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Abstract 

Mixing powders with different sizes is a common method to tune the packing density. For the 

first time, predicted packing density and optimal mixing fraction from different linear packing 

models (de Larrard's, Kwan's, and Yu's) are compared against the experimental results of mixtures 

of micropowders (with different particle sizes: 2, 10, and 70 µm). Regarding the predicted packing 

density, Kwan's model achieved the smallest prediction deviations for three mixing systems of 10 

µm and 2 µm powders, 70 µm and 10 µm powders, and 70 µm, 10 µm, and 2 µm powders, while 

de Larrard's model achieved the smallest prediction deviation for the mixing system of 70 µm and 

2 µm powders. Overall for the predicted packing density, Kwan's model achieved the best 

prediction performance with the lowest average mean absolute error of 2.2%. Regarding the 

predicted optimal mixing fraction, Kwan's model outperformed the other two models for the 

mixing system of 10 µm and 2 µm powders and the mixing system of 70 µm and 2 µm powders, 

while Yu's model outperformed the other two models for the mixing system of 70 µm and 10 µm 

powders. Possible reasons of the better performances of Kwan's model in both prediction aspects 

include the consideration of wedging effect. 
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1 Introduction 

Mixing powders with different sizes is a common method to tune the packing density. By 

controlling the particle sizes and mixing fractions of component powders, the powder mixtures 

can achieve different packing densities. Consequently, this method can be useful in various 

applications, such as to increase the powder bed density in additive manufacturing [1–3] and to 

decrease the porosity in concrete mixtures in construction engineering [4,5]. Instead of a trial and 

error approach to finding the mixing fractions to achieve the peak packing density or a specific 

packing density, analytical models have been developed to predict the packing density of a powder 

mixture using certain information such as the size, fraction, and packing density of each 

component powder [6,7]. The original linear packing model was proposed by Stovall et al. [8]. 

Several enhanced linear packing models, such as de Larrard's [9], Yu's [10], and Kwan's models 

[11,12], were developed to improve the prediction performances by accounting for different 

particle interaction effects. 

Prediction performances of these models can be evaluated in terms of two aspects. The first 

is deviation of predicted density from measured density at different mixing fractions. It is 

commonly used in other studies [5,13] and is useful when the model is used to guide the selection 

of mixing fractions to achieve a specific packing density. The second is deviation of predicted 

optimal mixing fraction from the mixing fraction for the measured peak packing density (i.e., peak 

density). It is firstly proposed in this study and is useful when the model is used to guide the 

selection of optimal mixing fraction to achieve the peak density. 

Table 1 lists two reported studies on comparing different linear packing models in the 

literature. Kwan et al. [5] mixed four rock powders with particle size ranges of 75–150, 150–300, 

300–600, and >600 µm, and then compared model-predicted packing densities (by de Larrard's 
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and Yu's models) against the experimentally measured densities. Chan et al. [13] compared model-

predicted packing densities (by de Larrard's, Yu's, and Kwan's models) against publicly available 

experimentally measured densities of binary mixtures (prepared from sand, polyethylene, and glass 

with sizes ranging from 74 µm to 20 mm). However, no study has been reported about comparing 

different linear packing models against experimentally measured densities for fine micropowders. 

Moreover, no study has been reported for any powder mixture about the deviation of predicted 

optimal mixing fraction from the mixing fraction for the measured peak density. 

Table 1. Reported studies on comparing linear packing models in the literature 

Model Material 
Particle 

size 
Application Reference 

de Larrard's [9] and 

Yu's [10] 
Rock and cement 

 75 µm – 

1.8 mm  

Construction 

Engineering 

Kwan et al., 

2009 [5] 

de Larrard's [9], Yu's 

[10], and Kwan's 
[11,12] 

Sand, 

polyethylene, and 

glass 

74 µm – 20 

mm 
Not specified 

Chan et al., 2014 
[13] 

 

This paper, for the first time, reports a study that compares the prediction performances of 

three packing models using experimental data from fine micropowders. In this paper, firstly, three 

linear packing models (de Larrard's model [9], Yu's model [10], and Kwan's model [11,12]) were 

introduced. Packing densities for various powder mixing systems at different fractions of 

component powders, as well as optimal mixing fractions for the peak packing density, were 

calculated from these models. Various mixing fractions were selected to prepare binary and ternary 

powder mixtures, and the packing density for each powder mixture was measured. The prediction 

performances of these three models were assessed against the experimental data. 
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2 Theoretical framework 

