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ARTICLE INFO ABSTRACT

Keywords: This paper proposes a model of the ridesourcing market in presence of traffic congestion and with
Ridesourcing service the provision of both solo and pooling services. Our analysis of the first-best solution shows that,
Regulation

under a highly congested scenario, the ridesourcing platform may enjoy non-negative profits.
However, when congestion is low, the ridesourcing market must be subsidized due to low mar-
ginal costs of operation. This mirrors previous findings in the traditional taxi literature. We also
demonstrate that a commission cap on the solo service combined with a congestion toll (however
small) on ridesourcing vehicles can induce any desired, sustainable equilibrium under the
assumption of homogeneous value of travel time and sufficient supply of homogeneous drivers.
Furthermore, numerical experiments suggest that the most important problem that a regulator
should address when faced with a monopoly may not be that of congestion but rather that of
market power. Indeed, when congestion is high, similar to previous findings in the literature,
decisions by the monopolist tend to mirror that of the regulator. This is because customers on the
platform must also bear the congestion cost, which hurts the platform’s revenues. Additionally,
numerical examples reveal that, even when accounting for heterogeneity in the value of travel
time, the commission cap is able to achieve the second-best-whether combined with a toll or not.
This confirms the effectiveness of the commission cap strategy illustrated in previous literature
and provides decision makers with a simple, non-intrusive mechanism for regulating the market.

Pooling

Congestion externality
Commission cap
Congestion toll

1. Introduction

In recent years, ridesourcing services such as Uber, Lyft, and Didi Chuxing have grown in popularity and accrued a stable user base.
For example, Uber’s quarterly earning reports show that between 2018 and 2019 the number of trips served by the platform grew by
twenty-eight percent while the number of monthly users grew by twenty-two percent over the same period (Uber Inc., 2020). This
growth in popularity can be attributed, among other things, to the convenience and expediency in booking rides and completing trips.
This surge in popularity has, however, generated widespread criticism that ridesourcing services increase congestion, particularly in
metropolitan cities like New York City and San Francisco.

Evidence that ridesourcing services are a major contributor to increased traffic congestion in cities has been surfacing in recent years.
Using the National Household Travel Survey data, Schaller (2018) found that replacing a private vehicle trip with a ridesourcing trip at
least doubles the number of miles traveled. Moreover, he also reported that only a little over 20% of trips taken with Uber or Lyft in New
York City in February 2018 using their pooling service resulted in actual sharing. This puts into question the claim that ridesourcing
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services might positively impact congestion by inducing sharing. After accounting for population, employment growth, and roadway
modifications, Castiglione et al. (2018) and Erhardt et al. (2019) showed that ridesourcing companies are a major contributor to the drop
in travel speed and the increase in vehicle miles travelled in San Francisco between 2010 and 2016. More recently, using exogenous
variation provided by Uber and Ola drivers’ strike in three major Indian cities, Agarwal et al. (2019) showed that the absence of ride-
sourcing drivers resulted in a reduction in delay nearly equivalent to half of that observed on major holidays.l Ridesourcing vehicles may,
in certain instances, alleviate private car use, although available research suggests that a higher proportion of users switch from taxis or
higher-occupancy modes, or would forego their trip altogether (Rayle et al., 2016; Clewlow and Mishra, 2017; Hampshire et al., 2017;
Schaller, 2018). However, as compared with private car use, in serving their customers, ridesourcing vehicles generate massive vacant or
empty trips. These vacant trips create additional vehicular traffic demand. Unless pooling plays a larger part and the fleet is efficiently
managed, ridesourcing will likely worsen traffic conditions, at least in the short term (Beojone and Geroliminis, 2021; Wei et al., 2020).

Cities have already started to take steps to mitigate congestion caused by ridesourcing vehicles. For example, in 2019, New York
City announced new regulations that impose a cap on new licenses issued to for-hire vehicles, mandate a minimum percent of time
ridesourcing vehicles must carry a passenger while operating in Manhattan below 96th Street, and collect a congestion surcharge to
trips that begin in, end in or pass through the area. While ridesourcing companies have generally been favorable to the congestion
surcharge, some have criticized that the regulations hurt customers—especially low-income customers—and drivers by locking them out
of the app at times of low demand (Bellon, 2019; Dobbs, 2019; Honan, 2019). This debate highlights the importance of understanding
the welfare implications of these regulations.

In the literature, several studies have analyzed ridesourcing markets and investigated the welfare implications of potential regulations.
Using an aggregate model of the ridesourcing market, Zha et al. (2016) demonstrated that, under the assumption of homogeneous value of
time and labor supply, capping the commission that the ridesourcing firm takes on each ride is sufficient to achieve a second-best. Zha
et al. (2018a,b) further examined the commission cap in a market with spatial or temporal heterogeneity and demonstrated that the
commission cap can, in effect, significantly improve welfare. It appears that the cap may be imposed per trip, by unit distance, or time, and
can even vary with respect to location or time of day. The choice of the granularity level will depend on the trade-off between imple-
mentation complexity and policy effectiveness. Ke et al. (2020a) compared the pricing equilibrium in two different types of ridesourcing
market: a pooling market and a non-pooling market. They show that, at the monopoly, first-best, and second-best equilibria, both markets
operate in an efficient regime (as opposed to the wild-goose-chases or WGC regime, first described by Castillo and Weyl (2018)).
Additionally, in either equilibrium, the fare in the pooling market is lower than that in the non-pooling market. Their study does not,
however, consider the joint operation of both services. Additionally, all the aforementioned studies do not consider traffic congestion. In
fact, most of the analyses of regulations accounting for congestion externality in the for-hire vehicle market have focused on the taxi
market. Yang et al. (2005) proposed a model of taxi service with a fare structure that implicitly incorporates congestion. Under the
proposed framework, they showed that the first-best solution might be sustainable when congestion is high. Yang et al. (2014) extended
this work by incorporating bilateral taxi-customer search frictions and showed that taxi demand may decrease with taxi fleet size in the
presence of congestion externality. Moreover, under the assumption of constant returns to scale for the matching function, taxi utilization
rates decrease along the Pareto frontier from the system optimal solution to the monopolist solution. Albeit insightful, these results should
be re-examined against the ridesourcing market due to its distinctive features, such as its two-sided nature, matching technology and
workforce flexibility, etc. A few recent studies seek to address the question of congestion and regulation in the ridesourcing market. Li
et al. (2019) investigated different regulations in the ridesourcing market: the minimum wage, the congestion fee, and the driver cap.
Their analyses show that a minimum wage can actually result in higher welfare for consumers and drivers but lower profits for the firm. In
contrast to Li et al. (2019),Zhang and Nie (2019) modelled both the solo and pooling options offered by the ridesourcing platform. This
allows them to capture the trade-offs between maximizing vehicle occupancy and mitigating congestion on the one hand, and ensuring
that drivers are incentivized to provide service on the other. However, both analyses of congestion regulation fall short by not incor-
porating the mechanism through which ridesourcing vehicles affect traffic congestion. In contrast, Ke et al. (2020b) incorporated such a
mechanism using the concept of macroscopic fundamental diagram (Geroliminis and Daganzo, 2008). They are able to show that pooling
can, under certain circumstances and with an appropriate pairing time window, reduce the total travel cost experienced by ridesourcing
customers. Their analysis assumes, however, that pooling does not coexist with solo rides on the same platform. Thus, in the present work,
we propose a stylized framework that captures the workings of a ridesourcing market, its two different services, i.e., riding alone or
sharing with someone else, and their effects on traffic congestion. We then derive optimal solutions to the monopoly and social-optimum
problems, and analyze the impact of a commission cap and a toll on system performance and social welfare.

