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Reward Design in Risk-Taking Contests\ast 

Marcel Nutz\dagger and Yuchong Zhang\ddagger 

Abstract. Following the risk-taking model of Seel and Strack, n players decide when to stop privately observed
Brownian motions with drift and absorption at zero. They are then ranked according to their level of
stopping and paid a rank-dependent reward. We study the problem of a principal who aims to induce
a desirable equilibrium performance of the players by choosing how much reward is attributed to
each rank. Specifically, we determine optimal reward schemes for principals interested in the average
performance and the performance at a given rank. While the former can be related to reward
inequality in the Lorenz sense, the latter can have a surprising shape.
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1. Introduction. We consider the Seel--Strack model [17] of risk-taking under private
information and relative performance pay: n players decide when to stop privately observed,
independent and identically distributed (i.i.d.) Brownian motions with drift. As the processes
are absorbed at the origin, players risk bankruptcy by gambling longer, and this risk represents
a cost for stopping later. Once all players have stopped, they are rewarded according to their
relative ranks. Seel and Strack focus on a winner-takes-all game, meaning that only the
top-ranked player receives a reward and the players' problem boils down to maximizing the
probability of winning. Here, we consider arbitrary reward schemes where subsequent ranks
may also receive payments. For instance, a hedge fund may compensate managers according
to their rank, giving smaller bonuses also to the second and third-best performers, or even
to all managers. Or, a firm may decide on promotions and terminations based on relative
performance. The game admits a unique Nash equilibrium for any reward scheme.

A main result of Seel and Strack was that their contest is an inappropriate compensation
scheme for firms because even a small negative drift can lead to large losses in the performance
of an average manager; as the players care only about their relative ranking and not the
absolute level of stopping, the winner-takes-all design induces risk-seeking behavior, and the
associated extended gambling implies that the drift takes a significant toll on the average
performance. This observation is a motivation for our investigation: how should a principal
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130 MARCEL NUTZ AND YUCHONG ZHANG

allocate a given reward budget over the ranks in order to incentivize a desirable performance
(stopping level) by the agents in equilibrium? This Stackelberg game is studied for several
objective functions. Mathematically, reward inequality in the sense of Lorenz order leads to
a single-crossing property of the stopping distributions which drives several of our results.

First, we show that a principal deriving utility from the performance of the average player
can use the reward design to align agents' risk preferences with her own, under suitable
market conditions. Under negative drift, a risk-averse principal benefits from a more equal
compensation scheme. Indeed, this alleviates the issue raised in [17]: as players are less
incentivized to gamble and stop sooner, their performance suffers less from the declining
market. While, as in [17], the largest losses still occur for small negative values of the drift,
their magnitude is greatly reduced. Under positive drift, there is a trade-off between risk
aversion and benefit from mean return, which results in an ambiguous comparison.

Second, we study a principal maximizing the expected performance of the first-ranked
player. For instance, a firm launching a competition for a novel product design or architecture
project may be interested in the winning submission (that will be realized later on) rather than
the average. The performance of the first-ranked player is shown to be monotone in Lorenz
order for any market condition, and, as a result, the winner-takes-all scheme is always optimal.
Intuitively, this principal reaps outsized benefits from higher variance in the performance
distribution which outweigh possible losses from a negative drift over time.

Third, we consider a principal maximizing the expected performance at the kth rank,
where 1 < k \leq n  - 1. As an example, consider a platform linking buyers and sellers in
sealed-bid, second-price auctions (as common, e.g., in online advertising). If the platform
receives a percentage of the price paid (i.e., the second-highest bid) and develops a reward
program for bidders based on ranks, how should a given budget be distributed? A first guess
may be to give equal rewards to the first two ranks. More generally, we may consider the
cutoff scheme at rank j, which allocates equal rewards to the first j ranks and nothing to the
rest---for instance, a company distinguishing franchises with a top-ten award or promoting its
five best-performing employees (or terminating the worst-performing employees, as relevant
to the fund industry [11]). The performance at the kth rank turns out to be more subtle than
that at the first rank. Indeed, the benefits from variance decline as k increases, and other
effects come into play. Under zero drift, a cutoff at rank 2 is optimal for the second-rank
performance, but this result does not extend to larger k: while a cutoff is still optimal, it
can be preferable to attribute rewards beyond the kth rank. For example, when n = 10, the
performance of the median player (k = 5) is optimized by paying equal rewards to the first
7 ranks. For positive drift, cutoff schemes are again optimal, whereas for negative drift, the
optimal scheme may also pay an intermediate amount.

The winner-takes-all contest of [17] has been extended in several directions, including more
general diffusion processes [7], random initial laws [8], heterogeneous loss constraints [16], and a
behavioral model [9] where losers may be penalized if they (a posteriori) missed an opportunity
to win. A different model [18] has no bankruptcy condition but instead postulates a flow cost
that is charged until stopping. Rank-order prize allocations have been studied extensively
for static games; see [19, Chapter 3] for an introduction and related literature. In the game
of [5], players independently choose any distribution on \BbbR + subject to an upper bound on the
mean and receive rank-based rewards according to their realization. The authors establishD
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REWARD DESIGN IN RISK-TAKING CONTESTS 131

existence and uniqueness of an equilibrium and show, among other comparative statics, that
reward inequality leads to greater dispersion of the equilibrium distribution in the sense of
convex order. In a different but related model with convex effort costs [6], reward inequality
is shown to decrease efforts. The authors discuss the implications of this ``discouragement
effect"" in numerous areas such as managerial compensation, employee promotion, grading,
and admissions in higher education. Many of their conclusions are also relevant to the present
paper.

Via Skorokhod's embedding theorem, the game of [5] is equivalent to the present tim-
ing game in the case of driftless Brownian motion. When the drift is nonzero, a monotone
transformation can be used to identify equilibria with the driftless case. As rewards only
depend on ranks and ranks are preserved by the transformation, this immediately implies the
existence and uniqueness of an equilibrium. On the other hand, comparative statics that are
not invariant under monotone transformations may differ---for instance, the aforementioned
result on dispersion does not hold for positive drift (Example 3.4). The main difference with
the present study, however, is our focus on a principal designing the reward. To the best of
our knowledge, performance at a given rank has not been studied in these games.

