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Abstract. Ride-sourcing services play an increasingly important role in meeting mobility
needs in many metropolitan areas. Yet, aside from delivering passengers from their origins
to destinations, ride-sourcing vehicles generate a significant number of vacant trips from
the end of one customer delivery trip to the start of the next. These vacant trips create addi-
tional traffic demand and may worsen traffic conditions in urban networks. Capturing the
congestion effect of these vacant trips poses a great challenge to the modeling practice of
transportation planning agencies. With ride-sourcing services, vehicular trips are the out-
come of the interactions between service providers and passengers, a missing ingredient in
the current traffic assignment methodology. In this paper, we enhance the methodology by
explicitly modeling those vacant trips, which include cruising for customers and dead-
heading for picking up them. Because of the similarity between taxi and ride-sourcing
services, we first extend previous taxi network models to construct a base model, which as-
sumes intranode matching between customers and idle ride-sourcing vehicles and thus,
only considers cruising vacant trips. Considering spatial matching among multiple zones
commonly practiced by ride-sourcing platforms, we further enhance the base model by
encapsulating internode matching and considering both the cruising and deadheading va-
cant trips. A large set of empirical data from Didi Chuxing is applied to validate the
proposed enhancement for internode matching. The extended model describes the equilib-
rium state that results from the interactions between background regular traffic and occu-
pied, idle, and deadheading ride-sourcing vehicles. A solution algorithm is further
proposed to solve the enhanced model effectively. Numerical examples are presented to
demonstrate the model and solution algorithm. Although this study focuses on ride-
sourcing services, the proposed modeling framework can be adapted to model other types
of shared use mobility services.

Funding: The work described in this paper was partly supported by the National Science Foundation
[Grants CMMI-1740865, CMMI-1854684, and CMMI-1904575], the Center for Connected and Auto-
mated Transportation at the University ofMichigan, and Didi Chuxing.

Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2021.1078.
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1. Introduction
Recent advancements in information and vehicular
technologies are driving an unprecedented wave of
innovations in mobility services. Specifically, the
number of smart mobile devices in the United States
has been rising steadily, and studies suggest that over
80% of Americans now own at least one such device
(Anderson 2019). These devices retrieve users’ geolo-
cations, enable ubiquitous communications, and allow
instant peer-to-peer interaction, giving rise to various
on-demand mobility services that connect suppliers of
resources and services to their customers with very
low transaction costs (Greer et al. 2018). As a typical

example of emerging mobility services, ride sourcing
and ride-sourcing companies (also known as transpor-
tation network companies) have attracted much atten-
tion and achieved substantial growth in recent years.
In particular, Uber has cumulatively served over 10 bil-
lion customer trips and extended its business to 65
countries on six continents, whereas Didi Chuxing pro-
vides 30 million daily rides and has covered more than
400 cities globally as of May 2019 (Iqbal 2019). These
ride-sourcing services are expected to play an increas-
ingly important role in meeting mobility needs. It is
therefore critical to better understand their implications
on the system performance of urban traffic networks.
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Recent evidence shows that the expansion of ride-
sourcing markets has already contributed substantially
to the deteriorating traffic conditions in some major cit-
ies (Castiglione et al. 2018; Schaller 2018; Erhardt et al.
2019). Ride-sourcing customers are those who give up
their own vehicles or switch from traditional taxi, public
transportation, or other nonmotorized modes. In serv-
ing these customers, ride-sourcing vehicles (RVs) gener-
ate massive vacant trips. These vacant trips create addi-
tional traffic demand and worsen traffic conditions.
Although transportation planning agencies have shown
great interest in the congestion impact estimates of ride-
sourcing services, developing the right methodology to
do so presents a great challenge. This paper aims to
tackle this challenge.

Conventional trip-based travel demand forecasting
models forecast the future-year traffic flow of a traffic
network using a four-step process: (i) trip generation,
where the total production and attraction of trips from/
to each zone are quantified; (ii) trip distribution, where a
destination choice model is used to generate the demand
for travel between any two given zones in the network;
(iii) mode choice, where the number of person-trips using
personal vehicles for travel is identified and converted to
vehicular trips based on fixed vehicle-occupancy factors;
and (iv) traffic assignment, where user equilibrium as-
signment models are used to assign vehicular trips to the
network, ensuring that no vehicle would be better off by
unilaterally changing its route. With ride-sourcing serv-
ices, vehicular trips are the outcome of the interactions
between service operators and passengers and can no
longer be easily determined by applying fixed vehicle-
occupancy factors. More specifically, to serve a given
passenger demand pattern, the corresponding occupied
vehicular trip pattern can be determined similarly as be-
fore. Nonetheless, the associated vacant vehicular trips,
which result from vacant RVs’ behaviors of searching for
passengers (hereinafter referred to as cruising trips) and
picking up passengers (called deadheading trips by Ban
et al. 2019), are beyond the reach of traditional analyses.
We note that a substantial portion of vacant or empty ve-
hicle miles traveled (VMTs) in the system is a common
feature shared by other shared mobility service systems.
It thus becomes increasingly important for transportation
planners to model these vacant trips in their modeling
practices. We further note that the state-of-the-art
activity-based models also suffer the same limitation as
their trip-based predecessors. Therefore, there is a press-
ing need to enhance existing traffic assignment models to
adequately account for vacant trips in shared mobility
systems. Representing one of the early efforts in this ob-
jective, this paper develops a static user equilibrium as-
signment model to capture the network congestion ef-
fects of ride-sourcing services.

Ride sourcing shares similarities with traditional taxi
services (Zha, Yin, and Yang 2016). A large body of

literature has been devoted to network equilibrium
analyses of taxi markets. Yang and Wong (1998) made
the first attempt to mathematically model the move-
ments of both vacant and occupied taxis in a network
context and investigated the equilibrium state of taxi
services. It is assumed that after an occupied taxi be-
comes vacant, it will select a target zone to seek out cus-
tomers based on a logit model aiming to minimize its
expected vacant time. After picking up a customer, the
taxi will choose a predetermined shortest route to finish
the trip. Their model was then extended by considering
the market competition and regulation (Yang, Wong,
and Wong 2002), bilateral taxi-customer searching and
meeting (Yang et al. 2010), and multiple types of taxis
(i.e., street hailing and e-hailing) (He and Shen 2015).
Despite the abundant literature in modeling taxi serv-
ices, only a few studies have considered congestion be-
cause of the routing behaviors of both vacant and occu-
pied taxis. Specifically, Wong, Wong, and Yang (2001)
extended the model by Yang andWong (1998) to further
incorporate congestion effects as well as the customer
demand elasticity. A bilevel framework was proposed
to describe the stationary state of taxi movements. At
the lower level, given the customer generation and at-
traction of each zone, a convex mathematical problem
delineates the movements of both vacant and occupied
taxis in congested road networks. At the upper level, a
set of equations describes the relationships among wait-
ing times of taxi and customer, the taxi supply, and the
customer demand. Recently, Wong et al. (2008) further
extended the model to consider multiple user classes
and vehicle modes (e.g., luxury taxis and normal taxis).
All these prior studies have laid a solid foundation for
our work. As intended, they are applicable to modeling
street-hailing taxi systems where matching and meeting
occur simultaneously, and thus, deadheading trips do
not exist. In other words, these models consider cruising
trips, which only constitute a portion of vacant trips
generated by RVs. To facilitate the presentation of the
core idea of this paper, we view street hailing as a form
of intranode matching between customers and vacant
vehicles, in which customers can only be matched to va-
cant vehicles at the same node and thus, deadheading is
negligible.

More recently, Ban et al. (2019) proposed a traffic
assignment model for transportation systems with
ride-sourcing services and flow congestion. It is differ-
ent from the previous models (e.g., Wong, Wong, and
Yang 2001; Wong et al. 2008) in that vacant RVs are
assumed to follow the dispatch from a centralized
control platform that attempts to maximize the total
profit. This assumption can simplify the matching and
meeting process between customers and vacant RVs.
Consequently, the proposed model only considers
deadheading trips while ignoring the cruising portion
of vacant VMTs. In practice, after dropping off a
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customer and before being matched with the next one,
idle RVs decide where to go to search for customers.
Instead of being dispatched by a control center, idle
RVs determine their cruising for customer strategies
based on their individual interests.