This paper is organized as follows. In Section 2, we present our main assumptions and our model. Section 3 analyzes the monopolist
and first-best solutions. Section 4 discusses our proposed mechanism to regulate the market and Section 5 illustrates the results through
numerical examples.

2. Model
Consider a ridesourcing market with one platform offering two types of services: solo rides (denoted by s) and pooling rides (p),

which customers choose to use based on their preferences. However, drivers are required to provide both services, and the assignment
of customers will be made by the platform via a matching algorithm. In addition, the platform decides the fares F¥ and F? that customers

1 These results, however, represent short-term effects and do not necessarily reflect longer term patterns resulting from a stoppage in ridesourcing
services.
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will pay to use each service as well as the amount that drivers will receive for delivering customers. Thus, by setting the fares and

drivers’ share, the platform essentially determines the demand rates 7 and 7 for the solo and pooling services.

2.1. Pairing and matching

In this paper, we consider a stylized matching process that is consistent in spirit with the matching algorithms implemented by
some ridesourcing platforms in practice. To avoid confusion, we use pairing to refer to the process by which a pooling customer is
grouped with other customers with whom they will split their ride. We use matching to refer to the process by which both solo and
pooling customers are assigned to their drivers.

We consider a pairing process where pooling customers wait for a pairing time window to be matched to other pooling customer.
Customers are paired if they depart and arrive within a given pooling radius of each other. Once a target occupancy (the maximum
number of customers to be paired) is reached, the pairing process will be terminated and the pooling customers will be subsequently
matched with a driver. If the target occupancy is not achieved at the end of the pairing period, currently pooled customers will be
assigned to a driver. It implies that if no other customer is found, the waiting customer will ride alone. With this consideration, given
the target occupancy, pooling radius and pairing time window exogenously determined by the platform, the average pairing time w?
experienced by a pooling customer is given by:

w? = Wr(il')

with WP’ < 0, suggesting that an increase in pooling demand leads to a decrease in pairing time. Correspondingly, the relationship
between average occupancy o and the pooling demand can then be described by another function:

o=0(T)
where O’ > 0.

On the other hand, we assume, as in Castillo and Weyl (2018), that the matching time for customers is zero, owing to instantaneous
matching and a sufficiently large matching radius. In other words, customers are matched to drivers as they arrive in the matching
queue. Pooling customers enter the matching queue either as a unit (with the other customers they will ride with) or alone (if suitable
pooling partners were not found before the expiration of the pairing time window).

2.2. Meeting and delivery
Upon being matched to a driver, solo customers experience an expected pickup time w™ and an expected delivery time w'. In

addition to w™ and w, pooling customers will also experience an expected detour time Aw that stems from picking up and dropping off
their pooling partners. We have:

r dr
w= —
v

Jn dm
wh= —
v

Ad

Aw = —

v

where v is an average traffic speed; d” is the average trip distance for ridesourcing trips, which is assumed to be given; d™ is the average
pickup distance and is a decreasing function of the density of idle drivers N i.e., @ = D"(N') and D" < 0; and Ad is the expected
detour distance. For a given pooling radius, we assume that the detour distance is a decreasing function of pooling demand as follows:

Ad=AD(T)

with AD' < 0. The exact functional form of AD will necessarily depend on the operational decisions of the platform as shown, for
example, in Daganzo (1978).

Following the network macroscopic fundamental diagram approach (Geroliminis and Daganzo, 2008), it is possible to describe the
average traffic speed v using the number of ridesourcing vehicles N and the number of background vehicles N’ in the network:

v="V(8-N+N"

with V'(-) < 0. The parameter 6>1 reflects higher marginal effect of ridesourcing vehicles on congestion compared to regular back-
ground vehicles, because, for example, ridesourcing vehicles often drive slower as they await their next assignment.
Assuming that background traffic trips originate at a rate A” with an average travel distance of d’*, we have:
drb
v
Nb — Ab . wrb

wrb —
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where w' represents the average travel time of background traffic. The second equation holds as per Little’s law. We further note that
while it is straightforward to consider 4° to be congestion-dependent, we treat it to be exogenous for simplicity and clarity.

2.3. Demand

Customers face the following costs from taking a trip on the platform:
W= F - +w)—&

Fp Jmn r
W= ;Jrﬂ' w4+ W+ W+ Aw

where F* and F? denote the total fare collected by the platform for completing a transaction for the solo and pooling services, respectively;
f represents customers’ value of time; and & > 0 is a constant, reflecting the fact that, all else equal, riding alone provides higher utility to
customers. Additionally, customers also have access to an outside option (such as public transit or driving) with cost 4°. We further
assume that customers’ value of travel time g is a variable across the customer population with cumulative density function G(-). Thus,
each customer chooses which service to use by comparing the costs 4°, 47 and 4° and choosing the cheapest option. Thus, we have:

1. if p*gpP and pi<uf, then customers with f,<f<f; choose the solo service. The proportion of these customers is G(f;) —G(f,).

s

2. if ?<u® and 1P < 4#°, then customers with #<f; = min{ f,, T

wrwirwaw ( Choose the pooling service, whose proportion is G(f).

Here:
ﬂO_FJ"_fs
bi= =
+w
FP
Fi?is
h= i aw

If we let A° denote the population size, then demand for each service is given by:

L= 2[6(8) - G(B)
= 26(5)
2.4. Supply

We further assume that drivers decide to provide service if their average hourly earnings during the study period @ exceed their
opportunity cost. That is, the supply of drivers is given by:

N = §(o)
where §'(-) > 0 and 5(-) captures the distribution of drivers’ opportunity cost. The above relationship between driver supply and driver
earnings can be further simplified if one considers the inverse supply function $71(-):

C(N)=S§"'(N)-N=w-N

where C' > 0 by construction. C(-) can be understood as the cost for the platform of using N drivers. Now, let e denote the amount that
drivers receive per unit service time.” Then:

O
we (/1 +";)

N

w=e-

2.5. Equilibrium
At equilibrium, we consider a steady state in the system where the following conservation equation holds as per Little’s law:
2 Here, note that we assume that drivers do not get paid for the extra detour time induced by pooling. Our model could easily be extended to

include such a possibility. In this formulation, we however seek to capture the reality that, for many drivers, they work more and earn almost the
same (if not less) when serving pooling trips as opposed to solo trips.
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N=N+ (;L +—) . (W"’+w’) +5 . Aw?
o 0

where Aw? is the additional time that drivers spend on pickup and delivery for a pooling ride relative to a solo ride. As pointed out in Ke
etal. (2020a), Aw? and Aw are correlated, though this correlation, once again, depends on operational decisions from the platform. To
simplify our analysis, we also assume that Aw? =y . Aw.

