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ABSTRACT

Community detection aims to partition a connected graph into
a small number of clusters. The Degree-Corrected Stochas-
tic Block Model (DCSBM) is one popular generative model
that yields graphs with varying degree distributions within
the communities. However, large computational complexity
and storage requirements of existing approaches for DCSBM
limit their scalability to large graphs. In this paper, we ad-
vance a scalable framework for DCSBM, in which the full
graph is first sub-sampled by selecting a small subset of the
nodes, then a clustering of the induced subgraph is obtained,
followed by low-complexity retrieval of the global commu-
nity structure from the clustering of the graph sketch. To
sample the underlying graph, we introduce a family of sam-
pling schemes that capture local community structures using
metrics derived from the average neighbor degrees, which
are shown to achieve the twin objective of sampling from
low-density clusters and identifying high-degree nodes within
each cluster. The proposed approach can perform on par with
full scale clustering while affording substantial complexity
and storage gains as demonstrated through experiments using
both synthetic and real data.

1. INTRODUCTION

The study of network representations of various phenomena is
at the heart of modern network science, with important appli-
cations in social science [1, 2], biology [3] and telecommuni-
cation [4, 5]. In this realm, community detection has emerged
as a useful means for identifying clustering structures intrin-
sic to networks [6], which could offer insight into how such
networks are organized, help uncover some of their important
properties, and advance our understanding of the underlying
social, natural and physical phenomena.

The stochastic block model (SBM) is a popular genera-
tive model of random graphs containing communities in view
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of its simplicity and tractability. While the SBM is key to
numerous noteworthy studies on community detection [7], its
value is limited in practice due to the inherent assumption that
nodes belonging to the same community are stochastically
equivalent. Indeed, many real-world graphs possess a power
law degree distribution for which SBM provides a poor fit.
This motivated the development of alternative models such
as the Degree-Corrected SBM (DCSBM) [8], the Popular-
ity Adjusted Block Model [9], and the LFR benchmark [10],
which have better capacity to capture the node degree vari-
ability within and between communities typical of real-world
data.

There exist several algorithms for community detection
in degree-corrected models, including SCORE [11], the Con-
vexified Modularity Maximization (CMM) algorithm [12],
the Conditional Pseudo-Likelihood (CPL) algorithm [13] and
Weighted K-medians Clustering (WKC) [14]. While many
such algorithms perform well under the DCSBM, and some
have provable guarantees, they are not viable for clustering
large scale networks given their high computation and storage
complexities. For example, although the success of CMM in
DCSBM is well-documented, its complexity scales super-
linearly with the graph size — it is of order O(n®) for a graph
of size n.

In this paper, we advance a scalable framework for com-
munity detection in DCSBM, which extends previous sketch-
based randomized frameworks that focused on graphs from
the SBM (e.g., [15]). In order to preserve the underlying
community structure in a small graph sketch, we develop a
novel sampling method termed SAND, which is a family of
graph sampling schemes that leverage local clustering proper-
ties of the graph, shown to simultaneously sample hubs in the
graph and pick enough nodes with high degrees from the low
density clusters. The appellation is due to the use of metrics
derived from the Average Neighbor Degree (AND) for sam-
pling, which measures the degree of a node relative to the sum
of the degrees of its neighbors. We analyze the behavior of
the local properties used and show that the resulting sampling
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schemes achieve the desired objectives for successful clus-
tering, through a study of the properties of the sketches they
produce in relation to the phase transitions of different cluster-
ing algorithms. Further, we propose sequential retrieval and
refinement procedures to extrapolate the clustering results to
the whole graph and enhance the classification accuracy, re-
spectively. We demonstrate our findings through a set of ex-
periments conducted on both synthetic and real data.

2. DATA MODEL AND SCALABLE FRAMEWORK

2.1. Degree-corrected stochastic block model (DCSBM)

Data Model (DCSBM) [8]: The graph G = (V, E) with ver-
tex and edge sets V and E consists of |V| = N nodes parti-
tioned into r disjoint clusters C, Cs, ..., C,.. The size of clus-
ter C; is denoted n;. Each pair of distinct nodes i € C, and
j € Cy are connected with probability 6;0; B, where 6; is
the degree heterogeneity parameter of node i, and B € R,*"
is the connectivity matrix of the clusters. The vector of het-
erogeneity parameters for all nodes is denoted 8. Unless oth-
erwise noted, we assume the common identifiability condi-
tion max;ec, ; = 1,a € 1,...,r to remove any ambiguity
regarding the scalings of B and 6.

