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Abstract—We study the robust mean estimation problem in
high dimensions, where less than half of the datapoints can
be arbitrarily corrupted. Motivated by compressive sensing, we
formulate the robust mean estimation problem as the mini-
mization of the {o-‘norm’ of an outlier indicator vector, under
a second moment constraint on the datapoints. We further
relax the /{o-‘norm’ to the /,-norm (0 < p < 1) in the
objective and prove that the global minima for each of these
objectives are order-optimal for the robust mean estimation
problem. Then we propose a computationally tractable iterative
{,-minimization and hard thresholding algorithm based on the
proposed optimization problems. Empirical studies demonstrate
that the proposed algorithm outperforms state-of-the-art robust
mean estimation methods.

I. INTRODUCTION

Robust mean estimation in high dimensions has received
considerable interest recently, and has found applications in
areas such as data analysis (e.g., spectral data in astron-
omy [1]), outlier detection [2], [3], [4] and distributed machine
learning [5], [6], [7]. Classical robust mean estimation methods
such as coordinate-wise median and geometric median have
error bounds that scale with the dimension of the data [8],
which results in poor performance in the high dimensional
regime. A notable exception is Tukey’s Median [9] that has
an error bound that is independent of the dimension, when the
fraction of outliers is less than a threshold [10], [11]. However,
the computational complexity of Tukey’s Median algorithm is
exponential in the dimension.

A number of recent papers have proposed polynomial-
time algorithms that have dimension independent error bounds
under certain distributional assumptions (e.g., bounded covari-
ance or concentration properties). For a recent comprehensive
survey on robust mean estimation, we refer the interested
readers to [12]. One of the first such algorithms is Iterative Fil-
tering [13], [14], [15], in which one finds the top eigenvector of
the sample covariance matrix and removes (or down-weights)
the points with large projection scores on that eigenvector,
and then repeat this procedure on the rest of points until
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the top eigenvalue is small. However, as discussed in [4],
the drawback of this approach is that it only looks at one
direction/eigenvector at a time, and the outliers may not exhibit
unusual bias in only one direction or lie in a single cluster.

There are interesting connections between existing methods
for robust mean estimation and those used in compressive
sensing. The Iterative Filtering algorithm has similarities
to greedy Matching Pursuit type compressive sensing algo-
rithm [16]. In the latter algorithm, one finds a single column
of sensing matrix A that has largest correlation with the mea-
surements b, removes that column and its contribution from
b, and repeats this procedure on the remaining columns of A.
Dong et al. [4] proposed a new scoring criterion for finding
outliers, in which one looks at multiple directions associated
with large eigenvalues of the sample covariance matrix in
every iteration of the algorithm. Interestingly, this approach
is conceptually similar to Iterative Thresholding techniques in
compressive sensing (e.g., Iterative Hard Thresholding [17] or
Hard Thresholding Pursuit [18]), in which one simultaneously
finds multiple columns of matrix A that are more likely
contribute to b. Although this type of approach is also greedy,
it is more accurate than the Matching Pursuit technique in
practice.

A common assumption in robust mean estimation problem
is that the fraction of the corrupted datapoints is small. In
this paper, we explicitly use this information through the
introduction of an outlier indicator vector whose fy-‘norm’
we minimize under a second moment constraint on the data-
points. This new formulation not only enables us to leverage
advanced compressive sensing techniques to solve the robust
mean estimation problem, but also makes it possible for our
algorithm to not require prior knowledge of the fraction of
outliers.

We consider the setting in which the distribution of the
datapoints before corruption has bounded covariance, as is
commonly assumed in many recent works (e.g., [14], [4], [19],
[20]). In particular, in [19], the authors propose to minimize
the spectral norm of the weighted sample covariance matrix
and use the knowledge of the outlier fraction « to constrain the
weights. Along these lines, in two recent works [21], [22] it is
shown that any approximate stationary point of the objective
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in [19] gives a near-optimal solution. In contrast, our objective
is designed to minimize the sparsity of an outlier indicator
vector, and we show that any sparse enough solution is nearly
optimal.

There is another line of related work on mean estimation
of heavy tailed distributions. See, e.g. the recent survey
article [23] and the references therein. Also, the connection
between robust mean estimation and heavy-tailed mean esti-
mation is discussed in [24].