The three enhanced packing models assessed in this study are de Larrard's model [9], Yu's 

model [10], and Kwan's model [11,12]. These models are based on the assumption that all 

component powders and powder mixtures are under the state of dense packing and composed of 

non-deformable particles [8,14]. In the case of a powder mixture with n components (the 

components are ranked such that di ≥ di+1, where di is the diameter of the ith component), the 

model-predicted packing density (𝛾) is given by [16]: 

𝛾 = min(𝛾1, 𝛾2, ⋯ , 𝛾𝑖, ⋯ , 𝛾𝑛)                                                             (1) 

where 𝛾𝑖  is the model-predicted packing density of the powder mixture assuming the ith 

component is “dominant” [8]. Here a dominant component means that its particles are tightly 

packed against each other, while the other smaller component particles fill the voids among the 

dominant component particles, and the other larger component particles contact dominant particles 

only [5]. Moreover, all modeled packing densities in this paper are relative densities. 

Adding a powder with a different size to an existing powder with a specific size can either 

increase or decrease its packing density. The added powder can increase the density by occupying 

the voids between finer particles, which is called the occupying effect [15], as illustrated in Figure 

1(a), or by filling the voids between the coarser particles, which is called the filling effect, as 

illustrated in Figure 1(b). These two effects are included in the original linear packing model by 

Eq. (2) (and therefore in all three enhanced linear packing models). 

The added powder can also decrease the packing density by three different effects. The first 

one is called wall effect of the coarse powder [12] when coarse particles disrupt the packing of 

fine particles at wall-like boundaries of coarse particles, as illustrated in Figure 1(a). The second 
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is called loosening effect of fine powder [12] when fine particles are squeezed between the coarse 

particles, as illustrated in Figure 1(b). The third is called wedging effect [11] when coarse particles 

are close to each other and the space between them is not enough for a fine particle to occupy (if 

fine powder is dominant, as illustrated in Figure 1(a)), or when fine particles trapped between 

coarse particles preventing coarse particles from contacting each other (if coarse powder is 

dominant, as illustrated in Figure 1(b)). All these three effects can be included in the model by 

using interaction functions [13]. Different interaction functions can be fitted using the 

experimental data. 

 

Figure 1. Illustrations of (a) occupying, wall, and wedging effects when fine powder is 

dominant (dashed circles in the coarse particle are imagined fine particles assuming the coarse 

particle is not present), and (b) filling, loosening, and wedging effects when coarse powder is 

dominant 

In the following part of Section 2, three enhanced linear packing models are introduced. All 

models consider wall effect and loosening effect (by different interaction functions of these two 

effects). Kwan's model also considers wedging effect (by a third interaction function). 

Filling effect

Occupying effect

Wedging effect

Wall effect

Loosening effect

(a) (b)
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2.1 Two-parameter models (de Larrard's model and Yu's model) for both binary and 

ternary mixtures 

A two-parameter model incorporates two effects, i.e. wall effect and loosening effect [9,10]. 

In a two-parameter model, the model-predicted packing density (𝛾𝑖) assuming the ith component 

is dominant is given by the following equation [5]: 

𝛾𝑖 =
𝛽𝑖

1 − ∑ [1 − 𝛽𝑖 + 𝑏𝑖,𝑗𝛽𝑖 (1 −
1
𝛽𝑗

)] 𝑦𝑗 − ∑ [1 − 𝑎𝑖,𝑗
𝛽𝑖

𝛽𝑗
] 𝑦𝑗

𝑛
𝑗=𝑖+1

𝑖−1
𝑗=1

                   (2) 

where 𝛽𝑗 and 𝑦𝑗 are the packing density and volumetric fraction of the jth component, respectively. 

𝑎𝑖,𝑗  and 𝑏𝑖,𝑗 are two interaction functions that reflect loosening and wall effects, respectively. 