2.2. Sketch-based community detection framework

We introduce our scalable sketch-based framework for com-
munity detection under the DCSBM, which consists of four
steps. First, we obtain a sketch of the graph G by sampling
a small subset S C V, |S| < N, of the nodes. In the sec-
ond step, we cluster Gg = (S, Es), where Gg = (S, Eg) is
the induced subgraph of GG on .S, using a clustering algorithm
of our choice. Subsequently, the results of the clustering are
extrapolated to each node in the whole graph based on the
number of connections the node has to identified clusters in
the sketch. In an optional fourth step, a final refinement of
the final label assignment is performed on the full graph to
further reduce the misclassification rate.

Our framework is related to [15, 16], in that the com-
plex clustering operation is only applied to a small subgraph
of the original graph, based on which the global community
structure is subsequently obtained. However, these works fo-
cused on graphs from the SBM or its heterogeneous variant,
which induce clustered graphs with uniform node degree dis-
tributions within the communities. Therefore, while their ap-
proach is powerful at reducing the computational burden of
clustering large graphs when the nodes belonging to a clus-
ter are statistically indistinguishable, it is of little use when
the nodes within communities have disparate node degrees as
with DCSBM graphs.

3. PROPOSED METHOD FOR DCSBM

3.1. Desirable sketch properties for DCSBM

The analysis in [17] shows that dense networks can yield good
asymptotic clustering results. This fact has also been verified
through simulations [13, 17]. On the other hand, clustering al-
gorithms typically scale super-linearly in the graph size, thus
a small sketch size is desirable to prevent the clustering time
from growing unreasonably large. Apart from sampling nodes
with large degree in each cluster, some algorithms are sensi-
tive to the presence of imbalanced cluster sizes in the sketch,
as analyzed in [18].

We use a simple DCSBM model to verify the previous
intuition. The 6; parameter is drawn independently from the
discrete probability distribution P(6; = 1) = m, P(0; =
0.2) = 1 — m, i.e., the nodes will have only two possible
values for the expected degree. The connectivity matrix B is

0.7 04 0.1 0.1
0.4 0.7 0.1 0.1
B= 0.1 0.1 0.3 0.1 S
0.1 0.1 0.1 0.3
such that the first two clusters are more dense, while the third
and fourth clusters are more sparse. The size of the graph is
set to N = 800 with cluster sizes ny = na = (N — 2n*)/2,
ng =ng =n*.

Fig. 1 shows the phase transition of the F-score for four
different graph clustering algorithms. It can be seen that
SCORE, WKC and CMM require enough nodes from the
low-density cluster to obtain good clustering performance,
especially when m is small, i.e., the graph density is low.

Further, we illustrate the drawbacks of the current sam-
pling methods, including uniform random sampling (URS),
sampling inversely proportional to node degree (SPIN) [15],
degree-based random node sampling (DRN), and forest fire
sampling (FF) [19, 20]. A graph is generated using the same
bi-degree DCSBM model above. The density parameter m =
0.2 and the size of the graph N = 8000 with equal clus-
ter sizes n; = 2000, = 1,...,4. We sample N’ = 800
nodes, yielding an induced subgraph of the same size as the
one in the previous example. The parameter /2 in the sampled
sketch is estimated by the fraction of high degree nodes in
each cluster. The size n* is estimated by taking the average of
sizes of the two low-density clusters in the sketch. The points
(rh, n*) for different sampling methods are marked in Fig. 1.
As shown, the current sampling methods do not consistently
produce sketches having the aforementioned desirable prop-
erties, and therefore often lead to poor clustering results.

3.2. Proposed sampling method

In this section, we develop and characterize a family of flex-
ible sampling schemes, which can achieve the twin objective
of sampling enough hubs with high degree and a sufficient
number of representatives from the low-density communities.
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Fig. 1. Phase transitions of different graph clustering algorithms displaying the F-score as function of the graph density and the
low-density cluster size. Left to right: CPL, SCORE, WKC and CMM. The estimated (72, n*) for different sampling methods

are marked. For SAND, the values of 7 are varied along the direction of the arrow from 1 to 6.

