
Automatica 134 (2021) 109943

s

D

R
R
A
A

u
a
&
A
t
c
F
&
a
l
a
s
C
a

h
0

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Greedy initialization for distributed persistentmonitoring in network
ystems✩

Shirantha Welikala ∗, Christos G. Cassandras
ivision of Systems Engineering and Center for Information and Systems Engineering, Boston University, Brookline, MA 02446, USA

a r t i c l e i n f o

Article history:
eceived 10 December 2020
eceived in revised form 26 July 2021
ccepted 6 August 2021
vailable online xxxx

Keywords:
Multi-agent systems
Optimization
Cooperative Control
Control of networks
Persistent Monitoring
Parametric Control

a b s t r a c t

This paper considers the optimal multi-agent persistent monitoring problem defined for a team of
agents on a set of nodes (targets) interconnected according to a fixed network topology. The aim is to
control this team so as to minimize a measure of overall node state uncertainty evaluated over a finite
time interval. A class of distributed threshold-based parametric controllers has been proposed in prior
work to control agent dwell times at nodes and next-node destinations by enforcing thresholds on
the respective node states. Under such a Threshold Control Policy (TCP), an on-line gradient technique
was used to determine optimal threshold values. However, due to the non-convexity of the problem,
this approach often leads to a poor local optima highly dependent on the initial thresholds used. To
overcome this initialization challenge, we develop a computationally efficient off-line greedy technique
based on the asymptotic analysis of the network system. This analysis is then used to generate a
high-performing set of initial thresholds. Extensive numerical results show that such initial thresholds
are almost immediately (locally) optimal or quickly lead to optimal values. In all cases, they perform
significantly better than the locally optimal solutions known to date.

© 2021 Elsevier Ltd. All rights reserved.
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1. Introduction

Persistent monitoring of a dynamically changing environment
sing a cooperating fleet of mobile agents has many applications
cross different domains. For example, in smart cities (Rezazadeh
Kia, 2019), transportation systems (Yamashita, Arai, Ota, &

sama, 2003) and manufacturing plants (Liaqat et al., 2019), a
eam of agents can be used to monitor different regions for
ongestion, disruptions or any other dynamic events of interest.
urther, in a smart grid (Caprari et al., 2010; Fan, Wu, Wang, Cao,
Yang, 2018; Menendez, Auat Cheein, Perez, & Kouro, 2017),
team can be used to inspect power plants and transmission

ines to maintain a reliable and safe power system. Additional
pplications include patrolling (Huynh, Enright, & Frazzoli, 2010),
urveillance (Aksaray, Leahy, & Belta, 2015; Maza, Caballero,
apitán, Martínez-De-Dios, & Ollero, 2011), data collecting (Khaz-
eni & Cassandras, 2018; Smith, Schwager, & Rus, 2011; Zhou,
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Yu, Andersson, & Cassandras, 2018), coverage (Sun, Welikala, &
Cassandras, 2020), particle tracking (Shen & Andersson, 2011) and
ensing (Lin & Cassandras, 2015; Trevathan & Johnstone, 2018;
hou, Cassandras, Yu, & Andersson, 2019).
Monitoring problems in general can be classified based on the

ature of the environment, objective and dynamics involved. In
articular, based on the nature of the environment, a monitoring
roblem may have a finite set of “points of interest” (Rezazadeh
Kia, 2019; Welikala & Cassandras, 2020) or lack thereof (Lin
Cassandras, 2015; Maini, Yu, Sujit, & Tokekar, 2018) in the

nvironment to be monitored. Based on the nature of the ob-
ective, different monitoring problems can be formulated to opti-
ize event-counts (Yu, Karaman, & Rus, 2015), idle-times (Alam-
ari, Fata, & Smith, 2014; Hari et al., 2019, 2021), error co-
ariances (Pinto, Andersson, Hendrickx, & Cassandras, 2020) or
isibility states (Maini et al., 2018) related to the environment.
inally, based on the nature of the environment dynamics, a
onitoring problem can be either deterministic (Song, Liu, Feng,
Xu, 2014; Yu, Schwager, & Rus, 2016; Zhou et al., 2019) or

tochastic (Lan & Schwager, 2013; Rezazadeh & Kia, 2019).
The persistent monitoring problem considered in this paper

s focused on an n-Dimensional (n-D) environment containing
finite number of points of interest (henceforth called “tar-

