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ABSTRACT

Given a Markov decision process (MDP) and a linear-time (w-
regular or Linear Temporal Logic) specification which reasons
about the infinite-trace behavior of a system, the controller synthe-
sis problem aims to compute the optimal policy that satisfies said
specification. Recently, problems that reason over the complemen-
tary infinite-frequency behavior of systems have been proposed
through the lens of steady-state planning or steady-state policy
synthesis. This entails finding a control policy for an MDP such
that the Markov chain induced by the solution policy satisfies a
given set of constraints on its steady-state distribution. This paper
studies a generalization of the controller synthesis problem for
a linear-time specification under steady-state constraints on the
asymptotic behavior of the agent. We present an algorithm to find
a deterministic policy satisfying w-regular and steady-state con-
straints by characterizing the solutions as an integer linear program,
and experimentally evaluate our approach.
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1 INTRODUCTION

The controller synthesis problem is often used to establish safety
and performance guarantees of stochastic systems such as Markov
decision processes (MDPs) by inducing Markov chains exhibiting
some desirable behavior. The w-regular languages [1, 2] provide
an expressive formalism to unambiguously express such safety
and progress properties of MDPs, while Linear Temporal Logic
(LTL) provides a convenient and interpretable way to encode such
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w-regular properties. For the verification or synthesis of systems
subject to these properties, an w-regular objective is usually trans-
lated into a finite-state machine that monitors the traces of the
MDP [3]. Successful executions cause the finite-state machine to
take certain accepting transitions infinitely often, and ultimately
avoid certain rejecting transitions. That is, w-regular objectives
reason about the asymptotic trace behavior of an MDP. The related
notion of asymptotic frequency of states visited is not accounted
for in such objectives. To illustrate the utility of being able to rea-
son about both of these types of behavior, consider a simple robot
tasked to explore terrain on Mars. For such a mission, one may
come up with w-regular specifications that its traces of behavior
should satisfy. For example, we may impose that, whenever a state
labeled “ice” is encountered, the robot must collect a sample and
drop it off at a state labeled “base”. Furthermore, the robot may also
need to spend a certain proportion of its time — but not too much
time so as not to conflict with gathering ice samples — exploring
certain regions of the Martian landscape. Indeed, the robot may be
requested to spend at least 25% of its time in regions of interest, but
no more than 50% of its time. This is easily encoded as a steady-state
specification. Such specifications cannot be directly expressed in
LTL.

LTL controller synthesis through probabilistic model checking
approaches [3, 4] generally begins by computing the product MDP
from the original MDP and the finite-state machine representation
of the given objective. Then, the union of accepting maximal end
components (AMECs) are computed and a policy is found such that
the agent reaches some such component. Once there, actions can be
chosen arbitrarily such that all states within the AMEC are visited
infinitely often, thereby ensuring that the acceptance condition of
the automaton is met and the objective is therefore satisfied by
said policy. Generally, this choice of actions within the AMECs
is arbitrary. However, it is evident that these choices are critical in
the situations with constraints on the steady-state distribution. This
distribution characterizes the asymptotic frequency behavior of a
Markov chain induced by some policy in an MDP.

The controller synthesis problem subject to steady-state specifi-
cations has been explored recently [5-8] and the integration of LTL
constraints has been considered for stochastic policy settings [9].
In this paper, we seek to complement and unify much of the pre-
ceding work by reasoning about both w-regular properties as well
as steady-state distributions simultaneously and without making
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common assumptions of ergodicity on the underlying MDP. The
proposed approach finds an optimal expected-reward deterministic
policy that satisfies given w-regular and steady-state specifications.
The computation of deterministic policies is an important avenue
of inquiry when guarantees or predictable behavior are desired
[10].

2 PRELIMINARIES

We recall classical definitions and introduce notation for the paper.

Markov Decision Processes. A probability distribution over a fi-
nite set S is a function d : S — [0, 1] such that ;¢ d(s) = 1. Let
D(S) denote the set of all discrete distributions over S. A Labeled
Markov Decision Process (LMDP) M is a tuple (S, 5, A, T, R, AP, L),
where S is a finite set of states, § € D(S) is the initial state distribu-
tion, A is a finite set of actions, T : S X A — D(S) is the transition
function, R : S X A X S — R is the reward signal, AP is the set of
atomic propositions, and L : S — 24P is the labeling function.

For any state s € S, we let A(s) denote the set of actions that can
be selected in state s. For states s,s” € S and a € A(s), T(s,a)(s”)
equals p(s’[s,a). A run of M is a sequence (sg, a1, s1,...) € S X
(A x S)* such that p(si+1]si,ai+1) > 0 for all i > 0. A finite run
is a finite such sequence. When convenient, runs are sometimes
defined as sequences of states, without including actions. For a
runr = {sp, a1, 51, - ..y, we define the corresponding labeled run
as L(r) = (L(so),L(s1),...) € (ZAP)+. A policy (or a strategy) is
a recipe for a decision-maker to resolve the non-determinism of
the LMDP. A policy in M is a function r : S* — D(A) mapping
finite runs to actions. A policy is finite-memory if it remembers a
finite amount of information about the past and a finite-memory
policy can be represented using a finite-state machine. In this pa-
per, we are interested in finite-memory deterministic policies of
the form 7 : S X Q — A, where Q is a set of memory modes.
This memory is obtained from the finite-state machine representa-
tion of the given linear-time specification to be satisfied. We write
n(als,q) € {0,1} for the probability of choosing action a in the
state s when the memory mode is g. For the remainder of this paper,
we assume finite-memory deterministic policies 7. For an LMDP
M= (S,B,ATR AP, L), a finite-memory deterministic policy 7
resolves its non-determinism and gives rise to a Labeled Markov
Chain (LMC) My, = (S, B, T, Ry, APy, Ly). Note that an LMC
is an LMDP whose set of actions is a singleton and hence can be
omitted. It is customary to represent the probabilistic transition
function T of the LMC as a matrix such that T; j = T(s;)(sj). When
other information is not pertinent, we write an LMC as (S, T).