In existing ride-sourcing systems, cruising and dead-
heading portions occupy approximately one-third and
one-sixth of an RV’s effective working hours in major
metropolises, respectively. To better account for vacant
vehicular miles, this paper develops, to our best knowl-
edge, the first network equilibrium model that consid-
ers both the cruising and deadheading trips generated
by RVs. In developing the model, we attempt to strike
the right balance between the model realism and math-
ematical tractability. To this aim, we first extend the
modeling framework of Yang and Wong (1998) to de-
scribe the network equilibrium state that results from
the interactions among occupied and idle RVs as well
as the background regular traffic. The network equilib-
rium model considers intranode matching between
customers and idle RVs and thus, only captures the
congestion impacts of cruising trips. We then consider
the internode matching between customers and idle
RVs, which appears to be a common practice in ride-
sourcing markets (see Section 3.3 for empirical evi-
dence). Because of the spatial heterogeneity in the
ride-sourcing market, e-hailing platforms often match
idle RVs from zones with excessive vehicle supply to
those experiencing a shortage, which yields a substan-
tial number of deadheading VMTs (referred to as
“wild goose chase” in Castillo, Knoepfle, and Weyl
(2016) and further investigated by Zha, Yin, and Xu
(2018) and Xu, Yin, and Ye (2020)). Our extended mod-
el describes the outcome of internode matching and
captures the congestion effects of both the cruising and
deadheading trips generated by RVs.

The remainder of this paper is organized as follows.
Section 2 introduces the network equilibrium model
with the intranode matching assumption, which serves
as our base model. Section 3 proposes an enhanced
model to recapitulate the internode matching between
drivers and riders and then, validates it using the em-
pirical data from Didi Chuxing. Section 4 extends the
base model by replacing the intranode matching with
the internode matching counterparts. A solution algo-
rithm is developed for the extended model, which is
implemented to solve numerical examples in Section
5. Comparative analyses are subsequently conducted
and interpreted. Lastly, Section 6 concludes the paper
and points out future research directions.

2. Base Model
Consider a road network G(V, A), where V is the set of
nodes and A is the set of links in the network. Each
node denotes a traffic analysis zone where travel

demand is generated from or attracted to or a change in
road geometry/characteristics, whereas each link repre-
sents a road segment connecting two neighboring no-
des. For the base model, we assume that the matching
radius adopted by the e-hailing platform is relatively
small such that customers who request rides from the
platform will only be matched to idle RVs nearby
(mathematically, at the same node). Consequently,
deadheading to pick up customers is negligible. The
major components of the base model are described in
the rest of the section. A complete notational glossary is
provided in Table 1 for reference.

2.1. Customer Demand
Denote the node sets R, S as the origins and destina-
tions, respectively, of customer demands, and let W
be the set of origin-destination (OD) pairs. Define βo

and βi as the out-of-vehicle and in-vehicle value of
time ($/h), respectively. Then, the travel cost Crs be-
tween OD pair (r, s) ∈W is given by

Crs " Frs + βowc
r + βihrs, ∀ (r, s) ∈W,

where hrs is the equilibrium or shortest vehicular trav-
el time between node r and s. The trip fare Frs between
the nodes is assumed to follow the structure of
Frs " F0rs + βf hrs, where βf hrs represents the time-based
component with βf (≥ 0) characterizing the hourly sur-
charge and F0rs denotes a constant for the other time-
irrelevant components. wc

r is the customer’s average
waiting time at node r.

Assuming the customer demand Qrs to be a strictly
decreasing and convex function of the trip cost Crs, we
then have

Qrs " frs βowc
r + (βi + βf )hrs

( )
, ∀ (r, s) ∈ W, (1)

where frs′ < 0 and frs′′P0. Moreover, assume
limwc

r→+∞wc
r· frs(wc

r|h) ∈ (0, +∞), implying that there
are always finite (small) numbers of customers wait-
ing on each origin node no matter how long they
wait.

2.2. Idle RV Supply
The idle RVs refer to the group of ride-sourcing ve-
hicles that are vacant waiting to be matched. Typical-
ly, idle RVs emerge at destination node set S where
they drop off customers and disappear at origin node
set Rwhere they get matched to new riders. In this pa-
per, we assume that, after dropping off a passenger,
idle RVs will select and then cruise to a target zone to
“search” for customers. Suppose the utility function of
an idle RV cruising from node s ∈ S to node r ∈ R is
prescribed as

Usr " F̄r − γ · (h̄r + hsr +wv
r ), ∀ s ∈ S, r ∈ R, (2)
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where F̄r and h̄r are the average fare and service time
of the customer trips originating from node r. wv

r is
the idle RV’s average waiting time for matching or
meeting at node r, and γ denotes ride-sourcing driv-
ers’ value of time ($/h). Specifically, F̄r and h̄r are giv-
en as follows:

F̄r "

∑

s:(r, s)∈W
(To

rs + εo)Frs
∑

s:(r, s)∈W
(To

rs + ε0) , h̄r "

∑

s:(r, s)∈W
(To

rs + εo)hrs
∑

s:(r, s)∈W
(To

rs + εo) ,∀ r ∈ R,

(3)

where To
rs is the occupied RV flow that serves custom-

er demand from node r to s; the small constant ε0 is
applied to ensure the feasibility of mapping in case

∑
s:(r, s)∈WTo

rs in the denominator is zero. Nevertheless,
this treatment is primarily for mathematical complete-
ness. Online Appendix B shows that the zero-flow
condition will arise along with an infinite long wait
for RVs (i.e., wv

r → +∞). In this case, the items F̄r and
h̄r weighted from Frs and hrs, respectively, become
negligible among the utility specification (2).

Assume that each idle RV cruises toward a node r ∈
R that maximizes its perceived utility and that the per-
ception error on the utility follows the Gumbel distribu-
tion. Then, the portion of idle RVs cruising to r among
all those generated at node s, denoted as Psr, is given

Psr "
exp (θUsr)

∑

k∈R
exp (θUsk)

, ∀ s ∈ S, r ∈ R,

Table 1. Notation List of Sets, Variables, Parameters, and Functions

Notation Description

Sets
V Set of nodes
A Set of links
R Set of the origin nodes of customer trips; R ⊆V
S Set of the destination nodes of customer trips; S ⊆ V
W Set of OD pairs of ride-sourcing customer demands
Wb Set of OD pairs of background regular traffic
Wc Complete set of OD pairs, including those of RVs and regular vehicles
Mc(r) Set of nodes hailing customers at node r ∈ R can potentially be matched to
L Set of nodes with positive accumulations of idle RVs
Mv(l) Set of nodes idle RVs at node l ∈ L can potentially be matched to

Variables
Crs Monetary travel cost between OD pair (r, s) ∈W
Frs Fare of a trip from node r to s
wc

r Customer’s average waiting time at node r, r ∈ R
hrs Equilibrium or shortest vehicular travel time between node r and s
Qrs Customer demand between OD pair (r, s) ∈W
Usr(Usl) Idle RVs’ utility of cruising from node s ∈ S to r ∈ R(l ∈ L)
wv

r (wv
l ) Idle RVs’ average matching time at node r ∈ R(l ∈ L)

F̄r Average fare of customer trips originating from node r ∈ R
F̂l Average earnings of RVs that get matched at node l ∈ L
h̄r Average service time of customer trips originating from node r ∈ R
ĥl Average service time of RVs that get matched at node l ∈ L
To
rs Occupied RV flow that serves customer demand from node r to s, (r, s) ∈W

Tv
sr(Tv

sl) Idle RV flow from node s ∈ S to r ∈ R(l ∈ L)
Tn
sr Regular traffic flow from node r to s, (r, s) ∈Wb

Nv
r (Nv

l ) Number of idle RVs at node r ∈ R(l ∈ L)
Nc

r Number of hailing customers at node r ∈ R
Tm
lr Rate of RVs matched from node l ∈ L to r ∈Mv(l)

Parameters
βo Customer’s out-of-vehicle value of time ($/h)
βi Customer’s in-vehicle value of time ($/h)
γ RVs’ value of time $=h
θ Degree of RV drivers’ perception error dispersion
N Total number of RVs in the network

Functions
frs Function of customer demand vs. travel costs for OD pair (r, s) ∈W
grs Function of trip fare vs. travel time for OD pair (r, s) ∈W
mr Aggregate matching function for node r ∈ R
Φv(Φc) Node potential function on accumulations of idle RVs (hailing customers)
∆ Potential difference function for paired nodes with positive matching flows
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where θ is a constant representing the degree of per-
ceptual dispersion. This leads to the corresponding
idle RV flow Tv

sr, written as

Tv
sr "

exp (θUsr)
∑

k∈R
exp (θUsk)

·
∑

k:(k, s)∈W
To
ks, ∀ s ∈ S, r ∈ R: (4)

We note that the search model considers only the
service opportunities at the target zones because idle
drivers are assumed to reach the zones and then be-
come available for matching there. This, however,
could be a strong assumption, because in reality, idle
drivers may be matched during the transition when
they sweep across zones. Relaxing the assumption re-
quires, for example, the adoption of a sequential
search model where idle drivers sequentially update
their target zones from the neighboring nodes based
on their current locations. A new equilibrium frame-
work that incorporates such a search model is worthy
of investigation in the future.