Related but different rank-based games have been studied in [2, 3, 13]. In a dynamic
Poissonian game where players control the jump intensity and are ranked according to their
jump times, [13] shows that the expected jump time of the kth ranked player is minimized
by a reward scheme which pays nothing to the ranks below k. The amounts paid to ranks
1, . . . , k are positive and strictly concave; in particular, unlike in the present model, they are
not equal. In the mean field game limit with an infinite number of competing players, the
effect of reward inequality and several contest design problems are analyzed in [3] and [2].
Here players exert effort to maximize rewards based on the ranking of their terminal position
and completion time of drifted Brownian motions, respectively, but analytical results are not
available for the associated finite-player games.

Following this introduction, section 2 details the model and the equilibrium for a given
reward scheme, whereas section 3 studies the optimal reward design.

2. Equilibrium. We fix the number n \geq 2 of players. For 1 \leq i \leq n, consider a diffusion
Xi

t = x0 + \mu t + \sigma W i
t with absorption at x = 0. The parameters x0, \sigma \in (0,\infty ) and \mu \in \BbbR 

are common among all players, whereas the standard Brownian motions W i are independent.
Each player i observes only her own diffusion and chooses a possibly randomized stopping
time \tau i < \infty . The players are then ranked according to the level Xi

\tau i at which they stopped,
with ties split uniformly at random. The player with rank k is given a reward Rk. These
prizes are deterministic and ordered, R1 \geq R2 \geq \cdot \cdot \cdot \geq Rn \geq 0, with R1 > Rn to exclude
the constant case where any profile of stopping times is an equilibrium.1 We denote the total
reward by Rtot :=

\sum n
k=1Rk and the average reward by \=R := Rtot/n.

A given stopping time \tau i leads to a distribution F = Law(Xi
\tau i) for the position at stopping.

The set \scrF of distributions that are feasible in this sense is readily characterized through

1Ordered prizes are natural in the applications we have in mind, like employee compensation or auctions,
where a different scheme may not be acceptable to players in the first place. We mention that nonmonotone
rewards can lead to nonexistence of equilibrium stopping times or atoms in the equilibrium distribution, issues
that we prefer to avoid here.D
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132 MARCEL NUTZ AND YUCHONG ZHANG

Skorokhod's embedding theorem, as observed in [17].

Lemma 2.1. The set \scrF consists of all distributions F supported on [0,\infty ) satisfying\int 
\BbbR h(x)F (dx) = 1 if \mu > 0 and

\int 
\BbbR h(x)F (dx) \leq 1 if \mu \leq 0, respectively, where h is the

normalized scale function

(2.1) h(x) =

\left\{   
\mathrm{e}\mathrm{x}\mathrm{p}( - 2\mu x

\sigma 2 ) - 1

\mathrm{e}\mathrm{x}\mathrm{p}(
 - 2\mu x0

\sigma 2 ) - 1
, \mu \not = 0,

x
x0
, \mu = 0.

This result goes back to [10]; see [15, section 9] for a systematic derivation and background.
(The extension to the present case with absorbing boundary is immediate.) We say that
F \in \scrF is an equilibrium distribution if, for i.i.d. stopping levels Xi

\tau i \sim F , no player is
incentivized to choose a different stopping time (or, equivalently, a different distribution in \scrF ).
Mathematically, let uF (x) be the expected payoff of player 1 (say) for stopping at level x if
all other players stop according to F . The probability that among players 2, . . . , n there are
exactly i players stopping above x, j players below x, and k players at x, is given by\biggl( 

n - 1

i, j, k

\biggr) 
(1 - F (x))iF (x - )j(F (x) - F (x - ))k.

Here and below, we use the same symbol F to denote the measure and its cumulative distri-
bution function (cdf), and F (x - ) := limy\uparrow x F (y). Such a configuration leads to an average
payoff (Ri+1 + \cdot \cdot \cdot + Ri+k+1)/(k + 1) for player 1 as ties are broken randomly, and it follows
that

(2.2) uF (x) =
\sum 

i,j,k\geq 0
i+j+k=n - 1

Ri+1 + \cdot \cdot \cdot +Rn - j

k + 1

\biggl( 
n - 1

i, j, k

\biggr) 
(1 - F (x))iF (x - )j(F (x) - F (x - ))k.

Then F \in \scrF is an equilibrium if
\int 
uFdF \geq 

\int 
uFd \~F for all \~F \in \scrF .

The equilibrium can be motivated through an ansatz as follows. We guess that there is
an equilibrium F with no atoms and support [0, \=x] for some 0 < \=x < \infty . For 0 \leq x \leq \=x, let
u(x) = uF (x) be the expected payoff defined above. As F is atomless, x = \=x leads to the first
rank with probability one; hence u(\=x) = R1. Similarly, u(0) = Rn, and symmetry suggests
that u(x0) = \=R. More generally, we guess that in equilibrium, player 1 is invariant between
all stopping times 0 \leq \tau \leq \=\tau , where \=\tau is the first exit time from [0, \=x]. This translates to the
condition that u(X) is a martingale as long as X stays within (0, \=x). If u is smooth on (0, \=x),
it follows via It\^o's formula that \mu u\prime (x)+ 1

2\sigma 
2u\prime \prime (x) = 0 on that interval. For \mu \not = 0, the unique

function satisfying all these conditions is

(2.3) u(x) = ( \=R - Rn)
exp( - 2\mu x

\sigma 2 ) - 1

exp( - 2\mu x0

\sigma 2 ) - 1
+Rn, 0 \leq x \leq \=x,

where \=x is determined via u(\=x) = R1 to be

(2.4) \=x =
\sigma 2

 - 2\mu 
log

\biggl\{ 
R1  - Rn

\=R - Rn

\biggl[ 
exp

\Bigl(  - 2\mu x0
\sigma 2

\Bigr) 
 - 1

\biggr] 
+ 1

\biggr\} 
.
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REWARD DESIGN IN RISK-TAKING CONTESTS 133

More precisely, this expression is finite (and strictly positive) when \mu < \=\mu , where \=\mu > 0 is
defined by setting the argument of the above logarithm to zero,

(2.5) \=\mu =
\sigma 2

2x0
log

\biggl( 
R1  - Rn

R1  - \=R

\biggr) 
.

The restriction \mu < \=\mu is a standing assumption. It ensures that players stop in finite time; in
particular, the ranking is well defined. In the driftless case \mu = 0, the above simplifies to

(2.6) u(x) =
\=R - Rn

x0
x+Rn, \=x =

R1  - Rn

\=R - Rn
x0.

