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Abstract

The transition from open-channel to surcharged flow creates problems for numerical modeling of stormwater
systems. Mathematically, problems arise through a discrete shock at the boundary between the hyperbolic
Saint-Venant equations and the elliptic incompressible flow equations at the surcharge transition. Physically,
problems arise through trapping of air pockets, creation of bubbly flows, and cavitation in rapid emptying and
filling that are difficult to correctly capture in one-dimensional (1D) models. Discussed herein are three
approaches for modeling surcharged flow with hyperbolic 1D equations: (i) Preissmann Slot (PS), (ii) Two-
component Pressure Approach (TPA) and (iii) Artificial Compressibility (AC). Each provides approximating
terms that are controlled by model coefficients to alter the pressure wave celerity through the surcharged
system. Commonly, the implementation of these models involve slowing the pressure celerity below physical
values, which allows the numerical solution to dissipate the transition shock between the free surface and
surcharged flows without resorting to extraordinarily small time-steps. The different methods provide different
capabilities and numerical implementations that affect their behavior and suitability for different problems.
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1. INTRODUCTION

With a few notable exceptions, the broad goal of stormwater system design is to create a system that
operates mostly with free-surface flow. However, the ability to safely operate in conditions that involve
pressurization remains relevant, especially as climate change may cause urban areas to experience more
intense rain events than historically considered in design criteria. The transition region between free-surface
and surcharged (full pipe) conditions has been called ““mixed flow” to distinguish from purely free-surface or
purely surcharged flows (Song et al 1983). From the numerical modeling perspective, the possibility
simultaneous free-surface and surcharged flows in a system creates a conundrum: numerical methods that
are well-designed for solving the Saint-Venant equations for free-surface flow are typically inapplicable for
incompressible surcharged pipe flow, and vice-versa. From a mathematical point of view, the problem stems
from our choice of governing equations—the incompressible approximation applied in surcharged pipe leads
to elliptic partial differential equations (i.e., a diagnostic problem driven solely by boundary conditions). By
contrast, systems operating in free-surface flow are governed by hyperbolic partial differential equations (i.e.,
prognostic time-marching differential equations that form an initial-boundary value problem). In the free-
surface flow the pressure celerity is the gravity wave speed, whereas the surcharged flow has near-
instantaneous pressure transmission at an acoustic pressure wave celerity. To make matters worse, when the
incompressibility approximation is used with rigid pipe walls and the hydrostatic approximation, the modeled
surcharge pressure wave celerity becomes infinite. Thus, numerical models of mixed flows are faced with a
pressure celerity shock across at the mixed-flow boundary that must be smoothly handled or it will destabilize
the solution.

Fundamentally, it is a hopeless task to try to create a well-founded numerical model that smoothly solves
a connection between discrete hyperbolic and elliptic equations—the boundary is mathematically ill-posed.
With an implicit solution technique, the free-surface/surcharge shock creates a stiff problem that converges
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slowly (if at all). When explicit solvers are applied, the shock results in unphysical oscillations at the
pressurization interface that lead to numerical instability (Vasconcelos et al. 2009). Formally, these problems
are reduced if the unsteady surcharged flow is modeled using the slight compressibility of water and the
elasticity of the pipe—i.e., introducing a hyperbolic component to the surcharged equations using an acoustic
pressure celerity. Transient-resolving models (such as the method of characteristics) that are used for water
hammer in distribution systems are arguably the most rigorous approach for such problems, but are
computationally expensive due to their small time-step. These models generally require explicit tracking of
pressurization interfaces through an expensive shock-fitting procedure (Cunge et al. 1981).

There is a long tradition of applying hyperbolic solvers to represent near-incompressible surcharged flow,
including (1) Preissmann Slot, (2) Two-Component Pressure Approach, and (3) Artificial Compressibility.
Underlying all three models is a concept of “transient storage”—i.e., the ““extra” water that can be stored in a
length of pipe of fixed nominal diameter. In the real world, the transient storage is composed of both
compression of the water and expansion of the pipe. In the modeling realm, we can approximate the transient
storage and its pressure celerity effects in a variety of ways. In the following sections we discuss each of
these approximations and close with a comparison of their different interpretations.