All of the above considerations yield our model of Egs. (1a) -(10), which is a system of 14 equations and 17 unknowns. By specifying
exogenous variables F°, FP, and e, we can solve the system to evaluate the performance of the ridesourcing market at the steady state.

1T=1-16) - G(p)] (1a)
T =2-6(5) (1b)
W -F4E
b= (1c)
FF-2_¢
Ty ad
o s
ﬂs = min ﬁp (W-" T + AW) (IE)
o=0() (n
w =wr(l) (1g)
1
wn = 22) (1h)
\4
w=2 (1
v
~p
Aw = 20 )
v
w4 (1K)
v
v=V(0-N+N) an
N:N’+(T+%)-(wf"+w’)+%-y-Aw (1m)
oo (745 () -
NP = 2w (10)

3. Scenario analysis

Below we analyze scenarios that determine the choice of exogenous variables F°, FP, and e given our ridesourcing market model
presented above. In order to analyze the market and derive policy insights, both in this section and Section 4, we will make a few
assumptions and specifications to simplify the model. Later in Section 5, we will conduct numerical experiments to examine the
effectiveness of the policies derived in the general case considered in the previous section.

3.1. Model simplification

We first assume that customers are homogeneous in their value of time . With homogeneous value of time, the demand-side
equilibrium can be described by the following set of equations:
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T4 =Ap)
w — p=0 and T;O
W — p=0 and sz
Al —p=0
A —p=0

where A(-) is a demand function for ridesourcing services and is such that A’ < 0. The above complementarity condition indicates that,
at equilibrium, the cost of services with non-zero demand must be equal, and less than that of non-utilized services.

We also assume, as in Korolko et al. (2018), that pooling customers must walk to and from common meeting and drop-off locations.
As such, Ad = 0. This scenario can be likened to the operation of Uber Express Pool, Uber’s low-cost service. In this case, the driver
compensation becomes the same for solo and pool services and thus it is convenient to consider the choice of R = e-w", the
compensation per ride, rather than that of e. In light of the above, the ridesourcing market model becomes:

W=F+p (W +w)-¢& (2a)
FP
ﬂ"=;+ﬁ-(w"+w’"+w’) (2b)
T 4+7 =Ap) (20)
W —uz=0 (2d)
W —p20 (2e)
T —pu=0 (2f)
T w—p=0 (28)
o=00) (2h)
w? = Wr(il') (2
NI
w" = D"(V) (2)
v
w=2 (2k)
v
rb
w4 @
v
v=V(8-N+N) (2m)
i
N:Nf+(7f+;)-(uf"+w’) (2n)
x
R (:f +;) _ C(N) (20)
N.h — Ab . wrb (zp)

In our analyses, we assume that the above modeling system defines continuously differentiable functions between endogenous vari-
ables and exogenous variables F°,F*, and R, as per the implicit function theorem. To facilitate the presentation of our analysis results,
we define the vehicle trip rates for solo and pool services as follows:

=7
~p
= /1_
(4]

To conclude our model presentation, below we present a few results that highlight some useful properties of our model and that will
be used in analyzing our different scenarios.
From Eq. (2n), we can obtain the following derivative for the total vehicle trip rate A° +47 with respect to the number of vacant
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vehicles:
syap) o7
&(A’+i")771+(ﬂ+'{) " .
oNT wm T
1+ (4w ) it
When — - <0, then s a;\; ) > 0, which corresponds to the WGC described in Castillo and Weyl (2018).
From Egs. (21), (2m), (2p), the derivative of the total traffic N* = N +N? with respect to the fleet size is:
T LAgrh L ab
oN' ! (2R L S @

AN T V4 dr v

Given our assumption of inelastic background traffic demand, it must be that % > 0so that % <1.IfV2 4+ b.d%.V <0,then

it follows that V2 < (@—1)- 4 - d® - V' < 0 (given that 631), which is absurd. Thus, it follows that when background traffic demand is
inelastic, we must have V2 + 1P - d? - V' > 0.

3.2. First-best
Here, a social planner seeks to maximize social welfare by solving the following optimization problem:

Drivers' surplus
Consumers’ surplus

Platform profit R +IP) Background cost
o - v e e,
W= max[ A(x)-dx+(FLR)of+(FLR)-,1P+I Slx| -dx—y 20w (FB)
Fj;07 1 0
F>0,
R=0

where y® is the value of time for the background traffic.” Note that the dependent variables A°, #’, N,w™ and u are functions of the
decision variables through the system defined in Eq. (2). Without loss of generality, we do not consider the platform’s operation cost.

Assuming that 2° > 0 and 4* > 0, the first-order optimality conditions (FONC) of the problem yield the following formulae for the
price of a solo and a pool ride and for drivers’ hourly income:

F =mc (5a)
vl
F—=mc-C”+ﬁ-Wp’-ip-n (5b)
o
CW)__me _w_p (5¢)
N w4+ w"
where:
l)m' m r
me= —f-—- (W +w') | AT+ A0

D"
sqop ).
1+(&+l) v

1-#.0 0 1

C= T T% %,
04*
d’- v
= 0.y >0
yb V2+;|.b'drb'vf
4 m r
,z.in1= _gﬁ \4 (d +d) - /’|.I+Il‘u'0 >0

V2 gty
* 1+(f+,1p)-D:

Here, mc represents the marginal cost, to the platform, of providing a ride. Since F¥ > 0, it follows from Eq. (5a) that, at the social

optimum, mc > 0, which implies that 1 + ().‘ + AP - ’% > 0. Thus, at the first-best, the equilibrium of the ridesourcing market lies in

3 Truly, this is a quasi first-best since we take 4° as given. Under the first-best, the planner would also be able to determine 4® by considering the
demand function for background traffic.
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the non-WGC regime. Additionally, we note that Eq. (5b) contains the negative term §- 4* - o - W¥, which captures the matching
externality that each additional pooling customer creates on the platform. It then follows that, since F¥ > 0,C°® > 0 at the first-best
equilibrium. Thus, increasing the pooling vehicle trip rate increases occupancy for the pooling service (% > 0). By combining Egs.
(2a), (2b), (5a), (5b), we obtain:

o 4 wr s
mc-(lfC):ﬁ-WP.(LJrg.O.W)Jﬂf ©)

If we assume that the mode-specific constant & ~ 0, then 1 +4” -0 - % > 0 from which it follows that the solution to the first-best
problem lies in the non-elastic portion of the pairing time function for the pooling service. When & > 0, this condition is relaxed
and the market outcome may lie in the elastic region of the pairing time function. Here, the disutility of using the pooling service is so
large that the resulting equilibrium number of pooled rides is relatively low. It is also evident from Eq. (5) that FF —% >0 and
F —F? > 0. In other words, the fare per customer and the revenue per trip for the single service are higher than their respective
counterparts for the pooling service at the first-best.