On the other hand, since F is atomless, (2.2) simplifies to

u(x) =
n\sum 

k=1

Rk

\biggl( 
n - 1

k  - 1

\biggr) 
F (x)n - k(1 - F (x))k - 1.

This right-hand side is of the form g(F (x)), and the following allows us to define F by
inverting g.

Lemma 2.2. The function

g : [0, 1] \rightarrow [Rn, R1], g(y) =
n\sum 

k=1

Rk

\biggl( 
n - 1

k  - 1

\biggr) 
yn - k(1 - y)k - 1

is strictly increasing and hence invertible on [Rn, R1] = [u(0), u(\=x)]. Define

(2.7) F (x) = g - 1(u(x)), 0 \leq x \leq \=x,

as well as F (x) = 0 for x < 0 and F (x) = 1 for x > \=x. Then F is the cdf of an atomless
distribution with support [0, \=x] whose density f is strictly positive on (0, \=x). Moreover, F \in \scrF .

The stated properties of g follow from the observation that g(y) is the expected reward for
stopping at y in the game where the other n - 1 players stop according to a uniform distribution
on [0, 1]. A direct computation shows that

\int 
hdF = 1, so that F \in \scrF is guaranteed by

Lemma 2.1.
The construction implies that F is indeed an equilibrium: If players 2, . . . , n have stopping

distribution F , then u is the value function for player 1; in particular, player 1 can attain an
expected reward of \=R by choosing F as well. If \tau is any stopping time (possibly randomized),
It\^o's formula and the fact that X := X1 is absorbed at 0 imply that u(Xt) is a nonnegative
supermartingale and in particular E[u(X\tau )] \leq u(x0) = \=R. Hence, player 1 has no incentive
to deviate from F , showing that F is an equilibrium.

Proposition 2.3. Let u, \=x, \=\mu , F be defined as in (2.3)--(2.7) and \mu < \=\mu . There exists a unique
equilibrium, given by the distribution F , and u is the corresponding equilibrium value function.

Proof. In the case \mu = 0, Lemma 2.1 shows that the game is equivalent to the static,
capacity-constrained game of [5], where players choose among all distributions F on \BbbR + withD
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134 MARCEL NUTZ AND YUCHONG ZHANG\int 
x dF \leq x0. Existence and uniqueness are established in [5, Theorem 1]. If \mu \not = 0, using

the fact that the reward is based solely on the rank as well as \mu < \=\mu , we see that F is an
equilibrium if and only if \~F := F \circ h - 1 is an equilibrium of the game with \mu = 0, and the
proposition follows.

Remark 2.4. (a) The value function u depends on the minimal, maximal, and average
reward but not on the further details of the reward vector R. By contrast, the equilibrium
distribution depends on all rewards Rk. More precisely, there are n  - 2 degrees of freedom
in R that can affect F . Indeed, we could have assumed Rn = 0 without loss of generality:
subtracting a constant c from all the Rk will change u into u  - c and g into g  - c, whereas
the equilibrium distribution F is unchanged. Moreover, one can normalize the average (or the
total) reward: replacing R by \lambda R for \lambda > 0 changes u into \lambda u but leaves F invariant.

(b) We have assumed that agents are risk-neutral with respect to (w.r.t.) the reward. This
entails no loss of generality: if agents optimize a utility function U of the reward, we can treat
\~Rk := U(Rk) as an auxiliary reward and agents as risk-neutral w.r.t. \~R.

(c) As F is atomless, ties and bankruptcies almost surely do not occur.

3. Reward design. We now study how the reward scheme influences the equilibrium stop-
ping distribution and thus the players' levels of stopping, also called their performance in what
follows. While players only care about their rank, a principal interested in the performance of
one or more players may optimize the reward scheme so as to induce a desirable performance.
As above, rewards are fixed at the initial time and depend only on the final ranking. Through-
out, we normalize Rn = 0 and vary R1, . . . , Rn - 1 while keeping the total reward

\sum n
i=1Ri = 1

constant; cf. Remark 2.4 (a). The standing assumption \mu < \=\mu (cf. (2.5)) is in force for all
reward schemes under discussion. This assumption is most stringent for the winner-takes-all
scheme (Ri = 0 for i > 1), where it reads

(3.1) \mu <
\sigma 2

2x0
log

\biggl( 
n

n - 1

\biggr) 
.

We identify two notions that are crucial for this discussion. First is the Lorenz order,
which is a well-known measure of inequality in economics [1]. Given two reward vectors R
and \~R with the same total reward, \~R exhibits less inequality than R in Lorenz order, or

\~R \leq L R, if
k\sum 

i=1

\~Ri \leq 
k\sum 

i=1

Ri for k = 1, . . . , n.

Among all normalized reward vectors, the winner-takes-all scheme is the largest in Lorenz
order, whereas the uniform reward (R1 = \cdot \cdot \cdot = Rn - 1) is the smallest. The upper bound \=xR
of the support of the equilibrium distribution F corresponding to R (cf. (2.4)) is increasing
in R1. Hence, \~R \leq L R implies \=xR \geq \=x \~R, so that F and \~F (corresponding to \~R) are both
concentrated on (0, \=xR).

The second notion refers to the equilibrium distribution. Given two cdfs F and \~F , we say
that \~F is strictly single-crossing w.r.t. F if there are a < x1 < b with F (a) = \~F (a) = 0 and
F (b) = \~F (b) = 1 as well asD
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REWARD DESIGN IN RISK-TAKING CONTESTS 135

\~F < F on (a, x1) and \~F > F on (x1, b).

Where it is useful to be more explicit, we say that the functions are strictly single-crossing
on (a, b) with crossing point x1. In words, \~F  - F crosses the horizontal axis exactly once,
in an increasing fashion, in an interval supporting both distributions. It means that as F
is transformed into \~F , a nontrivial part of the mass below x1 is transported above x1, thus
reflecting an upward mobility (in terms of level of stopping) inside the population of players.

Using the language of [4, section 1.1], the economic interpretation of the following theorem
is that a more unequal reward scheme induces a ``riskier"" equilibrium distribution. In addition,
it is also a tool for proving several of the results below.

Theorem 3.1. Let R, \~R be distinct reward vectors and F, \~F be the corresponding equilibrium
distributions. If \~R \leq L R, then \~F is strictly single-crossing w.r.t. F .

