HHS Public Access

Author manuscript

Br J Ophthalmol. Author manuscript; available in PMC 2022 October 01.

Published in final edited form as:

Br J Ophthalmol. 2022 October; 106(10): 1332–1337. doi:10.1136/bjophthalmol-2021-319530.

Topical carbonic anhydrase inhibitors and glaucoma in 2021: where do we stand?

Ari Stoner¹, Alon Harris², Francesco Oddone³, Aditya Belamkar¹, Alice Chandra Verticchio Vercellin², Joshua Shin⁴, Ingrida Januleviciene⁵, Brent Siesky²

¹Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA

²Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, USA

³IRCCS Fondazione G.B.Bietti, Rome, Italy

⁴New York Medical College, Valhalla, New York, USA

⁵Eye Clinic of Lithuanian University of Health Sciences, Kaunas, Lithuania

Abstract

Carbonic anhydrase inhibitors (CAIs) have been used for many decades in the treatment of glaucoma. Systemic CAIs were an early treatment option to lower intraocular pressure by reducing aqueous humour production; however, frequent side effects including polyuria and paresthesia contributed to the eventual development of topical CAIs. As topical drug development evolved over time, prostaglandin analogues and beta-blockers have become the gold standard of glaucoma therapies. Although prescribed less often than other classes of topical glaucoma therapies, topical CAIs continue to be used in combination therapies with beta-blockers and alpha agonists. Topical CAIs have also been demonstrated to alter biomarkers of ocular haemodynamics, which have relevance in glaucoma. The purpose of this review is to review and summarise the current state of topical CAI prescribing trends, known efficacy and suggested mechanisms and potential influence on ocular haemodynamics for the future of glaucoma management.

INTRODUCTION

Glaucoma is a multifactorial disease characterised by progressive deterioration of the optic nerve and associated visual field loss. Open-angle glaucoma (OAG) is the most common form of the disease, being a leading cause of irreversible blindness in all countries.¹

Correspondence to Professor Alon Harris, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; palonharris@gmail.com.

Contributors All authors made a substantial contribution to the review. Each author participated in drafting or revising the manuscript and approved submission of this version for publication.

Competing interests AH would like to disclose that he received remuneration from AdOM, Qlaris, Luseed and Cipla for serving as a consultant, and he serves on the board of AdOM, Qlaris and Phileas Pharma. AH holds an ownership interest in AdOM, Luseed, Oxymap, Qlaris, Phileas Pharma and QuLent. All relationships listed above are pursuant to Icahn School of Medicine's policy on outside activities. IJ would like to disclose that she received remuneration from Santen and Thea for serving as a consultant. The contribution of the author Francesco Oddone was supported by Fondazione Roma and by the Italian Ministry of Health. None of the other authors listed have any financial disclosures.

Patient consent for publication Not required.

Provenance and peer review Not commissioned; externally peer reviewed.

Currently, the only modifiable risk factor of this disease is intraocular pressure (IOP), which has been associated with disease progression and visual field loss. While lowering IOP can slow the disease progression also in subjects with IOP considered within the normal range, treating an elevated IOP does not halt disease progression in all patients. Regardless, approved treatments for OAG have been solely focused on lowering IOP through pharmaceutical or surgical intervention and no other approach to glaucoma has yet proven effective. Topical IOP-lowering therapies include carbonic anhydrase inhibitors (CAIs), alpha agonists, prostaglandin analogues, cholinergic agonists and beta-blockers with others in various stages of development.

CAIs are among the oldest agents in use for the treatment of OAG with reports demonstrating the efficacy of acetazolamide in lowering IOP as early as 1954.^{2 3} While systemic CAIs such as acetazolamide and methazolamide are capable of reducing IOP in glaucoma patients, their use is burdened by significant side effects including paresthesia, diuretic effect, metabolic acidosis, electrolyte abnormalities, nausea and weakness.⁴ Additionally, since these drugs are sulfa compounds, they are contraindicated in those with an allergy. Topical CAIs including dorzolamide (Trusopt) and brinzolamide (Azopt) were developed to mitigate systemic side effects through local administration and were both approved in the mid-1990s for the management of OAG. They have since become a mainstay class of drugs with popular formulations prepared in combination with other IOP-lowering medications including dorzolamide–timolol (Cosopt), brinzolamide–timolol (Azarga), and brinzolamide–brimonidine (Simbrinza).⁵

The development of several new classes of glaucoma medications has significantly altered the use of topical CAIs over the past two decades, yet they are still frequently prescribed across the world in glaucoma management. This review will, therefore, evaluate current prescribing trends of CAIs and examine their mechanistic influence on IOP, ocular haemodynamics and glaucomatous progression.

MATERIALS AND METHODS

Relevant literature with the search terms CAI, methazolamide, acetazolamide, dorzolamide, brinzolamide, Cosopt, Azopt, Azarga, Simbrinza and carbonic anhydrase were reviewed through 21 April 2021 on PubMed, Medline and associated digital databases. Reference lists of relevant articles were also searched and cross-referenced for other relevant articles on CAI and glaucoma.

Mechanism of CAIs

Chemically, CAIs reduce IOP by suppressing aqueous humour production at the ciliary bodies through the prevention of the interconversion of carbon dioxide (CO₂) and carbonic acid which freely dissociates into bicarbonate anions and protons.^{2–5} Bicarbonate is thought to influence fluid transport by a pH-dependent sodium transport.⁶ Additionally, studies have shown CAIs to affect ocular haemodynamics by directly reducing the resistance of vessels and thus increasing blood flow velocities, restoring proper circulation.⁷

The increase in local tissue CO_2 concentrations by CAIs is known to cause vascular dilation, specifically in cerebral tissue, and has been used when testing for vasodilative reserve potential. S-10 This effect has been theorised to arise from local CO_2 retention and/or reduced local tissue pH, resulting in vasodilation and increased blood flow in the retinal and choroidal circulation. Another mechanism has been suggested by which dorzolamide and acetazolamide dilate retinal vasculature independent of CAI. Previous studies have implicated blood flow abnormalities as a contributing factor in the development of glaucoma thus, the ability of CAIs to increase flow has been suggested to potentially provide an additional benefit in the management of disease progression. $^{16-20}$

