = 50, the effect of immigration at time t = 80 is more clearly visible, because of
the lower prevalence: higher infection rate is needed to explain the growth with so few infec-
tious individuals in the population. On the other hand, the effects of the immigration at time
t = 50 last longer than those of the immigration at time # = 80, highlighting how the number
of new cases in the days to come depends on both the transmission rate and the infectious pool
size. The slight increase in the estimated /3 at time # = 55 and the more marked increase at time
t = 85 show that, in the lack of better explanation, the PF attributes the unexpected change in
the size of the / compartment to an increased transmission rate, as seen in the second panel
of the first row of the same figure. This is in line with the understanding that the parameter
models both the characteristic of the pathogen and the behavior of the underlying population.
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Table 2. The parameter values used in the particle filter algorithm with
unknown and not fixed static parameters.

Particle filter parameters

a priori lower bound transmission rate [1/days] Bmin 0.1
a priori upper bound for transmission rate B max 0.6
a priori lower bound recovery rate [1/days] Viin 1/7
a priori upper bound for recovery rate Vmax 1/28
a priori lower bound for incubation rate [1/days] Nmin 1/15
a priori upper bound for incubation rate Tmax 173
a priori upper bound of initial infectious individuals Amax 5
Number of particles N 20000
Standard deviation of the propagation model for [ @ 0.1
Standard deviation of innovation of the state o 0.01
Standard deviation of innovation of the transmission rate 1) 0.1

In addition, part of the unexplained increase in new cases is absorbed by the innovation of the
state vector.

Changes in the trend of the epidemic are captured well by the estimates of all three repro-
duction numbers, shown in the bottom row of figure 6, which show a slight bump a few days
after + = 50, and a more marked one a few days after + = 80. It is interesting that following the
second immigration event, the reproduction numbers are estimated to exceed one, thus tem-
porarily signaling an uptick in the number of infections. Since in this case the change in trend
was due to an external event rather than a change in the population behavior, after a few days
the R, returns below one, while if the change in the data had been caused by the population
becoming more complacent, this would have been the start of a new flare up.

Example 3. The third example illustrates how the particle filtering algorithm can estimate
both the dynamic parameter 5 and the static parameters v and 7. The synthetic data (not
shown) are generated using the generative model of example 1, protocol A. For the particle
filtering algorithm with unknown static parameters, we set the parameters of the algorithm
as in table 2.

The panels in the top row of figure 7 show the PF estimates with median and credibility
envelopes, of the parameters 3, v and 7 together with the values used in the generative models.
The estimate of [ is rather close to the estimates found with fixed and correct static parame-
ters, with a slightly increased posterior variance, and the estimate of v improves as more data
become available. The estimated reproduction numbers, displayed in the bottom row, capture
again quite accurately the trend of the epidemic. The few days delay is due to the fact that the
data used in the PF consist only of the reported infections, which typically follow by ! days’
delay.

4.2. Testing with real data

In this section, the algorithm is tested with real COVID-19 infection data, downloaded from
the website USAfacts (https://usafacts.org/) giving the daily COVID-19 cases in all US coun-
ties. In the first test, we consider the cases in Meade County, South Dakota, a relatively small
community, whose population, according to the cited site, is N, = 28 332. The county is the
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Figure 7. All three parameters 3, v and 7 are estimated. The top row shows the particle
estimates of 3, v and 7). The bottom row shows the particle estimates of the three repro-
duction numbers. In each plot, the dashed line indicates the values corresponding to the
generative model.