Similar to SBM, in the DCSBM, the degree can be used
to estimate local information about the degree heterogeneity
0;. However, it provides little information about the global
cluster structure. To glean information between clusters, we
instead consider the neighbors of node ¢ and their degrees.
Specifically, we sample the nodes according to the inverse
of the average neighbor degree, i.e., with probability propor-
tional to

W= @)
o Xjendi
where N; denotes the neighbors of node 1.

For the analysis in this section, we use the condition
> icc, i = 1,a € 1,...,r in place of that of Section 2.1.
This condition scales B and @ such that B has a convenient
interpretation. In particular, B,, becomes the expected num-
ber of edges between clusters a and b for a # b, and B, is
twice the expected number of edges within cluster a. We refer
to the diagonal entries of B using the notation p, = B,,.

Now, observe that the expected value of the numerator of
(2)is

E[d;] = 0;H, — 0?B,, ~ 0;H,,i € C,, 3)
where H, := ZZ=1 B,y Likewise, because each edge in the

graph is generated independently, the expected value of the
denominator of (2) is

E|> dj| =6;) SyHyBu,i€ Ca @)
JEN; b=1
where S, =) ;o 62.

To proceed in studying this sampling strategy, we make a
simplifying assumption about the parameters of the DCSBM
model, namely, we assume that S;1 =Sy =---=25, =s. This
occurs, for example, when the clusters have both equal size
and the same distribution of §;. We additionally assume that
By, = qforalll < a < b < r. With these assumptions, (3)
and (4) reduce to

Eld;] = 0ita, B | > dj| =06is [ pata +q > _to |, (5)

JEN; b=1
b#a

where t, = > p_, Bap = pa + (r — 1)g.

Now, suppose that the graph is “average” in the sense that
d; and Y jen; d; take their expected values. Then, the prob-
ability of sampling node i in this graph is proportional to
1

-~/

U)Z- =
s(patapys)
a

Noting that s is constant, then w; is based solely on the
number of edges in the clusters. In fact, if ¢ is small, then
the probability of sampling a node from cluster a is roughly
inversely proportional to the number of edges inside the clus-
ter, i.e., there is a higher probability of sampling from clusters
with fewer edges. This will tend to produce a sketch where all
clusters have an equal number of edges — exactly the desirable
property we seek.

Now, we consider the situation when ¢ is not close to
zero, and seek to understand if this strategy still favors clus-
ters with fewer edges. Let ppar = max{pa}h_1, Pmin =
min{p, }>_;. Then we can show that if

(6)

(7” - 2)(2Pmm - pmaac)
2(r—1)
+ \/(T - 2)2<2pmin - pmaz)z + 4(Ir — 1)p$nm
2(r—1) ’

)

then p, > pp (1 < a,b < r,b # a) implies that W], < wj,.
Therefore, so long as the sufficient condition is met, the sam-
pling will still prefer clusters with fewer edges, thus preserv-
ing this desirable feature.

Note that (6) is independent of ;. This means that the
sampling probability within each cluster is equal, i.e., the
nodes within each cluster are sampled uniformly at random.
As shown earlier, a second goal of our sampling method
should be to sample higher degree nodes from within clus-
ters. We now describe how (6) can be modified to accomplish
this goal. Specifically, we can square the numerator such that
we sample with probability proportional to

2
" _ di

W, = —m——

®)
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Returning to the ideal graph having expected degrees we have

@y = it ©)

T ty
S (pa + ng;}z tu,)
In the case that ¢ is very small, we will have @} =~ 6;/s,
thus the sampling probability of node ¢ will be directly pro-
portional to 6;, and completely independent of the number of
edges in the cluster. This will in turn lead to more high degree
nodes being sampled, as is desired.

Under the given assumptions, (6) and (9) represent two
extremes, one of which tends to sample nodes based on the
number of edges in their parent cluster, and the other which
tends to favor high degree nodes, regardless of the cluster to
which they belong. We now propose a parameterized sam-
pling technique which inherits benefits from both (2) and (8).
Given parameters = and 7, this technique samples node ¢ with
probability proportional to

@\
i=l=] - (10)

We give this proposed sampling method the name “Sampling
based on variants derived from the Average Neighbor Degree”
(SAND).