ets”). The objective of the agent team is to collect information
rom (i.e., sense) each target to reduce an “uncertainty” metric
ssociated with the target state. In particular, the dynamics of
ach target’s uncertainty metric are deterministic and the global
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bjective is to minimize an overall (average) measure of target
ncertainties evaluated over a finite horizon by controlling the
gent trajectories. Hence, the persistent monitoring problem con-
idered in this paper is a dynamic optimization problem whose
olutions are generally not periodic. It is structurally different
rom the persistent monitoring problems considered in Alamdari
t al. (2014) and Hari et al. (2021) where min–max objective func-
ions evaluated over an indefinitely repeated cycle of target visits
r an infinite horizon are considered and discrete optimization
roblems are formulated to derive periodic solutions.
In contrast, the work in Zhou et al. (2018) has addressed a

imilar persistent monitoring problem but constrained to 1-D
nvironments by formulating it as an optimal control problem
nd reducing it to a parametric optimization problem. The cor-
esponding optimal parameters have been determined by fol-
owing a gradient descent process with the gradients evaluated
n-line through Infinitesimal Perturbation Analysis (IPA) (Cassan-
ras, Wardi, Panayiotou, & Yao, 2010). In contrast to the 1-D
ase, finding the solution to the problem of persistent monitoring
n 2-D environments is much more complicated (Lin & Cassan-
ras, 2015). However, as a remedy, the works in Khazaeni and
assandras (2018), Lin and Cassandras (2015) and Pinto et al.
2020) propose to constrain agent trajectories to certain stan-
ard families of parametric trajectories (e.g., elliptical, Lissajous
nd Fourier) and then to use IPA to obtain the optimal agent
rajectories within these families. Nevertheless, as pointed out
n Zhou et al. (2019), all these problems are non-convex, hence
tandard gradient-based methods often lead to poor local optima
ependent on the initial conditions used.
To overcome the challenges mentioned above, Zhou et al.

2019) exploits the network structure of the monitoring system
y adopting a graph topology to abstract targets and feasible
nter-target agent trajectories as graph nodes and edges, respec-
ively. Note that this graph abstraction has the added advantage
f accounting for physical obstacles that might be present in the
nvironment. In this Persistent Monitoring on Networks (PMN)
aradigm, an agent trajectory is fully characterized by a sequence
f targets to be visited and the corresponding sequence of dwell
imes to be spent at each visited target. Therefore, the controller
hat optimizes a given objective should yield such a (target,
well time) sequence for all the agents. Clearly, this optimization
roblem is significantly more complicated than the NP-hard trav-
ling salesman problem (TSP) (Bektas, 2006) which only involves
inding an optimal sequence of nodes to visit.

As an alternative, Welikala and Cassandras (2021) uses a Re-
eding Horizon Control (RHC) technique that requires each agent
o repeatedly solve a smaller optimization problem to determine
ts optimal trajectory using only the local information available to
t. This on-line control approach has the advantage of being dis-
ributed and parameter-free; on the other hand, it cannot exploit
ny global information regarding the underlying network struc-
ure. In contrast, the parametric approach taken in Zhou et al.
2019) uses a class of controllers characterized by threshold pa-
ameters which can be optimized in an on-line distributed man-
er using gradient descent. However, due to the non-convexity of
he associated objective function with respect to these thresholds,
his gradient-based approach often converges to a poor local
ptimum that is highly dependent on the initial thresholds which
n Zhou et al. (2019) are generated randomly. Nevertheless, the
olutions obtained by this parametric controller may be dras-
ically improved by an initial off-line step in which the global
nformation available regarding the underlying network structure
s exploited to determine a set of high-performing thresholds
sed to initialize the IPA-based on-line gradient descent process.
his process subsequently converges to an improved set of (still

ocally optimal) thresholds. Our contribution in this paper can be N

2

seen more broadly as a systematic approach to select effective ini-
tial conditions for gradient-based methods that solve non-convex
optimization problems pertaining to a large class of dynamic
multi-agent systems beyond persistent monitoring. In particular,
this is accomplished by analyzing the asymptotic behavior of
such systems and using the resulting optimal control policies to
initialize a parametric class of controllers.

For the PMN systems considered in this paper, our contribu-
tions include: (i) The asymptotic analysis of single-agent PMN
systems with the agent constrained to follow a periodic and
non-overlapping sequence of targets (also called “target-cycle”),
(ii) A graph partitioning process that enables the extension of
this analysis to the deployment of multiple agents, and (iii) A
computationally efficient, off-line technique that constructs a
high-performing set of thresholds for PMN problems. As shown
through extensive simulation results, the initial thresholds pro-
vided by this initialization technique are often immediately op-
timal (still local). Thus, in such cases, an effective initialization
eliminates the need for any subsequent gradient descent process.