Infection rate 3

4SBT &1 91 00 1A 2 N “ut s e e w100 o en o #1 s 61 w1 a1 e 101 1A 21N

Time [days] Time [days] Time [days]

41 snoen T &1 81 1 a1 N an s &1 1 a1 a1 100 mnon o 4 s1 a1 T B 81 e o1 i
Time [dnys] Time [days] Time [days]

Figure 8. Particle filter estimates based on the COVID-19 data from Meade County,
South Dakota. The gray shading marks the week of the Sturgis Motorbike Rally 2020
that brought approximately half a million bikers from all over the nation to Sturgis, the
largest town in the county.

home of the town of Sturgis, famous for the annual motorbike reunion. The Sturgis Motor-
bike Rally 2020 was organized August 7th through 16th, drawing nearly half a million bikers
from all over the nation, and it was predicted to be a potential superspreader event. As such, it
provides a good example of the effect an external influx of asymptomatic infected individuals
into a community with otherwise low prevalence, effectively becoming a real world version
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Figure 9. Particle filter estimates based on the COVID-19 data from Los Angeles
County, California.

of example 2 of the previous section. We run the particle filtering algorithm keeping the static
parameters fixed and equal to the values used in example 3.

The results show a significant increase in new daily infections roughly 1-2 weeks after the
event, and the effect on 3 as well as the different R,-numbers is similar to what was observed
with the simulated data. Observe also that after the Motorbike Rally event, while the estimated
B is not significantly larger than before, the case count did not return to the levels before the
event, arguably suggesting that the event had a much larger negative impact on the community
than just the immediate increase in cases. The data show also some reporting anomalies toward
the end of December and early January. There is a significant uptick of cases after the reporting
gap, and it is not clear whether the increase in estimated J and R;s is purely a reporting artifact
or an effect of gatherings during the holidays (figure 8).

In the last computed example, we apply the PF algorithm to data coming from Los Angeles
County, California, with population over 10 million. The only parameter that was changed
is the maximum initial number of infected and asymptomatic individuals, to scale it to the
much larger population: we set A = 500, reflecting the fact that the population is two orders of
magnitude larger than in the previous example. As in the previous example, the first infected
case was an isolated event (late January 2020), while the significant onset of the epidemic
occurred in early March. The overall pattern of the estimates is similar to what was observed
for the smaller community, however, we see that the estimates show a significant oscillatory
pattern, reflecting the large deviations in the input data (see figure 9). This phenomenon in turn
reflects the large population size, and signals the presence of different noise factors not taken
into account in the propagation model that at least locally assumes a well mixed population. In
a large population, reporting uncertainties become significant, while our model only assumes
Poisson distributed noise.

We close this section with some observations on the model. One of the most important
quantities for addressing the current COVID-19 pandemic is the ratio p of asymptomatic and
symptomatic individuals. With real data, the particle filtering algorithm yields an estimate of p
that is close to the value suggest by the C.D.C. at the time of writing this article, i.e., somewhere
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Figure 10. The equilibrium value p* of the ratio E£/I as a function of the dimensionless
quantities t = y/n and s = /7 with three different values of the infectivity factor of
the cohort I: ¢ = 0.1 (left), ¢ = 0.5 (center) and g = 1 (right).

near 0.5. A natural question is whether this estimate depends significantly on the somewhat ad
hoc parameter ¢ = 0.1 used in the transmission model to weigh the contribution of symp-
tomatic individuals, compared to the coefficient p = 1 used for the asymptomatic ones. To
answer at least partially that question, consider the equilibrium value (16). To better under-
stand the dependency of the ratio p* on the model parameters, we introduce two dimensionless
quantities characterizing the system of differential equations,

ol B

1= -, §=—.

n Ui
Neglecting the effect of the death rate 1, and assuming that the infection is not yet widespread,
so that S/N, ~ 1, we find an approximate formula for p* of (16) in terms of the dimensionless
quantities ¢ and s,

1 1
o :—2(1+2t—sq)—|—\/4(1+2t—sq)2—|—sp, (18)

Figure 10 shows the equilibrium value as a function of the dimensionless parameters for the
three different choices ¢ = 0.1 (left), ¢ = 0.5 (center) and ¢ = 1 (right), assuming that p = 1,
indicating a relatively weak dependency of p* on ¢. The quantity increases as s increases (higher
infection rate) and decreases as ~y increases (higher recovery rate). By using the values v =
1/14 and ) = 1/7, we have r = 0.5, implying that, neglecting the death rate, the equilibrium
value p* = 0.5 would correspond to effective equilibrium reproduction number

indicating that the symptomatic pool is near an equilibrium.