Emergence of topical CAIs

Today, systemic CAIs including acetazolamide and methazolamide are still used prior to ophthalmic surgery and during acute IOP spikes. ²¹ Specifically, acetazolamide and methazolamide accounted for 0.5% and 0.2%, respectively, of all Medicare claims for glaucoma medications in 2015.²² However, for chronic control of IOP, physicians have increasingly moved toward topical CAIs (ie, dorzolamide and brinzolamide) given the relatively high incidence of side effects associated with the use of systemic CAIs. 4 Topical CAIs have been shown to significantly decrease IOP in multiple studies^{23–27} and are typically associated with a 15%-20% drop in IOP with potential side effects limited to allergic dermatitis/conjunctivitis, corneal oedema, keratitis and metallic taste. ²⁸ ²⁹ While topical medications do have fewer side effects, they also require penetration of their compounds through the anterior ocular surface to reach a critical concentration in the ocular milieu, and therefore, may have reduced capacity to lower IOP with one study in rabbits³⁰ and one in humans³¹ supporting this theory. Additionally, studies have found acetazolamide to have a similar or slightly stronger IOP-lowering effect in comparison to dorzolamide^{32–34}; however, when combined no additive effect was demonstrated.³⁵ Relative contraindications for systemic and topical CAIs may include worsening corneal oedema, ^{36 37} a history of renal stones, ³⁸ pregnancy³⁹ or sickle cell disease. ^{40 41} Additionally, while generally tolerated, the most common reason for intolerance to topical CAIs is ocular discomfort (burning and stinging) following administration, however, several studies show brinzolamide to be more tolerated than dorzolamide in this regard. 42-45

Chemical composition, pharmacokinetics and pharmacodynamics of CAIs

The systemic CAIs, methazolamide and acetazolamide, are heterocyclic sulfonamide drugs and represent the first generation of clinically used CAIs. They are very strong inhibitors of most isoforms of carbonic anhydrase. Their broad side effect profile can be attributed to their indiscriminate inhibition of carbonic anhydrases throughout the body with a host of CA isozymes abundant in nearly every organ. While topical administration of these first generation CAIs was attempted, it was found these drugs were unable to reach the ciliary processes likely due to an inability to penetrate the cornea. The second generation of CAIs, dorzolamide and brinzolamide, were water-soluble and capable of penetrating the cornea and ocular milieu, allowing for topical administration and reducing the side effects associated with systemic administration. One the less, topical CAIs were found to lower IOP to a lesser degree than systemic formulations. The decreased ocular hypotensive effect of topical versus systemic CAIs is attributed to their higher IC(50) for the carbonic

anhydrase isoenzymes CA-II and CA-IV, which are thought to be those most responsible for aqueous humour production.^{5 48}

IOP reduction as a measure of the effectiveness of CAIs

IOP reduction, as the only modifiable risk factor for the treatment of OAG, is used as a surrogate outcome to quantify intervention effectiveness. ^{50 51} A 2016 systematic review and meta-analysis by Li *et al* compared the effectiveness of first-line glaucoma medications for IOP reduction found that, when compared with brinzolamide, dorzolamide had more IOP-lowering capability with a mean difference of 0.58 mm Hg.²⁴ The group also ranked dorzolamide 11th and brinzolamide 12th for their ability to reduce IOP using a network meta-analysis of fourteen glaucoma medications. In order, they were less effective than bimatoprost, latanoprost, travoprost, levobunolol, tafluprost, timolol, brimonidine, carteolol, levobetaxolol and apraclonidine but were more effective than betaxolol and unoprostone. A compendium of studies demonstrating IOP reduction among topical CAIs can be found in table 1.

While topical CAIs may be less effective than other agents at reducing IOP, several factors are often considered in determining a patient's treatment plan including side effects, cost, availability and safety. For instance, prostaglandins are often considered the best performing medications but have been associated with eyelash lengthening and iris colour changes, while beta-blockers, often the most-prescribed drugs due to low cost, can induce bronchospasm and bradycardia in some patients. A 52 53 CAIs themselves have potential significant side effects and the relative contraindications should be considered on an individual basis. Additionally, CAIs should generally be avoided in patients with sickle cell disease as they are thought to contribute to sickling. The associated risk may be partially mitigated with topical formulations (except in the case of hyphema) as well as methazolamide, given its lower risk of metabolic acidosis compared with acetazolamide.

Effect of topical CAIs on visual function

In a 2010 review of CAI trials on visual function, all but three studies (n=23) showed topical CAIs had no effect on visual function.⁵⁴ Two studies showed some improvement in contrast sensitivity,⁵⁵ ⁵⁶ and one open-label retrospective no-control-group study with dorzolamide found a slight improvement in visual field indices.⁵⁷ Notably, few studies include visual field assessment as a reported outcome. A large placebo-controlled trial published in 2005 failed to detect any significant protective effect of dorzolamide on preventing disease progression in glaucoma suspects with ocular hypertension despite a 15%–22% reduction in IOP.²³ No study has performed a direct comparison between CAIs for the impact on visual function. While the aforementioned studies do indicate a lack of significant changes in visual field indices, this review is limited by the current practice of using IOP reduction as the only established variable for the prevention of glaucomatous visual field changes.⁵⁰ ⁵¹