Our contributions are as follows:

o At a fundamental level, a contribution of this paper is
the formulation of the robust mean estimation problem
as minimizing the {p-‘norm’ of the proposed outlier
indicator vector, under a second moment constraint on
the datapoints. In addition, order-optimal estimation error
guarantees and optimal breakdown point are shown for
this objective. We relax the ¢y objective to £,(0 < p < 1)
as in compressive sensing, and establish corresponding
order-optimal estimation error guarantees.

» Motivated by the proposed ¢, and ¢, objectives and their
theoretical justifications, we propose a computationally
tractable iterative £,(0 < p < 1) minimization and
hard thresholding algorithm. Empirical studies show that
the proposed algorithm significantly outperforms state-
of-the-art methods in robust mean estimation in high
dimensions.

II. PROPOSED OPTIMIZATION PROBLEMS

We begin by defining what we mean by a corrupted sample
of datapoints.

Definition 1. (a-corrupted sample [4]) Let P be a distribution
on R? with unknown mean p, and let 41, ..., 9, be indepen-
dent and identically distributed (i.i.d.) drawn from P. These
datapoints are then modified by an adversary who can inspect
all the datapoints, remove an of them, and replace them with
arbitrary vectors in R?. We then obtain an a-corrupted sample,
denoted as y1, ..., Yn-

Our primary goal is to robustly estimate the true population
mean, given an a-corrupted sample. A key insight exploited in
previous works on the problem is that it suffices to find a large
subset of the a-corrupted sample, whose sample covariance
matrix has bounded spectral norm. In order for such a subset to
exist and for the mean of this large subset to be close to the true
mean, we need some form of concentration of the datapoints
(before corruption) around the mean of their distribution. A
constrained second moment condition is sufficient to guarantee
this, and this assumption is also used in previous works.

Based on this motivation, we propose an {y-minimization
problem to find the largest subset, whose sample covariance
matrix is close to the covariance matrix of the underlying
distribution. Let the datapoints before corruption be generated
from a distribution whose covariance matrix is bounded:
3 < ¢2]. We first introduce an outlier indicator vector h:
for the i-th datapoint, h; indicates that whether it is an outlier

(h; = 1) or not (h; = 0). Given an a-corrupted sample of size
n, we propose the following optimization problem:

rﬁlin”h”o s.t. h; € {0,1}, Vi, (D
Y (A—h)yi—@)(yi—2)"|| <cjo’n.
i=1 2
We further relax the problem to the following:
min ||k|o s.t.0<h; <1,Vi, (2)
h,x

n

> (U —h)(y —z)(yi —a)"

i=1 2

< c%an.

Note that any globally optimal solution of (1) is also globally
optimal solution of (2). We show in Theorem 1, that any sparse
enough feasible solution including the global optimum of (2)
achieves order-optimality.

However, the above ¢y, objective is not computationally
tractable. Motivated by compressive sensing, we further pro-
pose to relax the £p-‘norm’ to the £,-norm (0 < p < 1), which
leads to the following optimization problem:

rlxgithHp 5.t.0 < h; <1,Vi, 3)

n

Y A—h)(yi—2)(yi—=2)"

=1 2

< 0%0211.

We show in Theorem 2 that even in this case, any ‘good’ fea-
sible solution including the global optimum is order-optimal.

We now provide theoretical guarantees for the estimators
which are given by the solutions of the optimization problems
(2) and (3). We show that given an a-corrupted sample of size

Q (dosd lig d), with high probability, the £3-norm of both estima-

TTharo
in the following theorems. The parameter ¢ is independent of
the fraction of outliers o and controls the tradeoff between the
error bound and the number of datapoints required. It is well

known that an information-theoretic lower bound on the /5-
norm of any estimator’s error ||& — |2 is (U, /75 ) By

tors’ error is bounded by O (O’ ) . We formalize this

1—2a )
setting € = O(a), we see that the estimators are information-
theoretically order-optimal.

Theorem 1. Let P be a distribution on R® with unknown mean
u and unknown covariance matrix 3 < o2l Let0 <e< 1 /2,
0<d<1/4andcy > 1 be fixed Let 0 < o < 1/2—¢€. Given
an a-fraction corrupted set of n > % log(%) datapoints
from P, let

S=<(h Nkl < o'n;x =
{( ,CL‘) ” Ho_an,w |{i:hi:O}|

Z{i:hi:O} Yi }7 @)

where ¢/ = i min{cilogci+1—c}, 1}, &/ =a+e
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Then the following holds with probability at least 1 — 49:
1) Any feasible pair (h,&) for the optimization problem (2)
such that (h, &) € S satisfies

[ — pll2 <

22 o2 o
1 Pt ]
— 1— 0 1—ao —

where c3 = \/673(1 —1—21/%).