5. Discussion

The proposed dynamical Bayesian filtering algorithm is shown to provide a robust and con-
sistent estimate of the state vectors, comprising the four cohorts of a new SE(A)IR model for
COVID-19 spread, the transmission rate, a key parameter that is allowed to vary over time, and
optionally the static parameters of recovery rate and the rate of symptom development. In epi-
demiology models, the transmission rate /3 is usually defined as 5 = (transmission probability
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per contact) x (number of contacts per day), where the first factor reflects the characteristics
of the pathogen and is subject to change if new variants of the virus emerge, while the second
factor is related to the behavior of the individuals and can change in connection with hygiene,
social distancing and other mitigation measures. These factors justify the modeling of /3 as
a time dependent parameter, and monitoring /3 in the light of infection data can be used as
a measure of success of different mitigation measures, as well as a signal of new mutations
taking ground. As shown by the computed examples, the parameter 3 is sensitive to mobility
of the population, as the model considered in this article assumes a closed population. In [42],
the current model was extended to a metapopulation model connecting different county level
communities into an infection network.

Our SE(A)IR model directly addresses the role of virus shedding in transmission
dynamics by asymptomatic individuals, many of whom recover before developing
symptoms. We also provide a way for dynamically estimating the ratio of asymp-
tomatic/presymptomatic/oligosymptomatic individuals in the £ compartment to symptomatic
individuals in the / compartment. Over a wide range of tests (see, e.g., [43] and the predic-
tion website https://case.edu/medicine/healthintegration/covid-19-models) with real data, this
ratio seems to settle consistently at values around or less than one, which is in accordance with
the current understanding of the COVID-19 dynamics. The proposed SE(A)IR model does not
address some of the features of COVID-19 transmission, including the latent period of the
asymptomatic cohort. While designing a model, such as the SEAIR model (see, e.g., [17]) that
properly accounts for the delay of the infectious phase of the asymptomatic patients is straight-
forward, retaining a structure that allows us to inform about the size of asymptomatic cohort
based on data on symptomatic patients alone may be more challenging. Elaborating on that
point will be a future direction of this research.
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Appendix A

In this appendix we present a step by step derivation, explanation and interpretation of the
particle filtering algorithms. First, consider a probability density 7(x) in R”, assume that X/ ~
7 are independent and identically distributed random variables, j = 1,2, ..., and let o be a
continuous bounded function. By the strong law of large numbers, we know that as N — oo,
almost surely,

Ion
N PXD / P,
j=1
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In particular, if x/ are realizations of X/, i.e., independent random draws from 7, we have that

N N
1 A )
NZ o(x)) = / > wis(x) | px)dx — / o(x)m(x)dx almost surely,
=1 =1
=N

where d,;(x) is a point measure at x/ and the weights w/ are uniform, w/ = 1/N. Hence, the
discrete measures 7 converges weakly to 7 almost surely, which gives the precise meaning
for the discrete approximation.

Consider now two probability densities 7| and 7, such that

m(x) = Cf (x)m(x), 19)

where f(x) > 0 is measurable, and C > 0 is a, possibly unknown, normalizing constant. Let
{x!,x%,...,x"} be an independent sample (in the sense of the discussion above) from the
distribution m,, and let ¢ be a bounded continuous function. Using the weak approximation
discussed above, we may write

N
c . A
/ p)m(x)dx = C / o(x) f (X)m2(x)dx &~ Z ﬁf (/) p(x))

j=1 ——

—=w/
N
= wlp(x), (20)
=1
that is, we have an approximation

N
mdx & Y woyx), w = ]% f).