Prescribing trends of CAIs

In the medical management of glaucoma, topical CAIs such as dorzolamide and brinzolamide are typically dosed as one drop three times daily of a 2% and 1% solution,

respectively. ⁵⁸ ⁵⁹ A study was recently published by Priluck *et al* which investigated the prescribing trends of glaucoma drugs in the USA based on publicly available data from 2015 Medicare Part D.²² Of the 36 glaucoma drugs included in this study, CAIs as single agents comprised 5.2% of all claims, and combination agents dorzolamidetimolol and brinzolamide-brimonidine together represented 9.7% of all claims. Among CAIs prescribed by ophthalmologists, dorzolamide represented 51.6% of claims, and dorzolamide-timolol represented 56.3% of all combination medications. Regarding other medications, prostaglandin analogues were by far the most frequently prescribed drugs, with latanoprost and bimatoprost representing 36.5% and 10.6% of all claims, respectively, followed by timolol formulations at 11.2%. Notably, these data represent only Medicare claims and are not comprehensive of the American healthcare system for which no central database is available. A study published in 2012 that analysed system-wide data from the national health service in England found single-agent topical CAIs represented 12.3% of all claims and brinzolamide represented 74.6% of all CAI claims. 60 Another study derived from six major Chinese cities between 2013 and 2017 found nearly 16% of all claims were for CAIs.⁶¹ A recent global cost analysis of glaucoma drugs found topical CAIs to be generally costlier than beta-blockers but less expensive than prostaglandin analogues.⁵³

Regarding the equivalence of generic and brand-name topical CAIs, the data available is scant. A prospective study by Kim *et al* demonstrated no statistically significant difference between generic dorzolamide–timolol and Cosopt in IOP limiting capacity. ⁶² Notably, the Food and Drug Administration (FDA) does not require strict demonstration of human bioequivalence and/or therapeutic studies for the approval of generic topical ophthalmic drugs, perhaps explaining this paucity of data. Nonetheless, among topical CAIs prescribed in the US in 2015, 99.9% of all Medicare claims for dorzolamide and 97.4% for dorzolamide–timolol were for the generic version of the drug. ²²

Combination therapies: dorzolamide-timolol and brinzolamide-brimonidine

Combination agents such as dorzolamide-timolol (Cosopt, FDA approved 1998) and brinzolamide-brimonidine (Simbrinza, FDA approved 2013) have been widely used in lowering IOP and improving compliance (table 1).¹² In patients initially taking four separate medications, switching to latanoprost-timolol and brinzolamide-brimonidine significantly improved IOP and compliance outcomes. 12 Another study showed that brinzolamide brimonidine added to a prostaglandin analogue had superior IOP lowering ability than a prostaglandin analogue alone.⁶³ Brinzolamide-brimonidine and dorzolamide-timolol combination therapy in a single drop were both shown to be non-inferior to each of the component agents administered individually. Additionally, their increased convenience may be beneficial to individuals that require multiple eye drops or those that cannot tolerate beta-blocking agents. 64 65 The same was true for dorzolamide-timolol. 52-56 58-68 These combination therapies were also shown to be effective and safe for lowering IOP in normal-tension glaucoma patients. ⁶⁹ Brinzolamide–brimonidine combination drops added to a prostaglandin analogue was also shown to improve mean diurnal IOP greater than prostaglandins alone. 70 CAIs may be used when second-line beta blockers are contraindicated, although they are often more effective in combination with a beta-blocker.⁷¹

Topical CAI impact on ocular haemodynamics

OAG has been associated with blood flow abnormalities for many decades with decreased ocular perfusion in multiple tissue beds being linked to structural and functional glaucoma progression.¹⁵ While the vasodilatory effects of the systemic CAI acetazolamide are well established, the question as to whether topical CAIs can similarly increase choroidal and retinal blood flow has been a topic of great interest in the past two decades. Dorzolamide has been demonstrated to relax pericytes in one study, suggesting a mechanism for increasing flow in the small vessels of the eye. 72 Dorzolamide has also been found to increase fundus pulsation.⁷³ The same effect has been seen in response to acetazolamide with increased fundus pulsation owing to a decrease in the resistive index of the ophthalmic artery. A Similarly, decreased vascular resistance in the ophthalmic artery has been observed in response to dorzolamide. 75 Several studies outlining these effects are shown in table 2.^{776–84} A meta-analysis published in 2009 found significantly increased peak systolic and end diastolic blood flow velocity following topical CAI therapy in the central retinal and short posterior ciliary arteries with a concomitant decreased resistive index; these findings were not seen in the ophthalmic artery. The same meta-analysis found both dorzolamide and brinzolamide increased retrobulbar blood flow velocity by colour Doppler imaging. Similar results have also been observed for the combination therapies dorzolamide-timolol and brinzolamide-brimonidine. 85 86 By Poiseuille's law, vascular dilation is the only mechanism to reduce resistance in a blood vessel to affect an increase in flow velocity. Therefore, the increase in blood flow velocity observed following CAI treatment is likely secondary to direct vascular dilation.

Little comparative data on topical CAIs and ocular blood flow is available. In one study the fixed combination of dorzolamide-timolol was compared with latanoprost-timolol; only dorzolamide-timolol increased retrobulbar blood flow velocities despite both treatments demonstrating a statistically similar IOP reduction, indicating the unique role of CAIs in altering ocular blood flow.⁸⁷ Multiple other studies have demonstrated similar effects. ⁸⁵ 88 89

New formulations

Several novel formulations for CAIs are currently under the investigation. For example, bifunctional CAI compounds with a nitric oxide-releasing moiety have been proposed to increase the ocular hypotensive effect of traditional CAIs via nitric oxide induced vascular relaxation. ⁹⁰ This mechanistic add-on effect was observed in rabbits and monkeys where adding a NO-moiety to dorzolamide significantly increased its IOP-lowering capacity. ⁹¹ ⁹² Additionally, other hybrid drugs including incorporating sulfonamide and prostaglandin moieties in the same molecule are under the investigation, however, current data are limited to in vitro studies. ⁴⁶ ⁹³ ⁹⁴

CONCLUSIONS

As newer, more efficacious chemical ocular hypotensive agents have been developed, CAIs have largely been relegated to second-or third-line agents in the management of OAG. Currently, use of CAIs may be indicated in cost-prohibitive cases or when prostaglandin analogues and/or beta-blockers are contraindicated. CAIs are rarely used as monotherapy,

and are instead usually part of combination therapies including prostaglandin analogues or beta-blockers to further reduce IOP. Topical CAIs have also been widely demonstrated to be capable of increasing biomarkers of ocular blood flow via chemically mediated vasodilatory mechanisms, although their exact relevance to OAG onset and progression remains unconfirmed. More recent topical formulations of CAIs using nitric oxide moieties or novel delivery methods are under the investigation and may lead to a greater usage of CAIs by clinicians in the near future of There is also ongoing research into pairing existing CAIs with chemical structural moieties such as sulfonylureas and sulfonylthioureas to increase the specificity of binding to carbonic anhydrase isoform that may lead to an increase in use of CAIs for future glaucoma management.