2) A global optimum of (2) lies in S.

We now provide a similar order-optimal error guarantee for
the solution of the optimization problem in (3).

Theorem 2. Let P be a distribution on R? with unknown
mean p and unknown covariance matrix ¥ < o?I. Let 0 <
p<1,0<e<1/20< < 1/4and ¢y > 1 be fixed.
Let 0 < a < 1/2 — €. Given an a-fraction corrupted set of
n> - 5"‘2%,1 log(%) datapoints from P, let

Z?:l(l — hi)y; }
S (l=hy) [
where ¢, = i min{cflogci +1 -}, 1}, o/ =a+e
Then the following holds with probability at least 1 — 46:
1) Any feasible solution (iL, &) of (3) such that (iL, z)e s

S = {(h,w) SR|P < o'n; x=

satisfies
. Ao’ «
|2 — pl2 < —— 4 c30+
l—el—-«
o2 N o2 o ©)
1-do 1_M 1_0/_HHH£’
n n

where c3 = \/5(1 +2./$€d/5)>.

2) A global optimum of (3) lies in S'.

Remark 1. Theorems 1 and 2 show that, as long as we find a
feasible solution A whose norm is small enough, e.g., Ao <
a’'n, the corresponding & is close to the true mean. It is not
necessary to reach the global optimum of the objectives (2)
and (3).

Remark 2. The breakdown point of the estimators in Theorem
1 and 2 is nearly the maximal possible 1/2 (as ¢ — 0 and
n — o0), that is, the estimator can tolerate any corruption
level o < 1/2, assuming the number of samples n satisfies
the lower bound.

A high-level sketch of the proofs of Theorems 1 and 2 is
as follows. We use the idea in [22, Lemma 2.2]. Informally,
if two probability distributions on a set a datapoints are close
in total variation distance, then the weighted means of the
distribution are close. For Theorem 1, we consider the uniform
distribution on the set {y; : h; = 0} (say Py). For Theorem
2, we consider the distribution on the a-corrupted samples

with (normalized) probability weights 1 — h; (say P»). Note
that the estimator @ in Theorem 1 is the mean of P;, and
similarly, the estimator in Theorem 2 is the mean of P». We
show that for both ¢ = 1, 2, the total variation distance between
P; and the uniform distribution (say Ps3) on the set of inlier

datapoints (that are within a distance of o % from p), is
small. Therefore one can show that the distance between & and
the mean of Pj is O (a % . Using the same result in
[22, Lemma 2.2], we show that the distance between the mean
of P3 and p is O(o+/a + ¢€). Using triangle inequality, we
show that the distance between & and pis O (o, / %)

Observe that in Theorems 1 and 2, € controls the error
tolerance level. Also, the lower bound on the required number
of datapoints is €2 (@), which is independent of the
corruption level a. Previous works (see, e.g., [13], [14],
[19]) do not consider a tolerance level, and in these works
the lower bound on the required number of datapoints is
inversely proportional to the corruption level a, which blows
up as a — 0. Moreover, « is typically unknown in practice.
Specifying € to control the estimator’s error helps us remove
the dependence of the number of datapoints required on the
fraction of corruption . Note that we can recover the order-
optimal results in the form as given in the previous works by
setting € = O(«) in Theorems 1 and 2,

III. COMPUTATIONALLY TRACTABLE ALGORITHM

A. £, minimization and thresholding

Motivated by the £,, objective and its theoretical guarantees,
we propose an iterative £, minimization algorithm. The algo-
rithm alternates between updating the outlier indicator vector
h via minimizing its £,-norm and updating the estimated mean
x (see Algorithm 1).

