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Abstract— We investigate the problem of monitoring multiple
targets using a single mobile sensor, with the goal of minimizing
the maximum estimation error among all the targets over long
time horizons. The sensor can move in a network-constrained
structure, where it has to plan which targets to visit and for
how long to dwell at each node. We prove that in an optimal
observation time allocation, the peak uncertainty is the same
among all the targets. By further restricting the agent policy
to only visit each target once every cycle, we develop a scheme
to optimize the agent’s behavior that is significantly simpler
computationally when compared to previous approaches for
similar problems.

I. INTRODUCTION
In many different applications, such as ocean temperature

monitoring [1] or surveillance in smart cities [2], a mobile
agent equipped with sensors is responsible for monitoring the
state of a system at multiple points of interest. In this setting,
a usual goal is to minimize some metric of uncertainty of
the monitored variables over long time horizons. We call this
problem “persistent monitoring” (PM). In terms of design,
a common approach (see e.g. [3] and [4]) is to consider
the agent policy as being composed of two interdependent
tasks: searching for an optimal agent trajectory and planning
for how long to observe each of the targets. In this work,
we model the PM problem as one of an agent moving on a
network [4] and seek a periodic trajectory that ensures each
target is visited, while optimizing a given uncertainty metric
over long time horizons. PM is closely related to the well
known Traveling Salesman Problem (TSP), as both problems
try to minimize the time spent traveling between different
targets, and some connection between persistent surveillance
and TSP have already been explored e.g. in [5]. The main
distinction between these problems is that in PM one has to
plan for how long to dwell at each target in order to minimize
a metric of the targets state uncertainties (instead of simply
the distance traveled).

In our previous work [6], [7], we investigated the multi-
agent version of this problem, with the goal of finding
locally optimal movement agent policies that minimized the
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mean squared estimation error. One major limitation of this
previous work was that each step of the optimization (which
was a gradient descent procedure) relied on the numerical
integration of matrix ordinary differential equations in order
to compute the gradients. Integrating these equations at each
step of the iterative optimization process is a major compu-
tational burden and makes the approach in [6] unsuitable for
settings with a large number of targets.

In the present paper, we constrain ourselves to consid-
ering a single agent in order to establish stronger results
than in previous publications, with the goal of generaliz-
ing these stronger results to multi-agent settings in future
work. Moreover, instead of minimizing the mean squared
estimation error, we consider a different optimization metric,
the minimization of the maximum uncertainty over different
targets. In addition to simplifying the computational burden,
this metric may be preferred in some settings. For example,
when monitoring safety critical systems that cannot operate
over a given threshold (for instance a maximum temperature),
one wants to make sure that every target location does not
exceed that “worst case” limit (as opposed to optimizing an
“average” of the chance of violating it). Some examples of
applications where a critical threshold on the state uncer-
tainty should not be exceeded include monitoring of wildfire
or faults in civil infrastructure systems using unmanned aerial
vehicles [8], [9]. Considering this cost function, the main
contribution of this paper is to show that, in an optimal
schedule all the targets have the same peak uncertainty. A
parallel can be drawn between this problem and resource
allocation problems, where we often find results showing that
all the users have the same utility in the optimal schedule
(see e.g. [10]). In this paper, the resource to be allocated
is the time for which each target is observed. We exploit
this necessary condition and introduce a novel gradient-free
and computationally inexpensive scheme to optimize the time
spent at each target. For visiting sequences where each target
is visited only once, this approach provably gives the optimal
time that should be spent at each target for a fixed cycle
period T . This is especially meaningful in scenarios where
targets are heterogeneous and, in order to ensure a balanced
operation of the entire network of targets, they must be
observed for significantly different times.
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II. PROBLEM FORMULATION
We consider a set V composed of M nodes (which are

interchangeably called targets) in a connected and undirected
graph G = (V, E). The set E is formed by edges {(i, j) :
i, j ∈ V}. Each edge has an associated cost di,j , representing
the time the agent takes to travel between nodes i and j.