2. PREISSMANN SLOT (PS)

The Preissmann Slot (PS) is the first mixed-flow model proposed in the literature, presented in detail by
Cunge and Wegner (1964) apparently based on an idea of Preissmann. It is also arguably the simplest mixed-
flow model, and is found in many established hydraulic models, including SWMM 5.1 and HEC-RAS. The
concept behind the PS approach is simple to visualize, as illustrated in Fig. 1. A closed pipe is given an
imaginary slot in the crown that runs down the length of the pipe. The slot is imagined as being bounded by
walls of infinite height so the pipe can never actually pressurize—the fluid simply rises with a free surface in
the slot.

Figure 1. Schematic of the Preissmann Slot

In the PS approach the actual closed-pipe flow is modeled with a free-surface in the imaginary slot and can be
represented by the standard Saint-Venant equations (omitted here for brevity). The difference between the
height of water in the slot and the soffit (inside crown) of the pipe is the PS model representation of the
surcharged head. The critical outcome of a PS model is that the selected pressure celerity (which is
associated with transient storage) is given by:

c= |[=2 (1]

where gis gravitational acceleration and 4, is the pipe area (without the slot). As a consequence, the choice
of b, the slot width, controls the celerity in the surcharged pipe and the shock that occurs at the transition from
free-surface to surcharged flow. For illustration, consider a hypothetical condition where a pressure pulse
travels in a pressurized pipe, raising the pressure head by As. Over a time interval of 7seconds, the pressure
front moves a distance of 7¢, hence the “extra water volume” in the slot is given by:

Volume = Tcbh, = Thy /gApb [2]

which is the PS measure of the transient storage. Both the transient storage and the pressure celerity depend
directly on the choice of the slot width (5).

Practical difficulties with the PS method typically stem from selecting too small of a slot width (relative to
the pipe size) such that the resulting shock affects the stability of calculations. On the other hand, if the slot is
chosen too wide the transient volume may be unrealistically large and the slow pressure celerity behavior will
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significantly diverge from reality. The traditional PS approach is also limited in that it neglects unique
behaviors of the gas phase during rapid filling and rapid emptying events. Under rapid filling conditions, gas
slugs and bubbles can become trapped in the liquid phase if the pipe is not adequately ventilated
(Vasconcelos and Wright, 2006). The existence and compression of the gas phase effects the true transient
storage (Wylie et al, 1993), which (to our knowledge) has not been directly represented in any PS model.
Rapid emptying presents a different set of concerns that depend on pipe ventilation. Rapid emptying of an
unventilated pipe can create sub-atmospheric closed pipe flow—i.e., a full pipe whose head is less than the
piezometric pressure implied by the full pipe soffit. Standard PS models will simply regenerate a free-surface
flow whenever sub-atmospheric pressures are present. However, Kerger et al. (2011) demonstrated a
modified PS with a “negative slot” that can be used for unventilated sub-atmospheric flows, but this scheme is
not yet commonly available in stormwater software. A further challenge in rapid emptying is that pressure
drawdown can cause cavitation and degassing of dissolved gasses, forming bubbles and coalescing to slugs
over longer times, which cannot be captured with PS methods. The popularity of two-equation SCL class of
models to represent mixed flows, initially presented by Song et al (1983), stems from this important limitation;
however, these more advanced approaches also require the application of shock-fitting algorithms that are
computationally expensive. An alternative that addresses both rapid filling and rapid emptying problems
problem is to split the pressure terms in two components, as is done in the Two-component Pressure
Approach, discussed below.

3. TWO-COMPONENT PRESSURE APPROACH (TPA)

The Two-component Pressure Approach (TPA) was proposed to overcome the PS model limitations in
representing sub-atmospheric transient flows during mixed-flow conditions (Vasconcelos et al. 2006). The
strategy in TPA models is to separate the pressure component that results from the presence of the water in
the conduit cross-section (i.e., hydrostatic pressure) from the pressure component that would be anticipated
only in the case of pressurized flows (which is an analog to the depth of the water in the Preissmann Slot).
The TPA method assumes that, due to the pipe wall elasticity, the cross-sectional area of the flow (4) can
deviate from the nominal cross-sectional area of the pipe (4,) by a small value (4 - 4,) when flow becomes
pressurized. Unlike the PS model, the pressure wave celerity is linked with the surcharge pressure by:

A
c= lon (A —pA,,> 3

The surcharge pressure will create an increase of the cross-sectional area by 4 - 4,, which is governed by
standard pipe elasticity equations and parameters (not presented for brevity). After a time interval 7, the extra

volume of water is:
Volume= cT(A—A4,)=T /gAphs(A —-4,) [4]

which is the TPA measure of transient storage. Comparing to eq. [2], we see the PS transient storage scales
on Asb/2 where the slot width is the model parameter, whereas the TPA scales on As%/2(A4 - A,)*/? with the
expansion determined by pipe elasticity as the model parameter. An important aspect of the TPA is that a sub-
atmospheric (negative) surcharge pressure (4s) will be accompanied by a negative transient storage, 4, /(4 -
Ap), but the combination provides a positive pressure celerity.