2.3. Intranode Matching Between Hailing
Customers and Idle RVs

As mentioned, the base model considers only intra-
node matching (i.e., customers can only be matched to
idle RVs at the same node). Throughout the paper, we
assume one customer is matched with one idle RV
and thus, do not consider ride pooling. Because each
node features an isotropic zone, an aggregate match-
ing function mr can be used to characterize the match-
ing frictions between unmatched RVs and customers
(e.g., Douglas 1972). In particular, we adopt the
matching function suggested by Yang and Yang
(2011) to capture the competition among drivers and
customers over intranode matching:

Om
r " mr(Nv

r ,N
c
r), ∀ r ∈ R, (5)

where Om
r represents the realized rate of matching at

node r; Nv
r and Nc

r denote the number of idle RVs and
hailing customers at node r, respectively.

Under steady states, the variables in the matching
function are also subject to the following relation-
ships:

Nv
r "

∑

s∈S
Tv
sr

( )
wv

r (6a)

Nc
r "

∑

s:(r, s)∈W
Qrs

( )
wc

r (6b)

Om
r "

∑

s:(r, s)∈W
To
rs "

∑

s:(r, s)∈W
Qrs "

∑

s∈S
Tv
sr: (6c)

2.4. Network Equilibrium Under
Intranode Matching

Given all the relations regarding idle and occupied
RV movements, we define the network equilibrium

state that results from interactions between idle and
occupied RVs and the background regular traffic gen-
erated by nonsharing vehicles. Define Wb as the set of
OD pairs for the regular traffic andWc as the complete
set of OD pairs, including those for idle RVs and occu-
pied RVs as well as regular traffic (i.e.,
Wc " {(s, r)|s ∈ S, r ∈ R}⋃W⋃Wb). LetN denote the to-
tal number of RVs serving the network, and let Tn

rs de-
note the OD demand of regular vehicular traffic from
node r to s, which in this study, is assumed to be fixed
for all (r, s) ∈Wb. Then, the equilibrium link flow dis-
tribution {xrsij } solves the following system of equali-
ties and inequalities:

Path equilibration between OD pairs

tij(vij)− ρrs
i + ρrs

j

[ ]
xrsij " 0 ∀ (i, j) ∈ A, (r, s) ∈Wc (7a)

tij(vij)− ρrs
i + ρrs

j ≥ 0 ∀ (i, j) ∈ A, (r, s) ∈Wc (7b)

vij "
∑

(r, s)∈Wc

xrsij ∀ (i, j) ∈ A (7c)

xrsij ≥ 0 ∀ (i, j) ∈ A, (r, s) ∈Wc (7d)

Trs " Tv
rs +To

rs +Tn
rs ∀ (r, s) ∈Wc (7e)

∑

i:(i,k)∈A
xrsik −

∑

j:(k, j)∈A
xrskj "

−Trs, if k " r
Trs, if k " s
0, otherwise

∀(r, s)∈Wc



(7f)
hrs " ρrs

r − ρrs
s ∀(r, s) ∈Wc (7g)

Customerdemands

Qrs " frs βowc
r + (βi + βf )hrs

( )
∀(r, s) ∈W (7h)

Frs " F0rs + βf hrs ∀(r, s) ∈W (7i)
IdleRVmovements

Usr " F̄r − γ · (h̄r + hsr +wv
r ) ∀ s ∈ S, r ∈ R (7j)

F̄r "

∑

s:(r, s)∈W
(To

rs + εo)Frs
∑

s:(r, s)∈W
(To

rs + εo) ∀ r ∈ R (7k)

h̄r "

∑

s:(r, s)∈W
(To

rs + εo)hrs
∑

s:(r, s)∈W
(To

rs + εo) ∀r ∈ R (7l)

Tv
sr "

exp (θUsr)
∑

k∈R
exp (θUsk)

·
∑

k:(k, s)∈W
To
ks, ∀ s ∈ S, r ∈ R

0, ∀ (s, r) ∈Wc\{(s, r)|s ∈ S, r ∈ R}




(7m)

Internode matching
∑

s:(r, s)∈W
To
rs "Mr

∑

s∈S
Tv
sr

( )
wv

r ,
∑

s:(r, s)∈W
Qrs

( )
wc

r

( )
∀ r ∈ R

(7n)
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∑

s∈S
Tv
sr "

∑

s:(r, s)∈W
Qrs ∀r ∈ R (7o)

To
rs "

Qrs, ∀ (r, s) ∈W
0, ∀ (r, s) ∈Wc\W

{
(7p)

RV fleet conservation∑

(r, s)∈W
To
rshrs +

∑

(s, r):s∈S, r∈R
Tv
sr · (hsr +wv

r ) "N, (7q)

where {ρrs
k } are auxiliary variables and {tij}(i,j)∈A de-

note link performance functions that increase mono-
tonically on the corresponding link flows. Note that
the number of RVs N is assumed to be fixed, known
to the transportation planning agencies. However, if
drivers’ opportunity wage is available, it is straight-
forward to relax this assumption by introducing a
function that relates the fleet size to the effective in-
come of drivers. A similar treatment can also be done
for the background traffic demand to capture its
elasticity on the travel time. The solution algorithm in-
troduced in Section 4.4 can be readily adapted to
incorporate these extensions. In addition, the model
assumes that drivers always take the routes with min-
imum travel time. In practice, drivers may be con-
cerned about other costs such as fuel consumption
and wearing that are primarily distance-based. In this
case, a generalized cost function can be introduced to
encapsulate the distance-based cost component for
route choice. Consequently, when deciding where to
search for customers, RV drivers will consider the
generalized travel cost.

The existence of equilibria for the nonlinear comple-
mentarity system (7) is proved in Online Appendix B,
as the special case of the system under internode
matching, which is introduced in Section 3.

3. Modeling Internode Matching Between
Customers and Idle RVs

The base model captures the matching of customers
and drivers within a small neighborhood. However, be-
cause of the spatial heterogeneity in the ride-sourcing
markets, platforms frequently match idle RVs from one
area with excessive supply to customers at another area
experiencing supply shortage. As a consequence, RVs
are often matched to customers who are several miles
away. Modifications should be made to handle this
type of long-distance spatial matching, which appears
to be a common practice by ride-sourcing platforms.

One straightforward remedy is to enlarge each
node to cover a relatively large area with internally
balanced demand and supply. However, such an
evading strategy may compromise the representative-
ness and accuracy of the established model, as the ag-
gregate matching function is likely to be biased if in-
tranode heterogeneity is left out. More importantly, as
the node “grows” larger, the intranode traffic becomes

substantial and comparable with the internode traffic,
defeating the original intent of conducting a network
equilibrium analysis.

We thus resort to explicit modeling of the long-
distance matching among different nodes while keeping
the node itself to be isotropic and at the neighborhood
scale. For passengers at node r ∈ R, we useMc(r) to rep-
resent the set of nodes whose idle RVs can be potential-
ly matched to them. Let L "⋃

r∈RMc(r). Note that these
matching sets are not mutually exclusive. Reversely,
there is also another matching set Mv(l) ⊆ R for idle
RVs at each l ∈ L, representing the set of nodes whose
passengers can be matched with idle RVs at l. In this
study, we assume that all matching sets {Mc(r)} and
{Mv(l)} are exogenously predetermined and then, use
Tm
lr to denote the rate of RVs matched from node l ∈ L

to r ∈Mv(l).1

3.1. Challenges in Modeling Internode Matching
Previously, the intranode matching flow is estimat-
ed from the number of hailing customers and idle
vehicles at the same node using a single-output
matching function. With internode matching, the idle
vehicles/hailing customers at each node can possibly
be matched to customers/RVs at a set of nodes. Con-
sequently, a multioutput matching function must be
developed to delineate aggregately the matching pro-
cess. Figure 1(a) outlines a conceptual instance for
internode matching, where the blue circles on the left
and the green circles on the right represent the pools
of idle RVs and hailing customers at different nodes,
respectively. Let Nv

l and Nc
r denote the average num-

ber of entities at nodes l ∈ L and r ∈ R, respectively,
under the steady state. Then, as shown in Figure 1(a),
the RV accumulations Nv

1 at node 1 are “digested” by
flows Tm

11 and Tm
12, whereas the customer accumula-

tions Nc
1 are matched to generate flows of Tm

11 and Tm
21,

etc. Therefore, when determining Tm
11, the knowledge

on Nv
1 and Nc

1 is not sufficient. We also must know
flows such as Tm

12 and Tm
21, which may further depend

on {Tm
2r} and {Tm

l2}, etc. Propagating by nodes and
links, the interdependencies are likely to integrate
over the whole set of matching flows {Tm

lr }l∈L,r∈R
throughout a well-connected network.