From Eq. (5c), the average driver hourly income is equalized with the drivers’ marginal social benefit. This marginal benefit is
composed of three main components:

o the benefit of a marginal driver to the platform 7"~ which captures drivers’ impact on meeting distance;
o the intra-platform congestion externality 7 that a marginal driver imposes on ridesourcing customers;

o the extra-platform congestion externality ¢ that a marginal driver imposes on the background traffic.

From this latest point, we notice that the externality component is independent of occupancy. This suggests that, irrespective of the
number of passengers they carry, ridesourcing vehicles impose the same externality on background traffic.
We can also rewrite Eq. (5) as follows:

Thus, at the first-best, the fare only covers the marginal social cost of vehicles that are in pickup or delivery modes. In particular, it does
not cover the marginal cost of drivers when they are idle. Now, from Arnott (1996) and Yang et al. (2005), we know that unless
congestion is high, the taxi market must be subsidized at the first-best. Additionally, from Zha et al. (2016), without considering
congestion, the ridesourcing market must be subsidized when the production function of rides is increasing returns to scale. We
examine here whether, in the presence of pooling and congestion, the ridesourcing market is sustainable at the first-best. Consider the
first-best profits '

Operating loss <0
A~

_T ome WP 9P Al e L inty
7= wm+wrN+(ﬂ W F 0t —me-0) - + (¢ + ") N ®)

From examining Eq. (8), we notice two main components. On one hand, there is a congestion-independent component that is negative
and captures the industry’s losses. Those include the cost of idle drivers—which is not covered by the fare at the first-best (Arnott, 1996;
Yang et al., 2005)-and a pooling-service-related cost. This latter cost emerges from the positive matching externality that the pooling
service enjoys and the fact that pooling reduces the marginal impact of riders on the platform but not the marginal cost of drivers
relative to the single service. On the other hand, there is a congestion related component, (Tb +ff’“) - N, which is positive. When
congestion externality is high, this term may exceed the operating loss, which would result in positive profits for the platform. In other
words, similar to the taxi market investigated by Yang et al. (2005), the first-best is sustainable for the ridesourcing platform when
congestion externality is high.

3.3. Monapoly
In this section, we derive the monopoly equilibrium, its properties, and the distortions that arise relative to the social optimum. In

this setting, the ridesourcing platform determines exogenous variables F°, F?, and R to maximize its profits. Thus its revenue-
maximizing decision can be obtained by solving the following optimization problem:
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7 = max F—R| A+ |F—-R| A o)

P20,
R20

The FONC of the optimization problem are given below:

5 P,
P ,%HM (9a)
F? A+ A ’
7:77+, 0+mc-C"+ﬁ-A”-0-WP (9b)
/] A

v _ mc _ pint

C(N) Twm wr ! G

Compared to first-best pricing, ¥ and F* include a markup term —% > 0 under monopoly pricing. Thus, fares under the
monopolist are higher than under the first-best. Moreover, Eq. (9¢) indicates that, at optimality, the platform equalizes the cost of the
marginal driver, C'(N), to its marginal benefit. Thus, while the regulator is concerned with the average cost of the fleet, the platform is
only concerned with the cost of the marginal driver. Additionally, by comparing the right-hand sides of Egs. (5¢) and (9c¢), it appears
that the monopolist only internalizes part of the congestion externality that arises from running the platform. Indeed, under monopoly
pricing, customers only bear the congestion cost they impose on each other but do not bear the cost of congestion on the background
traffic. Taken together, it follows that, for a convex driver cost function C(-), assuming equal marginal driver and marginal externality
costs, the number of drivers under the monopolist is higher than the first-best number of drivers.” Since demand is lower under the
monopolist, it follows that utilization rates are also lower under the monopolist, a finding similar to that of Ke et al. (2020a) when
considering pooling and solo services separately.

Now, the question arises as to whether it may be optimal for the monopolist to operate in the WGC-regime (mc < 0) when ac-
counting for congestion. Indeed, unlike in the first-best case, it is not straightforward to rule out a WGC solution at optimality for the
monopolist. It is, however, easy to show that for any solution with mc < 0, we can construct another solution with identical N,4°, and #*
but higher fares F* and £.. Thus, though they may exist, solutions with mc < 0 are dominated, even in the presence of congestion. This is
consistent with the findings of Zha et al. (2018b) in a spatial market without congestion.

Lastly, while F¥ > ‘%’ and F° > F? in the first-best, it is not necessary that ¥ > F? under the monopoly. Indeed:

& I
stF”:7}%%.0-(170)+mc-(lfca-o)fﬁ-ﬂ”-oz-w”‘ (10)
Since 021, the markup per ride that the platform collects is higher for the pooling service. When occupancy is high and the markup per
passenger is significantly higher than the difference in marginal costs between the solo and the pooling service, the monopolist may
earn more revenue from the pooling service than from the solo service. In practice, however, such a situation does not seem to occur:
numerous reports suggest that the prices required to make the pooling service profitable tend to induce a demand lower than that
necessary to achieve high occupancy (Spotwood, 2017; An, 2020). Thus, for the rest of our analysis, we will assume that ¥ > FP at the
monopoly equilibrium.

4. Policy discussion

Before we dive into the analysis of potential policies, it is important to characterize an efficient policy. First, such a policy must
target the two sides of the market, i.e., it must address the monopolist’s market power on the demand and supply sides. Second, it must
address congestion externality by ensuring that drivers (and by extension the passengers) bear the social cost of the congestion they
impose on the background traffic. Lastly, the policy should be easy to implement.

We seek for an optimal policy with which the monopoly problem admits the first-best solution. Suppose that the fares F and ¥ and

the per-ride driver revenue R solve the above first-best problem. An obvious policy would be to regulate the fares and the earnings to be
at this first-best level. Such regulations, however, may be unpopular as they would restrict the operational freedom and flexibility of
the platform. Since the modeling system of the ridesourcing market, Egs. (2a)-(2c), (21)-(2p), enjoys three degrees of freedom (14

# This can be seen by noting that:

e C and C’ are both increasing in N and that the right hand side of Eq. (5¢) is lower than that of Eq. (9¢);

s C'(N) BQNE for convex functions.
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equations and 17 unknowns), a policy that can ensure that any three variables stay at their first-best level will be optimal, if the
reduced system admits a unique solution. However, this implies that regulating fares, driver per-ride earnings, or the fleet size alone
cannot induce the first-best; it is necessary to explore a combination of regulatory instruments.