The interaction functions in de Larrard's model are [9]: 

𝑎𝑖,𝑗 = √1 − (1 −
𝑑𝑗

𝑑𝑖
)

1.02

                                                          (3) 

𝑏𝑖,𝑗 = 1 − (1 −
𝑑𝑗

𝑑𝑖
)

1.5

                                                             (4) 

The interaction functions in Yu's model are [5,10]: 

𝑎𝑖,𝑗 = 1 − (1 −
𝑑𝑗

𝑑𝑖
)

3.3

− 2.8 ∙
𝑑𝑗

𝑑𝑖
∙ (1 −

𝑑𝑗

𝑑𝑖
)

2.7

                                     (5) 

𝑏𝑖,𝑗 = 1 − (1 −
𝑑𝑗

𝑑𝑖
)

2

− 0.4 ∙
𝑑𝑗

𝑑𝑖
∙ (1 −

𝑑𝑗

𝑑𝑖
)

3.7

                                       (6) 

The final model-predicted packing density (𝛾) is determined by Eq. (1). 
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2.2 Three-parameter model (Kwan's model) 

A three-parameter model incorporates three effects, i.e. wall effect, loosening effect, and 

wedging effect [11]. 

2.2.1 Three-parameter model for binary mixture 

The model-predicted packing density, 𝛾𝑖 and 𝛾𝑗 , assuming the ith and jth component is 

dominant, respectively, is given by the following equations [12]: 

1

𝛾𝑖
= (

𝑦𝑖

𝛽𝑖
+

𝑦𝑗

𝛽𝑗
) − (1 − 𝑏𝑖,𝑗)(1 − 𝛽𝑗) ∙

𝑦𝑗

𝛽𝑗
∙ [1 − 𝑐𝑖,𝑗(2.6𝑦𝑗 − 1)]                                (7) 

1

𝛾𝑗
= (

𝑦𝑖

𝛽𝑖
+

𝑦𝑗

𝛽𝑗
) − (1 − 𝑎𝑖,𝑗) ∙

𝑦𝑖

𝛽𝑖
∙ [1 − 𝑐𝑖,𝑗(3.8𝑦𝑗 − 1)]                                        (8) 

where 𝑎𝑖,𝑗, 𝑏𝑖,𝑗, and 𝑐𝑖,𝑗 are the interaction functions between the ith and jth component for the 

loosening effect, wall effect, and wedging effect, respectively. They are defined as follows [11,12]: 

𝑎𝑖,𝑗 = 1 − (1 −
𝑑𝑗

𝑑𝑖
)

3.3

− 2.6 ∙
𝑑𝑗

𝑑𝑖
∙ (1 −

𝑑𝑗

𝑑𝑖
)

3.6

                                     (9) 

𝑏𝑖,𝑗 = 1 − (1 −
𝑑𝑗

𝑑𝑖
)

1.9

− 2 ∙
𝑑𝑗

𝑑𝑖
∙ (1 −

𝑑𝑗

𝑑𝑖
)

6

                                        (10) 

𝑐𝑖,𝑗 = 0.322 ∙ 𝑡𝑎𝑛ℎ (11.9 ∙
𝑑𝑗

𝑑𝑖
)                                                     (11) 

The final model-predicted packing density (𝛾) is determined by Eq. (1). 

2.2.2 Three-parameter model for ternary mixture 

When the first component (the powder with the largest particle size) is dominant, the packing 

density of the ternary mixture is given by the following equation [12]: 
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1

𝛾1
=

𝑦1

𝛽1
+

𝑦2

𝛽2
+

𝑦3

𝛽3
− (1 − 𝑏1,2)(1 − 𝛽2 ) ∙

𝑦2

𝛽2
∙ [1 − 𝑐1,2(2.6(𝑦2+𝑦3) − 1)] − (1 − 𝑏1,3)(1 − 𝛽3)

∙
𝑦3

𝛽3
∙ [1 − 𝑐1,3(2.6(𝑦2+𝑦3) − 1)]                                                                                   (12) 

When the second component (the powder with the intermediate particle size) is dominant, the 

packing density of the ternary mixture is given by the following equation [12]: 