Another challenge arises from the matching priority
issue. Taking Figure 1(a) as an example, there are two
possible matching outcomes for RVs in Nv

1, either
node 1 or 2. Suppose customer requests from node 1
can be served by RVs from the same node with short-
er pickup time, compared with the counterparts at
node 2. Then, idle RVs at node 1 will be prioritized to
match with closer customers (i.e., the customers at
node 1 in this case). The modeling of such a priority is
nontrivial because the comparative nature of priorities
essentially gives rise to asymmetries for the paired no-
des as well as the interdependencies between pairs.
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3.2. Internode Matching Functions
Our internode matching function is built on an analogy
to electric circuits. For each internode matching graph
(e.g., Figure 1(a)), a corresponding electric circuit can be
constructed by duplicating the connections with resis-
tances (also known as connecting-node resistance) (see
Figure 1(b)). Additionally, each node outstretches a sep-
arate resistance (also known as separate-node resistance)
as well as an external power supply and connects in par-
allel to constitute a circuit. Denote εti , R

t
i , and Iti as the

power voltage, the resistance, and the current on each
node’s individual branch, respectively, where

{(t, i)|t ∈ {v, c}; i ∈ L, if t " v; i ∈ R, if t " c}:
Denote Rlr and Ilr as the resistance and the current, re-
spectively, on connections between the paired nodes
l and r, where l ∈ L and r ∈ R. Then, the currents on
the graph are subject to the following relationships as
per Kirchhoff’s circuit laws:

(εvl −Rv
l · Ivl )− (Rc

r · Icr − εcr) " Rlr · Ilr,
∀ (l, r) ∈ {(l, r)|r ∈Mv(l), l ∈ L} (8a)

Ivl "
∑

r∈Mv(l)
Ilr, ∀ l ∈ L (8b)

Icr "
∑

l∈Mc(r)
Ilr, ∀ r ∈ R: (8c)

The two terms on the left-hand side of Equation
(8a) represent the potentials at the left and right
circles, whereas the right-hand side calculates the po-
tential difference in terms of Ohm’s law. The latter
two equations (Equations (8b) and (8c)) essentially
represent current conservation at nodes. We hypothe-
size that such an electric circuit framework mimics or

approximates the internode matching process and its
outcomes. The current on each branch of the circuit is
analogous to the matching flow between the corre-
sponding paired nodes, and the voltage of each power
supply measures the accumulation of entities at the
corresponding node. For each individual branch,
higher voltage/accumulation will yield larger cur-
rent/flow. Further, the resistances in the electric cir-
cuit characterize the time that RVs/customers spend
during each process. Specifically, the separate-node
resistance represents the waiting time of RVs/custom-
ers at each node, whereas the connecting-node resis-
tance quantifies the RVs’ deadheading or pickup time
for customers in between. The interdependencies of
currents/flows thus transmit rotationally through the
two types of resistances/residence time and propa-
gate systematically to the whole graph.

In light of the analogy, we construct the internode
matching function following a similar principle. De-
note φv

l and φc
r as the matching potentials of RVs and

customers that wait at different nodes, respectively,
and define them as the functions2

φv
l " log Φv Tv

l ,N
v
l

( )( )
, ∀ l ∈ L

φc
r " −log Φc Tc

r ,N
c
r

( )( )
, ∀ r ∈ R,

where the potential function Φ (including Φv and Φc)
ranges in (0, +∞), decreasing on the cumulative flow
T and increasing on the accumulation N (i.e., ∂Φ

∂T < 0
and ∂Φ

∂N > 0). Note that the waiting time w does not ap-
pear in Φ’s variable argument list because in this case,
w can be directly written as a function of N over T. In
addition, we define the potential difference on each

Figure 1. (Color online) Analogy of (a) InternodeMatching Flows to (b) Currents in an Electric Circuit
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pair of connected nodes as the flow and travel time in
between: that is,

δφlr " log ∆(Tm
lr ,hlr)

( )
,

∀ (l, r) ∈ {(l, r)|r ∈Mv(l), l ∈ L},

where the function ∆ also ranges from (0, +∞), and
∂∆
∂Tm > 0, ∂∆

∂h > 0.
Then, by setting the accumulations {Nv

l }, {Nc
r} and

node-transfer time {hlr} as given parameters, the resul-
tant matching flow pattern {Tlr} in line with Equation
(8) solves the equation system3

Φv Tv
l ,N

v
l

( ) ·Φc Tc
r ,N

c
r

( ) " ∆(Tm
lr ,hlr),

∀ (l, r) ∈ {(l, r)|r ∈Mv(l), l ∈ L} (9a)

Tv
l "

∑

r∈Mv(l)
Tm
lr , ∀ l ∈ L (9b)

Tc
r "

∑

l∈Mc(r)
Tm
lr , ∀ r ∈ R: (9c)

We assume the functions Φ(T,N), including Φv and
Φc, as well as ∆(T,h) additionally satisfy the following
properties (with implications clarified), given any N
and hwith positive and finite values.

• Domain of definition. Both Φ(T,N) and ∆(T,h) are
continuous functions defined on T ∈ (0, +∞). For each
pair of nodes with one located in the matching range of

the other, there will be positive flows matched in
between.

• Boundary conditions. First, lim T→0+ Φ(T,N) " +∞
and lim T→+∞Φ(T,N) " 0. These two conditions can be
obtained conceptually, as the accumulation N is stuck
in the matching process when T→ 0+ and dissipates
instantaneously for T→ +∞. Second; lim T→0+ ∆(T,h) "
0 and lim T→+∞∆(T,h) " +∞. As per the Ohm’s law,
fewer potential differences are associated with fewer
matching flows through the time impedance.

• Limiting behavior. There exist p > 0 and q > 0 such
that4

Φ(T,N) " Θ(T−p); as T → 0+

Θ(T−q); as T → +∞ :

{

This implies a diminishing marginal rate of substitu-
tion in the matching process. We let Φ possibly
converge/grow on T with different speed when ap-
proaching 0+=+∞, respectively.

Based on these general properties on Φ and ∆, the
existence and uniqueness of solutions {Tm

lr } to system
(9) are proven in Online Appendix A. Also, it is worth
pointing out that when the exogenous matching range
of each node confines to itself, the derived internode
matching functions degenerate to an intranode coun-
terpart: that is,

Φv Tm
rr,N

v
r

( ) ·Φc Tm
rr ,N

c
r

( ) " ∆(Tm
rr,hrr),

Figure 2. (Color online) Maps for the Target District in Changsha, China
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which incorporates the specification of Yang and
Yang (2011) as a special case.

3.3. Empirical Validation of the Internode
Matching Functions

We now apply an empirical data set from Didi Chux-
ing to demonstrate the effectiveness of the proposed
internode matching function. The data set contains
service states of all customers and drivers in the cen-
tral district of Changsha, China (see Figure 2 for a
map of the district) during the whole year of 2019.
The region covers an area of about 60 km2 and con-
sists of 50 standard hexagonal zonal partitions.5 We
aggregate the data by one-hour intervals between 7:00
and 22:00 each day to produce samples required by
the proposed matching functions. Each sample then
records the number of rider-driver matches and the
average pickup time between two zones, as well as
the total drivers and riders’ flows and accumulations
at each zone. Figure 3 visualizes the interzonal match-
ing flows in this area. The horizontal and vertical axes
list the 50 hexagonal zones where waiting customers
and idle drivers stay, respectively. Each box inter-
sected by a column and a row visualizes the yearly
number of matches between the corresponding pair of

zones. As shown in the figure, a significant portion of
matches takes place interzonally under the 660-meter
hexagon partitions, which an intrazonal matching
function may fall short of modeling. The empirical
analysis further demonstrates the necessity of an in-
terzonal matching model and validates the effective-
ness of the one we propose.

Let the potential functions Φv, Φc and the potential
difference function ∆ in Equation (9a) all take the
product forms as follows:

Φv(Tv
l ,N

v
l ) " Tv

l
qvT ·Nv

l
qvN

Φc(Tc
r ,N

c
r) " Tc

r
qcT ·Nc

r
qcN

∆(Tm
lr ,hlr) " η−1lr ·Tm

lr · F(hlr)−1,

where η and q are parameters; F(·) specifies a univari-
ate function of the interzonal travel time. Substituting
Φv, Φc, and ∆ in Equation (9a) with their correspond-
ences and then taking logarithms yield

logTm
lr " logηlr + logF(hlr) + qvT · logTv

l + qvN · logNv
l

+ qcT · logTc
r + qcN · logNc

r ,

which is invited as the basis for our empirical
validation.

