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Abstract  
  
The transition from open-channel to surcharged flow creates problems for numerical modeling of stormwater 
systems. Mathematically, problems arise through a discrete shock at the boundary between the hyperbolic 
Saint-Venant equations and the elliptic incompressible flow equations at the surcharge transition. Physically, 
problems arise through trapping of air pockets, creation of bubbly flows, and cavitation in rapid emptying and 
filling that are difficult to correctly capture in one-dimensional (1D) models. Discussed herein are three 
approaches for modeling surcharged flow with hyperbolic 1D equations: (i) Preissmann Slot (PS), (ii) Two-
component Pressure Approach (TPA) and (iii) Artificial Compressibility (AC). Each provides approximating 
terms that are controlled by model coefficients to alter the pressure wave celerity through the surcharged 
system. Commonly, the implementation of these models involve slowing the pressure celerity below physical 
values, which allows the numerical solution to dissipate the transition shock between the free surface and 
surcharged flows without resorting to extraordinarily small time-steps. The different methods provide different 
capabilities and numerical implementations that affect their behavior and suitability for different problems. 
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1. INTRODUCTION  
  
 With a few notable exceptions, the broad goal of stormwater system design is to create a system that 
operates mostly with free-surface flow. However, the ability to safely operate in conditions that involve 
pressurization remains relevant, especially as climate change may cause urban areas to experience more 
intense rain events than historically considered in design criteria. The transition region between free-surface 
and surcharged (full pipe) conditions has been called ``mixed flow’’ to distinguish from purely free-surface or 
purely surcharged flows (Song et al 1983). From the numerical modeling perspective, the possibility 
simultaneous free-surface and surcharged flows in a system creates a conundrum: numerical methods that 
are well-designed for solving the Saint-Venant equations for free-surface flow are typically inapplicable for 
incompressible surcharged pipe flow, and vice-versa. From a mathematical point of view, the problem stems 
from our choice of governing equations—the incompressible approximation applied in surcharged pipe leads 
to elliptic partial differential equations (i.e., a diagnostic problem driven solely by boundary conditions). By 
contrast, systems operating in free-surface flow are governed by hyperbolic partial differential equations (i.e., 
prognostic time-marching differential equations that form an initial-boundary value problem). In the free-
surface flow the pressure celerity is the gravity wave speed, whereas the surcharged flow has near-
instantaneous pressure transmission at an acoustic pressure wave celerity. To make matters worse, when the 
incompressibility approximation is used with rigid pipe walls and the hydrostatic approximation, the modeled 
surcharge pressure wave celerity becomes infinite. Thus, numerical models of mixed flows are faced with a 
pressure celerity shock across at the mixed-flow boundary that must be smoothly handled or it will destabilize 
the solution. 
 Fundamentally, it is a hopeless task to try to create a well-founded numerical model that smoothly solves 
a connection between discrete hyperbolic and elliptic equations—the boundary is mathematically ill-posed. 
With an implicit solution technique, the free-surface/surcharge shock creates a stiff problem that converges 
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slowly (if at all). When explicit solvers are applied, the shock results in unphysical oscillations at the 
pressurization interface that lead to numerical instability (Vasconcelos et al. 2009). Formally, these problems 
are reduced if the unsteady surcharged flow is modeled using the slight compressibility of water and the 
elasticity of the pipe—i.e., introducing a hyperbolic component to the surcharged equations using an acoustic 
pressure celerity. Transient-resolving models (such as the method of characteristics) that are used for water 
hammer in distribution systems are arguably the most rigorous approach for such problems, but are 
computationally expensive due to their small time-step. These models generally require explicit tracking of 
pressurization interfaces through an expensive shock-fitting procedure (Cunge et al. 1981). 
 There is a long tradition of applying hyperbolic solvers to represent near-incompressible surcharged flow, 
including (1) Preissmann Slot, (2) Two-Component Pressure Approach, and (3) Artificial Compressibility. 
Underlying all three models is a concept of “transient storage”—i.e., the ``extra’’ water that can be stored in a 
length of pipe of fixed nominal diameter. In the real world, the transient storage is composed of both 
compression of the water and expansion of the pipe. In the modeling realm, we can approximate the transient 
storage and its pressure celerity effects in a variety of ways. In the following sections we discuss each of 
these approximations and close with a comparison of their different interpretations. 

 
2. PREISSMANN SLOT (PS) 

 
 The Preissmann Slot (PS) is the first mixed-flow model proposed in the literature, presented in detail by 
Cunge and Wegner (1964) apparently based on an idea of Preissmann. It is also arguably the simplest mixed-
flow model, and is found in many established hydraulic models, including SWMM 5.1 and HEC-RAS. The 
concept behind the PS approach is simple to visualize, as illustrated in Fig. 1. A closed pipe is given an 
imaginary slot in the crown that runs down the length of the pipe. The slot is imagined as being bounded by 
walls of infinite height so the pipe can never actually pressurize—the fluid simply rises with a free surface in 
the slot.  