Given an LMDP M = (S, 5, A, T, R, AP, L), we define its underly-
ing directed graph G pq = (V,E), where V = Sand E C Sx S is such
that (s,s”) € Eif T(s,a)(s’) > 0 for some a € A(s). A sub-MDP
of M is an LMDP M’ = (S’,p’, A, T',R’,AP’, L"), where S’ C S,
A’ C Ais such that A’(s) C A(s) for every s € S/, and /, T’, R’
and L’ are analogous to 8, T, R, and L when restricted to S’ and
A’. An end component [3] of an LMDP M is a sub-MDP M’ of M
such that G 5y is strongly connected. A bottom strongly connected
component (BSCC) of an LMC is any of its maximal end components
(MECs), where a MEC is an end component that is maximal under
set inclusion.
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Linear-Time Specifications. Given the set of atomic propositions
AP of an LMDP M, a linear-time property of M is characterized
by an w-language, i.e., a set of infinite sequences over the alphabet
% = 24P Formally, an w-word w on an alphabet ¥ is a function
w: N — 3. We abbreviate w(i) by w;. The set of w-words on X is
written 3% and a subset of X% is an w-language. We are interested
in expressing properties using w-regular languages given as a type
of finite-state machine. In this context, we choose deterministic
Rabin automata (DRA) as defined in the sequel.

A deterministic Rabin automaton (DRA) A is a tuple (2, Q, qo, 5, F),
where X is a finite alphabet, Q is a finite set of states, qo € Q is
the initial state, § : Q X 3 — Q is the transition function, and
F = {(Bi, G;) € 29 x 2Q}i€[m] is the Rabin acceptance condition.
A runrof aDRA A onw € X% is an w-word rg, wo, r1, w1, . .. in
(Q U X)® such that rg = qo and, for i > 0, r; = 5(ri—1, wi—1). We
write inf(r) C Q for the set of states that appear infinitely often in
therunr. Arunr of a DRA A is accepting if there is some (B, G) € F
such that inf(r) "B = 0 and inf(r) NG # 0. The language of A (or,
accepted by A) is the subset of words in X that have accepting
runs in A. A language is w-regular iff it is accepted by a DRA [4].

Given an LMDP M and an w-regular objective ¢ given as a
DRA A = (2,0, qo, 6, F), the controller synthesis problem is to
compute a policy that maximizes the probability of satisfaction
of the w-regular objective. This problem is typically reduced to
solving a product LMDP as shown in Figure 1. Given an LMDP
M = (S,5,AT,RAP,L) and a DRA A = (247, 0, q¢, 8, F), their
product LMDP MXA is the tuple (S, *, AX, T, R*, Q, L*), where
§* = §x Q; f* € D(S%) is such that for all (s,a) € S*, we have
that % (s, q) equals S(s) if ¢ = §(qo, L(s)) and is 0 otherwise; A*
A and A*(s,q) = A(s) for all (s,q) € S%; T : S*xA*X — §*
is such that for all (s, q), (s’,q’) € S* and a € A(s,q) we have
T*((s,q),a)(s’,q’) equals T(s,a)(s") if ¢ = 5(q,L(s")) and is 0
otherwise; R*((s, q), a) = R(s,a) for all (s,q) € S* and a € A(s, q);
and L*((s,q)) = {q} for all (s, q) € S* [4].

End components and runs are defined for products just like for
LMDPs. The acceptance condition for the product LMDP can be
lifted from the DRA and is used to define accepting MECs (AMECs).
An AMEC of a product LMDP M x A is a MEC such that every
run of the product LMDP that eventually dwells in it is accepting.
Formally,a MEC E = (SE, AF) of MxA is accepting if SEN(SxB) =
0 and SE N (S x G) # 0 for some (B,G) € F. The satisfaction of
an w-regular objective ¢ by an LMDP M can be formulated in
terms of AMECs of the product M X Ay, where A, is a DRA
accepting ¢. The maximum probability of satisfaction of ¢ by M is
the maximum probability, over all policies, that a run of the product
LMDP M X A, eventually dwells in one of its AMECs [3, 11].
Once an AMEC is reached, one must simply choose actions in the
AMEC infinitely often in order to ensure that all states within it are
visited infinitely often. It is worth noting that there always exists a
stationary and deterministic policy over the product LMDP M X A
to maximize the probability of visiting AMECs. This policy defines
the optimal finite-memory policy over the original LMDP M to
satisfy the w-regular objective given by the DRA A. The DRA states
q € Qinm:SXQ — Ain the product LMDP naturally define the
memory mode of the finite-memory policy in the original LMDP
[12].
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Figure 1: (a) LMDP M
S = {sp,.. .,a3}, AP = {a,c},
and L(sp) L(s1) L(sz) = {a},L(s3) = {c}. The tran-
sition function is deterministic and shown in the figure
by the transitions g; : 1 between states s, s’ denoting that
T(s,a;)(s’) = 1. The blue transitions define a policy = which
induces a unichain LMC M, (The isolated component con-
sisting of states s5 and s is ignored since it is unreachable).
(b) The DRA A = (Q, q0,2, 3, F = {(B;,Gj) };) is shown, where
0=1{q0,91,92}, 2 = 24P F = {(0, {q2})} and |, & denote logical
negation and conjunction. (c) Product LMDP M x A, where
red nodes represent states in the accepting MEC of M x A.
The blue transitions define the product LMC (M X A), in-
duced by the policy . Note that this policy induces an LMC
that has probability 1 of being trapped in the accepting MEC.
Therefore, the probability of satisfying the w-regular prop-
erty represented by A given that we start in state s is 1.