Although the original TPA does not account for a gas phase fraction affected by filling and emptying, a
variation of the model proposed by Vasconcelos and Marwell (2011) provides an approach that is analogous
to the Discrete Gas Cavity Model (DGCM, Wylie et al 1993). Because the celerity is affected by a drop in
pressure as the air fraction increases, the calculation procedure for this modified TPA approach is iterative,
but this extra computational work enables to represent the low pressures observed during cavitation that are
missing from the PS method and from Artificial Compressibility, discussed below.

4. ARTIFICIAL COMPRESSIBILITY (AC)

Instead of creating transient storage in an imaginary space, i.e., as in the PS, or expanding the pipe, as in
TPA, the Artificial Compressibility (AC) method uses an artificial compression of the fluid—making the
modeled water more compressible than real water. The approach creates an “imaginary time” over which
transient storage is temporarily represented by compressing the fluid while retaining inelastic sidewalls. The
goal is the AC method is to use the hyperbolic equations of compressible flow without the full equation of state
for the fluid (Chorin, 1967). The motivation is quite simple: pressure pulses move at acoustic celerities that
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require a very small time step if we use the correct compressibility of water. However, if we treat water as a
somewhat more compressible fluid, then the acoustic celerity is reduced, and a larger time step can be taken.
Over a longer time-interval, both the correct compressibility and the artificial compressibility will arrive at the
same quasi-steady conditions that are approximated by the incompressible flow equations. Note that the AC
method is equally applicable in both surcharged and open channel flow.

The governing equations for the AC method in 1D flow are a somewhat modified version of the Saint-
Venant equations, as derived in detail for mixed flow in Hodges (2020). The numerical method uses a dual-
time-stepping scheme, where real time (%) is discretized with a backwards (implicit) stencil and pseudo-time (t)
is discretized with an explicit time march following Rogers et al. (1991) for multi-dimensional flow. Because
this approach is unusual, it is useful to briefly present the conservation of mass and momentum. Neglecting
lateral inflows these are:

o 04 0Q [5]
5010 = Dy F o+ 5

90 _( 90 9 (¢ on [6]

e {_E+£<7> +9Aa‘9“5f}

where 4 is the cross-sectional flow area, Qis the volumetric flow rate, 7 is the piezometric head, Sris the
friction slope, D is a modified hydraulic depth, and F is a Froude-like number related to the effective artificial
celerity, v, where F=v (gDs)-%/2. In egs. [5] and [6] the terms in the braces are the standard Saint-Venant
equations and the other terms are the pseudo-time derivatives and parameters of the AC method. In solving
this coupled equation set, the real time (¢) derivatives are typically discretized with an implicit stencil and the
pseudo-time (t) derivatives are discretized with an explicit time march. In each real-time step, the explicit time
march in pseudo-time is continued until the derivatives on the left-hand-side (LHS) of egs. [5] and [6] vanish or
reach some acceptably small residual. Note that in a surcharged pipe with inelastic sidewalls and without a
Preissmann Slot, the dA4/dt term must be exactly zero, but is retained in eq. [5] for use in the free-surface
portion of mixed-flow conditions. The F parameter introduced by Hodges (2020) sets the response rate of the
surcharge head to volume compression, which affects the pseudo-time step needed for stability. A fully-
converged solution of the AC method (i.e., machine zero for LHS) for surcharged flow is a discrete solution
that exactly satisfies momentum and enforces incompressible continuity.