When updating the estimated mean @ in Step 2 of Algorithm
1, we add an option to threshold the h; by 7, so one can use the
weighted average of the estimated ‘reliable’ datapoints (i.e.,
those for which h; = 0) to estimate x. This is motivated by

the analysis of the original ¢y objective in Theorem 1, where
Z{i;}}i=0} Yi
) T Hizhi=0}]

is close to the true mean as long as the outlier indicator vector
h is sparse enough. We now define some notations used in the

description of Algorithm 1. Let

the average of the estimated ‘reliable’ datapoints

B 3r+72 — 74+ 273 4572

B afT

V(@) = \/(l—a/T)(l—a—a/T) ®
o) — c1 c1 afT

6()_<\/1—a/7+\/1—a> l—a—a/T ©
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Algorithm 1 Robust Mean Estimation via ¢, Minimization
and Thresholding
Inputs:
1) An a-corrupted set of datapoints {y;}" ; € R? generated
by a distribution whose covariance matrix satisfies ¥ < o2].
2) Upper bound on corruption level: &
3) Upper bound on spectral norm of X: o2.
4) Threshold: 0 < 7 < 1 such that f(7) > &, where f(7)
is defined in (7).
5) Set c¢; > 1.
6) Set 0 < p<1lin¥,.
Initialize:
1) £(©) = coordinate-wise median of {y;},.
2) i = 3v/d + 2¢1.
3) Iteration number ¢ = 0.
. log e (0)
while ¢t <T'= 1+ ey and ;7 >
Step 1: Given (*), update h:
h® € H(x® ), where H is defined in (10).
Step 2: Given h("), update x:
pt+D) — T (=AM 1A <}y,
S A=k R <)
S = o(y(@)e!) + B(a)),
where v and 3 are defined in (8) and (9)
t=t+ 1.
end while
Output: x(7)

8)
= 90

Let H be the set defined by

H(w, c2) = argmin ]|, (10)

st. 0<h; <1,Vi,

n

Y A—hi)(yi—2)(yi—=2)"

i=1

< (3 4 c2)o’n.
2

Theoretical guarantees for Algorithm 1 are out of scope of
this work. We plan to establish such guarantees in future work.

Remark 3. The initialization céo) = 3v/d + 2¢; can be
replaced by a smaller value as long as it is possible to

guarantee ||z(® — p| < céo)a with high probability.

B. Solving Step 1 of Algorithm 1

When we set p = 1 in the objective ||h|, in Step 1
of Algorithm 1, the resulting problem is convex, and can
be reformulated as the following packing SDP [25] with
w; 21— hy, Ay = (y; — x)(y; — )" and e; being the
i-th standard basis vector in R"™:

max1' w
w

s.t. w; >0,VYi

n T

e;e;
E w; [ o A-] =
i=1 v

When 0 < p < 1, the equivalent objective function
[h|l5 = >, hY is concave, not convex. So it may be difficult

(1)

In><n
C710'2Id><d ’

to find its global minimum. Nevertheless, we can iteratively
construct and minimize a tight upper bound on this objec-
tive function via iterative re-weighted ¢y [26], [27] or ¢
techniques [28] from compressive sensing.! And it is well-
known in compressive sensing that such iterative re-weighted
approaches often performs better than ¢; [28], [26].

IV. EMPIRICAL STUDIES

In this section, we compare performance of Algorithm 1
with the following state-of-the-art high dimensional robust
mean estimation methods: iterative filtering algorithm [14]
(denoted as DKK), method proposed in [22] (denoted as ZJS),
method proposed in [8] (denoted as LRV), method in [19]
(denoted as CDG), and Quantum Entropy Scoring (QUE) [4].
We fix p = 0.5 for the proposed ¢, method. In Algorithm 1,
we set the threshold 7 = 0.6, the constant ¢; = 1.1, the upper
bound on corruption level & = %a and we initialize Cgo)
as the ¢ error of the Coordinate-wise Median relative to the
true mean. We carefully tune the parameters in the compared
methods. For evaluation, we define the recovery error as the
{5 distance of the estimated mean to the oracle solution, i.e.,
the average of the datapoints before corruption.

We use a similar experiment setting as in [4]. The dimension
of the data is d, and the number of datapoints is n. There
are two clusters of outliers, and their ¢ distances to the true
mean x are similar to that of the inlier points. The inlier
datapoints are randomly generated from the standard Gaussian
distribution with zero mean. For the outliers, half of them are
set to be [\/d/2,1/d/2,0,...,0], and the other half are set
as [\/d/ ,—\/ﬁ,o, .., 0], so that their ¢ distances to the
true mean [0, ...,0] are all v/d, similar to that of the inlier
points. We vary the total fraction « of the outliers and report
the average recovery error of each method over 10 trials in
Table I with d = 100, = 1000. The proposed ¢; and £,
methods show significant improvements over the competing
methods, and the ¢, method performs the best.