Figure 3. (Color online) Interzonal Matching Between Riders and Drivers

Notes. The horizontal and vertical axes array the 50 zones where riders and drivers stay before beingmatched, respectively. Each box intersected
by a column and a row visualizes the number of matches realized between the pair of zones. Specifically, the boxes laid on the diagonal from the
lower left to the upper right count the intrazonal matches. Darker colors indicate larger numbers of riders and drivers being matched.
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The following model is constructed for regression
analysis:

logTm
lr,t " αlr + βt + γlr,t + qvN · logNv

l,t + qcN · logNc
r,t

+ qvT · logTv
l,t + qcT · logTc

r,t + qh′ · log hlr,t + qh′′ · hlr,t
+ qh′′ · h2lr,t + 1intra × (d + dvN · logNv

l,t + dcN · logNc
r,t

+ dvT · logTv
l,t + dcT · logTc

r,t) + εlr,t, (10)

where the subscript t denotes the time stamp of each
sample; the interzonal (αlr) and time (βt) fixed effects
are incorporated to control for influences that are
constant either over time or across zonal pairs, respec-
tively. We spell the time fixed effects as a series of in-
dicators for hour of week and week of year, as well as
national holidays; γlr,t is a set of controls that vary
over both space and time. Meanwhile, the real-time
weather information, including the temperature, hu-
midity, precipitation intensity, fine particulate matter
(PM 2.5) level, wind speed, and sky condition in the
region, is also incorporated to control the latent im-
pacts on the system. The effects of spatial distance hlr
in matching are captured using three terms: loghlr, hlr,
and h2lr. Special considerations are given to the within-
zonal matching to allow certain differentiation from
the matching between two different zones. We denote
{q,d} as two sets of coefficients to the various factors.

Based on the construction (10), we calibrate five de-
generated models (see Table 2) for comparison. Model
M1 captures only the fixed effects from space, time,
and weather, etc. without using state variables from
the ride-sourcing system. Model M2 additionally in-
volves the number of idle drivers and customers accu-
mulated at each zone, adapting the existing aggregate
matching function of street-hailing taxi systems. Model
M3 characterizes a basic one that comes into our

internode matching category, whereas Model M4 pro-
vides extra freedom for within-zonal matching. Model
M5 is a parsimonious internode matching model that
abandons all the controls and retains only the essential
system-state variables. Comparisons across the five
models help disclose the completeness of different sets
of factors in determining the interzonal matching.

Additionally, it is worth noting that among the
samples of all the effective zonal pairs,6 only 2% con-
tain more than 20 matches within the hourly slot.
Such an extreme concentration of samples causes
noises to dominate the variation of the predicting
matching volumes and thus, substantially troubles the
regression, yielding ineffective model fitting (see Qu,
Wang, and Zhang 2015 for a relevant discussion). To
resolve such an issue, we truncate the samples by
trimming those with an hourly number of matches
Tm
lr,t less than 20 and then apply the rest (77,016 re-

cords in total) to calibrate the internode matching
models using truncated regression. The samples are
further divided into two for training and testing pur-
poses. Because Models M1–M4 involve various spatio-
temporal fixed effects, we allocate the set of samples
produced in the northern district (to the north of lati-
tude 28◦11′ N) in the second half of the year 2019 for
testing and retain the other samples as the training set
(see Figure 4 for the details).

The validation results are summarized in Table 2,
where the bottom five rows present a set of perfor-
mance metrics that evaluate the five models over the
truncated samples. As clearly shown, the models are
significantly improved as we enrich the variable specifi-
cations from Model M1 to Model M4. Specifically, the
internode matching models with a complete set of vari-
ables specified consistently outperform the existing

Table 2. Comparison of Five Regression Models for Interzonal Matching

M1 M2 M3 M4 M5

Fixed effects and controls ! ! ! !

{Nv,Nc} ! ! ! !

{Tv,Tc,F(h)} ! ! !

1intra × {1,Nv,Nc,Tv,Tc} ! !

Degrees of freedom 130 128 128 127 12

Data set (train: 37,145; test: 39,871) Train Test Train Test Train Test Train Test Train Test
Explained variance 1−Var y−ŷ( )

=Var y( ) 0.643 0.607 0.732 0.727 0.925 0.935 0.942 0.943 0.916 0.923

R2 score 1−
∑n

i"1
(yi − ŷi)2=

∑n

i"1
(yi − ȳ)2 0.542 0.516 0.676 0.681 0.919 0.931 0.939 0.940 0.907 0.921

Mean absolute error
∑n

i"1
|yi − ŷi|=n 12.28 15.13 10.28 12.19 5.29 6.21 4.62 5.78 5.86 6.81

Mean squared error
∑n

i"1
(yi − ŷ i)2=n 305.0 553.5 215.7 364.3 53.9 78.4 40.9 68.6 62.0 90.0

Correlation cov(y, ŷ)=(σyσŷ ) 0.802 0.789 0.856 0.863 0.962 0.968 0.971 0.971 0.957 0.961

Notes. Truncated regressions are performed on the training set with hourly matching volumes higher than 20 between two zonal pairs. Results
on both training and testing sets are presented using five performance metrics by comparing the predicted (ŷ={ŷi}) and observed (y={yi})
numbers of interzonal matches over the sample (of size n). The item ȳ denotes the sample mean of y.
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intranode model developed for street-hailing taxis,
which is surely better than the one without considering
market information. Meanwhile, Model M5, which
keeps only the most core set of covariates, provides a
prediction level equivalent to the sophisticated models,
Models M4 and M5. This implies that the structure of
our model adheres well to the intrinsic physics of the
matching process managed by the platform, regardless
of its variations in time, space, and weather, etc.

The results validate the representativeness of our
model for interzonal matching at the high-volume re-
gime. However, as mentioned, about 98% of the sam-
ples contain only very few matches over the hourly
periods. Figure 5 compares the predicted versus ob-
served numbers of matches over the complete sample
from the effective zonal pairs by using the calibrated
models. Overall, the set of figures suggests highly con-
sistent results with the truncated sample analysis,
assuring the generalization of our proposed model.
Specifically, Model M2, which is originally applied for
the taxi market, largely underestimates the number of
matches in the high-volume regime. The internode
matching model, Model M3, fixes such an underesti-
mation significantly, whereas Model M4 with addi-
tional differentiation for intrazonal matching provides
the highest consistency between the predicted and ob-
served matching volumes. Again, the parsimonious
model, Model M5, is able to achieve a similar level of
prediction precision as Model M4.

In summary, the empirical validation proves the po-
tential of our modeling framework as a scalable reca-
pitulation for internode matching. However, it is
worth noting that the calibrated models are yet not
ready for parametric interpretation, as the parameters
may not take the physical meaning as they should be
in the model construction. The covariates are not fully
identified under the current setting because of the
nature of endogeneity amongst the flows and accumu-
lations of drivers and riders. Notwithstanding, the
comparisons between the predicted and the observed
matching volumes do endorse our model specifica-
tions as well as the comprehensiveness of factors that
we consider for internode matching. For future imple-
mentations, designated experiments could be con-
ducted to inference the causal relationship between
the interzonal matching rates and the system states at
different zones, so as to systematically calibrate the
matching functions.

4. Network Equilibrium Under Internode
Matching Condition

With the enhanced matching functions proposed in Sec-
tion 3, we proceed to relax the intranode matching as-
sumption in the base model to consider the internode
matching between customers and idle RVs. The modules
of the customer demand and the idle RVs’ search move-
ments are first adapted accordingly to the new context.

Figure 4. (Color online) Division of Training and Testing Sets

Note. The testing set constitutes those samples that originated from the northern part of the target district (to the north of latitude 28◦11′ N) in
the second half of 2019, whereas the training set consists of the rest.
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4.1. Customer Demand Under Internode Pickups
Customers’ travel costs now explicitly embody the in-
ternode pickup time:

Crs " grs + βowc
r + βmȟr + (βi + βf )hrs, ∀ (r, s) ∈ W,

where βm denotes customers’ value of the pickup time
($/h) and ȟr is the average internode pickup time for
customers on node r:

ȟr "

∑

l∈Mc(r)
(Tm

lr + εm)hlr
∑

l∈Mc(r)
(Tm

lr + εm) , ∀ r ∈ R: (11)

The small constant εm features another treatment de-
fined to ensure the feasibility of mapping (11) when
all the flow Tm

lr values are zero. We note that the use of
εm here is also innocuous because the zero-flow condi-
tion essentially arises when wc

r approaches infinity,
under which any ȟr valued from the convex hull
formed by {hlr} becomes nil in comparison.