When 7 = 1, parameter x allows us to interpolate be-
tween the two strategies. If we set x = 1 then w; = wj,
whereas if ¢ = 2 then w; = w}, while setting 7 > 1 with
x = 1 further pushes the sampling in favor of clusters with
fewer edges. On the other hand, setting 7 > 1 with z = 2
further encourages the sampling of large degree nodes.

‘We now numerically illustrate the behavior of SAND and
demonstrate its versatility, especially as compared to existing
methods. The lines in Fig. 1 show the estimated /m and n*
using SAND with different parameters = and 7. Each line
shows the results for a fixed « with 7 varying in the domain
[1,6]. The arrows indicate the direction of increasing 7. We
note that by varying SAND along its two degrees of freedom,
we can produce sketches that cover a surprisingly wide range
of cluster sizes and degree distributions. For each of the four
clustering algorithms, this allows us to produce a wide variety
of sketches which will yield good performance. Of particular
note, SAND(1.4,7) with 1 < 7 < 6 fully lies in the narrow
region where CMM exhibits good performance.

3.3. Sequential retrieval method and refinement

The results of the clustering can be extrapolated to each node
in the full graph based on the number of connections that the
node has to each cluster in the sketch. But, motivated by the
intuition that nodes with larger degrees tend to be clustered
more accurately, we develop a retrieval method which sequen-
tially assigns nodes from the large degree to small degree, i.e.,
as the iterations proceed, the new labeled nodes in the graph
will be utilized for deciding the label of the remaining unla-
beled nodes.

To further reduce the misclassification rate, we also per-
form a refinement process on the full graph. The refinement
process is similar to Algorithm 2 in [14] which determines the
new label for the i-th node by counting the number of neigh-
bors of the i-th node belonging to each cluster normalized
by its corresponding cluster size, and then assign the label of
node 7 to the cluster that has the maximum normalized counts.

4. EXPERIMENTS

In this section, we evaluate the performance of the proposed
scalable framework using both synthetic and real data. Four
algorithms are utilized for clustering: CPL, CMM, SCORE
and WKC. To sample the graph sketch, we use the four sam-
pling methods URS, DRN, FF and the proposed SAND. The
performance metrics used for evaluation are the clustering
accuracy and the normalized mutual information (NMI) be-
tween the clustering results and the ground truth labels.

4.1. Synthetic data

Here, we investigate the performance of the proposed frame-
work for DCSBM using synthetic data. A graph is gener-
ated from Data Model 1 with r = 4 clusters of equal size.
The connectivity matrix is set to pB, where B is as in (1).
The parameter p can be adjusted to obtain graphs with dif-
ferent densities. By decreasing p, we can reduce the density
of the graph, thus making the clustering problem more diffi-
cult. The degree heterogeneity parameters 6; are drawn in-
dependently from a power law distribution with density func-
tion f(0) = %193 3. followed by a truncation operation
6; = min(6;,1). Unless specified otherwise, the parameters
a = 1.6 and 8 = 0.2. For SAND, we set the parameter
T=4.
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Fig. 2. Average runtime in seconds versus ngaph size N for
proposed method and full graph clustering.

First, we demonstrate the speed improvement afforded by
the proposed sketch-based approach compared with cluster-
ing of the full graph. SAND is used for sampling, where = and
7 are chosen depending on the clustering algorithm. We use
p = 1 and a sketch of size N’ = 1000. Fig. 2 shows the run-
time averaged over 10 Monte Carlo runs versus the graph size
N for different clustering algorithms. The proposed frame-
work is shown to considerably improve the running time for
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all algorithms, especially WKC and CMM, by using a small
sketch for clustering.