(S,ﬁ,A,T,R
.,36}, ﬁ(84) = I’A = {a0’~-

0,AP,L), where

Steady-State Constraints. Let M = (S, §, T, R, AP, L) be an LMC.
A state s’ € S in M is reachable from a state s € S, denoted by s <
s’, if there exists a run (s;,sj,...,s;) € S* such thats; =5, s = ¢/,
and for all 0 < i < k we have that T(s;)(sj+1) > 0. We say that two
states s, s’ € S communicate if s < s’ and s’ < s. A Markov chain
is irreducible if every pair of states s, s’ € S communicates. A state
s € Sis recurrent if for all states s” € S such that s < s’, we have
that s’ < s. A transient state is a state that is not recurrent.

A recurrent component C C S of states is a nonempty set of
states such that every state in C communicates with every other
state in C, and does not communicate with the states not in C. A
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unichain is an LMC that contains a single recurrent component and
possibly some transient states. Otherwise, it is called a multichain.
Our proposed approach finds a unichain LMC M, in the original
LMDP M that satisfies a given set of linear-time and steady-state
constraints, though its corresponding product LMC (M X A) in
the product LMDP M X A may be a multichain.

The steady-state distribution Pr™ € D(S) of an LMC M =
(S, B, T,R, AP, L) denotes the proportion of time spent in each state
as the number of transitions within M approaches co. This dis-
tribution is characterized by the following system of steady-state
equations:

(Pr(s1), .. Pr¥(sis)) - T = (Pr(s1),... Pr¥(sis)))

Z Pre(s) =1

SES

1)

The unichain condition is sufficient for LMCs to yield solutions to
the steady-state equations in system (1). In particular, solutions in
such settings yield the unique stationary distribution corresponding
to the true steady-state behavior of the agent. For multichain LMCs,
however, solutions to these equations may not be unique and may
not correspond to the true steady-state behavior of the agent [13].
Indeed, consider the following simple example. Let M be a Markov
chain defined over states S = {so, s1,s2} such that T(sg)(s1) =
0.6, T(s0)(s2) = 0.4,T(s1)(s1) = T(s2)(s2) = 1. That is, state s
connects to s1 and sy whereas these states self-loop with probability
1. Solving the steady-state equations for this Markov chain yields
the trivial identities Pr®(sg) = 0,Pr®(s;) = Pr®(s1),Pr®(sz) =
Pr*(sz), and the equation Pr®°(s1)+Pr® (s2) = 1. Note that there are
an infinite number of solutions to this equation. This elucidates the
challenge of reasoning about steady-state constraints in multichain
settings. We circumvent these challenges by focusing our attention
on multichain product LMCs whose BSCCs share some state of
the original LMC. We show that this is a necessary and sufficient
condition for the original LMC to be a unichain. Furthermore, this
restricts the BSCCs of the product LMC to be identical to one
another in that their transition matrices are the same (up to row
ordering). This yields a one-to-one correspondence between the
solutions to the steady-state equations in the product LMC and the
solutions to the steady-state equations in the original LMC. Since
the original LMC is a unichain, this implies that these solutions
will reflect the true steady-state behavior of the agent.

Given an LMDP M = (S, 5, A, T,R, AP, L), the inverse of the
labeling function L™! : 24P — 25 returns the states where a given
set of atomic propositions holds. More generally, given a Boolean
formula over atomic propositions ¢ = true | p € AP | Y1 AYn | =,
the function L™ () C S returns the set of states where i holds.
We now formalize what a steady-state specification is.

Definition 2.1 (Steady-State Specification). Given an LMC M =
(S, B, T, R, AP, L) and a Boolean formula i over AP, a steady-state
specification is a constraint of the form [ < 3scp-1(y) Pr¥(s) < u,
where ! and u are user-defined bounds. We let S5(;,,1¥ denote such
specifications.

3 RELATED WORK

The controller synthesis problem given w-regular objectives has
been studied at length in the literature, particularly under the name
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of LTL controller synthesis [14-16]. Traditionally, such problems
are solved by efficiently computing the set of AMECs [17] and
finding a policy that reaches these and visits an accepting state
therein infinitely often. The problem of deriving a control policy
which satisfies constraints on the steady-state distribution of the
resulting agent has been studied more recently [5-7]. However, the
literature on solving expected-reward constrained MDPs has often
studied similar problems given that the expected-reward objective
leverages the steady-state distribution or occupation measures,
which are analogous to the steady-state distribution over state-
action pairs, in order to determine expected policy values [18-
21]. However, the common assumption that all policies yield an
irreducible Markov chain is adopted for these methods. Indeed,
the stronger ergodic assumption is often made in average-reward
reinforcement learning problems ([22], Sections 10.3, 13.6).