1

𝛾2
=

𝑦1

𝛽1
+

𝑦2

𝛽2
+

𝑦3

𝛽3
− (1 − 𝑎1,2) ∙

𝑦1

𝛽1
∙ [1 − 𝑐1,2(3.8𝑦1 − 1)] − (1 − 𝑏2,3)(1 − 𝛽3) ∙

𝑦3

𝛽3

∙ [1 − 𝑐2,3(2.6𝑦3 − 1)]                                                                                                   (13) 

When the third component (the powder with the smallest particle size) is dominant, the 

packing density of the ternary mixture is given by the following equation [12]: 

1

𝛾3
=

𝑦1

𝛽1
+

𝑦2

𝛽2
+

𝑦3

𝛽3
− (1 − 𝑎1,3) ∙

𝑦1

𝛽1
∙ [1 − 𝑐1,3(3.8𝑦1 − 1)] − (1 − 𝑎2,3) ∙

𝑦2

𝛽2

∙  [1 − 𝑐2,3(3.8𝑦2 − 1)]                                                                                                  (14) 

The interaction functions are the same as Eqs. (9)‒(11), and the final model-predicted packing 

density (𝛾) is given by Eq. (1). 

3 Experimental method 

3.1 Characterization of particle morphology 

Three alumina powders with nominal particle sizes of 2, 10, and 70 µm, respectively, were 

purchased from Inframat Corporation and used as component powders in this study. Particle 

morphologies of these component powders were characterized by scanning electron microscopy 

(SEM, TESCAN VEGA II LSU, Brno-Kohoutovice, Czech), and are shown in Figure 2. The 

shapes of powder particles are primarily spherical. The particle size within each powder is not 

perfectly uniform, but the size variation is much smaller than the size differences across the three 

powders. This study focuses on spherical powders since they have been used in various 
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applications such as additive manufacturing [1]. Non-spherical powders will be studied in a future 

study. 

 

Figure 2. Particle morphologies of component powders: (a) 2 µm, (b) 10 µm, and (c) 70 µm 

3.2 Preparation of powder mixtures 

Three binary mixing systems and one ternary mixing system were prepared from the three 

component powders with sizes of 2, 10, and 70 µm. These mixing systems are denoted by 10/2, 

70/2, 70/10, and 70/10/2 in this study. Various mixing fractions were selected to prepare different 

powder mixtures for each mixing system. All mixing fractions in this paper are based on the true 

(solid) volume of each powder. Since all component powders are composed of the same material 

(i.e., alumina), volumetric fractions are the same as mass fractions. A scale with an accuracy of 

0.1 mg (AGCN200, Torbal, Oradell, NJ) was used to measure the fraction of each component 

powder. Measured component powders were mixed by ball milling (Jar Rolling Mills, Paul O. 

Abbe, Wood Dale, IL) for 1 h, using alumina balls with a diameter of 2 mm. The amount of balls 

was 10% of the powder mixture by mass. A low milling speed (~60 RPM) was used. 

3.3 Measurement of tap density 

The packing density of all component powders and powder mixtures is evaluated by tap 

density, a good estimation for the packing density of a densely packed powder [16,17]. The tap 
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density of each powder was measured by a tap density meter (DY-100A, HongTuo, Dongguan, 

Guangdong, China) following an ASTM standard [18]. Specifically, the mass of each powder for 

tap density measurement was 100 g. Each measurement included 3000 tapping cycles with a 3-

mm stroke. After tapping, the absolute tap density was calculated by dividing the mass by the 

volume of the powder inside the cylinder. The absolute tap density was then divided by the 

theoretical density of alumina (3.97 g/cm3 [19]) to obtain the relative tap density. All 

experimentally measured packing densities in this paper are relative tap densities. The tap densities 

of component powders of 2, 10, and 70 μm are 61.0%, 61.0%, and 62.2%, respectively. 

4 Results and discussion 

4.1 Experimental and modeling results 

Experimentally measured densities and model-predicted densities from the three enhanced 

linear packing models for the three binary mixing systems are presented in Table 2 and Figure 3. 