We also assume that each target has an internal state φi ∈
RLi with dynamics

φ̇i(t) = Aiφi(t) +Biui(t) + wi(t), i = 1, . . . ,M, (1)

where wi are mutually independent, zero mean, white, Gaus-
sian distributed processes with E[wi(t)wi(t)

′] = Qi and Qi

is a positive definite matrix. Since we focus on the estimation
problem, we do not discuss the design of the control ui(t),
but we assume that the estimation algorithm has access to
the values of ui(t).

The mobile agent can navigate through the graph G. When
the agent visits a given node i, it observes its internal state
with a linear observation model given by

zi(t) = Hiφi(t) + vi(t), vi(t) ∼ N (0, Ri), (2)

where vi is also assumed to be white and statistically
independent of vj if i 6= j and wk, ∀k.

We can fully describe the behavior of the agent at its N
visits by a vector of indices of the targets visited by the agent
Y = [y1, y2, ..., yN ], 1 ≤ yk ≤ M , and the time spent by
the agent at each of these visits T = [t1, ..., tN ], tk ≥ 0.
Note that even though in general Y and T can be infinitely
long, in this paper we restrict ourselves to periodic policies
(as will be discussed in the next subsection) and thus N is
finite.

Considering models (1) and (2), the maximum likelihood
estimator φ̂i(t) for the internal state of the targets is a
Kalman-Bucy Filter with equations given by

˙̂
φi(t) = Aiφ̂i(t) +Biui(t)

+ ηi(t)Ωi(t)H
′
iR
−1
i

(
zi(t)−Hiφ̂i(t)

)
, (3a)

Ω̇i(t) = AiΩi(t) + Ωi(t)A
′
i +Qi − ηi(t)Ωi(t)GiΩi(t),

(3b)

where Ωi is the covariance matrix of the estimator φ̂i(t),
Gi = H ′iR

−1
i Hi and ηi(t) = 1 if target i is observed at time

t and ηi(t) = 0 otherwise.
The goal is to design an agent movement policy that

minimizes the maximum (over time and over all the targets)
of a weighted norm of the long term covariance matrix, i.e.,

J(Y, T ) = max
i∈{1,..,M}

lim sup
t→∞

gi(‖Ωi(t)‖), (4)

where the target-specific (possibly) nonlinear weighting
function gi(·) is a strictly increasing function with gi(0) = 0
and limx→∞ gi(x) = ∞, and ‖·‖ is a norm on the space
of positive semi-definite matrices. A usual choice is to have
gi(x) = x and ‖X‖ = tr(X). An optimal strategy has an
associated cost J∗ given by

J∗(Y∗, T ∗) = min
Y,T

J(Y, T ). (5)

A. Periodic Policies

In this work we restrict ourselves to periodic policies.
Note that in periodic trajectories, the number of parameters
necessary to describe the behavior of the agent does not
increase with the time horizon. They are therefore suitable
for infinite horizon analysis. Moreover, if a target is visited
in the period, it will be visited infinitely often, with inter-
visit time upper bounded by the period. This notion fits very
well into the paradigm of persistent monitoring, since one of
the high level goals is to ensure this persistence of visits.

In order to analyze the infinite horizon behavior of the
covariance matrix, we initially make the following natural
assumption that ensures the uncertainty of the internal state
φi can be finite over long time horizons.

Assumption 1: The pair (Ai, Hi) is detectable, ∀ i ∈
{1, ...,M}.

We now revisit the following Proposition, initially intro-
duced in [6]:

Proposition 1: If ηi(t) is T -periodic and ηi(t) > 0 for
t in some interval [a, b] ∈ [0, T ] with b > a, then, under
Assumption 1, there exists a unique non-negative stabilizing
T -periodic solution Ω̄i(t) to (3b).