4.1. New York City’s regulatory scheme

We first briefly analyze NYC’s approach to regulating the for-hire vehicle market to determine whether it meets the aforementioned
criteria. We preface our discussion by noting that NYC’s ridesourcing market operates with multiple companies while our setting only
considers a single firm. Thus, we do not comment on the effectiveness of NYC’s policy as it pertains to NYC’s current market, but rather
on the effectiveness of that policy when applied to a market similar to the one in our setting. In 2019, New York City announced new
regulations that impose a cap on new licenses issued for for-hire vehicles, mandate a minimum percent of time ridesourcing vehicles
must carry a passenger while operating in Manhattan below 96th Street, and collect a congestion surcharge on trips that begin in, end
in or pass through the area. In December 2018, NYC additionally implemented an effective minimum wage requirement of 15 £ for
ridesourcing drivers. We investigate here whether such policies are effective in our setting, where, under these regulations, the
problem for the monopolist would be as follows:

max | F—R-7 | - X+ |FP-R-7 | - ¥
F=0,
w20,
N0

st. (A"+4°)-w2p-N (Occupied time constraint)
Nsﬁ (Fleet size constraint)

C(N)X@-N (Minimum wage constraint) 11

where 7° and 7¥ are the congestion surcharges on single and pooled trips respectively; 7 is the first-best utilization rate for the ride-

sourcing fleet; N is the first-best vehicle fleet cap; and @ is the wage under the first-best.

First, we note that the fleet size constraint and the minimum wage constraint cannot simultaneously be binding at equilibrium.
Indeed, the fleet size constraint is only necessary and effective when the congestion externality imposed on the background traffic
exceeds the monopolist’s market power, so that the monopoly wage is higher than the socially efficient wage. On the other hand, the
minimum wage constraint is only effective and necessary when congestion is low and the firm’s market power leads to wages lower
than socially efficient. We analyze below the two cases.

Suppose that the fleet size constraint is binding so that N = N and C(N) = & - N. Then, w* = —<_, i.e., the monopoly and first-
V(N+N )

best travel times are equal and the monopolist solves the following problem:
max (FF—R-T)-A+(FP-R-7")-¥
F20 ~ (12)
st A4+ AP2A

=T+ 7 Essentially, the occupied time constraint becomes a minimum on the number of trips served by the

<)z)

where 1 = 5 -
platform. Thus, it essentially acts as a way to maximize the demand served by the monopolist. However, the fleet size cap renders the
congestion management effect of the congestion surcharge unnecessary. Moreover, the occupied time constraint might be redundant.
Indeed, following Xu et al. (2017), when congestion is high, the objectives of the platform and of the planner tend to be aligned, so that
the platform inherently seeks to maximize its fleet utilization rate.

Now consider the case in which congestion is low and the monopolist’s driver supply is lower than that targeted by the regulator.
Then, we consider two situations of interest. In the first, N is such that C(KT) = @ - N. Then, the monopolist solves the following
problem:

max (FF—R—%)-#+(FF —R—-7)- ¥
F20.N20
- (13)
s.t. (,l‘ + A") wzp-N (Occupied time constraint)

This is identical to Eq. (12). Here again, the surcharge is unnecessary (since congestion is not a problem). Moreover, it likely hampers
the effectiveness of the minimum trip requirement, since higher prices might discourage consumers from using the service. In the
second case, the platform’s optimal choice of N is such that C(N)<@ - N: it is more advantageous for the platform to hire fewer drivers.
In such situation, not only would the number of drivers be suboptimal, but the rationing mechanism used by the platform could further
decrease welfare.

Our brief analysis shows that, while NYC’s regulatory scheme might be effective in mitigating the congestive effect of ride-sourcing
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vehicles, it is unnecessarily burdensome and might not always improve welfare in our setting. In the following section, we propose
another solution that not only remedies that issue but is also more parsimonious.

4.2. Commission cap regulation and congestion toll

Zha et al. (2016) showed that, when customers are homogeneous in their value of time, regulating the amount of commission that
the platform receives can achieve a second-best. Consider such regulation applied to our current framework. First, we note that, givena

commission cap on the solo service corresponding to the first-best commission P =F —R, it must be that the firm’s choice of pooling
commission is such that PP<P’.° Thus, there exists a natural, non-binding cap on the pooling service commission. It might therefore be
possible to regulate the market with a single commission cap. Second, we note that Egs. (5c), differ by 2. A priori, a policy that in-

creases the cost of drivers by 7 should be enough to address the congestion externality. Thus, for the regulated monopoly, Eq. (20)
becomes:

o e (vei)
[T (N) +7] - (W' +w" +w")

with w! = /{Jf’k—} We consider then the following regulated problem for the monopolist:

= max (F°—R)-A+(FF—R)-¥
F20,
Frz0,
R‘;O (M-CAPT)

s.t. F —Rg P (Sing]e service cap)
The FONC of (M-CAPT) satisfy:

F :—{:{’—yl+a-ﬂ’] -%Jr [C’(N) +r”+r"’“} . (w’"+w’) + [S7H(N) +7] - W “

P (14a)
. (w'“ +w’) Sy +U)t" ‘o
P o [l) #] w) +0 e
) o e

where 14 20 is the Lagrangian multiplier associated with the commission cap. Now consider a constructed, constrained social welfare
maximization problem below:

W= max /A(x)-dx+(F’—R)-i’+(Fp—R)-ip—y"~lb-w’f'
FS?O? H

Frz0, (SB)
R=0

~F

s.t. F°'—R=P

It is straightforward to see that the first-best solution solves this constrained social welfare maximization problem. Now, the FONC of
SB yield:

po=-N [@wtr'”rr""}-(w’"er')fS'l(N)-w’ L

7 " s P
A N A+ A (15a)
ini m r n
T!_(w +W).,{7‘+,;f’.g
4 .
7 :7%+C9. [[Cj(év)+rb+rmr] i (merwr) fS_l(N) ’wl_f'h,ler
° + (15b)
int M . r P WP
LT T (merw)}“? #eoo- W

5 This is because the driver revenue per ride R is identical for both services. Since F* > F?, the conclusion follows.
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where #, >0 is the Lagrangian multiplier associated with the commission cap.
Now, assuming the first-best is attained by the regulation, does there exist 1120 so that Eq. (14) holds? By analyzing the system of
Egs. (14) and (15), the answer to this question can be reduced to determining the conditions under which:

e ()] (wrrw) 35 ()
Aol >0 (16)

= - wl

where 1 = #Z2- It then follows that the first-best can be replicated with a cap and toll if:

et () -5 (0) o () - S (v ) 3 a7

Now, 7 . (W™ +w") - 1 represents the platform’s revenue per customer (solo and pooled) served; [C’ (N) - ﬁ} - (wh JrWr) - 1 rep-

resents the opportunity cost of equalizing drivers’ benefit to their average cost rather than their marginal cost; and S~'(N) - w' rep-
resents the cost of an idle vehicle per customer served. Thus, Eq. (17) simply indicates that the first-best can be replicated when the
platform’s revenues are sufficiently high to cover the economic cost of its drivers. Can this condition be satisfied, regardless of the
composition of the driver pool?