Funding

AH is supported by NIH grant (R01EY030851) and NSF DMS (1853222/2021192). This work was supported in part by a Challenge Grant award from Research to Prevent Blindness, New York, USA.

REFERENCES

- Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006;90:262–7. [PubMed: 16488940]
- Grant WM, Trotter RR. Diamox (acetazoleamide) in treatment of glaucoma. AMA Arch Ophthalmol 1954;51:735–9. [PubMed: 13157706]
- 3. Becker B Decrease in intraocular pressure in man by a carbonic anhydrase inhibitor, diamox; a preliminary report. Am J Ophthalmol 1954;37:13–15. [PubMed: 13114318]
- Lusthaus J, Goldberg I. Current management of glaucoma. Med J Aust 2019;210:180–7. [PubMed: 30767238]
- 5. Sugrue MF. Pharmacological and ocular hypotensive properties of topical carbonic anhydrase inhibitors. Prog Retin Eye Res 2000;19:87–112. [PubMed: 10614682]
- Henderer JD, Rapuano CJ. Ocular Pharmacology. In: Brunton CBLL, Knollman BC, eds. Goodman & Gilman's The Pharmacological Basis of Therapeutics. 12 ed. New Yrok, NY: McGraw-Hill, 2011.
- Siesky B, Harris A, Brizendine E, et al. Literature review and meta-analysis of topical carbonic anhydrase inhibitors and ocular blood flow. Surv Ophthalmol 2009;54:33

 –46. [PubMed: 19171209]
- 8. Gotoh F, Shinohara Y. Role of carbonic anhydrase in chemical control and autoregulation of cerebral circulation. Int J Neurol 1977;11:219–27. [PubMed: 412807]
- 9. Laux BE, Raichle ME. The effect of acetazolamide on cerebral blood flow and oxygen utilization in the rhesus monkey. J Clin Invest 1978;62:585–92. [PubMed: 99455]
- 10. Stanescu B, Michiels J. The effects of acetazolamide on the human electroretinogram. Invest Ophthalmol 1975;14:935–7. [PubMed: 1193808]
- 11. Rassam SM, Patel V, Kohner EM. The effect of acetazolamide on the retinal circulation. Eye 1993;7:697–702. [PubMed: 8287997]
- 12. Moosavi R, Ansari E. Brinzolamide/Brimonidine fixed combination: simplifying glaucoma treatment regimens. Ophthalmol Ther 2018;7:397–403. [PubMed: 30367363]
- 13. Taki K, Kato H, Endo S, et al. Cascade of acetazolamide-induced vasodilatation. Res Commun Mol Pathol Pharmacol 1999;103:240–8. [PubMed: 10509735]
- Torring MS, Holmgaard K, Hessellund A, et al. The vasodilating effect of acetazolamide and dorzolamide involves mechanisms other than carbonic anhydrase inhibition. Invest Ophthalmol Vis Sci 2009;50:345–51. [PubMed: 18757514]
- 15. Harris A, Guidoboni G, Siesky B, et al. Ocular blood flow as a clinical observation: value, limitations and data analysis. Prog Retin Eye Res 2020:100841 (published Online First: 2020/01/29).

16. Harris A, Jonescu-Cuypers C, Martin B, et al. Simultaneous management of blood flow and IOP in glaucoma. Acta Ophthalmol Scand 2001;79:336–41. [PubMed: 11453850]