The consequence of this proposition is that, in a periodic
schedule, visiting a given target for any finite amount of time
is enough to guarantee that the covariance will converge to a
limit cycle that does not depend on the initial conditions. In
this paper we will focus on cases where Ai is unstable, since
it requires targets to be visited infinitely often to ensure a
bounded cost, and thus fits well into the persistent monitoring
framework. Note that in some real applications, such as the
surveillance of wildfires or the expansion of cracks in civil
infrastructure [8], [9], the dynamics of the state are often
unstable. In addition, to avoid the degenerate case where Qi

is semidefinite such that covariance could potentially stay
null in some direction, we assume that Qi is positive definite.
These assumptions are now formalized:

Assumption 2: Ai is not stable and Qi is positive definite.
Remark 1: The optimization approach we develop in this

paper could be easily adapted to also handle targets with
stable Ai. However, if Ai is allowed to be stable, it could be
the case that the optimal action would be never to observe
such a target, since its uncertainty would be bounded even
if the agent never visits it. In this paper, due to space
constraints, we mainly focus on the optimization of dwelling
times T and by assuming that Ai is unstable, we have that
the set of visited targets is fixed. In future work we plan to
consider both stable and unstable Ai, along with criteria for
the inclusion or exclusion of targets in the visiting sequence.
A consequence of Assumption 2 is that every target should
be visited in one period of the cycle, however the optimal
visiting order is still to be determined.

III. PROPERTIES OF AN OPTIMAL POLICY

A. Target’s Perspective of a Periodic Policy

We begin by defining some notations used in the remainder
of this section. We recall that the goal is to optimize the
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visiting sequence Y and dwelling times at the visited targets
T . One way to interpret the vectors Y and T is that
they capture the agent perspective of the trajectory. Each
individual target, however, does not need all this information
in order to fully determine the behavior of its uncertainty.
From the target’s perspective, all the information necessary
to characterize the evolution of its covariance matrix is to
define, for a single cycle of the periodic schedule, how
long the target is observed for and the time spent between
consecutive observations. Without loss of generality, we
assume that the length N of the vectors Y and T is one
full cycle of the periodic trajectory.

However, from a given target’s perspective, all that is
necessary to fully specify its steady-state covariance matrix
is to define for how long it was observed and how much time
was spent between consecutive observations (i.e. the value
of ηi(t) in (3b)). This is illustrated in Fig. 1, where tkon,i is
the amount of time that target i was observed when it was
visited for the k-th time. On the other hand, tkoff,i is the time
spent between its k-th and k + 1-st visits, with k ranging
from 1 to Ni, where Ni is the total number of visits by the
agent at target i in one cycle. The peak covariance values
are denoted by P

k

i .

Fig. 1: Temporal evolution of the steady state covariance
matrix and waiting/observation times.

We highlight that tkon,i and tkoff,i can be easily computed
from Y and T . The explicit equations for this conversion are
given in [11] but omitted here, since they are not essential for
the understanding of the paper and involve complex notation.
Analogously, the peaks P

k

i are defined as the steady state
covariance Ω̄i(t

′) at a specific time t′ computed from Y and
T , and details are given in [11].

B. Necessary Condition for Optimality

In this section, our main goal is to show that, for
every visiting sequence Y that contains every target, an
optimal allocation of dwelling times T must be such that
lim supt→∞ gi(‖Ωi(t)‖) is the same among all the targets.
Towards this main goal of this section, first we claim the
following auxiliary results.

Lemma 1: ˙̄Ωi(t) ≺ 0 if ηi(t) = 1 and ˙̄Ωi(t) � 0 if ηi(t) =
0.

The interpretation of this lemma is very intuitive: the
steady state covariance decreases under sensing and increases
otherwise. The proof is a direct application of Theorem 2 in
[12] and is omitted here for space reasons but given in [11].