As shown in Figure 3, the increase in the coarse powder fraction initially increased and then 

decreased the packing density of the powder mixtures. The increase in the fine powder fraction 

also initially increased and then decreased the packing density of the powder mixtures. The general 

trends of the relation between packing density and mixing fraction from the experiments well 

match those from the models. 
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Table 2. Experimentally measured and model-predicted packing densities for three binary 

mixing systems 

Binary 

mixing 

system 

Fraction 

of 2 µm 

powder 

(vol.%) 

Fraction 

of 10 µm 

powder 

(vol.%) 

Fraction 

of 70 µm 

powder 

(vol.%) 

Packing density 

from 

experiments 

(%) 

Packing 

density 

from de 

Larrard's 

model 

(%) 

Packing 

density from 

Yu's model 

(%) 

Packing 

density from 

Kwan's 

model (%) 

10/2 53.7 46.3 / 68.7 65.1 70.0 69.4 

10/2 43.7 56.3 / 70.0 66.1 72.3 71.6 

10/2 33.7 66.3 / 71.0 69.0 74.8 73.9 

10/2 28.7 71.3 / 71.4 71.0 72.4 75.1 

10/2 23.7 76.3 / 71.6 71.4 70.1 74.9 

10/2 18.3 81.3 / 69.4 70.0 68.0 71.5 

10/2 13.7 86.3 / 67.1 65.7 65.9 68.3 

70/2 50.0 / 50.0 74.5 73.7 75.0 74.9 

70/2 40.0 / 60.0 77.6 75.8 78.6 78.5 

70/2 30.0 / 70.0 80.8 78.2 82.6 82.5 

70/2 25.0 / 75.0 81.1 78.5 78.4 82.4 

70/2 20.0 / 80.0 76.6 74.7 74.5 77.4 

70/2 15.0 / 85.0 72.5 71.9 71.0 72.9 

70/2 10.0 / 90.0 68.8 66.1 67.8 69.0 

70/10 / 52.3 47.7 70.5 68.6 71.7 71.3 

70/10 / 42.3 57.7 72.1 72.6 74.5 73.9 

70/10 / 32.3 67.7 73.5 76.3 77.4 76.8 

70/10 / 27.3 77.7 74.0 76.4 74.6 78.3 

70/10 / 22.3 77.7 74.2 74.0 72.0 77.0 

70/10 / 17.3 82.7 71.4 70.9 69.5 73.1 

70/10 / 12.3 87.7 68.7 69.0 67.2 69.6 
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Figure 3. Experimentally measured and model-predicted packing densities for three binary 

mixing systems: (a) 10 μm and 2 μm powders, (b) 70 μm and 2 μm powders, and (c) 70 μm and 

10 μm powders (the double arrows show the derivations of optimal mixing fraction for de 

Larrard's model as examples) 
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Experimentally measured densities and model-predicted densities from the three enhanced 

packing models for the ternary mixing system are presented in Table 3 and Figure 4. The method 

to read the ternary plot can be found in the authors' previously published paper [1]. Based on both 

experimental and modeling results, the highest packing density can be achieved at relatively low 

fractions of 2 and 10 µm powders and a relatively high fraction of 70 µm powder. The general 

trends of the relation between packing density and mixing fraction from the experiments well 

match those from the models. 

Table 3. Experimentally measured and model-predicted packing densities for the ternary mixing 

system 

Fraction of 

2 µm 

powder 

(vol.%) 

Fraction of 

10 µm 

powder 

(vol.%) 

Fraction of 

70 µm 

powder 

(vol.%) 

Packing density 

from 

experiments 

(%) 

Packing density 

from de 

Larrard's 

model (%) 

Packing density 

from Yu's 

model (%) 

Packing density 

from Kwan's 

model (%) 

10 10 80 74.1 72.6 76.3 75.2 

10 80 10 66.7 66.7 68.4 67.8 

20 20 60 78.2 84.7 84.3 80.6 

20 30 50 77.7 83.1 83.0 79.0 

20 40 40 76.1 79.7 81.8 77.5 

20 60 20 71.1 73.7 78.0 74.5 

30 20 50 79.0 80.5 80.1 77.9 

30 30 40 76.4 79.5 79.0 76.4 

30 40 30 76.6 78.6 77.9 75.1 

40 20 40 75.3 76.7 76.4 75.1 

40 30 30 73.1 75.8 75.3 73.8 

40 40 20 70.8 74.9 74.3 72.7 

60 20 20 67.5 70.1 69.8 69.6 

80 10 10 64.4 65.2 65.1 65.2 
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Figure 4. Packing densities for the ternary mixing system from (a) experiments, (b) de 