Proof. Following Hardy, Littlewood, and P\'olya (see [12]), the first step is to observe the
result in the special case when the rewards differ only at two ranks: Fix 1 \leq i < j < n and
consider reward vectors R,R\delta where R\delta 

j = Rj + \delta and R\delta 
i = Ri  - \delta and R\delta 

k = Rk for k \not = i, j.
Let F, F\delta be the corresponding equilibrium distributions. Then for \delta > 0, F\delta is strictly
single-crossing w.r.t. F on (0, \=xF ). Indeed, \delta \mapsto \rightarrow F\delta (x) is strictly decreasing for x \in (0, x1)
and strictly increasing in \delta for x \in (x1, \=xF ), for a suitable x1. This can be shown by direct
arguments, or one may combine the result of [5, Lemma 9] for capacity-constrained games
with the transformation mentioned in the proof of Proposition 2.3.

Second, we observe that the change from R to \~R can be decomposed into a finite sequence
R(0), . . . , R(N) of such two-rank transformations, where R(0) = R and R(N) = \~R. This is easily
seen by induction (see [12, Lemma B.1, p. 32] for a detailed proof). If the single crossing
property were transitive, Theorem 3.1 would be a direct consequence. It is not transitive, of
course, but a careful argument is nevertheless successful.

Let Fk be the equilibrium distribution induced by R(k). By the above, Fk is strictly
single-crossing w.r.t. Fk - 1. Let xk denote the crossing point, x\mathrm{m}\mathrm{i}\mathrm{n} := min1\leq k\leq N xk, and
x\mathrm{m}\mathrm{a}\mathrm{x} := max1\leq k\leq N xk; then 0 < x\mathrm{m}\mathrm{i}\mathrm{n} \leq x\mathrm{m}\mathrm{a}\mathrm{x} < \=xR. For x \in (0, x\mathrm{m}\mathrm{i}\mathrm{n}), the pairwise strict
single-crossing property implies Fk(x) < Fk - 1(x) for all k; hence \~F (x) < F (x). A similar
argument shows that \~F (x) > F (x) for x \in (x\mathrm{m}\mathrm{a}\mathrm{x}, \=xR). Thus, by continuity, \~F  - F must cross
zero from below at least once in (x\mathrm{m}\mathrm{i}\mathrm{n}, x\mathrm{m}\mathrm{a}\mathrm{x}) \subset (0, \=xR).

It remains to show that the zero of \~F  - F in (0, \=xR) is unique. To this end, let x0 \in (0, \=xR)
be a zero of \~F  - F and y0 = F (x0) = \~F (x0). As F has a positive density on (0, \=xR), it suffices
to show the uniqueness of y0. Note that \~F (x0) = F (x0) < F (\=xR) = 1 implies x0 < \=x \~R. Since

R and \~R have the same average and R1 \geq \~R1, we see that g(F (x)) = u(x) = \~u(x) = \~g( \~F (x))
on [0, \=x \~R]. Setting x = x0 yields (\~g  - g)(y0) = 0; that is, y0 must be a zero of \~g  - g in (0, 1).

Write \~R  - R =
\sum 

(i,j) \delta i,j(ej  - ei) where ei is the ith basis vector and each term in the
finite sum represents an inequality-reducing transformation changing the reward at two ranks:
the amount \delta i,j > 0 is moved from the ith place to the jth place, where i < j. Let Pk(y) be
the probability of winning rank k at location y \in [0, 1] if (n  - 1) other random variables areD
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136 MARCEL NUTZ AND YUCHONG ZHANG

i.i.d. and uniform on [0, 1]. Then

(\~g  - g)(y) =

n\sum 
k=1

( \~Rk  - Rk)Pk(y) =
\sum 
(i,j)

\delta i,j(Pj(y) - Pi(y))

=
\sum 
(i,j)

\delta i,j

\biggl[ \biggl( 
n - 1

j  - 1

\biggr) 
yn - j(1 - y)j - 1  - 

\biggl( 
n - 1

i - 1

\biggr) 
yn - i(1 - y)i - 1

\biggr] 

=
\sum 
(i,j)

\delta i,jy
n - j(1 - y)i - 1

\biggl[ \biggl( 
n - 1

j  - 1

\biggr) 
(1 - y)j - i  - 

\biggl( 
n - 1

i - 1

\biggr) 
yj - i

\biggr] 
.

WritingGi,j(y) for the expression in square brackets, we see that (\~g - g)(y0) = 0 and 0 < y0 < 1

imply
\sum 

i,j \delta i,j
(1 - y0)i

yj0
Gi,j(y0) = 0. Both Gi,j(y) and (1 - y)i/yj are strictly decreasing on (0, 1).

Together with \delta i,j > 0, we conclude that y0 is unique.

See Figure 1 for numerical examples illustrating Theorem 3.1.
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Figure 1. Single crossing property of the equilibrium CDF F (i) corresponding to rewards R(1) \geq L \cdot \cdot \cdot \geq L

R(5). Here \mu =  - 0.01, \sigma = 1, and x0 = 100. For i = 1, 2, 3, the schemes R(i) only differ in the first two ranks
and then F (i) intersects at a common point. Similarly for i = 3, 4, 5, where the schemes differ in the second
and third ranks. The distributions for i = 3, 4, 5 have the same support; cf. (2.4).

3.1. Performance of an average player. Suppose a principal derives utility from the
individual agent performance X\tau according to a utility function \phi ; then the expected utility
in equilibrium is

E[\phi (X\tau )] =

\int \infty 

0
\phi (x)dF (x).

We recall the scale function h defined in (2.1), a smooth function with h\prime > 0 that is concave
for \mu \geq 0 and convex for \mu \leq 0.D
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REWARD DESIGN IN RISK-TAKING CONTESTS 137

Theorem 3.2. Let R, \~R be distinct reward vectors with \~R \leq L R and F, \~F the corresponding
equilibrium distributions. Let \phi : \BbbR + \rightarrow \BbbR be an increasing, absolutely continuous function.

(i) If \phi \prime /h\prime is increasing on (0, \=xR), then
\int \infty 
0 \phi (x)d \~F (x) \leq 

\int \infty 
0 \phi (x)dF (x).

(ii) If \phi \prime /h\prime is decreasing on (0, \=xR), then
\int \infty 
0 \phi (x)d \~F (x) \geq 

\int \infty 
0 \phi (x)dF (x).

The inequalities are strict unless \phi = ah+ b for some constants a, b.