Second, we verify the performance of the proposed sam-
pling and retrieval methods. In this experiment, we use p =
0.6 and graph size N = 8000. CMM is used to cluster
the graph sketch produced by the different sampling meth-
ods. The NMI of the estimated sketch clusters are averaged
over 20 Monte Carlo runs and shown in Fig. 3 (left) for dif-
ferent values of the sample size N'. SAND(1.4,4) yields
the best performance, which agrees with our earlier analy-
sis in Section 3.2. Further, we evaluate the performance of
the proposed sequential retrieval and refinement procedures.
The average NMI of the cluster estimates in the full graph
are shown in Fig. 3 (right), again as a function of the sam-
ple size N’. We can see that using the proposed sequen-
tial retrieval scheme leads to significantly higher NMI than
with the retrieval method of [16]. The values are further im-
proved if we include the refinement procedure. Finally, we

1

08 e

_ [~~~ Retrieval method [16]
~ - - Sequential retrieval

Retrieval method [16]+Refine
—£— Sequential retrieval+Refine

—<—SAND(1.4,4)

200 400 600 800 1000
Sample size

Fig. 3. Left: Average NMI of the sketch for different sam-
pling methods versus sample size. Clustering is performed
using CMM. Right: Average NMI of the whole graph with
different retrieval methods versus sample size. SAND(1,4.,4)
is used for sampling and CMM for clustering.

400 600 800 1000
Sample size

compare the performance of the sketch-based approach with
full-scale graph clustering. The graph parameters are set to
N = 8000,p = 1,8 = 0.1. The sample size N’ is set to
1000 for CPL, WKC and CMM, and 2000 for SCORE. For
sampling, SAND(2,4) is used for CPL and SCORE, while
SAND(1.4,4) is used for WKC and CMM. Fig. 4 shows the
NMI for different values of the parameter v of the density
function. For CPL, as the network becomes more dense (i.e.,
when a decreases), the proposed sketch-based framework can
improve over directly clustering the full graph. For SCORE,
the sketch-based approach outperforms full-scale clustering
when the network becomes more sparse, since the sampling
method can still produce a relatively dense sketch. For WKC
and CMM, the proposed framework performs on par with
full-scale clustering.

4.2. Facebook dataset

The Facebook network dataset from [21, 22] consists of
data from 100 US universities and a snapshot of all the
“friendship” links between the users within each university
in September 2005. The dataset also contains several node
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Fig. 4. Average NMI for different clustering algorithms ver-
sus parameter o.

attributes, including gender, dorm, graduation year and aca-
demic major of each user. In [12], CMM has shown superior
performance for Simmons College, which has 1137 nodes and
24,257 undirected edges. In this work, we report on results
from the friendship graph of two large networks, ‘Brown’
and ‘Georgetown’. Specifically, we use the year of gradua-
tion as the community structure, with the graph induced by
the nodes with graduation year between 2006 and 2009. The
largest connected component is utilized in the experiment.
Finally, we get 5192 and 5676 number of nodes for Brown
and Georgetown, respectively. While the number for the two
network is 211081 and 155113.

Table 1. Performance comparison on modified networks

Sampling Brown Georgetown

method Ao %) NMI%) Acc(%) NMI(%)

URS 71.25 34.12 72.33 34.76

DRN 66.58 31.17 70.26 31.53

FF 74.09 43.15 65.27 35.32

SAND(1.5,2)  92.98 64.43 90.86 59.11

SAND(2,2) 68.11 33.05 74.72 34.90

FULL 56.57 28.18 80.94 43.97

To highlight the advantage of SAND in sampling from
graphs with varying degree distributions, we modify the two
networks of Brown and Georgetown to increase the density
variation between clusters. Specifically, we randomly remove
50% of the links of students who graduated in 2008 and 2009.
Community detection is applied to the modified networks us-
ing the CMM algorithm with different sampling methods.
The average accuracy and NMI are reported in Table 1. The
method designated “FULL” refers to direct clustering of
the full graph with CMM. One can see that SAND(1.5,2)
achieves the best performance with both networks.

5. CONCLUSION

This paper developed a scalable framework for community
detection in DCSBM, which captures the degree variability
within clusters. We proposed SAND, a parameterized fam-
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ily of sampling schemes capable of simultaneously sampling
high-degree nodes from the graph and picking enough infor-
mative nodes from the low density clusters, which yields fa-
vorable sketches for multiple clustering algorithms. Further, a
sequential retrieval procedure was proposed to extrapolate the
labels in the sketch to all the nodes in the graph and a refine-
ment was utilized to further reduce the misclassification rate.
Numerical results for both synthetic and real datasets demon-
strate the superior performance of the proposed approach and
a significant reduction in time complexity.
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