When drivers are homogeneous,” this is a slightly weaker condition than requiring that the platform’s profits be positive since, as
Eq. (8) indicates, profits include a pooling-service-related cost that does not appear in Eq. (17). Thus, under the assumption of ho-
mogeneous drivers, as long as the first-best is sustainable, the proposed regulation will be effective.

Additionally, Eq. (16), does not depend on #,. Thus, any desired second-best equilibrium can be replicated by a regulation with a

cap P'>0and an appropriate toll. This is especially important when the first-best is not sustainable (P° < 0) and the cap must be
increased beyond its first-best level to ensure platform operation.

When drivers are heterogeneous, assuming the cost function C(-) is convex, then the right hand side of Eq. (17) is positive. Then,
that the first-best is sustainable may or may not be sufficient to guarantee that the policy can replicate the regulator’s objective.

In practice, collecting a toll on ridesourcing vehicles can be challenging, especially if there is no preexisting mechanism to toll other
vehicles. However, imposing a congestion fee per use time on each rider is more easily implementable (cities and states already impose
multiple fees on riders). From Eq. (14), we can easily deduce that the appropriate fee structure per rider is as follows:

fp — Tb .C° (19)

where f° and f? denote the fee imposed on solo and pooled riders, respectively. We note that f* > f? since C° < 1 < 1. Additionally, % =

é so that the ratio between the single fee and the pooling fee is not linear in occupancy. It will rather depend on the extent of

congestion and its costs on society.
4.3. Commission cap only

Zha et al. (2016) explained that the commission cap incentivizes the monopolist to serve a higher demand than it otherwise would.
When congestion is taken into account, maximizing demand served might involve maximizing occupancy for the platform, thus
alleviating congestion and achieving the regulator’s objective. Thus, a toll might not be needed once a commission cap is imposed.

To analyze such a regulation, it is convenient to introduce e [0, 7], the toll imposed by the regulator on each ridesourcing
vehicle. Then, Eq. (14) becomes:

F =—[ffy1+o-ap] -i,+ [C’ (N) +r‘"’+?"’] . (nf" +w’) + s ) +7] W

Uy . 121
Ini . s r 20
A 7 (w +w ) (20a)

- —_— t.
A+ A4+Ao

P S _ 7. .
B E O [+ 2 () 4 [ () 42

Vi int Ui
. —"r .
A+ A+A0

(uf"+w')]-co+ﬁ-,1ﬂ-o-wp’ (20b)

Then, a solution to the monopoly problem that satisfies Eq. (15) can be obtained if:

© That is, C'(N) =% =cand S'(N) =c.
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oo () ] () 2o () o
. =0 21)

~N =
T -wl

vy = /1:+2.p'0

From Eq. (21), we note the following:

e When 7 = ¥, we recover the commission cap and toll policy from Section 4.2;
e For any toll 7" & (0,7%), the first-best can be replicated if:

7= (Tww_ew) : (w+w') -5 (N) -w’;[c’(N) _ﬁ] : (mer) ¥ 22)

Here, (7 f‘fN) . (W™ 4+w) - 1 > O represents the additional revenue for the platform due to bearing only a fraction of the congestion
externality it imposes on the background traffic. The interpretation of Eq. (22) is then similar to that of Eq. (17).

» Using our approach, it is not possible to recover v; when7" = 0. However, we note that, as7 — 0,7, — oo i.e., v; becomes more

and more positive. This suggests that it is always possible to find a smaller toll 7" such that the first-best (or another targeted
equilibrium) can be replicated.

From this last point above, it appears that the selection of 7" does not have a significant impact on the ability of the cap to bring the
system to an efficient equilibrium. In fact, the commission cap alone might be able to achieve the desired effect. We will verify this
intuition using numerical examples in Section 5. In practice, the regulating authority might still, however, choose 7" > 0 in order to
meet other objectives: improving road infrastructure, satisfying special interests, etc.

5. Numerical experiments

Our proposed policies in Section 4 assume that users are identical in their value of time and that pooling users experience no detour
time. In this section, we relax this assumption and apply our proposed policies to the full model described in Eq. (1). In this context, the
social welfare maximization problem now becomes:

Solo time cost
Total trip utility

—_ 7 1
W= max U -(AF4+H-0 ,iﬂ_f ~(w’"+w’)-G’()-d
F20, FP20 ( ) b / b))
R20
Pooled Jlimr: cost (FB)

- ~

—,10-/:3;3- (w"+w'"+w’+Aw) -G’(ﬂ) .dp

—R- (KA — p A wt
N ——

Driver cost Background traffic

where g is the lower bound of the support of G; and U is the utility of completing the trip for an individual customer. Unlike in the
homogeneous value of time case, however, analyzing the above system analytically for policy insights is substantially difficult. Thus,
we turn instead to numerical experiments, for which we adopt the following functional forms:

D"(N')y=A-N"" (23a)

C(N)=c-N (23b)

WP (’j‘") _ L}W (23¢)
57

o) =2—exp(6-¢-7) (23d)

(23e)

w(:f’) _

V(0-N+N") =V —V°. (8-N+N") (230
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We assume, as in Korolko et al. (2018), that the maximum occupancy is two and that the probability of being paired is constant. Then,
the resulting pairing time and occupancy functions are given in Egs. (23c). Furthermore, we assume that § follows a uniform distri-

bution on (_,E). Eq. (23a) is a classical representation of the pickup distance between a randomly chosen driver and their closest

unmatched customer (Zha et al., 2018b; Korolko et al., 2018; Castillo, 2018). We also borrow from Korolko et al. (2018) for infor-
mation on §. The data and parameters used are presented in Appendix A.
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Fig. 3. Demand rate comparisons.
5.1. Comparative analysis

In this section, we compare the first-best and monopoly outcomes. To tease out the effects moving away from the homogeneous
value of time assumption, we also vary the variance of the value of time distribution and investigate how it affects both outcomes.”
Especially, we consider the producer and social surpluses, the distribution of rides across the two services and the congestion effect.