- 17. Wolf S, Arend O, Haase A. Retinal hemodynamics in patients with chronic open-angle glaucoma. Ger J Ophthalmol 1995;4:279–82. [PubMed: 7496338]
- 18. Butt Z, O'Brien C, McKillop G, et al. Color Doppler imaging in untreated high- and normal-pressure open-angle glaucoma. Invest Ophthalmol Vis Sci 1997;38:690–6. [PubMed: 9071223]
- 19. Vécsei PV, Hommer A, Reitner A, et al. [Color duplex of retrobulbar arteries in normal pressure and open angle glaucoma]. Klin Monbl Augenheilkd 1998;212:444–8. [PubMed: 9715464]
- Yamazaki Y, Drance SM. The relationship between progression of visual field defects and retrobulbar circulation in patients with glaucoma. Am J Ophthalmol 1997;124:287–95. [PubMed: 9439354]
- 21. Sheybani A, Scott R, Samuelson TW, et al. Open-Angle glaucoma: burden of illness, current therapies, and the management of nocturnal IOP variation. Ophthalmol Ther 2020;9:1–14.
- 22. Priluck AZ, Dietze J. Ophthalmologist and optometrist glaucoma prescribing patterns based on 2015 Medicare Part D data. Ophthalmol Glaucoma 2019;2:63–6. [PubMed: 32672560]
- 23. Miglior S, Zeyen T, Pfeiffer N, et al. Results of the European glaucoma prevention study. Ophthalmology 2005;112:366–75. [PubMed: 15745761]
- 24. Li T, Lindsley K, Rouse B, et al. Comparative effectiveness of first-line medications for primary open-angle glaucoma: a systematic review and network meta-analysis. Ophthalmology 2016;123:129–40. [PubMed: 26526633]
- 25. Wilkerson M, Cyrlin M, Lippa EA, et al. Four-week safety and efficacy study of dorzolamide, a novel, active topical carbonic anhydrase inhibitor. Arch Ophthalmol 1993;111:1343–50. [PubMed: 8216014]
- Silver LH. Dose-Response evaluation of the ocular hypotensive effect of brinzolamide ophthalmic suspension (Azopt). brinzolamide dose-response Study Group. Surv Ophthalmol 2000;44 Suppl 2:S147–53. [PubMed: 10665517]
- 27. Sall K The efficacy and safety of brinzolamide 1% ophthalmic suspension (Azopt) as a primary therapy in patients with open-angle glaucoma or ocular hypertension. Brinzolamide Primary Therapy Study Group. Surv Ophthalmol 2000;44 Suppl 2:S155–62.
- 28. Prum BE, Rosenberg LF, Gedde SJ, et al. Primary Open-Angle Glaucoma Preferred Practice Pattern(®) Guidelines. Ophthalmology 2016;123:P41–111. [PubMed: 26581556]
- European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th Edition Chapter
 Treatment principles and options Supported by the EGS Foundation: Part 1: Foreword;
 Introduction; Glossary; Chapter 3 Treatment principles and options. Br J Ophthalmol
 2017;101:130–95. [PubMed: 28559477]
- 30. Sugrue MF, Harris A, Adamsons I. Dorzolamide hydrochloride: a topically active, carbonic anhydrase inhibitor for the treatment of glaucoma. Drugs Today 1997;33:283–98.
- 31. Schmitz K, Banditt P, Motschmann M. Population pharmacokinetics of 2% topical dorzolamide in the aqueous humor of humans. Invest Ophthalmol Vis Sci 1999;40:1621–4. [PubMed: 10359348]
- 32. Hutzelmann JE, Polis AB, Michael AJ, et al. A comparison of the efficacy and tolerability of dorzolamide and acetazolamide as adjunctive therapy to timolol. oral to topical CAI Study Group. Acta Ophthalmol Scand 1998;76:717–22. [PubMed: 9881560]
- 33. Stewart WC, Halper LK, Johnson-Pratt L, et al. Tolerability and efficacy of dorzolamide versus acetazolamide added to timolol. J Ocul Pharmacol Ther 2002;18:211–20. [PubMed: 12099542]
- 34. Centofanti M, Manni GL, Napoli D, et al. Comparative effects of intraocular pressure between systemic and topical carbonic anhydrase inhibitors: a clinical masked, crossover study. Pharmacol Res 1997;35:481–5. [PubMed: 9299215]
- 35. Rosenberg LF, Krupin T, Tang LQ, et al. Combination of systemic acetazolamide and topical dorzolamide in reducing intraocular pressure and aqueous humor formation. Ophthalmology 1998;105:88–93. [PubMed: 9442783]
- 36. Konowal A, Morrison JC, Brown SV, et al. Irreversible corneal decompensation in patients treated with topical dorzolamide. Am J Ophthalmol 1999;127:403–6. [PubMed: 10218692]

37. Domingo Gordo B, Urcelay Segura JL, Conejero Arroyo J, et al. [Corneal descompensation in patients with endothelial compromise treated with topical dorzolamide]. Arch Soc Esp Oftalmol 2002;77:139–44. [PubMed: 11967735]

- 38. Carlsen J, Durcan J, Zabriskie N. Nephrolithiasis with dorzolamide. Arch Ophthal 1999;117:1087–8. [PubMed: 10448757]
- 39. Mendez-Hernandez C, Garcia-Feijoo J, Saenz-Frances F, et al. Topical intraocular pressure therapy effects on pregnancy. Clin Ophthalmol 2012;6:1629–32. [PubMed: 23109799]
- 40. Walton W, Von Hagen S, Grigorian R, et al. Management of traumatic hyphema. Surv Ophthalmol 2002;47:297–334. [PubMed: 12161209]
- 41. Bansal S, Gunasekeran DV, Ang B, et al. Controversies in the pathophysiology and management of hyphema. Surv Ophthalmol 2016;61:297–308. [PubMed: 26632664]
- 42. Rouland J-F, Le Pen C, Gouveia Pinto C, et al. Cost-minimisation study of dorzolamide versus brinzolamide in the treatment of ocular hypertension and primary open-angle glaucoma: in four European countries. Pharmacoeconomics 2003;21:201–13. [PubMed: 12558470]
- 43. Michaud JE, Friren B, International Brinzolamide Adjunctive Study Group. Comparison of topical brinzolamide 1% and dorzolamide 2% eye drops given twice daily in addition to timolol 0.5% in patients with primary open-angle glaucoma or ocular hypertension. Am J Ophthalmol 2001;132:235–43. [PubMed: 11476685]
- 44. Silver LH. Clinical efficacy and safety of brinzolamide (Azopt), a new topical carbonic anhydrase inhibitor for primary open-angle glaucoma and ocular hypertension. brinzolamide primary therapy Study Group. Am J Ophthalmol 1998;126:400–8. [PubMed: 9744373]
- 45. March WF, Ochsner KI. The long-term safety and efficacy of brinzolamide 1.0% (Azopt) in patients with primary open-angle glaucoma or ocular hypertension. Am J Ophthalmol 2000;129:136–43. [PubMed: 10682964]
- 46. Scozzafava A, Supuran CT. Glaucoma and the applications of carbonic anhydrase inhibitors. Subcell Biochem 2014;75:349–59. [PubMed: 24146387]
- 47. Maren TH, Jankowska L, Sanyal G, et al. The transcorneal permeability of sulfonamide carbonic anhydrase inhibitors and their effect on aqueous humor secretion. Exp Eye Res 1983;36:457–79. [PubMed: 6852128]
- 48. Sugrue MF. The preclinical pharmacology of dorzolamide hydrochloride, a topical carbonic anhydrase inhibitor. J Ocul Pharmacol Ther 1996;12:363–76. [PubMed: 8875343]
- 49. Maus TL, Larsson LI, McLaren JW. Comparison of dorzolamide and acetazolamide as suppressors of aqueous humor flow in humans. Arch Ophthal 1997;115:45–9. [PubMed: 9006424]
- 50. Weinreb RN, Kaufman PL. Glaucoma research community and FDA look to the future, II: NEI/FDA glaucoma clinical trial design and endpoints symposium: measures of structural change and visual function. Invest Ophthalmol Vis Sci 2011;52:7842–51. [PubMed: 21972262]
- 51. Weinreb RN, Brandt JD, Garway-Heath DF. World glaucoma association. intraocular pressure. consensus series 4. Amsterdam, The Netherlands: Kugler Publications, 2007.
- 52. Boland MV, Ervin A-M, Friedman DS, et al. Comparative effectiveness of treatments for openangle glaucoma: a systematic review for the U.S. preventive services Task force. Ann Intern Med 2013;158:271–9. [PubMed: 23420235]
- 53. Zhao PY, Rahmathullah R, Stagg BC, et al. A worldwide price comparison of glaucoma medications, laser trabeculoplasty, and trabeculectomy surgery. JAMA Ophthalmol 2018;136:1271–9. [PubMed: 30178000]
- 54. Gugleta K Topical carbonic anhydrase inhibitors and visual function in glaucoma and ocular hypertension. Curr Med Res Opin 2010;26:1255–67. [PubMed: 20350146]
- 55. Sponsel WE, Harrison J, Elliott WR, et al. Dorzolamide hydrochloride and visual function in normal eyes. Am J Ophthalmol 1997;123:759–66. [PubMed: 9535619]
- 56. Harris A, Arend O, Kagemann L, et al. Dorzolamide, visual function and ocular hemodynamics in normal-tension glaucoma. J Ocul Pharmacol Ther 1999;15:189–97. [PubMed: 10385127]
- 57. Bernd AS, Pillunat LE, Böhm AG, et al. [Ocular hemodynamics and visual field in glaucoma treated with dorzolamide]. Ophthalmologe 2001;98:451–5. [PubMed: 11402826]
- 58. Dorzolamide [prescribing information]. Bridgewater, NJ Bausch & Lomb, Inc; 2015.