 
Figure 1. Schematic of the Preissmann Slot 

 
In the PS approach the actual closed-pipe flow is modeled with a free-surface in the imaginary slot and can be 
represented by the standard Saint-Venant equations (omitted here for brevity). The difference between the 
height of water in the slot and the soffit (inside crown) of the pipe is the PS model representation of the 
surcharged head. The critical outcome of a PS model is that the selected pressure celerity (which is 
associated with transient storage) is given by: 
 

𝑐 = 	$
𝑔𝐴!
𝑏  

 
[1] 

 
 
where g is gravitational acceleration and Ap is the pipe area (without the slot). As a consequence, the choice 
of b, the slot width, controls the celerity in the surcharged pipe and the shock that occurs at the transition from 
free-surface to surcharged flow. For illustration, consider a hypothetical condition where a pressure pulse 
travels in a pressurized pipe, raising the pressure head by hs. Over a time interval of T seconds, the pressure 
front moves a distance of Tc, hence the “extra water volume” in the slot is given by:  
 Volume = 	𝑇𝑐𝑏ℎ" = 𝑇ℎ"	6𝑔𝐴!𝑏 

 

[2] 
 

which is the PS measure of the transient storage. Both the transient storage and the pressure celerity depend 
directly on the choice of the slot width (b). 

Practical difficulties with the PS method typically stem from selecting too small of a slot width (relative to 
the pipe size) such that the resulting shock affects the stability of calculations. On the other hand, if the slot is 
chosen too wide the transient volume may be unrealistically large and the slow pressure celerity behavior will 
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significantly diverge from reality. The traditional PS approach is also limited in that it neglects unique 
behaviors of the gas phase during rapid filling and rapid emptying events. Under rapid filling conditions, gas 
slugs and bubbles can become trapped in the liquid phase if the pipe is not adequately ventilated 
(Vasconcelos and Wright, 2006). The existence and compression of the gas phase effects the true transient 
storage (Wylie et al, 1993), which (to our knowledge) has not been directly represented in any PS model. 
Rapid emptying presents a different set of concerns that depend on pipe ventilation. Rapid emptying of an 
unventilated pipe can create sub-atmospheric closed pipe flow—i.e., a full pipe whose head is less than the 
piezometric pressure implied by the full pipe soffit. Standard PS models will simply regenerate a free-surface 
flow whenever sub-atmospheric pressures are present. However, Kerger et al. (2011) demonstrated a 
modified PS with a “negative slot” that can be used for unventilated sub-atmospheric flows, but this scheme is 
not yet commonly available in stormwater software. A further challenge in rapid emptying is that pressure 
drawdown can cause cavitation and degassing of dissolved gasses, forming bubbles and coalescing to slugs 
over longer times, which cannot be captured with PS methods.  The popularity of two-equation SCL class of 
models to represent mixed flows, initially presented by Song et al (1983), stems from this important limitation; 
however, these more advanced approaches also require the application of shock-fitting algorithms that are 
computationally expensive. An alternative that addresses both rapid filling and rapid emptying problems 
problem is to split the pressure terms in two components, as is done in the Two-component Pressure 
Approach, discussed below. 
 
3. TWO-COMPONENT PRESSURE APPROACH (TPA) 
 
 The Two-component Pressure Approach (TPA) was proposed to overcome the PS model limitations in 
representing sub-atmospheric transient flows during mixed-flow conditions (Vasconcelos et al. 2006). The 
strategy in TPA models is to separate the pressure component that results from the presence of the water in 
the conduit cross-section (i.e., hydrostatic pressure) from the pressure component that would be anticipated 
only in the case of pressurized flows (which is an analog to the depth of the water in the Preissmann Slot). 
The TPA method assumes that, due to the pipe wall elasticity, the cross-sectional area of the flow (A) can 
deviate from the nominal cross-sectional area of the pipe (Ap) by a small value (A	–	Ap) when flow becomes 
pressurized. Unlike the PS model, the pressure wave celerity is linked with the surcharge pressure by: 

 
𝑐 = 	$𝑔ℎ" 8

𝐴!
𝐴 − 𝐴!