As Fig. 1 shows, the monopolist’s behavior results in an inefficient outcome. This inefficient outcome is, however, not driven by
congestion, since, as shown in Fig. 4, traffic speed in the unregulated scenario is similar to that in the first-best scenario when
congestion is high. Thus, most inefficiencies are the results of the monopolist’s exercise of market power, as shown by the fares in
Fig. 2. As the variance of the value of time distribution increases, so does the difference between the laissez-faire outcome and the first-
best outcome. This is due to the fact that, when variance is high, the monopolist can easily maximize profits by catering to high value of
time customers. However, as variance decreases, the ridesourcing service must become less niche to survive and maximize its profits.
This is best seen in Fig. 3: as variance in the population decreases, total demand served (across both services) increases. Such a pattern
can also easily be understood in terms of price elasticity: as variance in the population increases, the price elasticity decreases, thus
making it easier for the firm to charge higher fares (Fig. 2).

As far as the trip distribution is concerned, Fig. 3 shows that, at the first-best, we can discern two regimes. In the first, as base
demand increases, the fraction of demand served by the solo service is non-increasing while that served by the pooling service in-
creases. This is because, when demand is low, frictions due to pooling cannot be easily overcome. However, as demand increases,
economies of scale lead to a reduction in pooling and detour time costs, thus making pooling the more efficient option to serve the
demand. In the second regime, as congestion increases, pooling (and the ridesourcing service overall) become less desirable and the
service is eventually eliminated. Under the monopolist, the share of solo trips is non-increasing, just as in the first-best case. However,
when variance is high, pooling is only provided when congestion is very high: because it manages less demand than under the first-
best, the monopolist is able to maintain a good quality of service for its high value of time customers longer while getting adequately
compensated. When variance is low, the distribution pattern under the monopolist becomes similar to that under the first-best, with a
caveat: when congestion is very high, the monopolist still provides the solo service, since it does not have to bear its full contribution to
congestion.

Interestingly, regardless of the value of time distribution, beyond a certain point, as the base demand increases, the lesser the
discrepancy between the first-best and the monopoly. This is because, similar to the findings of Xu et al. (2017), the interests of the
platform and the planner become more aligned. As demand rises, both actors are looking to manage their fleet more efficiently in order
to serve the growing demand. Thus, both the fleet size and the utilization rates increase (Fig. 4). However, as congestion becomes more

7 The effect of the mean of the distribution was also studied. However, the findings were as expected and do not add much regulatory insights to
what can be gleaned from studying the variance. Higher value of time implies lower profits for the platform since it needs to hire a larger number of
drivers. Lower value of time implies that pooling becomes preferable and that profits are easier to generate.
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problematic, both under the first-best and the monopoly, the number of vehicles and their utilization rate decrease (Fig. 4). This is the
result of two forces. Firstly, falling pooling demand served increases detour times. Secondly, the reduction in traffic speed increases
pickup and detour times. Both forces thus contribute to reducing the attractiveness of the ridesourcing service while increasing the

time drivers spend without customers on board.

Lastly, we consider the ridesourcing company’s profits. As predicted in our analysis, under the first-best, the ridesourcing platform
becomes sustainable in high congestion regimes (Fig. 5). Moreover, as variance in the value of time decreases, the range under which
the service is sustainable increases. Intuitively, when variance is high, welfare can be increased mainly through expanding access, so
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Fig. 7. Regulatory and realized commissions.

that effects of scale dominate. In that context, average costs and fares decrease with increasing demand, leading to a net loss for the
platform. However, when variance is low, demand increases play a lesser role, since if one customers uses the platform, most of them
likely also do. The main gains to be made are from efficiency in fleet and demand management, which accrue to the platform under the
form of fares.

These numerical examples have a few implications. First, intervention by the planner to reduce congestion might not be necessary,
since, as congestion increases, the platform acts similarly to the planner. Second, significant welfare gains can only be made when
heterogeneity in the market served by the platform is high. Then, the main contribution from the planner is to increase demand served
by expanding access to lower value of time customers. In that context, there may be limited gains to be made from focusing on
ridesourcing-induced congestion, as pointed out by Tarduno (2021). Rather, applying commission caps with limited tolling should be

the preferred regulatory strategy.

5.2. Effects of proposed policies

In order to evaluate whether our proposed policies can improve welfare relative to the monopoly solution, we can only consider
cases under which the ride-sourcing market is sustainable under the first-best. Therefore, if the first-best is sustainable, it will be our
regulatory target. Otherwise, we settle for a second-best in which the monopolist makes some profit. From the previous numerical
examples, it is clear that when regulation is needed (i.e. in the high and medium variance cases), one will often have to settle for the
second-best. Most importantly, we must determine how the choice of the caps P° and PP and of the toll 7 is made. Our analysis in
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Section 4 assumed a homogeneous value of time. When the population is heterogeneous in the value of time, selecting the optimal caps
and tolls can be modeled as a bilevel program in which the social planner is at the upper-level and seeks to maximize welfare by
choosing P*, P* and 7" subject to a profit constraint. We present the problem and our solution method in detail in Appendix B.
Upon implementation, our strategy is able to substantially improve welfare (Fig. 6) and results in an outcome close to the second-
best. The results suggest that significant welfare gains can be realized from our policy, especially when the welfare gap is significant.

Fig. 7 shows our chosen caps (P’ and P’) as well as the commissions implemented by the platform (FF—~Rand ¥ -R)in response to
the regulation. It is evident that, at most demand levels considered, only one cap is required for the solo service. However, in the highly
congested regimes, the regulation is not needed, since, as discussed in Section 5.1, the monopolist’s behavior aligns with the regu-
lator’s objective. It is interesting to note that, as base demand increases, the cap for the solo service is reduced while that for the pooling
service increases.

Finally, Fig. 8 shows the regulatory tolls. We note that the tolls first increase with congestion but then decrease. This is in keeping
with the fact that the monopolist’s objective becomes closer to that of the regulator when congestion becomes very high.

6. Conclusion

In this paper, we present a model of the ridesourcing market with the presence of congestion externality, and the integration of the
solo and pooling services. In order to derive analytical insights, we then consider a simplified version of our model with a homogeneous
value of travel time. Analyzing the market equilibrium under both the first-best and the monopoly, we show that:

» under a socially optimal equilibrium and similar to the taxi market, the ridesourcing market may be sustainable when congestion is
high;

» a monopoly platform internalizes part of the congestion externality its drivers impose but still employs larger number of vehicles
than is socially efficient;

» a regulation coupling a single commission cap and a congestion toll (however small) can replicate any sustainable equilibrium
when customers are homogeneous in their value of time;

e in the case that the collection of a toll is impractical, we derive a set of congestion fees to be collected directly from customers of
each service. Interestingly, the ratio between the fee for the solo service and the pooling service does not vary linearly with
occupancy.