Proof. (i) Integration by parts yields\int \infty 

0
\phi (x)d( \~F  - F )(x) =  - 

\int \=xR

0
( \~F  - F )(x)\phi \prime (x)dx.

By Theorem 3.1, \~F is strictly single-crossing w.r.t. F with some crossing point x1 \in (0, \=xR).
As \phi \prime /h\prime is increasing and h\prime > 0,\int \=xR

0
( \~F  - F )(x)h\prime (x)

\phi \prime (x)

h\prime (x)
dx \geq \phi \prime (x1)

h\prime (x1)

\int \=xR

0
( \~F  - F )(x)h\prime (x)dx.

Another integration by parts gives\int \=xR

0
( \~F  - F )(x)h\prime (x)dx = ( \~F  - F )(x)h(x)

\bigm| \bigm| \bigm| \bigm| \=xR

x=0

 - 
\int \=xR

0
h(x)d( \~F  - F )(x) = 0,

where the last equality holds by Lemma 2.2. Combining the above displays, we have\int \infty 
0 \phi (x)d( \~F  - F )(x) \leq 0, and the inequality is strict unless \phi \prime /h\prime \equiv \phi \prime (x1)/h

\prime (x1) a.e. The
proof of (ii) is analogous.

Specializing to risk-averse and risk-seeking utility functions, we obtain the following.

Corollary 3.3. Let R, \~R,F, \~F , \phi be as in Theorem 3.2.
(i) If \phi is convex and \mu \geq 0, then

\int \infty 
0 \phi (x)d \~F (x) \leq 

\int \infty 
0 \phi (x)dF (x).

(ii) If \phi is concave and \mu \leq 0, then
\int \infty 
0 \phi (x)d \~F (x) \geq 

\int \infty 
0 \phi (x)dF (x).

If \mu \not = 0 and \phi is not constant, the asserted inequality is strict.

Proof. This follows from the concavity/convexity of h and Theorem 3.2.

Intuitively, the reward allocation induces a ``risk preference"" in agents. This comparison
can be motivated via Remark 2.4 (b): Starting from a reward R, consider a concave increasing
function U and \~R := U(R). By an affine normalization of U we may assume that \~R is again
a normalized reward. It is easy to see that \~R \leq L R; cf. [12, Proposition B.2, p. 188]. That
is, risk-neutral players (as we have assumed) with reward allocation \~R are equivalent to
risk-averse players with allocation R. Conversely, the more unequal the reward, the more
risk-seeking agents become, staying longer in the game to gamble for a high performance (see
also Corollary 3.6 below).

Corollary 3.3 shows that the principal should align agents' risk preferences with her own,
provided that the market condition \mu is not too strong a counter-force. A negative drift
reinforces a risk-averse principal's preference for agents to stop early, to reduce both variance
and expected losses due to the drift, whereas a positive drift reinforces the preference to gamble
and profit from the drift. If the principal's preferences and the market condition are opposed,
the trade-off results in an ambiguous comparison, as shown by the following example.D
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138 MARCEL NUTZ AND YUCHONG ZHANG

Example 3.4 (Risk-averse principal in a bull market). Let \mu > 0 and \phi (x) =  - 1
\gamma e

 - \gamma x, where

\gamma > 0. Then \phi \prime (x)
h\prime (x) = \sigma 2

2\mu (1  - exp( - 2\mu x0

\sigma 2 )) exp((2\mu 
\sigma 2  - \gamma )x); thus \phi \prime /h\prime is strictly increasing if

2\mu /\sigma 2 > \gamma , strictly decreasing if 2\mu /\sigma 2 < \gamma , and constant if 2\mu /\sigma 2 = \gamma . As a result, reward
inequality is preferred for small values of the risk aversion \gamma , whereas equality is preferred for
large values.

Clearly Corollary 3.3 can be used to analyze the optimal reward scheme for the principal.
We only state the result for linear utility.

Corollary 3.5. The expected performance E[X\tau ] is strictly increasing w.r.t. the Lorenz order
of the reward scheme when \mu > 0 and strictly decreasing when \mu < 0. In particular, E[X\tau ] is
maximized by the winner-takes-all scheme when \mu > 0 and by the uniform reward when \mu < 0.
For \mu = 0, the expected performance is independent of the reward.

Proof. The result follows from Corollary 3.3 with \phi (x) = x after noting that uniform and
winner-takes-all are, respectively, the unique minimum and maximum elements w.r.t. Lorenz
order among all normalized reward schemes.

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02
80

85
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110

115

E
X

R=(1,0,0)

R'=(2/3,1/3,0)

R''=(1/2,1/2,0)

Figure 2. Average performance E[X\tau ] as a function of drift \mu for three different reward schemes R\prime \prime \leq L

R\prime \leq L R. Here x0 = 100 and \sigma = 1. The vertical asymptotes of the three curves associated with R, R\prime , and
R\prime \prime are at \=\mu = 0.002, 0.0035, and 0.0055, respectively.

See Figure 2 for numerical examples illustrating Corollary 3.5. The figure also shows that,
similarly to [17], the largest losses occur for an intermediate value of negative drift \mu . While
the corresponding \mu varies only slightly with the reward scheme, the losses for winner-takes-all
are substantially larger than for the schemes with lower inequality.

As alluded to above, we can show that higher reward inequality implies that players gamble
longer, in line with the interpretation given below Corollary 3.3. As players only care about
their relative ranking and not about the absolute performance, it is natural that the sign of
the drift does not appear in this result.

Corollary 3.6. The expected duration E[\tau ] of play is monotone increasing w.r.t. the LorenzD
ow

nl
oa

de
d 

05
/2

9/
22

 to
 1

60
.3

9.
44

.4
9 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

REWARD DESIGN IN RISK-TAKING CONTESTS 139

order of the reward scheme. In particular, it is maximized by the winner-takes-all and mini-
mized by the uniform scheme.

Proof. When \mu \not = 0, optional sampling yields E[X\tau ] = x0+\mu E[\tau ]. The result then follows
from Corollary 3.5. When \mu = 0, we apply the optional sampling theorem to the martingale
X2

t  - \sigma 2t and use Corollary 3.3 with \phi (x) = x2.

Remark 3.7. If \mu \leq 0, then \~F dominates F in second stochastic order; i.e.,
\int y
0 (

\~F (x)  - 
F (x))dx \leq 0 for all y \geq 0. Indeed, this order is alternately characterized through integrals
of increasing concave functions, so that the claim is a reformulation of Corollary 3.3 (ii). The
interpretation is as above: a more equitable reward makes players prefer less variance and
stop earlier and hence suffer less from the negative drift and achieve a higher performance in
equilibrium.