Lemma 2: If target i is visited for a non degener-
ate amount of time, then lim supt→∞ gi (‖Ωi(t)‖) =

max1≤k≤Ni
gi

(∥∥∥P k

i

∥∥∥)
Proof: First, note that since Ωi(t) con-

verges to the bounded periodic function Ω̄i(t),
lim supt→∞ gi (‖Ωi(t)‖) = max0≤t≤T gi

(∥∥Ω̄i(t)
∥∥).

For any time t for which ∃ ε > 0 such that ηi(t + ε) = 0,
Lemma 1 implies that Ω̄i(t + ε) � Ω̄i(t). Conversely, if
∃ ε > 0 ηi(t− ε) = 1, Ω̄i(t− ε) � Ω̄i(t).

Therefore, the maximum value of gi
(∥∥Ω̄i

∥∥) can only
occur in one of the instants when the target switches from
not being observed (ηi = 0) to being observed (ηi = 1). The
covariance at these instants is given by P

k

i .
Using the results of the two lemmas just established,

we now show how the upper peak values P i vary with
ton,i and toff,i. Note that here we consider the steady state
covariance as a function exclusively of ton,i and toff,i, since
these parameters fully define the steady state behavior of the
covariance matrix. Additionally, the proofs of the next two
propositions are technical and are omitted here; they can be
found in [11]. Their interpretations, however, are intuitive:
when a given target is observed for a longer time, its peak
uncertainty will be lower. Conversely, if the time between
observations increases, then the peak uncertainties will be
higher.

Proposition 2: ∂P
k
i

∂tmon,i
≺ 0.

Proposition 3: ∂P
k
i

∂tmoff,i
� 0.

Now that we have established some properties of the
variation of the peaks of the steady state covariance ma-
trix, we can explore the main result of this section. The
next proposition can be interpreted analogously to resource
allocation problems, where different targets are competing
for the same resource tkon,i. Therefore, an equilibrium (in the
minimax sense) is reached when all the targets have the same
utility. However, unlike typical resource allocation problems,
here the total resource

∑M
i=1

∑Ni

k=1 t
k
on,i is not fixed. The

reason why the total resource does not go to infinity is that
increasing tkon,i to one target has an adverse effect to all other
targets.

Proposition 4: Assuming a fixed sequence of visiting tar-
gets Y , in an optimal allocation of visiting times T according
to the cost (4), the following must hold:

lim sup
t→∞

gi(‖Ωi(t)‖) = lim sup
t→∞

gj(‖Ωj(t)‖),

with i, j ∈ {1, ...,M}.
Proof: We prove by contradiction, showing that if the

property given in the proposition does not hold, then there is
a way to re-balance the observation times that is guaranteed
to improve the performance. Suppose that for some target i

gi

(∥∥∥Pmax

i (t1:Ni
on,i , t

1:Ni

off,i )
∥∥∥) < gj

(∥∥∥Pmax

j (t
1:Nj

on,j , t
1:Nj

off,j )
∥∥∥) ,

(6)
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where the upper index max indicates that among all the
peaks P k

i , we pick the value of k that yields the highest
gi(
∥∥P k

i

∥∥). We now propose to decrease the amount of time
target i is observed by ε and thus the waiting time between
observations for all the other targets will also decrease. This
updated policy generates a new set of observation times for
target i, (t̃1:Ni

on,i ), and updated waiting times between visits
for all the other targets, (t̃1:Nj

off,j ), while maintaining t1:Ni

off,i and
t
1:Nj

on,j constant. There exists ε > 0 such that t̃kon,i = tkon,i − ε
for some k ∈ {1, .., Ni} and t̃moff,j < tmoff,j for some m ∈
{1, ..., Nj}. Using Props. 2 and 3 we get that

P
max

i (t̃1:Ni
on,i , t

1:Ni

off,i ) � Pmax

i (t1:Ni
on,i , t

1:Ni

off,i ), (7)

P
max

j (t
1:Nj

on,j , t̃
1:Nj

off,j ) ≺ Pmax

j (t
1:Nj

on,j , t
1:Nj

off,j ). (8)