We also briefly apply New York’s congestion mitigation policies to our setting and show that, compared to our proposed regula-
tions, they are redundant. In some cases, this redundancy could also potentially lead to inefficiencies. In order to understand how our
policy performs in the more realistic setting of heterogeneous value of time, we perform numerical experiments. Qur numerical results
show that regulatory intervention is only warranted when the population is highly heterogeneous. In those circumstances, however,
the main source of inefficiency may not necessarily be congestion and there are limited welfare gains to be made by focusing on that
issue. Rather, maximizing demand served would be the best strategy for the regulator. We confirm our intuition by solving a Stack-
elberg game to choose optimal regulatory caps and tolls. These examples reveal that, when the welfare gap between the unregulated
market and the first-best is the highest, it is optimal not to impose a toll but, rather, to impose low commission caps—with lowest caps
on the solo service. Moreover, when tolls are applied, their value should decrease with the level of congestion, since the monopolist
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naturally aligns with the regulator in these cases. Thus, since imposing commission caps is more parsimonious and justifiable with
regards to addressing inefficiencies, we favor that approach to regulating the ridesourcing market under a monopoly. However, the
regulator might still choose to impose a toll on traffic as a whole, rather than singling out ridesourcing vehicles.

While our assumption of a monopolistic market might make sense in certain contexts,” most other markets feature two or more
companies competing for customers and drivers. Thus, a few questions may arise in that context. As shown in our analysis of the first-
best, marginal cost pricing is not sustainable, except in highly congested instances. Thus, for more than one firm to subsist in a long-
term equilibrium, competition must result in a non-efficient pricing pattern and/or significant product differentiation. Whether
welfare will be higher than in the monopolist setting and closer to the first-best is, however, unclear. Zha et al. (2016) showed that, in a
duopoly setting, welfare might be lower than in the monopoly setting when matching frictions are high or if market size is too small.
The inclusion of congestion will likely increase matching frictions, though the extent to which this will degrade profitability is unclear.
Additionally, since congestion enhances profitability, one might reasonably ask whether competition for drivers-driven by profit
seeking-might worsen traffic conditions at peak times in a manner that is welfare degrading. In-depth analysis of these aspects is left to
future work.

Customer characteristics indubitably vary across geographical locations. This leads to more opportunities for product differenti-
ation but also raises the question of the fairness of regulations such as congestion pricing. Indeed, Uber has argued that ridesourcing
regulations in NYC disproportionately hurt customers from low-income neighborhoods and from areas with poor transit access who
disproportionately use their pooling service (Dobbs, 2019). Thus, taking into account these unintended effects might provide an
opportunity for spatially differentiated tolling/subsidy strategies that we will investigate. Moreover, such a setting provides an op-
portunity to analyze the fleet management behavior of the platform as it must contend with the opportunity cost of providing service in
one neighborhood as opposed to another. Here again, supplementing our work with an empirical basis might be appropriate and will
be done in future work.

Ridesourcing companies have also been touting their potential to aid and complement public transit, thus making it more
accessible. In select cities, for example, users are able to see public transit options alongside UberX and UberPool in the Uber app.
Additionally, rides beginning or ending near public transit stations in select cities are now subsidized in an effort to address the first-
and last-mile problem. This provides additional opportunities for congestion mitigation and increasing the share of pooled rides on the
platform, but also creates additional modeling challenges.

Lastly, we have also taken the background traffic demand to be fixed, thus obviating the possibility that congestion management
and social welfare might be better served by encouraging the use and aiding the efficiency of the ridesourcing service-rather than
discouraging it. Our future work will seek to integrate these substitution effects to provide a more complete picture of the trans-
portation conundrum faced by urban planners.
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Appendix A. Numerical examples
A.1. Demand data
Base demand A° is obtained from Korolko et al. (2018). Background traffic demand is obtained by scaling A° by 10” so that as 1°

increases, so does congestion and the externality of ridesourcing (as would happen in practice). We show the base demand pattern in
Fig. 9.

8 Currently Didi Chuxing in some Chinese cities, for example.
° Our results show that, accross demand levels, the number of ride-sourcing vehicles N is at least 10% of the number of background vehicles N®,
which seems reasonable.
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Fig. 9. Base demand and background demand data.

A.2. Parameter values

All the parameters (except the bounds on the support of the value of time distribution) and their values are described in Table 1.
The parameter values used for the different value of time distributions are given in Table 2.

Table 1
Parameter values for numerical examples
Notation Interpretation Value
a Meeting distance elasticity 0.5
& Mode specific constant 0
y Correlation coefficient between customer and driver detour time 1
el Value of travel time for background traffic 30£
) Pairing probability O.ilr
¢ Matching time window 5 min
[4 Marginal effect of ridesourcing vehicles on traffic 1
A Scaling parameter for meeting time function 25
B Scaling parameter for detour distance function 5
d Average distance of ridesourcing trips 7 km
drb Average distance of background traffic trips 3.5 km
ve Slope of speed function o1l kph - km?
w Free-flow speed 50 kp‘lifh
v Trip utility $50
c Cost per driver $10
ue Cost of outside option $30

Table 2
Uniform distribution parameter values.
B 8
High variance 75 5
Medium variance 60 20

Low variance 45 35
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Appendix B. Finding regulatory policy

As outlined in Section 5, we consider a Stackelberg game between the planner (leader) and the monopolist (follower). The planner
solves (REG) below'’:

i3
W= max v fuﬂ-)-a"-[ -(’"+ ')-G’()-d
P20, 30, ( ’ , L) e)

Pr20, Fr20,
™20, R>0

. [ , (REG)
—A-/ﬁ W Hw'+w +Aw]| -G (] -df

CR(BAX) D N A

s.t. (F°,F*,R) = S(P*,P,7")

In the above, §(P*, P’,7V) is the best response function of the firm when subject to the regulation (P*, PP, z"). This best response is
obtained by solving (IM-CAPT) below:

n= max (F—R)- A+ (FF —R)- ¥
F°20, Fr20,
>
R=0 (M-CAPT)
s.t. F° —RgP
F* — RSP?

Moreover, the positivity constraint on P° and PP ensure that the regulation is implementable (the platform can generate a profit and
thus operates). The positivity constraint on 7V enforces a no-subsidy constraint on the outcome of the regulation.

As formulated, the problem is a bilevel program, a class of optimization problems difficult to solve. For our numerical experiments,
we used a heuristic solution procedure. In the process, we solve (M-CAPT) with the current regulation policy (P;,P;,zy ). Then, holding
the firm’s response constant, we solve (REG) and use the method of successive averages (MSA) to update the regulation policy for the
next step. Since our algorithm may not necessarily converge and given that we do not consider whether the updated policy effectively
increases welfare, we keep track of the best solution obtained up to the current step. Thus, after solving for the firm’s best response to
(P,S(,Pz,rf ), we compare the welfare resulting from the monopolist’s response, Wy, to the maximum realized welfare up to k, Wy,

The above solution procedure yielded reasonably good solutions, as demonstrated in Fig. 6. The solutions may be further improved
by applying a derivative-free method such as Nelder—-Mead or pattern search, as the decision variables of REG are of a low dimension.
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