For \mu > 0, Example 3.4 shows that \~F and F cannot be ordered in this sense, as that would
imply that the principal's preference is the same for all positive risk aversion parameters.

For \mu = 0, the game is equivalent to the capacity-constrained game of [5], and the second
stochastic dominance is shown in [5, Proposition 5]. For \mu > 0, the order is not preserved by
the transformation mentioned in the proof of Proposition 2.3, as evidenced by the aforemen-
tioned example.

3.2. Performance of the first rank. Next, we study the problem of a principal aiming to
maximize the expected equilibrium performance of the first-ranked player,

E

\biggl[ 
max

i=1,...,n
X\tau i

\biggr] 
= n

\int \=x

0
xF (x)n - 1dF (x).

In contrast to the preceding subsection, this constitutes a nonlinear functional of the equilib-
rium distribution, and we obtain a result that is independent of the drift (even though the
proofs differ depending on the sign). The first rank naturally incorporates an upwards bias
relative to the average performance, and the difference increases with the volatility. For posi-
tive drift, this strongly suggests that the principal will profit from gambling and thus should
encourage a long duration of the game. More surprisingly, the profit from volatility turns out
to be more important than any losses that may occur due to a negative drift, so that reward
inequality is preferred in any market condition.

Theorem 3.8. The expected performance E[maxiX\tau i ] of the first-ranked player is strictly
increasing w.r.t. the Lorenz order of the reward scheme. In particular, the winner-takes-all
scheme is the unique maximizer.

The following lemma is required for the proof. For later use, we state it for the kth rank
rather than just the first rank.

Lemma 3.9. Let R be a reward scheme and F be the associated equilibrium distribution.
Let (Yi)1\leq i\leq n be i.i.d. with distribution F , and denote by Y (k) the kth reverse order statistic
(the kth largest value), where 1 \leq k \leq n - 1.

(i) If \mu = 0, then

(3.2) E[Y (k)] = nx0
n!

(2n - 1)!

\biggl( 
n - 1

k  - 1

\biggr) n\sum 
l=1

Rl\phi (k, l), where
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140 MARCEL NUTZ AND YUCHONG ZHANG

(3.3) \phi (k, l) :=
(2n - k  - l)!(k + l  - 2)!

(n - l)!(l  - 1)!
.

(ii) If \mu \not = 0, then setting A =  - 2\mu 
\sigma 2 and B = exp(Ax0) - 1,

E[Y (k)] = n

\biggl( 
n - 1

k  - 1

\biggr) 
A - 1

\int 1

0
log[nBg(y) + 1)]yn - k(1 - y)k - 1dy.

In particular, E[Y (k)] is strictly concave w.r.t. R for \mu < 0, strictly convex for \mu > 0, and
linear for \mu = 0.

Proof. Recall that F is strictly increasing on [0, \=x] and hence admits an inverse q := F - 1.
Clearly

E[Y (k)] = n

\biggl( 
n - 1

k  - 1

\biggr) \int \=x

0
xF (x)n - k(1 - F (x))k - 1dF (x)

= n

\biggl( 
n - 1

k  - 1

\biggr) \int 1

0
q(y)yn - k(1 - y)k - 1dy.(3.4)

In view of u(x) = g(F (x)), we have q(y) = u - 1(g(y)) for 0 \leq y \leq 1.
(i) Let \mu = 0. As R is normalized with \=R = 1/n, we obtain u(x) = x

nx0
and u - 1(y) = nx0y.

As a result, q(y) = nx0g(y), and then by (3.4),

E[Y (k)] = n2x0

\biggl( 
n - 1

k  - 1

\biggr) \int 1

0
g(y)yn - k(1 - y)k - 1dy

= n2x0

\biggl( 
n - 1

k  - 1

\biggr) n\sum 
l=1

Rl

\biggl( 
n - 1

l  - 1

\biggr) \int 1

0
y2n - k - l(1 - y)k+l - 2dy.

To compute this expression, we note that\int 1

0
y2n - k - l(1 - y)k+l - 2dy = Beta(2n - k  - l + 1, k + l  - 1)

=
(2n - k  - l)!(k + l  - 2)!

(2n - 1)!
,

where we have used that the Beta function Beta(x, y) =
\int 1
0 tx - 1(1  - t)y - 1dt satisfies the

relation Beta(x, y) = \Gamma (x)\Gamma (y)/\Gamma (x+ y) with the Gamma function. As a result,

E[Y (k)] = n2x0

\biggl( 
n - 1

k  - 1

\biggr) n\sum 
l=1

Rl

\biggl( 
n - 1

l  - 1

\biggr) 
(2n - k  - l)!(k + l  - 2)!

(2n - 1)!

= nx0
n!

(2n - 1)!

\biggl( 
n - 1

k  - 1

\biggr) n\sum 
l=1

Rl
(2n - k  - l)!(k + l  - 2)!

(n - l)!(l  - 1)!
.

(ii) Let \mu \not = 0. Note that h(x) = \mathrm{e}\mathrm{x}\mathrm{p}(Ax) - 1
B ; hence h - 1(z) = A - 1 log(Bz + 1). As

u(x) = 1
nh(x) for x \leq \=x, we have u - 1(z) = h - 1(nz); i.e.,

q(y) = u - 1(g(y)) = A - 1 log(nBg(y) + 1).

This expression is well defined due to (3.1). In view of (3.4), the claim follows.D
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REWARD DESIGN IN RISK-TAKING CONTESTS 141

Proof of Theorem 3.8. Let \~R \leq L R be two reward schemes and \~F , F be the corresponding
equilibria. By Theorem 3.1, \~F is strictly single crossing w.r.t. F .