While various extensions to LTL have introduced average [23],
discounted [24], mean-payoff [25], and frequency [26] modalities
to the logic, to the best of the authors’ knowledge, the two facets of
asymptotic behavior given by the steady-state (SS) distribution and
linear-time (LTL) behavior of the agent have not yet been incorpo-
rated for the deterministic controller synthesis problem. To reiterate
one of the challenges in this SS+LTL controller synthesis, the choice
of actions within AMECs is critical since it is the states within said
AMECs that will contribute to the steady-state distribution of the
Markov chain induced by the solution policy. All other states would
be transient or not visited, yielding a steady-state probability mea-
sure of 0. While this challenge is not present in traditional controller
synthesis problems, a restricted form of it is addressed in the prob-
lem of LTL controller synthesis subject to persistent surveillance
costs [27]. The goal in these problems is to satisfy a given LTL for-
mula, or some restricted logic fragment thereof, while minimizing
the cost incurred between satisfactions of a given surveillance goal
specified as the repeated observance of a goal state. Perhaps the
work most relevant to the results established in this paper stems
from [5] and [6]. In [5], the Steady-State Control (SSC) problem is
introduced. This is then generalized as Steady-State Policy Synthe-
sis (SSPS) in [6]. In particular, the SSC problem entails finding a
policy whose induced Markov chain satisfies a given steady-state
distribution. This problem assumes that the underlying MDP is
ergodic in that every policy yields irreducible Markov chains. This
ensures that steady-state distributions reflect the true asymptotic
behavior of the Markov chain. This is a fairly common assumption
as observed recently by Altman in [28] for average-reward or -cost
problems in constrained MDPs. In [6], the SSPS problem is posed
as a generalization of SSC by allowing steady-state constraints to
contain inequalities as well as probability intervals. The solution
proposed therein does not assume ergodic MDPs and instead finds
an irreducible Markov chain within an arbitrary MDP, if one exists,
such that steady-state constraints are satisfied. However, that ap-
proach cannot handle transient states nor multichain MDPs. These
issues were addressed recently in [7] and [8], wherein a solution to
the steady-state planning problem is proposed for multichain MDPs
by focusing on a restricted class of policies, such as imposing that
all actions be taken with some probability by the solution policy
or that the long-term play is restricted to the bottom strongly con-
nected (BSCCs) of the MDP. Indeed, the general problem of finding
policies that satisfy arbitrary steady-state constraints in multichain
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MDPs remains open. This warrants an important distinction in
our setting. Even though the product MDP over which we define
our solution may be multichain, our setting is restricted in that
we search for a policy that induces a product Markov chain whose
BSCCs are isomorphic to one another in that their graph structures
are identical. As we demonstrate, this is a necessary and sufficient
condition for the original Markov chain (in the original MDP) to be
a unichain, thereby ensuring that the steady-state equations admit
a solution corresponding to the steady-state behavior of the agent.

Our solution to what we call the SS+LTL controller synthesis
problem unifies much of the foregoing by reasoning about both
linear-time w-regular properties as well as steady-state distributions
simultaneously. The proposed approach finds an optimal expected-
reward control policy that is deterministic and satisfies the given
steady-state (SS) and LTL specifications. We do not assume that
the underlying MDP is ergodic nor communicating. Instead, our
solution finds a unichain Markov chain satisfying the given speci-
fications, if one exists. This complements the recent results in [9],
where a stochastic history-dependent (possibly with unbounded
memory) policy as in [29] is computed for the LTL-constrained
steady-state policy synthesis problem. It is worth noting that, from
a complexity perspective, these are fundamentally different prob-
lems due to the distinction between stochastic and deterministic
policies. Indeed, finding a stochastic policy for this problem is in
the complexity class P as demonstrated by the polynomial-time
solution proposed in [9]. On the other hand, the problem of com-
puting a deterministic policy in this setting is an NP-complete
problem [6]. Therefore, a polynomial-time solution is not likely to
exist.

4 SS+LTL CONTROLLER SYNTHESIS

We combine the linear-time and steady-state specifications and
solve the corresponding controller synthesis problem. Given an
LMC M and a steady-state specification SS{;,,1 (), we say M satis-
fies SS[;,1(¥), denoted by M | S8y ,,) (), iff Egcp-1(y)Pr¥(s) €
[l,u] per Definition 2.1. Given an LTL formula ¢ defined induc-
tively over a set of atomic propositions AP, Boolean connectives,
and temporal modalities next, until, eventually, always (X, U, F, G),
the satisfaction semantics M |= ¢ are defined in the standard way
[4]. We are interested in the combination of these LTL and SS spec-
ifications, henceforth referred to as SS+LTL specifications denoted
by 0 = (¢rTL, (ss[li,ui]wi)i) We say that M satisfies 0, denoted by
M E0,if M [ ¢t and M | 8S(y, ¥ for all i.

Definition 4.1 (Deterministic SS+LTL Controller Synthesis). Given
an LMDP M and SS+LTL specification 8, compute a finite-memory
deterministic policy 7, if one exists, such that M, | 6 and =
maximizes the expected reward among all such policies.

Let us fix an LMDP M = (S,$,A, T,R, AP,L) and an SS+LTL
specification 6 = (@rL, (SS[s,4;1¥i)i) for the rest of the paper.
Recall that the LTL formula ¢p11. can be compiled into a DRA
A. In what follows, we work with the product LMDP M x A =
(8%, B*, AX, T*,R*, Q, L*), sometimes referred to as M* for con-
venience. Our goal is to characterize the existence of a stationary
and deterministic policy 7 : S X Q — A over the product LMDP.
This, in turn, is equivalent to a finite-memory deterministic policy
over the original LMDP. See Figure 2 for an example.
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(b)