- 59. Azopt (brinzolamide) [prescribing information]. Fort Worth, Tx Alcon Laboratories; 2015.
- 60. Connor AJ, Fraser SG. Glaucoma prescribing trends in England 2000 to 2012. Eye 2014;28:863–9. [PubMed: 24858531]
- 61. Yu L, Ding K, Luo L, et al. Prescribing trends of glaucoma drugs in six major cities of China from 2013 to 2017. PLoS One 2020;15:e0227595. [PubMed: 31929565]
- 62. Kim YI, Kim JH, Lee TY, et al. Efficacy and Safety of Glaucoma Patients' Switch from a 2% Dorzolamide/0.5% Timolol Fixed-Combination Brand-Name Drug to Its Generic Counterpart. J Ocul Pharmacol Ther 2015;31:335–9. [PubMed: 26133057]
- 63. Fechtner RD, Myers JS, Hubatsch DA, et al. Ocular hypotensive effect of fixed-combination brinzolamide/brimonidine adjunctive to a prostaglandin analog: a randomized clinical trial. Eye 2016;30:1343–50. [PubMed: 27367743]
- 64. Greig SL, Deeks ED. Brinzolamide/brimonidine: a review of its use in patients with open-angle glaucoma or ocular hypertension. Drugs Aging 2015;32:251–60. [PubMed: 25732405]
- 65. Chew SK, Skalicky SE, Goldberg I. Brinzolamide plus brimonidine for the treatment of glaucoma: an update. Expert Opin Pharmacother 2014;15:2461–71. [PubMed: 25267543]
- 66. Boyle JE, Ghosh K, Gieser DK. A randomized trial comparing the dorzolamide-timolol combination given twice daily to monotherapy with timolol and dorzolamide. Ophthalmology 1999;106:10–16. [PubMed: 10598692]
- 67. Kim YJ, Sung KR, Lee KS, et al. Long-Term effects of multiple intravitreal antivascular endothelial growth factor injections on intraocular pressure. Am J Ophthalmol 2014;157:1266–71. [PubMed: 24561173]
- 68. Strohmaier K, Snyder E, DuBiner H. The efficacy and safety of the dorzolamide-timolol combination versus the concomitant administration of its components. Ophthalmology 1999;106:1–9.
- 69. Jin SW, Lee SM. The Efficacy and Safety of the Fixed Combination of Brinzolamide 1% and Brimonidine 0.2% in Normal Tension Glaucoma: An 18-Month Retrospective Study. J Ocul Pharmacol Ther 2018;34:274–9. [PubMed: 29297751]
- 70. Topouzis F, Goldberg I, Bell K, et al. Brinzolamide/brimonidine fixed-dose combination Bid as an adjunct to a prostaglandin analog for open-angle glaucoma/ocular hypertension. Eur J Ophthalmol 2021;31:103–11. [PubMed: 31595773]
- Yadav KS, Rajpurohit R, Sharma S. Glaucoma: current treatment and impact of advanced drug delivery systems. Life Sci 2019;221:362–76. [PubMed: 30797820]
- 72. Reber F, Gersch U, Funk RW. Blockers of carbonic anhydrase can cause increase of retinal capillary diameter, decrease of extracellular and increase of intracellular pH in rat retinal organ culture. Graefes Arch Clin Exp Ophthalmol 2003;241:140–8. [PubMed: 12605269]
- 73. Fuchsjäger-Mayrl G, Wally B, Rainer G, et al. Effect of dorzolamide and timolol on ocular blood flow in patients with primary open angle glaucoma and ocular hypertension. Br J Ophthalmol 2005;89:1293–7. [PubMed: 16170119]
- 74. Dallinger S, Bobr B, Findl O, et al. Effects of acetazolamide on choroidal blood flow. Stroke 1998;29:997–1001. [PubMed: 9596249]
- 75. Stankiewicz A, Misiuk-Hojlo M, Grabska-Liberek I, et al. Intraocular pressure and ocular hemodynamics in patients with primary open-angle glaucoma treated with the combination of morning dosing of bimatoprost and dorzolamide hydrochloride. Acta Ophthalmol 2011;89:e57–63. [PubMed: 21223530]
- 76. Moss AM, Harris A, Siesky B, et al. Update and critical appraisal of combined timolol and carbonic anhydrase inhibitors and the effect on ocular blood flow in glaucoma patients. Clin Ophthalmol 2010;4:233–41. [PubMed: 20463789]
- 77. Manni G, Centofanti M, Gregori D, et al. The pulsatile ocular blood flow behaviour in open angle glaucoma patients after replacing timolol therapy with timolol and dorzolamide fixed combination: preliminary study. Acta Ophthalmol Scand Suppl 2002;236:55–6.
- 78. Traustason S, Hardarson SH, Gottfredsdottir MS, et al. Dorzolamide-timolol combination and retinal vessel oxygen saturation in patients with glaucoma or ocular hypertension. Br J Ophthalmol 2009;93:1064–7. [PubMed: 19416932]