(i) Case \mu \geq 0. We also have that F - 1 is strictly single crossing w.r.t. \~F - 1 on (0, 1). Let
y0 be the crossing point; then\int 1

0
(F - 1(y) - \~F - 1(y))yn - 1dy > yn - 1

0

\int 1

0
(F - 1(y) - \~F - 1(y))dy \geq 0,

where the last inequality is due to Corollary 3.5 and \mu \geq 0.
(ii) Case \mu < 0. For \lambda \in [0, 1], we define (cf. Lemma 2.2)

\varphi (\lambda ) := E[Y
(1)
\lambda ] = nA - 1

\int 1

0
log[nB(\lambda \~g(y) + (1 - \lambda )g(y)) + 1]yn - 1dy

and show that \varphi attains its unique maximum at \lambda = 0. As \varphi is strictly concave (Lemma 3.9),
it suffices to show that the right derivative \varphi \prime (0+) \leq 0. Indeed,

\varphi \prime (0+) = nA - 1

\int 1

0

nB(\~g  - g)(y)yn - 1

nBg(y) + 1
dy.

As \mu < 0, we have B > 0 and one checks that the factor

yn - 1

nBg(y) + 1
=

\Biggl[ 
n\sum 

\ell =1

(nBR\ell + 1)

\biggl( 
n - 1

\ell  - 1

\biggr) \biggl( 
1 - y

y

\biggr) \ell  - 1
\Biggr]  - 1

is increasing in y. In view of \~R \leq L R, g is strictly single-crossing w.r.t. \~g on (0, 1). Finally,\int 1
0 \~g(y)dy = \=R =

\int 1
0 g(y)dy. Together, these three facts imply that \varphi \prime (0+) \leq 0.

3.3. Performance of the \bfitk th rank. We consider a principal maximizing the expected
performance of the kth ranked player, where 1 \leq k \leq n  - 1. This problem is more involved
than the first rank: if k is close to 1 (relative to n/2), we may expect to see effects similar to
those for the first rank, but clearly the profits from volatility are weaker. A first guess may
be that the principal should maximize the reward at the kth rank in order to maximize kth
rank performance. While this is not always true, the following reward schemes nevertheless
play a special role.

Definition 3.10. For 1 \leq j \leq n - 1, the reward scheme Rj = (Rj
1, . . . , R

j
n) with

Rj
i = 1/j, i \leq j, and Rj

i = 0, i > j,

is called the cutoff at j.

In words, Rj distributes the total reward uniformly over the first j ranks. This scheme
maximizes the reward at the jth rank. The winner-takes-all scheme R1 and the uniform
scheme Rn - 1 are special cases.

We first focus on the case of zero drift, which allows for the most detailed analysis. When
k = 1, we have seen in Theorem 3.8 that the winner-takes-all reward is optimal. The next
result shows that the guess also holds for the second rank: it is optimal to reward the first two
ranks equally and give zero reward to the subsequent ranks. However, this does not extend
to higher target ranks k \geq 3. While a cutoff reward is still optimal, it can be beneficial to
extend the cutoff point beyond k. The analytic description uses the function \phi of (3.3).D
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142 MARCEL NUTZ AND YUCHONG ZHANG

Proposition 3.11. Let \mu = 0. Then the unique normalized reward scheme maximizing the
expected performance E[Y (k)] of the kth rank is the cutoff at k\ast , where

(3.5) k\ast = max

\Biggl\{ 
j \geq k : \phi (k, j) \geq 1

j  - 1

j - 1\sum 
l=1

\phi (k, l)

\Biggr\} 
.

In particular, the winner-takes-all scheme is optimal for k = 1 and the cutoff at 2 is optimal
for k = 2. For k \geq 3, it may happen that k\ast > k. For instance, for n = 5 and k = 3, the cutoff
at k\ast = 4 is optimal; for n = 10 and k = 5, the cutoff at k\ast = 7 is optimal (cf. Figure 3).
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k
*/n

Figure 3. Illustration of Proposition 3.11. The left panel shows the kth rank performance for all cutoff
schemes when n = 10 and k = 5; the best performance is attained at k\ast = 7. The right panel shows the optimal
cutoff ratio k\ast (n)/n when the target rank k varies with n, chosen such that k/n = \alpha := 1/2 is constant. The
behavior for finite n is rather complex but suggests a simplification in the limit n \rightarrow \infty , which has motivated
the study of the limiting mean field game in a companion paper [14].

Proof. We have \phi (k,l+1)
\phi (k,l) = (k+l - 1)(n - l)

(2n - k - l)l . Noting that

(k + l  - 1)(n - l) - (2n - k  - l)l = n(k  - l) + l  - n

is < 0 if l \geq k and > 0 if l < k, we see that \phi (k,l+1)
\phi (k,l) < 1 if l \geq k and \phi (k,l+1)

\phi (k,l) > 1 if l < k. That
is, we have

\phi (k, 1) < \phi (k, 2) < \cdot \cdot \cdot < \phi (k, k  - 1) < \phi (k, k) > \phi (k, k + 1) > \cdot \cdot \cdot \phi (k, n - 1),

and in particular \phi (k, k) is a maximum. In view of (3.2), we conclude that an optimal reward
scheme must pay equal rewards to ranks j = 1, . . . , k\ast . For k = 1 it follows directly that
k\ast = 1. For k = 2 we note that \phi (2, 1) > \phi (2, 3) holds for all n, which of course implies that
1
2 [\phi (2, 1) + \phi (2, 2)] > \phi (2, 3). Further examples are verified by direct calculation.

We now turn to the case of nonzero drift, where our result is less detailed. The number
k\ast is defined in (3.5).D
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Proposition 3.12. If \mu > 0, the expected performance E[Y (k)] is maximized by a cutoff at j
for some j \leq k\ast . If \mu < 0, the optimal reward scheme pays equal amounts to ranks 1 through
k\ast .

Remark 3.13. (a) For \mu < 0, the optimizer need not be a cutoff scheme. That is, in addi-
tion to the equal amounts mentioned in the proposition, smaller amounts may be paid to lower
ranks. For instance, let \mu =  - 0.5, \sigma = 1, x0 = 1, and (n, k) = (5, 2). Then k\ast = 2, and numer-
ical experiments show that the optimal reward scheme is given by (0.416, 0.416, 0.168, 0, 0),
which is not a cutoff scheme.

(b) For \mu > 0, we conjecture that the optimal j satisfies k \leq j \leq k\ast . Both inequalities
may be strict. As an example, let \mu = 0.05, \sigma = 1, x0 = 1, and (n, k) = (10, 5). In this case,
\mu < \=\mu is satisfied for all rewards. We have k\ast = 7, and numerical experiments show that the
cutoff at j = 6 is optimal.