!danger & !tool  tool

danger & !tool

Figure 2: (a) LMDP M = (S,5,AT,R
S {s0,-.-,s8}, B(s0) 1, A
{home, danger, tool}, and L(sg) = {home},L(s1) L(s7)
{danger}, L(ss) = {tool}. the agent has a chance of slipping
whenever it moves, causing a transition into one of three
possible states. If the agent chooses to go right (left), there is
an 80% chance that it will transition to the right (left), and
the chance of transitioning to either of the states above or
below it is 10% each. Similarly, if the agent chooses to go up
(down), it will end up in the states above (below) it with 80%
chance, and in the states to the right and left of it with proba-
bility 10% each. In the corners of the map, the agent may stay
in place with 90% probability by choosing to move against
the boundary of the map (e.g. T (sp, <) (s0) = 0.9). (b) Given
the SS+LTL specification 0 = ((!dangerUtool),SS ¢ 75 11home),
the corresponding LTL DRA A = (Q, qo, 2,6, F = {(Bi,Gi)}i)
is defined, where Q = {qo, q1,q2}, = = 24P, F = {(0, {q1})}, and
the transition function is given by §(qo, 0) = qo, 6(qo, {tool}) =
q1,6(qo, {danger}) = q2,6(q1,") = q1.6(q2,") = q2. The sym-
bols !, & denote logical negation and conjunction. Note that
the steady-state specification in ¢ is not used in defining A.
(c) Product LMC (M x A), induced by the policy 7 given
by the black arrows in (a) for the product LMDP M x A,
where red nodes represent states in the accepting BSCC of
(M x A);. Note that this policy has non-zero probability
of being trapped in the accepting BSCC. Furthermore, note
that Y c1-1 (home) Priy (5) = Pr7 (so) = 0.76, thereby satisfying
the steady-state operator SS(( 75 1;home. In this example, the
product LMC is a multichain; however, note that the original
LMC over states s € S as given by the dashed component
(ignoring the g € Q in each (s,q) € S*¥) is a unichain. Fur-
thermore, the two BSCCs of the multichain product LMC are
identical with respect to their transition matrices due to the
one-to-one correspondence of paths in the original LMC and
the product LMC.

0,AP,L), where
{11} AP
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5 INTEGER LINEAR PROGRAM
CHARACTERIZATION

Let us first consider an agent whose goal is to find a stationary sto-
chastic policy 7 : S X Q — D(A) to maximize the expected reward
in a product LMDP M X A. If M X A is a unichain LMDP, the
program in system (2) suffices to compute the optimal policy such
that the solution yields the identity xsqa = 7(als, ¢)Pr*(s,q) =
m(als,q) ¥q xsqa for s € S, g € Q, and a € A from which a stochas-
tic policy can then be derived, where x4, denotes the occupation
measure of taking action a in state (s, q) € S [30].

Z xsqaz T(s,a)(s")R(s, a,s") subject to

(s,q) €S* acA(s) s’eS

D xeqaT (59,05, ¢) = > xvga

(s,q) €S* acA(s) acA(s’)

v(s',q') € ¥
Z Xsqa = 1
(s5,q) €S* acA(s)

max

()
@)

(if)

Now, consider the more general case where the given product
LMDP M x A may be multichain. Two key problems arise. First, the
policy 7 derived from the solution to (2) may not yield a unichain
original LMC M (i.e., one with a single BSCC and possibly some
transient states). Second, we note the challenges of deriving the
correct steady-state distributions for an agent using linear program-
ming in the multichain setting. In particular, in his seminal work
[18], Kallenberg demonstrated that there is not a one-to-one cor-
respondence between the steady-state distribution derived from
linear programming solutions to expected-reward MDPs and the
true steady-state distribution of the agent enacting the resulting
policy when the Markov chain is multichain (i.e. contains multiple
BSCCs, and possibly some transient states). On the other hand,
unichains yield a one-to-one correspondence between the solution
of the steady-state equations and the true steady-state behavior
of the agent [19]. Furthermore, the solution to these equations
is unique in said setting. We thus focus on deriving an optimal
solution policy 7 : S X Q — A in a (potentially) multichain prod-
uct LMDP M X A such that the induced original LMC M is a
unichain and satisfies a given SS+LTL formula. The interplay with
the product LMC (M X A), introduces some challenges in deriv-
ing such a policy. In particular, it may be the case that the product
LMC (M x A), induced by the solution policy 7 is multichain
and its corresponding original LMC M, is unichain. We present a
novel solution which accounts for such settings by ensuring that
all BSCCs in the product multichain (M x A), share some state of
the original LMC M. This establishes that the original LMC M
is a unichain. We further prove that the steady-state probabilities
derived over such product LMCs yield a one-to-one correspondence
with the true steady-state behavior of the agent in the original LMC.

First, let us consider the simpler case where the product LMC is
a unichain. Note that the single BSCC may contain the same state
s € S multiple times as S* 3 (s,q), (s,q’),... We will show that
the partition [s] = {(s, q) }4 naturally defined over the states of the
product LMC to yield the states of the original LMC is such that
Pr(s) = X(s,q)e[s] Pr™ (s, q). That is, we can compute the steady-
state probabilities over the product LMC and use these to derive
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those in the original LMC over which the SS+LTL specification is
defined. This is enabled by the lumpability of the product LMC,
defined below.

Definition 5.1 (Lumpability [31], Def. 1). Given an irreducible
Markov chain M = (S, T) and a partition Ule Sk (Sx € S,8inSj =
0) of S, then Ji Sk is called ordinarily lumpable if and only if
(eq —ep)TV =0 for all s, sg € Sk, k < K, where e is the standard
basis vector and V is defined so that v;; = 1if's; € S and v; =0
otherwise. The vector ey is the all-zeroes vector with a value of 1

kth

only for the k' entry.

A partition over an LMC naturally defines another LMC, known
as the aggregated LMC, where each state of the latter corresponds to
one of the partition sets of the former. As we will show in Corollary
1, the original LMC is the aggregated LMC resulting from a lumpable
partition of the product LMC.