TABLE I
RECOVERY ERROR OF EACH METHOD UNDER DIFFERENT FRACTION « OF
THE OUTLIER POINTS (d = 100, » = 1000)

o DKK
10% | 0.124
20% | 0.131

AN
0.098
0.115

LRV
0.367
0.659

QUE
0.429
0.492

CDG | 4 7,
0.064 | 0.013 | 0.006
0.084 | 0.013 | 0.007

We also tested the performance of each method for different
numbers of datapoints. The dimension of the data is fixed to
be 100. The fraction of the corrupted points is fixed to be
20%. We vary the number of datapoints from 100 to 1000,
and report the average recovery error for each method over
50 trials in Table II. We can see that the performance of all
methods get better when the number of datapoints is increased.
Again, the proposed methods consistently perform better than
the other methods.

'We observe that iterative re-weighted £2 achieves better empirical perfor-
mance.
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TABLE II
RECOVERY ERROR OF EACH METHOD W.R.T. DIFFERENT NUMBER OF
SAMPLES (d = 100, a« = 0.2)

n DKK
100 | 0.493
200 | 0.313
500 | 0.186
1000 | 0.131

AN
0.293
0.239
0.170
0.115

QUE
1.547
1.038
0.680
0.492

LRV
1.423
1.084
0.794
0.659

CDG | 0, 7,

0.316 | 0.060 | 0.033
0.198 | 0.036 | 0.021
0.148 | 0.021 | 0.012
0.084 | 0.013 | 0.007

V. CONCLUSION

We formulated the robust mean estimation problem as
the minimization of the fy-‘norm’ of the introduced outlier
indicator vector, under a second moment constraint on the
datapoints. We further relaxed the ¢, objective to £, (0 <
p < 1) and theoretically justified the new objective. We also
proposed a computationally tractable iterative £,(0 < p < 1)
minimization and hard-thresholding algorithm, Algorithm 1,
which significantly outperforms state-of-the-art robust mean
estimation methods. In empirical studies, we observed strong
numerical evidence that ¢, (0 < p < 1) leads to sparse
solutions; theoretically justifying this phenomenon is of in-
terest and is an avenue for future research. The proposed ¢,
and £, optimization problems do not require knowledge of a,
and their solutions are order optimal in terms of error. While
we do not currently have computationally tractable algorithms
to solve the £y and /,, optimization problems, we conjecture
that it should be possible to design computationally tractable
algorithms that do not require prior knowledge of « and are
order optimal in terms of error. The proposed Algorithm 1 is
one such algorithm, and establishing theoretical guarantees for
this algorithm is a direction of research that we are currently
pursuing.

VI. ACKNOWLEDGEMENTS

The authors would like to thank Akshayaa Magesh for
fruitful discussions.

REFERENCES

[1] R. A. Maronna and R. H. Zamar, “Robust estimates of location and
dispersion for high-dimensional datasets,” Technometrics, vol. 44, no. 4,
pp- 307-317, 2002.

[2] P. J. Huber, Robust statistics. Springer, 2011.

[3] R. A. Maronna, R. D. Martin, V. J. Yohai, and M. Salibidn-Barrera,
Robust statistics: theory and methods (with R). Wiley, 2018.

[4] Y. Dong, S. Hopkins, and J. Li, “Quantum entropy scoring for fast robust
mean estimation and improved outlier detection,” in Advances in Neural
Information Processing Systems 32. Curran Associates, Inc., 2019, pp.
6067-6077.

[51 Y. Chen, L. Su, and J. Xu, “Distributed statistical machine learning
in adversarial settings: Byzantine gradient descent,” in Proc. ACM
Measurement and Analysis of Computing Systems, vol. 1, no. 2. ACM
New York, NY, USA, 2017, pp. 1-25.

[6] D. Yin, Y. Chen, R. Kannan, and P. Bartlett, “Byzantine-robust dis-
tributed learning: Towards optimal statistical rates,” in International
Conference on Machine Learning, 2018, pp. 5650-5659.

[71 S. Bubeck, N. Cesa-Bianchi, and G. Lugosi, “Bandits with heavy tail,”
IEEE Transactions on Information Theory, vol. 59, no. 11, pp. 7711-
7717, 2013.

[8] K. A. Lai, A. B. Rao, and S. Vempala, “Agnostic estimation of mean
and covariance,” in 2016 IEEE 57th Annual Symposium on Foundations
of Computer Science (FOCS), 2016, pp. 665-674.