Proof of Proposition 3.12. The cutoff schemes (Ri)i=1,...,n - 1 are the extreme points of the
compact, convex set of normalized reward schemes. Any normalized reward R can be uniquely
expressed as a convex combination R =

\sum n - 1
i=1 \lambda iR

i, where \lambda = (\lambda 1, . . . , \lambda n - 1) is an element of
the unit simplex \Delta \subset \BbbR n - 1. Introducing the function gi associated with Ri as in Lemma 2.2,

gi(y) :=
n\sum 

l=1

Ri
l

\biggl( 
n - 1

l  - 1

\biggr) 
yn - l(1 - y)l - 1 =

i\sum 
l=1

1

i

\biggl( 
n - 1

l  - 1

\biggr) 
yn - l(1 - y)l - 1,

we can rewrite the optimization over normalized reward schemes as

sup
\lambda \in \Delta 

n

\biggl( 
n - 1

k  - 1

\biggr) 
A - 1

\int 1

0
log

\Biggl[ 
nB

n - 1\sum 
i=1

\lambda ig
i(y) + 1

\Biggr] 
yn - k(1 - y)k - 1dy.

Dropping a positive factor for brevity, we thus seek to maximize

(3.6) J(\lambda ) := A - 1

\int 1

0
log

\Biggl[ 
nB

n - 1\sum 
i=1

\lambda ig
i(y) + 1

\Biggr] 
yn - k(1 - y)k - 1dy

over \Delta . This is a strictly convex, continuous function for \mu > 0, showing that any optimizer
must be an extreme point. Whereas for \mu < 0, J is strictly concave, showing that the optimizer
is unique (and explaining why the solution may well be an interior point rather than a cutoff
scheme).

(i) Let \mu > 0, so that A,B < 0. Fix k\ast < j < n; then gk\ast is strictly single-crossing w.r.t.
gj with some crossing point y0 \in (0, 1). Writing ei for the ith basis vector in \BbbR n - 1, and usingD
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also that x \leq ex  - 1, with equality only for x = 1, the crossing property implies

J(ek\ast ) - J(ej) = A - 1

\int 1

0
log

\biggl( 
nBgk\ast (y) + 1

nBgj(y) + 1

\biggr) 
yn - k(1 - y)k - 1dy

> A - 1

\int 1

0

\biggl( 
nBgk\ast (y) + 1

nBgj(y) + 1
 - 1

\biggr) 
yn - k(1 - y)k - 1dy

=
nB

A

\int 1

0

gk\ast (y) - gj(y)

nBgj(y) + 1
yn - k(1 - y)k - 1dy

\geq nB

A(nBgj(y0) + 1)

\int 1

0
(gk\ast (y) - gj(y))yn - k(1 - y)k - 1dy.

Moreover,

\int 1

0
(gk\ast (y) - gj(y))yn - k(1 - y)k - 1dy

=
n\sum 

l=1

\biggl( 
1l\leq k\ast 

k\ast 
 - 

1l\leq j

j

\biggr) \biggl( 
n - 1

l  - 1

\biggr) \int 1

0
y2n - k - l(1 - y)k+l - 2dy

=
n\sum 

l=1

\biggl( 
1l\leq k\ast 

k\ast 
 - 

1l\leq j

j

\biggr) \biggl( 
n - 1

l  - 1

\biggr) 
(2n - k  - l)!(k + l  - 2)!

(2n - 1)!

=
(n - 1)!

(2n - 1)!

n\sum 
l=1

\biggl( 
1l\leq k\ast 

k\ast 
 - 

1l\leq j

j

\biggr) 
\phi (k, l)

=
(n - 1)!

(2n - 1)!

\Biggl( 
1

k\ast 

k\ast \sum 
l=1

\phi (k, l) - 1

j

j\sum 
l=1

\phi (k, l)

\Biggr) 
.

The last expression is nonnegative by the definition of k\ast . Putting everything together, we
have shown that ej is strictly suboptimal, and the claim follows.

(ii) Let \mu < 0, so that A,B > 0. Let \lambda 0 \in \Delta be such that \lambda 0
i0

> 0 for some i0 < k\ast ,
and define \lambda 1 := \lambda 0 + \lambda 0

i0
(ek\ast  - ei0). To show that \lambda 1 is strictly better than \lambda 0, it suffices by

concavity to show \partial 
\partial \theta J(\lambda 

\theta )
\bigm| \bigm| 
\theta =0

< 0, where \lambda \theta := \theta \lambda 0 + (1 - \theta )\lambda 1. Indeed, we have

\partial 

\partial \theta 
J(\lambda \theta )

\bigm| \bigm| 
\theta =0

=
nB

A

\int 1

0

\sum n - 1
i=1 (\lambda 

0
i  - \lambda 1

i )g
i(y)

nB
\sum n - 1

i=1 \lambda 1
i g

i(y) + 1
yn - k(1 - y)k - 1dy.

Using the single-crossing property of gi0 w.r.t. gk\ast , the strict monotonicity of nB
\sum n - 1

i=1 \lambda 1
i g

i(y)+
1, and the definition of k\ast , we deduce thatD
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\partial 

\partial \theta 
J(\lambda \theta )

\bigm| \bigm| 
\theta =0

=
nB

A

\int 1

0

\lambda 0
i0
(gi0(y) - gk\ast (y))

nB
\sum n - 1

i=1 \lambda 1
i g

i(y) + 1
yn - k(1 - y)k - 1dy

< C

\int 1

0
\lambda 0
i0(g

i0(y) - gk\ast (y))yn - k(1 - y)k - 1dy

= C

\int 1

0
\lambda 0
i0

n\sum 
l=1

\biggl( 
1l\leq i0

i0
 - 1l\leq k\ast 

k\ast 

\biggr) \biggl( 
n - 1

l  - 1

\biggr) 
y2n - k - l(1 - y)k+l - 2dy

= C\lambda 0
i0

n\sum 
l=1

\biggl( 
1l\leq i0

i0
 - 1l\leq k\ast 

k\ast 

\biggr) \biggl( 
n - 1

l  - 1

\biggr) 
(2n - k  - l)!(k + l  - 2)!

(2n - 1)!

= C

\Biggl( 
1

i0

i0\sum 
l=1

\phi (k, l) - 1

k\ast 

k\ast \sum 
l=1

\phi (k, l)

\Biggr) 
\leq 0,

where C is a positive constant that may vary from line to line. This shows that J(\lambda 1) >
J(\lambda 0). As a consequence, the optimal reward scheme must be a convex combination of
Rk\ast , . . . , Rn - 1.
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