Definition 5.2 (Aggregated Markov Chain). Given a product LMC
M* = (8% = SxQ, B, T R, AP,L*) and a partition | Jcg[s]
such that [s] = {(s, q)|(s, q) € S*}, the aggregated LMC is given by
M* = (S, 5, T*, R*, AP, L*), where S* = {s|[s] € Uses[s]}, f*(s) =
S(sqrels] B0 T (5)() = TX(5,) (s, ). R (5,5) =
R*((s,-), (s,-)), and L*(s) = L*((s, ).

LEMMA 5.3. Given an arbitrary BSCC (S,T) of a product LMC
M* = (8% = SXQ,TX), the partition | Uscs[s] given by equivalence
classes [s] = {(s,9)|(s,q) € S} is ordinarily lumpable. The proofis
in Appendix A of the extended version [32].

We adapt a theorem from [31] and modify it for our product LMC
setting below.

THEOREM 5.4 ([33], [31], THEOREM 4). Given an irreducible prod-
uct LMC M* = (§* = S x Q,T*) and an ordinarily lumpable
partition | Jscs[s], where [s] = {(s,q)| (s, q) € S*}, the steady-state
distribution of the aggregated LMC M = (S, T) satisfies Pr(s) =
Z(s.q)els] Prr (s, q) foreverys € S. Furthermore, the transition func-
tion of the aggregated LMC is given by T(s)(s”) = e; T([s])([s'])e”,
where i is an arbitrary index in the set {i|(si,-) € [s]}. The proof is
in Appendix B of the extended version [32].

COROLLARY 5.5. Given an irreducible product LMC M* = (8%, T),
the original LMC M = (S, T) is the aggregated LMC resulting from
the ordinarily lumpable partition | Jses[s], where [s] = {(s,q)|(s,q) €
S*}. The proof is in Appendix B of the extended version [32].

Lemma 5.3, Theorem 5.4, and Corollary 5.5 establish the one-to-
one correspondence between the steady-state probability derived
for an irreducible product LMC and the steady-state distribution
for the original LMC. Note that this result also holds for unichains
since the steady-state probability measure of transient states therein
would be zero. Now, let us consider the case where the product
LMC is a multichain. We establish sufficient conditions for yielding
the same one-to-one correspondence of steady-state distributions.
Furthermore, we establish necessary and sufficient conditions for
the multichain product LMC (M X A) to yield a unichain original
LMC M.

LEMMA 5.6. Let M* = (8%, T*) denote a multichain product
LMC and let (S¥);., SX ¢ $% denote its BSCCs. Then its corresponding
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original LMC M = (S, T) is a unichain iff some state (s,-) € S*
shows up in every BSCC sk of M*. That is, for some s € S and all k,
there exists q € Q such that (s,q) € sk,

Proor. This follows from the one-to-one correspondence be-
tween paths in M and paths in M. Furthermore, the single BSCC
S’ C S of Mis given by 8" = {s|(s,q) € Uy S¥}. m]

LEMMA 5.7. Given a multichain product LMC M* = (S%,T*)
with m identical BSCCs given by transition probability matrices Ty =
T, = --- = Ty, and an irreducible LMC M’ = (S’,T’), where S’
contains exactly the states in the first BSCC and T’ = Ty (w.l.o.g.), the
steady-state probability of an arbitrary state (s, q) € S’ is equivalent
to the sum of steady-state probabilities of all states isomorphic to it in
the BSCCs of M. The proof is in Appendix C of the extended version

[32].

To illustrate Theorem 5.4 and Lemmas 5.6 and 5.7, consider the
multichain product LMC in Figure 3, where T; and T denote the
transition probability matrices for the two BSCCs. We will show
that, because these two BSCCs are identical in terms of their transi-
tion matrices (rows may need to be reordered to reflect this), we
have Pr¥(s) = %5 g)e[s] Pr™(s, q) for states s in the original LMC
shown in Figure 4. The solution to the steady-state equations for this
product LMC yields Pr*(so, qo) = 0,Pr®(s1,-) = 1/6,Pre(sz,-) =
1/12. The order of states in T differs from that of T; in order to
reflect that BSCCs can be identical up to row ordering. Note that
the equivalence classes can be defined in terms of the isomorphic

sets as [s1] = (s1) U(sy) and [s2] = (s2) U(s3)-

(51,40)/05 05 0 0 (s1,42){05 05 0 0
T _(s2,q)f 0 0 1 0 T C(s2,g3)f O 0 1 0
YT (s,q)| 0 0 05 05|77 (si,g3)| 0O 0 05 05
(82,(]1) 1 0 0 0 (82,(12) 1 0 0 0

Figure 3: Product LMC with isomorphic sets given
by (s1) = {(s1,90), (s1,92)}, {s7) = {(s1,q1), (51, 93)},
(s2) = {(52,90). (52.93)}, (s5) = {(s2. q1), (52, 92) }

So /0 0.6 04
= 5110 05 05
S2 \0 1

Figure 4: The unichain original LMC.
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Now;, consider the original LMC shown in Figure 4 corresponding
to this product LMC. Solving the steady-state equations (1) for the
original LMC yields Pr®(sp) = 0,Pr®(s1) = 2/3,Pr®(sz) = 1/3.
Note that Pr™(s1) = X(s,q)e[s,] Pr™ (s, g) and Pr(s) =
2 (s.q)[s:] Pr™ (s, q) in accordance with Theorem 5.4 by leveraging
the fact that Pr*(s,q) = X(y.¢/)e(s) Pr™(s". ¢’) per Lemma 5.7.