The customer demand Qrs is then subject to a func-
tion reformulated as follows:

Qrs " frs βowc
r + βmȟr + (βi + βf )hrs

( )
, ∀ (r, s) ∈ W:

4.2. Idle RVs’ Search Target Zones
Although the fundamental behavioral consideration
remains the same, the modeling of idle RV movements
also must be updated, as drivers now choose their
search target nodes based on all the potential matching
outcomes, including matches to passengers at other
nodes in the matching set of a target node. Therefore,
the utility function of an idle RV cruising from node
s ∈ S to any node l ∈ L is respecified as

Usl " F̂l − γ · (ĥl + hsl +wv
l ), ∀ s ∈ S, l ∈ L,

where F̂l and ĥl are the average fare and service time
of RVs that get matched at node l. Note that the ser-
vice time now consists of two parts corresponding to

Figure 5. (Color online) Predicted vs. Observed Number of Matches over the Nontruncated Testing Sample

Notes. The solid line in the middle shows the mean predictions of interzonal matching volumes over each level observed, whereas the inner and
outer shaded areas graph the [25, 75] and [5, 95] percentile ranges of predictions, respectively. The dotted diagonal presents a 45◦ line for refer-
ence. Pctl., percentile.
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deadheading to pick up the matched passenger and
then delivering them. We can expand F̂l and ĥl, re-
spectively, as follows:

F̂l "

∑

r∈Mv(l)
(Tm

lr + εm)F̄r

∑

r∈Mv(l)
(Tm

lr + εm) , ĥl "

∑

r∈Mv(l)
(Tm

lr + εm)(hlr + h̄r)
∑

r∈Mv(l)
(Tm

lr + εm) , ∀ l ∈ L,

where F̄r and h̄r still follow the previous definitions in
Equation (3). By assuming that drivers’ perception er-
rors on utilities follow the Gumbel distribution, we
then write the idle RV flow Tv

sl under the internode
matching scenario as

Tv
sl "

exp (θUsl)
∑

k∈L
exp (θUsk)

·
∑

k:(k, s)∈W
To
ks, ∀ s ∈ S, l ∈ L:

4.3. Equilibrium Condition
Based on the modifications derived for internode
matching, we rewrite the network equilibrium condi-
tions (7) to reflect the impacts of internode matching.
In particular, we replace the intranode matching func-
tion with the internode counterpart and account for
the internode pickups in the cost specifications of cus-
tomers and drivers’ behavioral components. The
framework (12) thus characterizes a general equilibri-
um under internode matching that integrates the ride-
sourcing market and network equilibration as well as
the interplay between them. The complete set of OD
pairs Wc now includes those for idle RV trips, dead-
heading RV trips, and occupied RV trips as well as
trips made by regular traffic: that is,

Wc " {(s, l)|s ∈ S, l ∈ L}
⋃

{(l, r)|l ∈ L,

r ∈ Mv(l)}
⋃

W
⋃

Wb:

Then, the equilibrium link flow distribution {xrsij }
satisfies the following conditions:

Path equilibration between OD pairs

tij(vij)− ρrs
i + ρrs

j

[ ]
xrsij " 0 ∀ (i, j) ∈ A, (r, s) ∈Wc

(12a)
tij(vij)− ρrs

i + ρrs
j ≥ 0 ∀ (i, j) ∈ A, (r, s) ∈Wc (12b)

vij "
∑

(r, s)∈Wc

xrsij ∀ (i, j) ∈ A (12c)

xrsij ≥ 0 ∀ (i, j) ∈ A, (r, s) ∈Wc (12d)

Trs " Tv
rs +Tm

rs +To
rs +Tn

rs ∀ (r, s) ∈Wc (12e)

∑

i:(i,k)∈A
xrsik −

∑

j:(k, j)∈A
xrskj "

−Trs, if k " r
Trs, if k " s
0, otherwise

∀ (r, s) ∈Wc



(12f)
hrs " ρrs

r − ρrs
s ∀ (r, s) ∈Wc (12g)

Customerdemands

Qrs " frs βowc
r + βmȟr + (βi + βf )hrs

( )
∀ (r, s) ∈W

(12h)

ȟr "

∑

l∈Mc(r)
(Tm

lr + εm)hlr
∑

l∈Mc(r)
(Tm

lr + εm) ∀ r ∈ R (12i)

Frs " F0rs + βf hrs ∀ (r, s) ∈W (12j)
IdleRVmovements

Usl " F̂l − γ · (ĥl + hsl +wv
l ) ∀ s ∈ S, l ∈ L (12k)

F̂l "

∑

r∈Mv(l)
(Tm

lr + εm)F̄r

∑

r∈Mv(l)
(Tm

lr + εm) ∀ l ∈ L (12l)

ĥl "

∑

r∈Mv(l)
(Tm

lr + εm)(hlr + h̄r)
∑

r∈Mv(l)
(Tm

lr + εm) ∀ l ∈ L (12m)

F̄r "

∑

s:(r, s)∈W
(To

rs + εo)Frs
∑

s:(r, s)∈W
(To

rs + εo) ∀ r ∈ R (12n)

h̄r "

∑

s:(r, s)∈W
(To

rs + εo)hrs
∑

s:(r, s)∈W
(To

rs + εo) ∀ r ∈ R (12o)

Tv
sl "

exp (θUsl)
∑

k∈L
exp (θUsk)

·
∑

k:(k, s)∈W
To
ks, ∀ s ∈ S, l ∈ L

0, ∀ (s, l) ∈Wc\{(s, l)|s ∈ S, l ∈ L}




(12p)

To
rs "

Qrs, ∀ (r, s) ∈W
0, ∀ (r, s) ∈Wc\W

{
(12q)

Internode matching
Φv Tv

l ,w
v
l ·Tv

l
( ) ·Φc Tc

r ,w
c
r ·Tc

r
( ) " ∆ Tm

lr ,hlr
( )

∀ l ∈ L, r ∈Mt(l)
(12r)

Tv
l "

∑

r∈Mv(l)
Tm
lr ∀ l ∈ L (12s)

Tc
r "

∑

l∈Mc(r)
Tm
lr ∀ r ∈ R (12t)

∑

r∈Mv(l)
Tm
lr "

∑

s∈S
Tv
sl ∀ l ∈ L (12u)

∑

l∈Mc(r)
Tm
lr "

∑

s:(r, s)∈W
To
rs ∀ r ∈ R (12v)

Tm
lr " 0, ∀ (l, r) ∈Wc\{(l, r)|l ∈ L, r ∈Mv(l)} (12w)

RV fleet conservation
∑

(r, s)∈Wc

(To
rs +Tv

rs +Tm
rs) · hrs +

∑

(s, l):s∈S, l∈L
Tv
sl ·wv

l "N:

(12x)
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Again, {ρrs
k } are auxiliary variables. The existence of

an equilibrium solution to the system (12) is proved
in Online Appendix B.7 As system (12) degenerates
into (7), when the matching range of each node
shrinks to only cover itself, the proof readily guaran-
tees the existence of an equilibrium solution for the
intranode matching system. The equilibrium solu-
tion is likely nonunique for the system considered.
Even for an ideal isotropic market without traffic
congestion, it has been proved that multiple market
equilibria can exist (Internode matching Zha, Yin,
and Xu 2018).

4.4. Solution Procedure
An iterative algorithm in the same vein as the one
proposed by Yang and Wong (1998) is developed to
solve the network equilibrium system (12a)–(12x).
Before presenting the solution procedure, we first
reformulate some conditions into mathematical
problems that can easily be solved through com-
mercial solvers.

Specifically, given {Trs}, Equations (12a)–(12f) can
be equivalently reformulated as a convex program PE:

(PE) min
x,v

∑

(i, j)∈A

∫ vij

0
tij(-)d-

s:t: (12c)− (12f):
Furthermore, treating {Tm,To, h} as exogenous

variables, the idle RV movements (12k)–(12q) can
be captured by using the following mathematical
program IRVM:

(IRVM)min
Tv

∑

s∈S

∑

l∈L
−F̂l+γ(ĥl + hsl)
( )

Tv
sl+

1
θ
Tv
sl lnT

v
sl−1

( )
[ ]

s:t:
∑

s∈S
Tv
sl"

∑

r∈Mv(l)
Tm
lr ∀ l ∈ L (13a)

∑

l∈L
Tv
sl "

∑

r:(r, s)∈W
To
rs ∀ s ∈ S: (13b)

To verify, we examine the Karush–Kuhn–Tucker con-
ditions of IRVM as follows:

(13a − b)

−F̂l + γ(ĥl + hsl) +
1
θ
lnTv

sl + βl + τs " 0

∀ l ∈ L, s ∈ S,
(14)

where β and τ are Lagrangian multipliers associated
with (13a) and (13b). From (14), we have

−F̂l + γ(ĥl + hsl) +
1
θ
lnTv

sl + βl

" −F̂k + γ(ĥk + hsk) +
1
θ
lnTv

sk + βk,

which is equivalent to

Tv
sl

Tv
sk
"

exp θ F̂l − γ ĥl + hsl + βl
γ

( )[ ]{ }

exp θ F̂k − γ ĥk + hsk + βk
γ

( )[ ]{ } ∀ l,k ∈ L, s ∈ S

and further yields

Tv
sl∑

r:(r, s)∈W
To
rs
"

exp θ F̂l − γ ĥl + hsl + βl
γ

( )[ ]{ }

∑

k∈L
exp θ F̂k − γ ĥk + hsk +

βk
γ

( )[ ]{ }

∀ l ∈ L, s ∈ S:

From this formula, we can interpret the term βl=γ as
the RVs’ waiting time at node l (i.e., wv

l " βl=γ for all
l ∈ L). As β=γ is not unique, we can always add a cons-
tant η to β=γ, such that the equation still holds.