[9]

[10]

(1]
[12]

[13]

[14]

[15]
[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

1031

J. W. Tukey, “Mathematics and the picturing of data,” in Proceedings of
the International Congress of Mathematicians, Vancouver, 1975, vol. 2,
1975, pp. 523-531.

D. L. Donoho, M. Gasko et al., “Breakdown properties of location
estimates based on halfspace depth and projected outlyingness,” The
Annals of Statistics, vol. 20, no. 4, pp. 1803-1827, 1992.

B. Zhu, J. Jiao, and J. Steinhardt, “When does the tukey median work?”
arXiv preprint arXiv:2001.07805, 2020.

I. Diakonikolas and D. M. Kane, “Recent advances in algorithmic high-
dimensional robust statistics,” arXiv preprint arXiv:1911.05911, 2019.
1. Diakonikolas, G. Kamath, D. M. Kane, J. Li, A. Moitra, and A. Stew-
art, “Robust estimators in high dimensions without the computational
intractability,” in 2016 IEEE 57th Annual Symposium on Foundations of
Computer Science (FOCS), 2016, pp. 655-664.

1. Diakonikolas, G. Kamath, D. M. Kane, J. Li, A. Moitra, and
A. Stewart, “Being robust (in high dimensions) can be practical,” in
Proceedings of the 34th International Conference on Machine Learning-
Volume 70, 2017, pp. 999-1008.

J. Steinhardt, “Robust learning: Information theory and algorithms,”
Ph.D. dissertation, Stanford University, 2018.

S. Mallat and Z. Zhang, “Matching pursuits with time-frequency dictio-
naries,” IEEE Trans. Signal Process., vol. 41, pp. 3397-3415, 1993.

T. Blumensath and M. E. Davies, “Iterative hard thresholding for
compressed sensing,” Applied and computational harmonic analysis,
vol. 27, no. 3, pp. 265-274, 2009.

S. Foucart, “Hard thresholding pursuit: an algorithm for compressive
sensing,” SIAM Journal on Numerical Analysis, vol. 49, no. 6, pp. 2543—
2563, 2011.

Y. Cheng, 1. Diakonikolas, and R. Ge, “High-dimensional robust mean
estimation in nearly-linear time,” in Proceedings of the Thirtieth Annual
ACM-SIAM Symposium on Discrete Algorithms, ser. SODA *19. USA:
Society for Industrial and Applied Mathematics, 2019, p. 2755-2771.
J. Steinhardt, M. Charikar, and G. Valiant, ‘“Resilience: A criterion
for learning in the presence of arbitrary outliers,” arXiv preprint
arXiv:1703.04940, 2017.

Y. Cheng, I. Diakonikolas, R. Ge, and M. Soltanolkotabi, “High-
dimensional robust mean estimation via gradient descent,” arXiv preprint
arXiv:2005.01378, 2020.

B. Zhu, J. Jiao, and J. Steinhardt, “Robust estimation via generalized
quasi-gradients,” arXiv preprint arXiv:2005.14073, 2020.

G. Lugosi and S. Mendelson, “Mean estimation and regression under
heavy-tailed distributions—a survey,” arXiv preprint arXiv:1906.04280,
2019.

S. B. Hopkins, J. Li, and F. Zhang, “Robust and heavy-tailed mean
estimation made simple, via regret minimization,” in Advances in Neural
Information Processing Systems 33, 2020.

G. Iyengar, D. J. Phillips, and C. Stein, “Approximation algorithms for
semidefinite packing problems with applications to maxcut and graph
coloring,” in International Conference on Integer Programming and
Combinatorial Optimization. Springer, 2005, pp. 152-166.

R. Chartrand and W. Yin, “Iteratively reweighted algorithms for com-
pressive sensing,” in 2008 IEEE International Conference on Acoustics,
Speech and Signal Processing, 2008, pp. 3869-3872.

I. F. Gorodnitsky and B. D. Rao, “Sparse signal reconstruction from
limited data using focuss: a re-weighted minimum norm algorithm,”
IEEE Trans. Signal Process., vol. 45, no. 3, pp. 600-616, Mar. 1997.
E. J. Candes, M. B. Wakin, and S. P. Boyd, “Enhancing sparsity by
reweighted 11 minimization,” Journal of Fourier analysis and applica-
tions, vol. 14, no. 5-6, pp. 877-905, 2008.

Authorized licensed use limited to: University of lllinois. Downloaded on May 29,2022 at 19:09:08 UTC from IEEE Xplore. Restrictions apply.