Theorem 5.4 and Lemma 5.7 establish necessary and sufficient
conditions for a multichain product LMC to yield a unichain original
LMC in the original LMDP such that there is a one-to-one correspon-
dence between the sum of steady-state probabilities 3, Pr®(s, q)
in the former and the steady-state distribution Pr®°(s) in the latter.
Indeed, note that

Pr(s) = Z Pr(s,q) = Z Z Pr(s’,q")
(s,q)€l[s] S€S (s',q’) e(s)
holds when the product LMC is unichain or multichain given that
the original LMC is unichain. This is the case when all BSCCs in
the product LMC are identical as mentioned in Lemma 5.7, which
is the case when all BSCCs in the product LMC share some state in
S per Lemma 5.6.

We can now add constraints to program (2) to ensure that the
solution policy 7 is deterministic and yields a unichain original LMC
M in the original LMDP M even though the product LMC (M X
A)y induced in the product LMDP M X A may be multichain. We
begin with constraints to enforce a deterministic policy. Constraint
(iii) ensures that a positive occupation measure implies that the
action corresponding to it is selected as part of the solution policy
and (iv) enforces a valid probability distribution, where 7 (als, q) €

{0,1}.

(iii) xsqa < 7(als, q) Y(s,q) €S¥,ac A

(v) Y xlasq) =1

acA(s)

Y(s, q) € S*

LEMMA 5.8. Let (x, ) denote a feasible solution to constraints (i)
through (iv) and assume that the product LMC (M X A), induced
by r is such that all BSCCs share some state s € S. Then xsqq =
n(als, q)Pry; (s,q) = m(als, q) X4 Xsqa for all recurrent states (s, q) €
S*. The proof is in Appendix D of the extended version [32].

We can now add additional constraints that utilize the policy & in
constraints (iii) and (iv) in order to establish that some accepting
state within an AMEC is reached by this policy and visited infinitely
often. This would, in turn, satisfy the LTL specification ¢y 1, of the
given SS+LTL specification 6. For simplicity, we assume an initial
state so in the underlying LMDP M (i.e. f(sp) = 1). In order to en-
sure that there is a path from the initial state (sg, 5(qo, L(s0))) € S*
in the product LMDP M* to some recurrent component in the
union of AMECs which contains nodes in | J; G; (i.e. nodes that are
part of the DRA acceptance pairs), we will use flow transfer con-
straints. This notion of flow reflects the probability of transitioning
between states given a policy. Constraint (v) sets the flow capac-
ities, where fq5¢ denotes flow from (s,q) € $* to (s',q") € $*.
Constraint (vi) ensures that, for every state (except the starting
state), if there is incoming flow, then it is strictly greater than the
outgoing flow. This is handled by the product of some small con-
stant € and an indicator variable 754 € {0, 1} denoting whether flow
is being transferred from state (s, g) to some other state. If there is
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no incoming flow, then there is no outgoing flow and 754 must nec-
essarily be zero. Constraint (vii) ensures that, if there is incoming
flow into a state (s,q) € S*, then I5q = 1. Constraint (viii) ensures
that, whenever there is incoming flow, there must also be some
arbitrary amount of outgoing flow. The choice of denominator 2
here is arbitrary.

© figrq < Y, T((59)a)(s".q")x(als,q)

acA(s)

Z fs,q,Sq >

((s.q).(s.q)) €TC

V((s.9).(s".q") € T¢
Z fsasq +€lsq
((5,9),(s",q)) €TC
V(s,q) € S\ {(s0, 6(qo, L(50))) }
fs/q’sq < I:sq V(s,q) € e
((s.9).(s,9)) €TC
ﬂqs’q’ 2 Z fs’q’sq/2
((s.q).(s".q")) €TC ((s".9).(5,.9)) €TC
Constraint (ix) ensures that the steady-state probability of states
with no incoming flow (as determined by 74 in constraint (vi)) is 0.
This makes it so that unreachable BSCCs in the product LMC (M X
A)r do not contribute to the steady-state distribution. Constraint
(x) encodes the steady-state specifications given by operators SS in

0 and constraint (xi) ensures that some state in the acceptance sets
Ui Gi of A is visited infinitely often to satisfy the LTL specification.

(i) D) %oqa < Iyg V(s,q) € 5*
acA(s)

BIEEDY D xqa<u VSSpped
seLT(y) 4€Q acA(s)
(xi)

Z Xsqa > 0

seSqelJ; Gi acA(s)

(vi)

(vii)

(viii) Y(s,q) € S*

Recall that constraints (i) and (ii) yield the correct steady-state
distribution if there is a single BSCC (per the unichain condition)
or if all BSCCs in the product LMC (M X A), are identical and
the induced original LMC M is a unichain (per Lemma 5.7). This
is the case when all BSCCs of (M X A), share some stateins € S
per Lemma 5.6. We must therefore ensure that, in the product
LMC, some state in S is shared (This is trivially true if there is only
one BSCC). The one-to-one correspondence of paths between the
original LMC and the product LMC will then guarantee that the
former is unichain even if the latter is multichain. To accomplish
this, we define three indicator variables 7, I k , ]Sk € {0, 1} whose
value is 1 iff (s,-) shows up in some BSCC of the product LMC,
the k' AMEC of the product LMDP has some state with positive
steady-state probability (meaning that the AMEC, or a subset of it,
will show up as a BSCC in the product LMC), and (s, -) has positive
steady-state probability in the k' AMEC, respectively.