Larrard's model, (c) Yu's model, and (d) Kwan's model 

4.2 Performances of three enhanced linear packing models 

4.2.1 Deviation of predicted density from measured density at different mixing fractions 

For a powder mixture, the deviation of predicted density from measured density (𝐷𝑒𝑣𝛾) at a 

specific mixing fraction was calculated based on the following equation: 

𝐷𝑒𝑣𝛾 =
𝛾𝑀 − 𝛾𝐸

𝛾𝐸
                                                                 (15) 
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where 𝛾𝑀  and 𝛾𝐸  are the model-predicted and experimentally measured packing densities, 

respectively. 

Figures 5 and 6 show the deviations of predicted density for binary and ternary mixing systems, 

respectively. A positive deviation value indicates that the model-predicted density is higher than 

the experimentally measured one. De Larrard's model has both higher and lower predications than 

experimental values for all three binary mixing systems. Yu's model predictions are consistently 

higher than the experimental values. Kwan's model predictions are consistently higher than the 

experiment values for the 70/2 mixing system, but sometimes higher and sometimes lower than 

the experiment values for the other two mixing systems. 

There are more positive deviation values than negative ones in both Figures 5 and 6, indicating 

that most of the model-predicted results are higher than the experimental ones. Predictions by 

Kwan's model (maximum deviation is 5.9%) have smaller positive deviations than those by de 

Larrard's and Yu's models (maximum deviations are 9.4% and 9.6%, respectively). Possible 

reasons include the consideration of the wedging effect in Kwan's model [11] that leads to lower 

density predictions (closer to the experimental results). 



16 

 

Figure 5. Deviations of predicted packing density for three binary mixing systems from three 

models: (a) de Larrard's, (b) Yu's, and (c) Kwan's 

 

Figure 6. Deviations of predicted packing density for the ternary mixing system from three 

models: (a) de Larrard's, (b) Yu's, and (c) Kwan's 

Mean absolute error (MAE) is a measure of the degree of deviation [20]. It was used in this 

study to evaluate the overall deviation of a model for a mixing system. For a specific model (i.e., 

de Larrard's, Yu's, or Kwan's), its MAE (𝑒) for a mixing system (i.e., 𝑒10/2 , 𝑒70/2 , 𝑒70/10 , or 

𝑒70/10/2) is given by: 

𝑒 =
∑ |𝛾𝑀𝑖

− 𝛾𝐸𝑖
|𝑛

𝑖=1

𝑛
                                                             (16) 
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where 𝛾𝑀𝑖
 is the model-predicted density and 𝛾𝐸𝑖

 is the experimentally measured density of the ith 

powder mixture. Here n is the number of powder mixtures in the corresponding mixing system 

that were experimentally studied (i.e., the number of rows in Tables 2 and 3 for each mixing 

system). 

To evaluate the overall performance of a specific model considering all mixing systems, the 

average MAE (𝑒𝑎𝑣𝑔) of packing density for each model was calculated based on the MAE values 

of all four mixing systems, which was given by: 

𝑒𝑎𝑣𝑔 =
𝑒10/2 + 𝑒70/2 + 𝑒70/10 + 𝑒70/10/2

4
                                 (17) 

The MAE values from Eq. (16) and Eq. (17) are shown in Table 4. Kwan's model has the 

smallest MAE values of 2.6%, 1.7%, and 1.8% for the mixing systems of 10/2, 70/10, and 70/10/2, 

respectively. For the mixing system of 70/2, Yu's model has the smallest MAE value of 2.2%. 

Overall, Kwan's model has the smallest average MAE of 2.2% among all three models. 