As per (12x), we have
∑

(r, s)∈Wc

Tv
rs + Tm

rs + To
rs

( ) · hrs +
∑

(s, l):s∈S, l∈L

βl
γ
+ η

( )
· Tv

sl " N,

which gives rise to

η "
N − ∑

(r, s)∈Wc
(Tv

rs + Tm
rs + To

rs) · hrs −
∑

(s, l):s∈S, l∈L
Tv
sl · βl=γ

∑

(s, l):s∈S, l∈L
Tv
sl

and accordingly,

wv
l "

βl
γ
+ η:

We caution that the steps cannot guarantee the nonne-
gativity of wv. Additional treatment is thus taken in
the solution procedure (step 4) to ensure the feasibility
of equilibrium produced.

Given the deductions, we develop the following so-
lution procedure to solve the system (12) (see Figure 6
for the corresponding flowchart).

1. InitializeNc,Nv, and h.
2. Obtain T̂

m
by solving (12r)–(12t).

3. Deduce w̃c by solving the following equation on
each source node r ∈ R:
∑

s:(r, s)∈W
frs βow̃c

r + βmȟr + (βi + βf )hrs
( )

"
∑

l∈Mc(r)
T̂
m
lr ∀ r ∈ R:

Then, retrieve {T̂ o
, ŵc, N̂

c} by letting T̂
o
rs "

frs βow̃c
r + βmȟr + (βi + βf )hrs

( )
for all (r, s) ∈W and ŵc

r "

max{0, w̃c
r}, N̂

c
r " ŵc

r ·
∑

s:(r, s)∈W
T̂
o
rs for all r ∈ R.
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4. Obtain {T̂ v
, ŵv} by solving IRVM; then, update ŵv

l "
max{0, ŵv

l } and N̂
v
l "min {N, ŵv

l ·
∑

s∈S
T̂
v
sl} for all l ∈ L.

5. Obtain {x̂, ĥ} by solving PE.
6. If ŵc, ŵv > 0, and κc(Nc − N̂

c) + κν(Nν−
N̂

ν) + κh(h− ĥ) < ε, stop, and the obtained {T̂m
, T̂

o
,

ŵc, T̂
v
, ŵv, N̂

v
, N̂

c
, x̂, ĥ} is the equilibrium solution;

otherwise, update (Nc,Nv,h) using its linear combina-
tion with (N̂c , N̂v , ĥ) and repeat the process.

The parameter κ in the last step characterizes a set
of weights, and ε is a given tolerance. Note that the
proof of equilibrium existence in Online Appendix B
rationalizes the procedure design. Basically, the sys-
tem of Equations (12) is transformed into a self-
mapping on the set of variables {Nc,Nv,h}. Deriving
the system equilibrium then becomes the problem of
finding a fixed-point solution, where the procedure
terminates when the conditions before and after the
mapping become sufficiently close. The convergence
properties of the procedure are not yet theoretically
investigated. However, for our extensive numerical
experiments in Section 5.2, we have always been suc-
cessful in achieving convergence on the large-scale
Friedrichshain network.

5. Numerical Experiments
This section presents numerical experiments with two
networks of different scale. We first use a small-scale
Nguyen–Dupius network to illustrate the necessity of
considering the internode matching. We show that the
intranode model may otherwise yield significant
biases in evaluating the vacancy/empty miles gener-
ated by RVs of an e-hailing system. We further inves-
tigate how RVs’ vacancy can be impacted by different
market structures on supply and demand. The second
set of experiments is conducted on the Friedrichshain
(Berlin) network to showcase how the network and
market conditions react to various scales of trip de-
mand and RV fleet supply.

5.1. Experiments on the Nguyen–Dupius Network
The Nguyen–Dupius network (Nguyen and Dupuis
1984) consists of 13 nodes, 38 links, and six OD pairs
(see Figure 7). The link performance function is as-
sumed to be a linear one as follows:

tij(vij) " aij + bij · vij ∀ (i, j) ∈ A:

The parameters {aij} and {bij} as well as the regular
background vehicular OD demand {Tn

rs} for the net-
work are provided in Table 3, (a) and (b), respectively,
in Online Appendix C.

Let there be ride-sourcing demands between the
two node sets {1, 4, 5} and {2, 3} located in the corners
of the network (see the filled nodes in Figure 7), and
then, specify the customer demand function as

frs(Crs) " Q0
rs · exp (−θ̂Crs) + εf=Crs ∀ (r, s) ∈ W,

where Q0
rs in the first term indicates the potential cus-

tomer demand from node r to s (see Table 3(c) in On-
line Appendix C). θ̂ features travelers’ sensitivity over
the cost. εf in the second term is a small constant. The
reciprocal term, which imposes marginal effects under
normal conditions, is constructed purposely to ensure
the extreme condition limwc

r→+∞wc
r · frs(wc

r |h) ∈
(0, +∞).

For internode matching, we further specify the po-
tential functions Φv, Φc and the potential difference
function ∆ in Equation (12p) as follows:

Φv Tv
l ,N

v
l

( ) " (Tv
l )−q

v
T · (Nv

l )q
v
N

Φc Tc
r ,N

c
r

( ) " (Tc
r)−q

c
T · (Nc

r)q
c
N

∆(Tm
lr ,hlr) " η ·Tm

lr · (hlr)qh ,
where η,qh and {qij}i∈{v,c},j∈{T,N} are parameters. Note

Figure 6. Solution Procedures Figure 7. (Color online) The Nguyen–Dupius Network

Notes. Origin/destination nodes are highlighted by the filled color.
The matching set of each origin node under intranode matching in-
cludes itself, whereas the internode counterpart covers the nodes in
the circle consistently colored as the origin.
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that all parameter values used in the experiments are
summarized in Table 3(d) in Online Appendix C for
reference.

5.1.1. Necessity of the Internode Matching Model. The
matching sets under intranode and internode match-
ing are summarized in Table 3.

Assuming 2,250 RVs in service, equilibrium solu-
tions are then obtained by applying the procedure de-
veloped in Section 4.4.

We first compare in Figure 8 the allocations of RVs’
service states under the intranode and internode
matching. The pie charts show the percentages of RVs
that are idle, deadheading, and delivering. Note that
in intranode matching, a small, constant intranode
pickup time is considered as deadheading whenever a
match is made. The RVs’ occupancy appears similar
in the two cases, whereas the state allocation for va-
cancy differs drastically. In contrast to the intranode
matching counterpart, RVs under internode matching
on average experience much less idleness but spend
significantly more time on pickup. Such a contrast im-
plies a critical trade-off between waiting (idling) and
deadheading of RVs by varying the matching radius,
which concerns not only drivers but also, ride-
sourcing platforms (see Xu, Yin, and Ye 2020).

Taking the internode equilibrium solution as the
baseline, we then compare in detail the differences
between these two solutions. Figure 9 displays the rel-
ative changes on the link flows as well as RVs and
customers’ waiting time. The solid and dashed arrows
indicate percentage decreases and increases of flows
on different links, respectively. The exact percentage
difference is provided next to each arrow and shown
graphically by its thickness. There is a significantly
higher amount of flow on links around the two sets of
source nodes under internode matching (e.g., link 5→
4 and 11→ 2). Further, the columns with upward and
downward textures in Figure 9 present the percentage
changes on RVs’ and customers’ waiting times, re-
spectively. Because internode matching enlarges the
matching range, thereby reducing the meeting fric-
tions between drivers and customers, both parties’
waiting time in matching may decrease compared
with the intranode matching counterparts (see, e.g.,
node 4). Counterexamples, however, arise when the
matching sets of two source nodes grow large enough
to overlap with each other: for example, the pair of no-
des 1 and 5, where node 1 exhibits more significant ex-
cess of supply compared with node 5. As a conse-
quence, as we enlarge the matching range to have
nodes 1 and 5 overlap substantially in their matching
sets, the supply excess condition on the two nodes
neutralizes, which yields significantly shorter waiting
time for customers on node 5 and RVs on node 1.

The differences suggest that for e-hailing systems
with large matching radius, an intranode matching
model may drastically bias the estimates of market
and network conditions because of the lack of capabil-
ity of modeling vehicles’ deadheading.