79. Martínez A, Sánchez-Salorio M. A comparison of the long-term effects of dorzolamide 2% and brinzolamide 1%, each added to timolol 0.5%, on retrobulbar hemodynamics and intraocular pressure in open-angle glaucoma patients. J Ocul Pharmacol Ther 2009;25:239–48. [PubMed: 19348600]

- 80. Siesky B, Harris A, Kagemann L, et al. Ocular blood flow and oxygen delivery to the retina in primary open-angle glaucoma patients: the addition of dorzolamide to timolol monotherapy. Acta Ophthalmol 2010;88:142–9. [PubMed: 19706018]
- 81. Martínez A, Sanchez-Salorio M. Predictors for visual field progression and the effects of treatment with dorzolamide 2% or brinzolamide 1% each added to timolol 0.5% in primary open-angle glaucoma. Acta Ophthalmol 2010;88:541–52. [PubMed: 19799592]
- 82. Mayama C, Araie M. Effects of antiglaucoma drugs on blood flow of optic nerve heads and related structures. Jpn J Ophthalmol 2013;57:133–49. [PubMed: 23321913]
- 83. Huber-van der Velden KK, Lux A, Severing K, et al. Retrobulbar hemodynamics before and after oculopression with and without dorzolamide. Curr Eye Res 2012;37:719–25. [PubMed: 22642452]
- Venkataraman ST, Hudson C, Rachmiel R, et al. Retinal arteriolar vascular reactivity in untreated and progressive primary open-angle glaucoma. Invest Ophthalmol Vis Sci 2010;51:2043–50.
 [PubMed: 19907031]
- 85. Janulevicienë I, Harris A, Kagemann L, et al. A comparison of the effects of dorzolamide/timolol fixed combination versus latanoprost on intraocular pressure and pulsatile ocular blood flow in primary open-angle glaucoma patients. Acta Ophthalmol Scand 2004;82:730–7. [PubMed: 15606472]
- 86. Seibold LK, DeWitt PE, Kroehl ME, et al. The 24-hour effects of Brinzolamide/ Brimonidine fixed combination and timolol on intraocular pressure and ocular perfusion pressure. J Ocul Pharmacol Ther 2017;33:161–9. [PubMed: 28129020]
- 87. Siesky B, Harris A, Sines D, et al. A comparative analysis of the effects of the fixed combination of timolol and dorzolamide versus latanoprost plus timolol on ocular hemodynamics and visual function in patients with primary open-angle glaucoma. J Ocul Pharmacol Ther 2006;22:353–61. [PubMed: 17076630]
- 88. Harris A, Arend O, Chung HS, et al. A comparative study of betaxolol and dorzolamide effect on ocular circulation in normal-tension glaucoma patients. Ophthalmology 2000;107:430–4. [PubMed: 10711877]
- 89. Martínez A, Sánchez M. A comparison of the effects of 0.005% latanoprost and fixed combination dorzolamide/timolol on retrobulbar haemodynamics in previously untreated glaucoma patients. Curr Med Res Opin 2006;22:67–73. [PubMed: 16393432]
- 90. Carradori S, Mollica A, De Monte C, et al. Nitric oxide donors and selective carbonic anhydrase inhibitors: a dual pharmacological approach for the treatment of glaucoma, cancer and osteoporosis. Molecules 2015;20:5667–79. [PubMed: 25838170]
- 91. Fabrizi F, Mincione F, Somma T, et al. A new approach to antiglaucoma drugs: carbonic anhydrase inhibitors with or without NO donating moieties. Mechanism of action and preliminary pharmacology. J Enzyme Inhib Med Chem 2012;27:138–47. [PubMed: 21815773]
- 92. Huang Q, Rui EY, Cobbs M, et al. Design, synthesis, and evaluation of NO-donor containing carbonic anhydrase inhibitors to lower intraocular pressure. J Med Chem 2015;58:2821–33. [PubMed: 25728019]
- 93. Idrees D, Hadianawala M, Mahapatra AD, et al. Implication of sulfonylurea derivatives as prospective inhibitors of human carbonic anhydrase II. Int J Biol Macromol 2018;115:961–9. [PubMed: 29704602]
- 94. Long DD, Frieman B, Hegde SS, et al. A multivalent approach towards linked dual-pharmacology prostaglandin F receptor agonist/carbonic anhydrase-II inhibitors for the treatment of glaucoma. Bioorg Med Chem Lett 2013;23:939–43. [PubMed: 23317571]
- 95. Schehlein EM, Robin AL. Rho-Associated kinase inhibitors: evolving strategies in glaucoma treatment. Drugs 2019;79:1031–6. [PubMed: 31134520]
- 96. Lusthaus JA, Goldberg I. Brimonidine and brinzolamide for treating glaucoma and ocular hypertension; a safety evaluation. Expert Opin Drug Saf 2017;16:1071–8. [PubMed: 28656780]