Although the foundations of the AC method are almost as old as the PS method, its application to
surcharged pipes and mixed flow is relatively recent (Hodges, 2020). As such, its characteristics and
behaviors for these conditions are still under investigation. Unlike the PS and TPA methods, the AC method
does not provide an obvious relationship between transient storage and celerity; i.e., we cannot (as yet) write
an equation for the AC method that is equivalent to egs. [2] and [4] relating celerity and transient volume.
Indeed, in the limit as the LHS of egs. [5] and [6] vanish, the AC method has zero transient storage and infinite
pressure celerity in surcharged pipe; i.e., it converges to the incompressible-flow inelastic-pipe solution.
However, experience to date has shown that this fully-converged solution is computationally impractical for
mixed-flow conditions because of the celerity shock occurring at the interface between the free-surface and
surcharged sections. That is, the AC method uses the hyperbolic equations so the solution procedure itself is
smooth, but the converged condition is a celerity shock that can be difficult to capture without directly invoking
shock-capturing schemes. As a practical matter, the pseudo-time march of the AC method will be stopped
with some residual, providing a transient storage volume that depends on the integration of the fluxes over
pseudo-time. For example, in a simple finite-volume formulation with @, and Qs as upstream and downstream
face fluxes, the transient storage volume would be:

f f
Volume = f Q,dt — f Qqdr [7]
0 0

where 1r is the pseudo-time cutoff. Eq. [7] provides the net flux in/out of a finite volume during a single real-
time step of the pseudo-time march. The relationship between the pseudo-time residual cutoff, the transient
storage volume, and the effective celerity in real time will depend on the implicit stencils used for the real-time
derivatives and the algorithm for the explicit pseudo-time march. As yet, these relationships are not well
understood.

5. CONCLUSIONS

The Preissmann Slot, Two-component Pressure Approach, and Artificial Compressibility methods are
three different approaches to a similar end: creating a transient storage term so that a hyperbolic equation can
be used to model surcharged pipe flow and, more importantly, to smoothly capture the mixed flow transition
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from free-surface to surcharged flow. The general advantage of these approaches is that the mixed-flow
boundary is represented as a boundary between two hyperbolic equations rather than coupling hyperbolic and
elliptic equations (which is required when the incompressible approximation is directly used). The models
differ in both their implementation and the parameters that affect the relationship between storage and
surcharged head. The PS method needs but a single parameter: the slot width. In contrast, the TPA method
uses an estimate of the pressure celerity to represent the gain in cross sectional area created by parameters
controlling pipe elastic deformation. Finally, the AC method uses two parameters: an artificial celerity and a
cutoff residual for pseudo-time iteration. Arguably, the PS method is the simplest to invoke and has the
advantage of treating surcharged flow with the same equations as have traditionally been used for free-
surface flow. However, the PS method has a reputation for being persnickety as few Saint-Venant solvers
have been designed to handle the sharp celerity shock that occurs at the mixed flow transition—but this is
perhaps an indictment of the Saint-Venant solvers rather than the PS method, per se. Both the TPA and AC
methods introduce modified forms of the Saint-Venant equations that are applicable across both free-surface
and surcharged flow, which helps them smoothly handle the celerity shock. Both the TPA and the modified PS
(Kerger et al, 2011) can correctly handle unventilated sub-atmospheric flows, but this remains an
uninvestigated area for AC methods. An important advantage of the TPA over both AC and PS is that the
modified TPA (Vasconcelos and Marwell, 2011) provides more realistic behaviors for rapid filling and rapid
emptying than has been demonstrated with the other methods. However, the advanced TPA implementation
requires an iterative process to recompute the local celerity, which adds to the computational effort; it is not
clear whether the TPA iterative effort is greater than or less than the additional pseudo-time iterations required
in AC methods. The key disadvantages of the AC approach are (i) it has relatively limited flexibility in the
discrete approach, (ii) the pseudo-time solution for the free-surface sections is typically slower than using a
traditional real-time marching scheme, and (iii) the relationships between the artificial celerity, the time-
marching residual and transient storage are not well understood. The key advantage of the AC method is that
its ability to strictly control the transient storage by iterating in pseudo-time allows the method to be used to
drive the solution to either the true transient storage or towards the incompressible ideal without sacrificing
stability.

Computing mixed-flow conditions for stormwater systems is likely to remain a challenge for numerical
models and modelers alike. The PS, TPA, and AC approaches can make the celerity shock at the mixed-flow
boundary more tractable, but they are not a panacea: the pressure celerity shock can be reduced but cannot
be eliminated without significantly distorting the underlying fluid mechanics. Thus, any numerical algorithm
using one of these transient storage models for mixed-flow conditions must be able to handle the shock
caused by the transition from a relatively slow pressure celerity in a free-surface pipe to the relatively fast
celerity set by the selected transient storage model.
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