5.1.2. Impacts ofMarket Attributes onRVs’Vacancy. Next,
we investigate the impacts of different market attrib-
utes on RVs’ vacancy. Specifically, this subsection fo-
cuses on two system attributes: the level of RVs’ fleet
supply and the spatial symmetry of customers’ de-
mand pattern. The contrasts in supply level are con-
structed using two fleet sizes, 2,250 and 1,750, which
correspond to the condition of sufficiency and
shortage, respectively. In addition, we adjust the
potential demand portions between the two clus-
ters of origins (1, 4, 5) and (2, 3) (see Figure 7 for
specific locations) to differentiate the symmetry of
demand patterns. The nominal example introduced
characterizes a symmetric case with relatively balanced
ride-hailing demand between these two clusters, where-
as an asymmetric instance is newly generated by inten-
sifying the demand imbalance (see Table 3(c) in Online
Appendix C for the specific setting).
Figure 10 summarizes the allocations of RVs’ service
states under the four combinations of supply-demand
attributes. We obtain the following observation via
comparison. In all cases, RVs dedicate around half of
their service time to delivery and spend the other half
on cruising or deadheading, producing the so-call emp-
ty miles. More specifically, compared with the sufficient
supply scenario, RVs experience less idleness and high-
er occupancy under supply shortage. The contrasts ap-
pear more noticeable under symmetric demand pat-
terns (see Figure 10(a) versus Figure 10(c) and Figure
10(b) versus Figure 10(d)). Symmetric demand patterns
allow idle RVs to get a match quicker after dropping a
passenger, yielding a higher occupancy rate. Indeed,
demand symmetry increases vehicular occupancy in
both insufficient and sufficient supply cases.

5.2. Experiments on the Friedrichshain Network
The small-scale Nguyen–Dupius network example
has demonstrated the need for constructing the inter-
node matching model and the capability of the model
on capturing ride-sourcing market conditions. In this

Table 3. Matching Sets Under Intranode and Internode
Matching

Matching range Mc(1) Mc(4) Mc(5) Mc(2) Mc(3)

Intranode {1} {4} {5} {2} {3}
Internode {1, 5, 6, 12} {4, 5, 9} {1, 4, 5, 6, 9} {2, 8, 11} {3, 11, 13}
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section, we present a second set of experiments with a
network based on Friedrichshain, Berlin (see Figure
11 for an overview) to demonstrate how the model
can be applied to a realistic network to estimate the
network and market conditions. The Friedrichshain
network contains 224 nodes, 523 links, and 506 OD pairs.
Because of the space limitation, other network data are

omitted in this paper, but they are available from the au-
thors upon request.

Our experiments mainly involve two variables: the
demand for ride-sourcing services and the total RV sup-
ply. We combine these two variables to generate 100 in-
stances to see how the model predicts the network and
market conditions. For all these numerical examples,

Figure 8. (Color online) Allocation of RVs’ Service States Under Intra- and InternodeMatching

Notes. (a) Intranode matching. (b) Internode matching.

Figure 9. (Color online) Comparisons of Flow Distributions and Customers and RVs’Waiting TimeUnder Intra- and Internode
Matching
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we have successfully achieved convergence when
applying the proposed procedure. The convergence
is typically reached within several hundreds of itera-
tions. Each iteration takes about 10 seconds to execute
in our GAMS code on a desktop with a 3.30-GHz Intel
i5-6600 Processor and 8-GB memory. Two measures are

of particular interest: average network running speed to
represent the congestion level and the percentage of
time being vacant to reflect the ride-sourcing market.
Denote Q0 as the base level of customer demand for
ride-sourcing services. We then multiply Q0 by a de-
mand index α to yield different levels of trip requests.

Figure 10. (Color online) Allocations of RVs’ Service States Under Different Supply-Demand Contexts

Notes. (a) Sufficient supply and symmetric demand. (b) Sufficient supply and asymmetric demand. (c) Insufficient supply and symmetric de-
mand. (d) Insufficient supply and asymmetric demand.

Figure 11. (Color online) The Friedrichshain Network Containing 224 Nodes and 523 Links
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Ten scenarios are considered by varying α from 1 to 10.
Additionally, for each level of α, we consider 10 differ-
ent RV fleet sizes N to replicate different levels of labor
supply. Figure 12 summarizes the average network
running speed and the average empty time ratio of RVs
of these 100 instances.

The average network running speed in Figure 12(a)
is calculated as the miles traveled by all the vehicles
over the total time they spend on road. As seen from
the graph, more demand or supply generally in-
creases congestion. However, when the level of de-
mand (supply) is high, the marginal contribution of
additional supply (demand) to congestion is more sig-
nificant. Figure 12(b) presents the empty time ratio of
RVs, which denotes the percentage of time on average
RVs spend in idle or deadheading. Intuitively, we ob-
serve that the ratio decreases with the demand level
while increasing with the supply level. In contrast to
the speed measure, the empty time ratio of RVs shows
the greatest sensitivity under the low level of demand
and high level of supply.

Note that even with severe supply shortage (the low-
er left corner of Figure 12(b)), the empty time ratio stays
above 40%. By allowing a certain level of empty ratio,
the ride-sourcing system can endure fewer frictions
and operate more smoothly. Thus, it would be mean-
ingful to investigate the optimal empty ratio that maxi-
mizes the social welfare of the whole system.

6. Conclusions
This paper proposes an equilibrium traffic assignment
model for urban transportation networks where a large
portion of travel demand is served by ride-sourcing

services. In such networks, other than the occupied ve-
hicular trips transporting travelers from their origins to
destinations, massive traffic is contributed by vacant
RV trips that originate from the end of one customer
trip to the start of the next. Different from existing mod-
els, our model takes into account two major types of
vacant trips generated by RVs (i.e., cruising and dead-
heading). We first present a basic model by considering
intranode matching between customers and idle RVs.
The model characterizes a straightforward extension
from Yang and Wong (1998) and is only capable of cap-
turing the congestion effect of cruising trips. To cope
with distant matching, a common practice adopted by
ride-sourcing platforms, we extend the basic model to
incorporate internode matching. Using an analogy to
electricity circuits, we propose internode matching
function to handle the spatial interaction between
neighboring zones in the matching process. Such a
specification, as empirically validated using the real-
world data from DiDi, endows us with higher flexibility
in representing matching strategies of platforms and de-
picting the movements of vacant RVs. An iterative solu-
tion procedure is proposed to solve for the resulting
network equilibrium. The numerical examples on the
small-scale Nguyen–Dupius network and the realistic
Friedrichshain network demonstrate the feasibility of
applying our model to predict the performance of a
ride-sourcing system and capture its impact on network
traffic conditions.

As one of the first attempts of modeling the conges-
tion effect of ride-sourcing services, this paper begins
with a static traffic assignment model, which essen-
tially approximates traffic conditions for a certain

Figure 12. (Color online) Summary of the Ride-Sourcing System’s State Statistics

Notes. (a) Average network running speed (miles per hour). (b) Empty time ratio of ride-sourcing vehicles (percentage).
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time of day, typically peak hours, for a planning pur-
pose. A dynamic assignment model comes as a pend-
ing enhancement that better copes with the transient
nature of traffic systems but at the same time, de-
mands much heavier computational efforts and data
inputs. It is worth noting that the proposed internode
matching function is sufficiently flexible for accommo-
dating various assignment techniques and modeling
granularity. As exemplified in the empirical analysis,
the function can be easily customized to deal with the
time-dependent system variations and offer high-
quality predictions. For future research, we plan to de-
velop guidance for transportation planning agencies
on specifying the parametric values for the internode
matching function. In fact, as we mention in Section
3.3, empirically calibrating the matching function may
encounter the endogeneity problem because the speci-
fied covariates are deeply connected in a real system.
Special model constructions are thus needed to help
fully identify the impacts of different market factors.
We hope that the proposed modeling framework can
help government agencies with their policy making in
regulating or managing a ride-sourcing system.

Endnotes
1 Intranode matching flows in this framework are essentially indi-
cated by {Tm

rr}, ∀ r ∈ R.
2 The logarithm associated with the potentials (also the potential
differences defined later) seems unnecessary, but it facilitates mak-
ing a connection with a Cobb–Douglas-type matching function.
3 Equation 9(a) results from the internal relations among potentials
that φv

l −φc
r " δφlr. The effectiveness of such a physical construct is

validated empirically in Section 3.3.
4 BigΘ pertains to one of the Bachmann–Landau notations. By writ-
ing f (n) "Θ(g(n)), it means f is asymptotically bounded both above
and below by g.
5 Note that hexagonal partitioning is utilized in this empirical anal-
ysis of internode matching, taking advantage of the ride-sourcing
platform’s existing treatments. However, in the cases of network
equilibrium analysis, which involves traffic congestion, a zoning
system compatible with census blocks and road geometries needs
to be adopted.
6 Quantitatively, an effective zonal pair is determined as the one
having more than 300 passenger-driver matches throughout the
year of 2019.
7 We suggest readers review Section 4.4 before reading the proof in
the online appendix, as some mapping systems defined in the for-
mer are referred in the proof.
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