97. Aung T, Laganovska G, Hernandez Paredes TJ, et al. Twice-Daily brinzolamide/ brimonidine fixed combination versus brinzolamide or brimonidine in open-angle glaucoma or ocular hypertension. Ophthalmology 2014;121:2348–55. [PubMed: 25064721]

98. Liu Y, Zhao J, Zhong X, et al. Efficacy and safety of brinzolamide as add-on to prostaglandin analogues or β-blocker for glaucoma and ocular hypertension: a systematic review and meta-analysis. Front Pharmacol 2019;10:679. [PubMed: 31293419]

Table 1

Effect of topical carbonic anhydrase inhibitors on intraocular pressure and visual function

Agent	Author	Study type	Subjects (total n)	IOP reduction	Time captured	Visual field changes
Brinzolamide	Siesky ⁷	Meta-analysis	OAG (15)	No change	3 months	No change
Brinzolamide	Silver ⁴⁴	RCT	OAG, OHT (148)	-5.0	3 months	No change
Brinzolamide	Li^{24}	Meta-analysis	2 studies (NR)	-2.2	N/A	No change
Brinzolamide	Aung ^{97*}	RCT	OAG, OHT (178)	7-	6 months	NR
Brinzolamide additive to PG or beta blocker	Liu ⁹⁸ *	Meta-analysis	OAG or OHT (312(5 studies))	-3.8	24 hours to 5 years (mean=14.4 months)	NR
Brinzolamide/brimonidine	Aung ^{97*}	RCT	OAG, OHT (160)	T.T-	6 months	NR
Brinzolamide/brimonidine additive therapy	Moosavi ¹²	Retrospective	OAG or OHT (76)	-2.8	2–17.5 months (mean=5.4 months)	NR
Dorzolamide	Bernd ⁵⁷	Retrospective	OAG (28)	-2.5	9 months	VF improved significantly by 18%
Dorzolamide	Siesky ⁷	Meta-analysis	OAG (15)	No change	3 months	No change
Dorzolamide	Silver ⁴⁴	RCT	OAG, OHT (149)	-4.8	3 months	No change
Dorzolamide	Li^{24}	Meta-analysis	4 studies (NR)	-1.9	N/A	No change
Dorzolamide	Boyle^{66*}	RCT	OAG or OHT (109)	-4.6	3 months	NR
Dorzolamide additive to PG or beta blocker	Liu ⁹⁸ *	Meta-analysis	OAG or OHT (316 (5 studies))	-3.6	N/A	NR
DTFC	Kim^{67}	Retrospective	tx-naïve OAG (37)	-3.7	12 weeks	NR
DTFC	Boyle ⁶⁶ *	RCT	OAG or OHT (114)	7.7-	3 months	NR

 $\stackrel{*}{\scriptstyle \rm V}$ Used first morning value when multiple were available.

DTFC, dorzolamide/timolol fixed combination; N/A, not applicable; NR, not recorded; OAG, open angle glaucoma; OHT, ocular hypertension; PG, prostaglandin analogues; RCT, randomised controlled trial; VF, visual field.

Author Manuscript

Author Manuscript

Table 2

Blood flow outcomes of carbonic anhydrase inhibitors

Drug	Author	Findings
DTFC	Moss ⁷⁶	Increased pulse volume by 0.767 μ L (p=0.0087) compared with latanoprost Increased ceular pulse amplitude during pulsatile ocular blood flow compared with timolol alone DTFC associated with an increased retrobulbar flow velocity measured with colour Doppler imaging DTFC increased end diastolic velocity (p=0.0168), and decreased resistance to flow (p=0.0799) in the central retinal artery
DTFC	Manni ⁷⁷	Significantly increased pulsatile ocular blood flow compared with timolol alone $(p=0.0079)$
DTFC	$Traustason^{78}$	Significant decrease in arteriolar (p<0.01) and venular saturation (p<0.5) when switched from DTFC to timolol alone
DTFC, BTFC Martínez ⁷⁹	Martínez ⁷⁹	DTFC significantly increased end diastolic velocity in the ophthalmic artery (p<0.001) DTFC significantly reduced the resistivity index in the ophthalmic artery (p<0.001) DTFC significantly reduced the resistivity index in the ophthalmic artery, central retinal artery and short posterior arteries (p<0.001) No significant effects were not seen in the BTFC group
DTFC	Siesky ⁸⁰	DTFC reduced the no of zero blood flow pixels in the superior (p<0.014) and inferior (p<0.008) retina in non-glaucomatous groups DTFC also reduced the numbers of zero blood flow pixels in the inferior retina (p<0.006) in the glaucomatous group
DTFC, BTFC Martínez ⁸¹	$Martinez^{81}$	Visual field progression risk was lower in DTFC therapy (HR=0.65, 95% CI 0.41 to 0.90) compared with BTFC therapy
Dorzolamide	Mayama ⁸²	Increase in optic nerve head blood flow by 5%-15% detected by Heidelberg retinal flowmeter
Dorzolamide	Huber-van der Velden ⁸³	Dorzolamide application prior to oculopression was shown to significantly increase peak systolic velocity in the ophthalmic artery compared with oculopression alone (14%; p=0.0001) End-diastolic velocity in the short posterior ciliary arteries was significantly higher in the dorzolamide/oculopression group (21%; p=0.001) The resistivity index of the short posterior ciliary arteries was significantly lower in the dorzolamide/oculopression group (-5.6%; p=0.001)
Dorzolamide	Dorzolamide Venkataraman ⁸⁴	After treatment with topical 2% dorzolamide for 2 weeks the treated OAG group showed a significant increase in diameter, velocity and flow (p<0.04) in response to normoxic hypercapnia
Dorzolamide	Siesky ⁷	Increased blood flow (p<0.001)
Brinzolamide	Siesky ⁷	Increased blood flow (p<0.001)