Let AMEC denote the set of all AMECs in the product LMDP
M x A and let AMEC}. denote the k™" AMEC. Constraint (xii)
ensures that 7X is 1 if some state in the k" AMEC has positive
steady-state probability. Constraints (xiii) and (xiv) ensure that,
for a given state s € S and the k™ AMEC, some indicator variable
Isq is 1 for (s, q) in the k™ AMEC if and only if Z¥ = 1. Constraint
(xv) ensures that, if Z; is 1, then (s,-) shows up in every BSCC
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of the product LMC (M X A), thereby enforcing that all BSCCs
in (M X A), are identical. Per Lemma 5.6, this ensures that the
original LMC M, is a unichain. Note that the sum Y (Z¥ — 7%) is
always non-positive and dividing by the number of AMECs bounds
this result to be within [—1, 0]. Finally, constraint (xvi) ensures
that some such shared state exists across all BSCCs of the product
LMC.

(xii) V1 < k < |[AMEC|

Z szqaslk

(s,9) €EAMEC). a

i) IF < Y Iy Vs €S, 1<k < |[AMEC|
(s,q) EAMECy
T
(xiv) Z 24 <k Vs €S, 1<k < |AMEC)
(s,q) EAMEC 121
Sk (Isk - Ik)
(x0) s -1 ————= Vse§
|AMEC|

(xvi) ZI >1

The program is summarized below.

max Z Xsqa Z T(s,a)(s")R(s,a,s’) s.t. (i) — (x0i)

(s,q)€S* acA(s) €S
Xsqa» fsqs'q € [0,1], Y((s,q),a (s",q")) € S*xAxS*
n(als,q). Log. I, T5, I € {01},

Y((s,q),a) € S*xA,1 < k < |[AMEC|

®)

THEOREM 5.9. Given an LMDP M = (S, f,A,T,R, AP, L) and an
SS+LTL objective 0 = (¢r1L, (S8[1,u;1Vi)i), let (x, f, 7, I) denote
an assignment to the variables in program (3). Then (x, f, 7, 1) is a
feasible solution if and only if Mz = (Sx, B, Trr, AP, L) satisfies 0 and
is a unichain. The proof is in Appendix E of the extended version [32].

6 EXPERIMENTAL RESULTS

Simulations of program (3) were performed using CPLEX version
12.8 [34] on a machine with a 3.6 GHz Intel Core i7-6850K processor
and 128 GB of RAM. We generated random 4 X 4,8 X 8, and 16 X 16
gridworld environments given by the LMDP M = (S, 8, T, R, AP, L)
subject to various SS+LTL specifications 6 and with the top-left cor-
ner of the grid as the inital state. There are four actions correspond-
ing to the four cardinal directions and a deterministic transition
function T (s, a)(s”) € {0, 1} defined in the obvious manner. Each
state-action pair observes a uniformly distributed random reward
in {0, 1}. See the figure in Appendix F for an example. It is worth
noting that the solutions illustrated in Figure 1 and Figure 2 were
also generated using program (3).

In the following experiments, the set of atomic propositions is
given by AP = {a, b, ¢, d}, with each atomic proposition allocated
to one-fourth of the states chosen at random. See Table 1 for results.
These results demonstrate that the proposed program (3) can scale
to state spaces of moderate size on the order of a few minutes.
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01 = ((G—b) A (GFa), $S[¢ 01,0.514)
02 = ((GFa) Vv (FGb), S8{0.01,0.5]4)
03 = ((FGa)U(b v X(bV X(bV Xb))), SS[0_01,0.5]d)

04 = ((Fa)Ub, $S[0.01,0.5]4)

05 = ((Fa) A F(aUb),$S[0.01,0.519)

0 = (F(a A X(a A Xa)),8S8[0.01,0.5]4)

6 = ((Fa AFb) A ((Fa A FBYU(c v Xa)), $8[0.010.5]d)

98 = (Fa A Fb A FC, SS [0_01’0.5]d)
0 4xX4 88X 8 16 X 16
0, 0.42(0.43)  13.09 (83.86)  35.21 (70.09)
0, 0.28 (0.72)  0.15 (0.06) 1.42 (0.74)
05 113 (3.27)  0.72(0.40) 52.74 (59.42)
04 058 (2.04)  1.19(0.53) 78.29 (53.94)
0s 0.64(1.93)  1.56 (0.70) 125.42 (93.79)
06 0.25(0.62)  1.03(0.43) 155.60 (130.84)
0, 150 (5.08)  4.95 (2.77) 195.87 (145.07)
05 2.28 (6.41)  9.50 (6.37) 338.88 (205.29)

Table 1: Average runtimes and standard deviations for 100
random instances of program (3) using CPLEX version 12.8
for the listed SS+LTL specifications 01, .. ., 03 and for grids of
sizes 4 X 4,8 X 8, and 16 X 16.

7 CONCLUSION

In this paper, we proposed and solved the deterministic controller
synthesis problem for labeled Markov Decision Processes (LMDPs)
subject to specifications on both the linear-time and visitation fre-
quency behaviors of an agent. The proposed approach uses a novel
integer programming formulation to find a policy that induces a
unichain labeled Markov chain (LMC). The program reasons about
the product LMDP computed from the original LMDP and the deter-
ministic Rabin automaton (DRA) representation of the linear-time
property. Though the product LMC induced by the solution policy
may be a multichain, we established necessary and sufficient con-
ditions for the one-to-one correspondence between the visitation
frequencies derived from the product LMC and the true steady-
state behavior of the agent captured by the unichain original LMC.
The foregoing is a step toward infinite-horizon formal synthesis
of control policies in general decision processes. For future work,
we will explore how similar correct-by-construction policies can
be computed such that guarantees of behavior hold for general
multichain LMCs induced by said policies in the original LMDP.
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