Using the fact that both the norm and the derivative are
continuous and strictly increasing, we can always pick an
ε small enough such that the new peak of target i is lower
or equal to the new peak of j, i.e.,

gj

(∥∥∥Pmax

j (t
1:Nj

on,j , t̃
1:Nj

off,j )
∥∥∥) < gj

(∥∥∥Pmax

j (t
1:Nj

on,j , t
1:Nj

off,j )
∥∥∥) ,

(9)

gi

(∥∥∥Pmax

i (t̃1:Ni
on,i , t

1:Ni

off,i )
∥∥∥) ≤ gj (∥∥∥Pmax

j (t
1:Nj

on,j , t̃
1:Nj

off,j )
∥∥∥) .
(10)

Since under the updated policy all the peaks P
m

j , 1 ≤ m ≤
Nj , 1 ≤ j ≤M , are lower for all the targets except target i,
we recall Lemma 2 and conclude that this updated policy has
a lower cost than the previous one. Therefore, the previous
policy cannot be optimal, which proves the proposition.

This proposition gives a necessary condition for optimally
allocating observation times. Moreover, its constructive proof
also gives insight on how to locally optimize the dwelling
times for a fixed sequence. However, in general this property
is not sufficient for optimally determining how much time
the agent should spend at each target. In the remainder of this
paper, we will restrict ourselves to a specific set of visiting
sequences Y where the optimality property in Prop. 4 can
indeed be exploited to optimize the dwelling times at each
target.

IV. OPTIMAL MONITORING WITH SINGLE VISIT PER
CYCLE

In this section, we restrict ourselves to investigating vis-
iting sequences Y for which each target is visited only
once in a cycle. By making this assumption, we are able
to prove that the optimal one with respect to the cost (4)
is the Traveling Salesman Problem (TSP) cycle, which was
intuitively expected. Additionally, we present a practical
algorithm for optimizing for how long each target should
be observed. As a side note, in this section we will omit the
upper index of ton,i and toff,i, since Ni = 1.

Proposition 5: Among all the visiting sequences where
each target is visited only once at each cycle, for any
allocation of dwelling times T , the TSP solution is the one
that minimizes the cost (4).

Proof: We recall that toff,i is completely defined by the
amount of time the agent dwells in other targets plus the time
it spends traveling between targets. If every target is visited
only once, the TSP cycle is the one with the least amount
of traveling time. Consequently, for fixed ton,i, the values of
toff,i, ∀i, are minimized. This fact along with Proposition 3
implies that for any set of observation times T , the TSP tour
will yield the lowest cost.

Remark 2: The problem of computing the TSP tour is NP-
hard. However, efficient sub-optimal solutions are available
(see e.g. [13]). The approach we will discuss for optimizing
the dwelling times does not rely on having the optimal TSP
tour, and indeed can handle any tour as long as every target is
visited exactly once. Hence we can use a suboptimal solution
when the computation burden prohibits the optimal one.

Having discussed the optimal visiting sequence in this par-
ticular subset of admissible Y , we now approach the question
of how to adjust the visitation time in a computationally
simple way. The main idea behind our approach is to exploit
the property that the upper peaks must coincide in an optimal
solution. We develop a procedure to balance the observation
times at each target, such that the peak uncertainties will
coincide after convergence. This iterative scheme, which
updates the all the target’s observation time ton,i at each
iteration, is given by:

ton,i[k + 1] = ton,i[k] + kp log

(
gi
(∥∥P i

∥∥)
gavg

)
, (11)

where gavg =
(∏M

j=1 gj
(∥∥P j

∥∥)) 1
M

and kp is a small
positive constant. It can be interpreted as a “consensus”
algorithm on the peak uncertainties P i, and thus its structure
is very similar to geometric mean consensus algorithms
[14]. The expression (11) does not require the computation
of gradients, which makes it computationally much less
demanding than gradient-based approaches.