J=1

Observe that, if C is unknown, so are the weights. However, since 7, is a probability measure,
by substituting ¢(x) = 1 in (20) implies that the weights can be calculated as

w = =— @ = f(x).
Pl

This forms the foundation of a practical scheme for drawing from a distribution 7; of
form (19), provided that we have a method to draw independent samples from ;.
Algorithm 1:

(a) Draw an independent sample from 7,; denote the sample points by xLx? XN,

(b) Calculate the weights w/ = f(x/).
(c) Normalize, setting

S

w! —
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To put this in the context of our PF algorithm, we need to add one more layer. Consider a
probability density 7 that can expressed as

N
T(x) =Y gmix), g >0, 1)
j=1

where the 7; are probability densities. Integrating over the whole space and recalling that a
probability density is normalized so that its integral is one,

N

Zgjzl,

J=1

that is, 7 is a convex combination of the 7;. Next we interpret the right-hand side of (21)
as a marginal probability. In fact, if J denote a discrete random variable with point mass
P(J = j) = g, and 7 j(x) = 7x|;(x[}), then

N
T(x) = Y PU = jmx(x])).
j=1

In light of the above, we arrive at the following two-phase scheme for drawing from the
density (21).

Algorithm 2:
(a) Draw an index j, 0 < j < using the coefficients g; as point mass probabilities;
(b) Given j, draw x from 7; according to algorithm 1.

Combing algorithms 1 and 2, we arrive at the particle filtering algorithm described in the
article. Indeed,

N

X, 1| By Kr1 [ Brg1) = Z {wtjﬁBtH\Xt+1(bt+l|3€\zj+1)}
=

(a)

o {WB,+1X,+1(bt+1Xt+1)

J
b o X,y 1% (e [X7)
7TB:+1\Xt+1( t_H\xtH) N—_— ——

(©)

(b)

where (a) plays the role of g;. Once we have drawn j according to the first step of algorithm 2,
we are ready to draw from the density

B,y Xyt (Drt1|Xes1) ;
Ti(Xi41) = 1o ot |Aj+ 7TX,+1\X,(Xz+1|Xz])~
7TBr+1‘Xr+l(bl+l"xt+l) —

(©)

(b)

Here, (b) plays the role of Cf (x) in (19), and (c) plays the role 75 in algorithm 1.

Appendix B

In this appendix we discuss in detail selection of the innovation model for the static parameters.
For simplicity, we denote ¢ = log 6 € R%. Assume that we use an innovation model similar to
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X, that is,
B = &+ WS AWt Wit ~ N, 1), (22)
ofr,

7TE,+1\E,(§I+1 \5:) = N(§z+l \&, h221+1),

where >, is the empirical covariance calculated by using the predictive particles E{ - We
extend the stochastic model to comprise the parameter £ also, and write the approximation

N

x5 (s &lB) = ) w]6 ()8 (&)

=1

Replacing the density with its particle approximation in the Chapman—Kolmogorov formula
(8) yields

7TX,+1,E,+1\%,(xt+1’£t+l‘%t) = // 7rX,+1\X,(xt+1|xt)7rE,+1\E,(£t+1‘gt)WX,\%,(xt|%t)dxtd£t

N
~ Y wlmy G DN G €, P S040). (23)

=1

Marginalizing with respect to X, |, we obtain the approximation of the prior density of =,

7=,y 2, (&1 B) = /7TX,+1,E,+1\.%’,(Xz+1,§z+1|%z)dxz+1

N
~ > WIN (& |E S ),

J=1

as a Gaussian mixture. The mean of the Gaussian mixture is

N

N
Et—&-l ~ Z wzj/N(ftHKtj, h22t+1)d£t+l = Z wzjftj = Et,
j=1

=1

and it can be verified that the covariance is

N
CovE1) ~ Y w; / Gt = &)1 — E)N G &, 17 5up0)
j=1

N
= PS4+ Y wil =& - &) =+ M)
=1

Therefore the innovation model (22) increases the covariance of parameter by a factor of
1 + K2, in conflict with the prior assumption that these parameters are static. One way to com-
pensate for this artificial diffusion, as suggested in [35, 44], is to shift slightly the centers of
the Gaussians in the mixture towards the ensemble mean, that is,

T2z G l€) = N(Ela& + (1 — )&, KPSy, @@+ 1 =1
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It is straightforward to verify that this innovation model preserves the particle-based mean and
covariance.
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