Table 4. Mean absolute error (MAE, 𝑒) values of packing density for three enhanced linear 

packing models for different mixing systems 

Mixing 

system 

MAE of packing density for 

de Larrard's model (%) 

MAE of packing density 

for Yu's model (%) 

MAE of packing density 

for Kwan's model (%) 

10/2 4.6 5.5 2.6 

70/2 2.2 3.6 2.6 

70/10 2.6 2.4 1.7 

70/10/2 3.8 4.2 1.8 

Average 3.3 3.9 2.2 
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4.2.2 Deviation of predicted optimal mixing fraction from the mixing fraction for the measured 

peak density 

In this section, the deviation of predicted optimal mixing fraction for all three binary mixing 

systems is calculated. For a mixing system, the deviation of predicted optimal mixing fraction was 

determined by the following equation: 

𝐷𝑒𝑣𝑦 = 𝑦𝑀 − 𝑦𝐸                                                                     (18) 

where 𝑦𝑀  and 𝑦𝐸  are the model-predicted and experimentally determined values of optimal 

mixing fraction of the coarse powder corresponding to the peak density, respectively. In each 

subfigure of Figure 3, the black vertical line corresponds to the value of 𝑦𝐸, and the other three 

vertical lines correspond to three values of 𝑦𝑀 for three models, respectively. In each subfigure, 

the blue vertical line (i.e., model-predicted optimal mixing fraction by de Larrard's model) is 

always the furthest from the black vertical line (i.e., experimentally determined optimal mixing 

fraction), meaning that de Larrard's model has the largest absolute deviation values. The double 

arrows show the deviations of optimal mixing fraction (i.e., 𝐷𝑒𝑣𝑦 ) for de Larrard's model as 

examples. 

Table 5 lists the model-predicted optimal mixing fractions from all three models and the 

corresponding experimental results for the three binary mixing systems. Figure 7 illustrates 

deviations of model-predicted optimal mixing fraction for all three binary mixing systems. Positive 

and negative deviation values mean larger and smaller model-predicted optimal mixing fractions 

than the optimal mixing fraction for the measured peak density, respectively. For binary mixing 

systems of 10/2 and 70/2, all three models underpredicted the optimal mixing fractions of the 

coarse powder. For the binary mixing system of 70/10, de Larrard's model underpredicted the 

optimal mixing fraction of the coarse powder and the other two models overpredicted it. 
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For assessing performances of different models in terms of optimal mixing fraction, the 

absolute values of deviations calculated from Eq. (18), i.e., |𝐷𝑒𝑣𝑦|, were compared. Consequently, 

it was found that Kwan's model outperformed the other two models for mixing systems of 10/2 

and 70/2, and Yu's model outperformed the other two models for the mixing system of 70/10. 

Table 5. Optimal mixing fractions of the coarse powder from models and experiments for 

three binary mixing systems 

Binary 

mixing 

system 

Optimal mixing 

fraction from de 

Larrard's model 

(%) 

Optimal mixing 

fraction from 

Yu's model (%) 

Optimal mixing 

fraction from 

Kwan's model 

(%) 

Optimal mixing 

fraction from 

experiments (%) 

10/2 66.3 74.9 76.2 76.3 

70/2 67.7 75.2 77.3 72.7 

70/10 70.0 73.5 73.9 75.0 

 

 

Figure 7. Deviations of model-predicted optimal mixing fraction of the coarse powder from 

the mixing fraction for the measured peak density of three binary mixing systems 
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5 Conclusions 

This paper assessed the performances of three enhanced linear packing models in predicting 

packing densities and optimal mixing fractions of mixtures of micropowders with different sizes 

down to 2 µm. The results on deviation of predicted packing density showed that Kwan's model 

achieved the smallest prediction deviations for three mixing systems of 10 µm and 2 µm powders, 

70 µm and 10 µm powders, and 70 µm, 10 µm, and 2 µm powders, while de Larrard's model 

achieved the smallest prediction deviation for the mixing system of 70 µm and 2 µm powders. 

Kwan's model achieved the best overall prediction performance (with an average mean absolute 

error of 2.2%) among all three models on deviation of predicted packing density. The results on 

deviation of predicted optimal mixing fraction showed that Kwan's model outperformed the other 

two models for the mixing system of 10 and 2 µm powders (with a deviation value of -0.1%) and 

the mixing system of 70 and 2 µm powders (with a deviation value of -1.1%), and that Yu's model 

outperformed the other two models for the mixing system of 70 and10 µm powders (with a 

deviation value of 2.5%). This assessment study of prediction performances of three linear packing 

models provides a guidance for preparing micropowder mixtures. 
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