: 
 
[3] 

 
The surcharge pressure will create an increase of the cross-sectional area by A	–	Ap, which is governed by 
standard pipe elasticity equations and parameters (not presented for brevity). After a time interval T, the extra 
volume of water is:  

 
Volume = 	𝑐	𝑇	(𝐴 − 𝐴!) = 	𝑇6𝑔𝐴!ℎ"=𝐴 − 𝐴!> 

 
[4] 

 
which is the TPA measure of transient storage. Comparing to eq. [2], we see the PS transient storage scales 
on hsb1/2 where the slot width is the model parameter, whereas the TPA scales on hs1/2(A	–	Ap)1/2 with the 
expansion determined by pipe elasticity as the model parameter. An important aspect of the TPA is that a sub-
atmospheric (negative) surcharge pressure (hs) will be accompanied by a negative transient storage, Ap	/	(A	–	
Ap), but the combination provides a positive pressure celerity. 

Although the original TPA does not account for a gas phase fraction affected by filling and emptying, a 
variation of the model proposed by Vasconcelos and Marwell (2011) provides an approach that is analogous 
to the Discrete Gas Cavity Model (DGCM, Wylie et al 1993). Because the celerity is affected by a drop in 
pressure as the air fraction increases, the calculation procedure for this modified TPA approach is iterative, 
but this extra computational work enables to represent the low pressures observed during cavitation that are 
missing from the PS method and from Artificial Compressibility, discussed below.  

 
4. ARTIFICIAL COMPRESSIBILITY (AC)  
  
        Instead of creating transient storage in an imaginary space, i.e., as in the PS, or expanding the pipe, as in 
TPA, the Artificial Compressibility (AC) method uses an artificial compression of the fluid—making the 
modeled water more compressible than real water. The approach creates an “imaginary time” over which 
transient storage is temporarily represented by compressing the fluid while retaining inelastic sidewalls. The 
goal is the AC method is to use the hyperbolic equations of compressible flow without the full equation of state 
for the fluid (Chorin, 1967). The motivation is quite simple: pressure pulses move at acoustic celerities that 
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require a very small time step if we use the correct compressibility of water. However, if we treat water as a 
somewhat more compressible fluid, then the acoustic celerity is reduced, and a larger time step can be taken. 
Over a longer time-interval, both the correct compressibility and the artificial compressibility will arrive at the 
same quasi-steady conditions that are approximated by the incompressible flow equations. Note that the AC 
method is equally applicable in both surcharged and open channel flow. 
 The governing equations for the AC method in 1D flow are a somewhat modified version of the Saint-
Venant equations, as derived in detail for mixed flow in Hodges (2020). The numerical method uses a dual-
time-stepping scheme, where real time (t) is discretized with a backwards (implicit) stencil and pseudo-time (t) 
is discretized with an explicit time march following Rogers et al. (1991) for multi-dimensional flow. Because 
this approach is unusual, it is useful to briefly present the conservation of mass and momentum. Neglecting 
lateral inflows these are: 

 𝜕
𝜕𝜏
(𝐻𝐴) = −𝐷#𝐹$ F

𝜕𝐴
𝜕𝑡 +

𝜕𝑄
𝜕𝑥K 

[5] 
 

 
 𝜕𝑄

𝜕𝜏 = L−
𝜕𝑄
𝜕𝑡 +

𝜕
𝜕𝑥 8

𝑄$

𝐴 : + 𝑔𝐴
𝜕𝜂
𝜕𝑥 − 𝑔𝐴𝑆%O 

[6] 
 

 
where A is the cross-sectional flow area, Q is the volumetric flow rate, h is the piezometric head, Sf	 is the 
friction slope, Dh is a modified hydraulic depth, and F  is a Froude-like number related to the effective artificial 
celerity, g, where F	=	g	(gDh)–1/2. In eqs. [5] and [6] the terms in the braces are the standard Saint-Venant 
equations and the other terms are the pseudo-time derivatives and parameters of the AC method. In solving 
this coupled equation set, the real time (t	) derivatives are typically discretized with an implicit stencil and the 
pseudo-time (t) derivatives are discretized with an explicit time march. In each real-time step, the explicit time 
march in pseudo-time is continued until the derivatives on the left-hand-side (LHS) of eqs. [5] and [6] vanish or 
reach some acceptably small residual. Note that in a surcharged pipe with inelastic sidewalls and without a 
Preissmann Slot, the dA/dt  term must be exactly zero, but is retained in eq. [5] for use in the free-surface 
portion of mixed-flow conditions. The F  parameter introduced by Hodges (2020) sets the response rate of the 
surcharge head to volume compression, which affects the pseudo-time step needed for stability. A fully-
converged solution of the AC method (i.e., machine zero for LHS) for surcharged flow is a discrete solution 
that exactly satisfies momentum and enforces incompressible continuity.  
 Although the foundations of the AC method are almost as old as the PS method, its application to 
surcharged pipes and mixed flow is relatively recent (Hodges, 2020). As such, its characteristics and 
behaviors for these conditions are still under investigation. Unlike the PS and TPA methods, the AC method 
does not provide an obvious relationship between transient storage and celerity; i.e., we cannot (as yet) write 
an equation for the AC method that is equivalent to eqs. [2] and [4] relating celerity and transient volume. 
Indeed, in the limit as the LHS of eqs. [5] and [6] vanish, the AC method has zero transient storage and infinite 
pressure celerity in surcharged pipe; i.e., it converges to the incompressible-flow inelastic-pipe solution. 
However, experience to date has shown that this fully-converged solution is computationally impractical for 
mixed-flow conditions because of the celerity shock occurring at the interface between the free-surface and 
surcharged sections. That is, the AC method uses the hyperbolic equations so the solution procedure itself is 
smooth, but the converged condition is a celerity shock that can be difficult to capture without directly invoking 
shock-capturing schemes. As a practical matter, the pseudo-time march of the AC method will be stopped 
with some residual, providing a transient storage volume that depends on the integration of the fluxes over 
pseudo-time. For example, in a simple finite-volume formulation with Qu and Qd  as upstream and downstream 
face fluxes, the transient storage volume would be: 