Remark 3: At each iteration of (11), it is necessary to
compute P i and gavg. For computing P i, we use the al-
gorithm described in [15], which converges quadratically
and is numerically stable. Moreover, we note that gavg can
be computed distributively if P i is computed locally by
each target and we assume that targets communicate among
themselves using the same network connection structure that
the agent uses to move (graph G). Since this network is
connected, consensus protocols can be employed at each
iteration in order to have each target compute gavg separately.

In order to simplify the convergence analysis of this update
law, we abstract it with the following differential equation:

d

dr
ton,i = kp log

(
gi
(∥∥P i

∥∥)
gavg

)
. (12)

Note that this version of the update law considers continuous
parameter variation, i.e., the auxiliary variable r that should
be understood as the continuous time equivalent of “iteration
index” and does not carry any “time” interpretation. More-
over we assume that, at r = 0, all the targets were observed
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for a strictly positive amount of time. We now prove its
convergence:

Proposition 6: Under the update law (12),
limr→∞maxi,j |gi(‖Pi‖)− gj(‖Pj‖)| = 0.

Proof:

dP i

dr
=

∂P i

∂ton,i

dton,i

dr
+

∂P i

∂toff,i

dtoff,i

dr
. (13)

However, note that the sum of observation times among
different targets is constant because

M∑
i=1

dton,i

dr
= kp log

(∏M
j=1 gj

(∥∥P j

∥∥)
gavg

)

= kpM log

(
gavg

gavg

)
= 0, (14)

therefore under this control law the period T is constant.
Since T = ton,i + toff,i, we have dton,i

dr = −dtoff,i
dr and

dP i

dr
=

(
∂P i

∂ton,i
− ∂P i

∂toff,i

)
kp log

(
gi
(∥∥P i

∥∥)
gavg

)
. (15)

Consequently, if gi(
∥∥P i

∥∥) > gavg, dP i

dr ≺ 0. Conversely, if
gi(
∥∥P i

∥∥) < gavg, then dP i

dr � 0. Note that

max
i,j
|gi(
∥∥P i

∥∥)−gj(
∥∥P j

∥∥)| = max
i
gi(
∥∥P i

∥∥)−min
j
gj(
∥∥P j

∥∥).

(16)
Therefore since gavg is the geometric mean (i.e. its value is
lower than the maximum and higher than the minimimum
gj(
∥∥P j

∥∥)), we get that

d

dr
max

i
gi(
∥∥P i

∥∥) < 0,
d

dr
min
j
gj(
∥∥P j

∥∥) > 0. (17)

Hence
d

dr
max
i,j
|gi(
∥∥P i

∥∥)− gj(
∥∥P j

∥∥)| < 0, (18)

which proves the proposition.
Remark 4: In the proof of Prop. 6, we see that

d
dr maxi gi(

∥∥P i

∥∥) < 0. Therefore, this update law always
reduces the cost defined in (4). This also implies that if the
targets do not have the same peak value gi

(∥∥P i

∥∥), then the
cost can be reduced by applying (12).

Now we show that the value achieved by update law (12)
is unique, i.e. does not depend on the the initial observation
time distribution.

Lemma 3: For a given period T and a fixed visiting
sequence Y where each target is visited once, there is a
unique observation time distribution T such that gi(

∥∥P i

∥∥) =
gj(
∥∥P j

∥∥), ∀ i, j.
Proof: Suppose there are two different costs gcon and

g′con such that all targets have the same peak value. Without
loss of generality, we assume gcon < g′con. Since the period
T is the same, ton,i > t′on,i and toff,i < t′off,i ∀i, due to Props.
2 and 3. However, since the period is the same, we must
have

∑
i ton,i =

∑
i t
′
on,i, which yields a contradiction.

Finally, we give a specialization of Prop. 4 to the particular
case we discuss in this section.