 
Volume =	U 𝑄&𝑑𝜏 −	U 𝑄'𝑑𝜏	

(!

)

(!

)
 

 
[7] 

 
where tf  is the pseudo-time cutoff. Eq. [7] provides the net flux in/out of a finite volume during a single real-
time step of the pseudo-time march. The relationship between the pseudo-time residual cutoff, the transient 
storage volume, and the effective celerity in real time will depend on the implicit stencils used for the real-time 
derivatives and the algorithm for the explicit pseudo-time march. As yet, these relationships are not well 
understood. 
 
5. CONCLUSIONS  
 
 The Preissmann Slot, Two-component Pressure Approach, and Artificial Compressibility methods are 
three different approaches to a similar end: creating a transient storage term so that a hyperbolic equation can 
be used to model surcharged pipe flow and, more importantly, to smoothly capture the mixed flow transition 
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from free-surface to surcharged flow. The general advantage of these approaches is that the mixed-flow 
boundary is represented as a boundary between two hyperbolic equations rather than coupling hyperbolic and 
elliptic equations (which is required when the incompressible approximation is directly used). The models 
differ in both their implementation and the parameters that affect the relationship between storage and 
surcharged head. The PS method needs but a single parameter: the slot width. In contrast, the TPA method 
uses an estimate of the pressure celerity to represent the gain in cross sectional area created by parameters 
controlling pipe elastic deformation. Finally, the AC method uses two parameters: an artificial celerity and a 
cutoff residual for pseudo-time iteration.  Arguably, the PS method is the simplest to invoke and has the 
advantage of treating surcharged flow with the same equations as have traditionally been used for free-
surface flow. However, the PS method has a reputation for being persnickety as few Saint-Venant solvers 
have been designed to handle the sharp celerity shock that occurs at the mixed flow transition—but this is 
perhaps an indictment of the Saint-Venant solvers rather than the PS method, per se. Both the TPA and AC 
methods introduce modified forms of the Saint-Venant equations that are applicable across both free-surface 
and surcharged flow, which helps them smoothly handle the celerity shock. Both the TPA and the modified PS 
(Kerger et al, 2011) can correctly handle unventilated sub-atmospheric flows, but this remains an 
uninvestigated area for AC methods. An important advantage of the TPA over both AC and PS is that the 
modified TPA (Vasconcelos and Marwell, 2011) provides more realistic behaviors for rapid filling and rapid 
emptying than has been demonstrated with the other methods. However, the advanced TPA implementation 
requires an iterative process to recompute the local celerity, which adds to the computational effort; it is not 
clear whether the TPA iterative effort is greater than or less than the additional pseudo-time iterations required 
in AC methods. The key disadvantages of the AC approach are (i) it has relatively limited flexibility in the 
discrete approach, (ii) the pseudo-time solution for the free-surface sections is typically slower than using a 
traditional real-time marching scheme, and (iii) the relationships between the artificial celerity, the time-
marching residual and transient storage are not well understood. The key advantage of the AC method is that 
its ability to strictly control the transient storage by iterating in pseudo-time allows the method to be used to 
drive the solution to either the true transient storage or towards the incompressible ideal without sacrificing 
stability.   
 Computing mixed-flow conditions for stormwater systems is likely to remain a challenge for numerical 
models and modelers alike. The PS, TPA, and AC approaches can make the celerity shock at the mixed-flow 
boundary more tractable, but they are not a panacea: the pressure celerity shock can be reduced but cannot 
be eliminated without significantly distorting the underlying fluid mechanics. Thus, any numerical algorithm 
using one of these transient storage models for mixed-flow conditions must be able to handle the shock 
caused by the transition from a relatively slow pressure celerity in a free-surface pipe to the relatively fast 
celerity set by the selected transient storage model. 
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