Proposition 7: For a fixed visiting sequence Y and a given
cycle period T , the observation times under the update law
(12) converge to the optimal observation time allocation T
with respect to the cost function in (4).

Proof: For any set of observation times with period T ,
update law (12) always reduces the cost while maintaining
T constant if gi(

∥∥P i

∥∥) is not the same for all the targets.
Since there is a unique way such that every target has the
same peak (and the update law (12) ensures convergence
to it), then the observation times after convergence of (12)
have to be optimal, otherwise the update law would be able
to improve them.

We have shown a simple way to optimize the observation
times, given a fixed period T . However, we have not ad-
dressed the problem of choosing an adequate T . For choosing
an optimized period, we use golden ratio search [16], that
finds the global optimum in unimodal functions and local
optima in a generic single variable function.

V. SIMULATION RESULTS

We simulated the model described in (1) and (2), with
parameters indicated in Table I. Note that we assigned colors
to targets in order to identify them in the figures. For
simplicity, the internal states of the targets were assumed to
be scalars. The target locations were drawn from a uniform
distribution in [0, 0.5] × [0, 0.5] and are shown in Fig. 3b.
The graph was assumed to be fully connected with edge
costs being the Euclidean distance between two targets. For
the definition of the optimization goal as in (4), we used
gi(ξ) = ξ, ∀i, and ‖Γ‖ = |Γ|.

TABLE I: Simulation parameters.

Target 1 2 3 4 5
Color blue red yellow purple green
Ai 0.3487 0.1915 0.4612 0.2951 0.1110
Qi 1.1924 1.2597 0.8808 1.7925 0.4363
Ri 2.3140 7.1456 4.2031 5.2866 7.5314

For the visiting order, we used the optimal TSP tour. Note
that the number of targets in this example is small enough
that computing the TSP tour is computationally feasible.
Then, the golden ratio search was deployed, using kp in
(11) set to 10−2 and [Tmin, Tmax] = [0.1ttravel, 3ttravel], where
ttravel is the total travel time in one period of the TSP cycle.

The results are shown in Figs. 2 and 3. In particular,
Fig. 2 shows the evolution of the norm of the steady-state
covariance matrix over one complete period of the agent
trajectory, with the optimal distribution of observation times.
In Fig. 2, details of the optimization process are highlighted.
In Fig. 2a we can see how the uncertainty behaved as a
function of the period (after balancing the observation times
among targets by running (11) until convergence). Moreover,
this figure also highlights the fact that the golden ratio search
scheme was able to efficiently converge to a local minimum.
Figs. 2b and 2c show how the observation time and the
peak covariance varied while using the update law (12).
Initially, all targets were visited for the same amount of time.
However, as the iteration number increases, some targets are
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Fig. 2: Results of simulating the described algorithm. In (a), the balanced peak uncertainty, as a function of the total cycle
period. The red dots mark the values of T that were explored by the golden ratio search. In (b)-(c), we show the the evolution
of the peak uncertainty and the observation time for each target at the optimal period.
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Fig. 3: Results after optimizing the trajectory.

observed for more time than others. As expected, in the final
iteration, all the peak covariances have converged to the same
value. In Fig. 3, we can see the agent trajectory and that the
targets indeed achieve the same steady state peak uncertainty.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have derived a necessary condition for
the optimal allocation of observation times of targets in a
network being monitored by a mobile agent. In particular, for
the set of policies where each target is observed only once,
we were able to claim that the optimal visiting sequence is
the TSP tour and we derived a computationally cheap and
derivative free procedure to optimally allocate visiting times
among different targets. This allows for scalable optimization
of the monitoring performance considering heterogeneous
targets. In future work, we want to investigate whether we
can find a similar procedure to allocate observation times for
trajectories where targets are allowed to be visited multiple
times. Moreover, we intend to develop greedy schemes to ef-
ficiently search over different visiting sequences. Finally, we
also intend to extend this approach to multi-agent scenarios.
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