The paper is organized as follows. Section 2 provides the
problem formulation and reviews the threshold-based control
policy (TCP) proposed in Zhou et al. (2019). Section 3 includes
the asymptotic analysis and a candidate threshold initialization
technique, assuming the underlying PMN problem is single-agent
and the network is sufficiently dense. Next, Section 4 generalizes
the asymptotic analysis and the threshold initialization technique
proposed in Section 3 to any network (still assuming a single-
agent PMN scenario). Subsequently, Section 5 further generalizes
the proposed threshold initialization technique to multi-agent
systems. Section 6 presents several numerical examples and per-
formance comparisons with respect to the solution in Zhou et al.
(2019). Finally, Section 7 concludes the paper.

. Problem formulation

We consider an n-dimensional mission space with M targets
n the set T = {1, 2, . . . ,M} and N agents in the set A =

1, 2, . . . ,N}. Each target i ∈ T is located at a fixed position
i ∈ Rn and each agent a ∈ A is allowed to move in the mission
pace where its trajectory is denoted by {sa(t) ∈ Rn, t ≥ 0}. As
roposed in Zhou et al. (2019), we embed a directed network
opology G = (V , E ) to this mission space such that the graph
ertices represent the targets (i.e., V = T ) and the graph edges
epresent the inter-target trajectory segments available for agents
o travel (i.e., E =⊆ {(i, j) : i, j ∈ V }).

In particular, the shape of each trajectory segment (i, j) ∈ E

an be considered as a result of a lower level optimal control
roblem which aims to minimize the travel time that an agent
akes to go from target i to target j while accounting for potential
onstraints in the mission space and agent dynamics. For the
urpose of this paper, we assume each trajectory segment (i, j) ∈

to have a fixed such optimal travel time value ρij ∈ R≥0.
ased on E , the neighbor set Ni of target i ∈ V is defined as
i ≜ {j : (i, j) ∈ E }. Note also that the target locations {Xi : i ∈ V },

nitial agent locations {sa(0) : a ∈ A } and travel time values
ρij : (i, j) ∈ E } are prespecified.

arget model. As in Zhou et al. (2019), each target i ∈ V has an
ssociated uncertainty state Ri(t) ∈ Rwhich follows the dynamics:

˙ i(t) =

{
0 if Ri(t) = 0 and Ai ≤ BiNi(t),
Ai − BiNi(t) otherwise,

(1)

here Ri(0) is prespecified, Ai ∈ R≥0 is the uncertainty growth
ate, Bi ∈ R>0 is the uncertainty removal rate by an agent and∑N

i(t) = a=1 1{sa(t) = Xi} is the number of agents present at
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arget i at time t (1{·} is the indicator function). In simple terms,
(i) Ri(t) increases at a rate Ai when no agent is visiting it, (ii) Ri(t)
decreases at a rate BiNi(t) − Ai when Ni(t) > 0, and (iii) Ri(t) ≥

0, ∀t ≥ 0. The work in Zhou et al. (2019) points out an attractive
queueing system interpretation of this target uncertainty model
where each target i is viewed as a node in a queueing network
with its Ai and BiNi(t) respectively representing the arrival rate
and the controllable service rate.

Note that in (1), the proportionality between the target uncer-
tainty decrease rate and Ni(t) allows one to inject stochasticity
into the problem setup (if needed, through randomizing Ni(t)).
oreover, as we will see in the sequel, the proposed solution in

his paper motivates agent behaviors that result in Ni(t) ≤ 2, ∀i, t .
hus, the aforementioned proportionality allows (1) to apply to
ny of the applications mentioned in the Introduction).

gent model. In some persistent monitoring models (Pinto et al.,
020; Zhou et al., 2018), each agent a ∈ A is assumed to have a
inite sensing range ra > 0 that allows it to decrease a target
ncertainty Ri(t), i ∈ V whenever ∥sa(t) − Xi∥ ≤ ra. However,
e follow the approach used in Zhou et al. (2019) where the
ondition ∥sa(t) − Xi∥ ≤ ra is replaced by 1{sa(t) = Xi} and the
ole of the joint detection probability of a target i by the agents
s replaced by Ni(t).

bjective function. The objective of this persistent monitoring
ystem is to control the team of agents so as to minimize a
easure of mean system uncertainty JT where

T =
1
T

∫ T

0

M∑
i=1

Ri(t)dt. (2)

Based on the target dynamics (1) and agent sensing capabili-
ties assumed, to minimize the objective JT (2) it is intuitive that
each agent has to dwell (i.e., remain stationary) only at targets
that it visits in its trajectory. Moreover, based on the embedded
target topology G that constrains the agent motion, it is clear
that when an agent a ∈ A leaves a target i ∈ V its next target
would be some target j ∈ Ni that is only reachable by traveling
on edge (i, j) ∈ E for a time duration of ρij. In essence, this dwell-
travel approach aims to minimize the agent time spent outside
of targets – which is analogous to minimizing the idle time of
servers in a queueing network.

Each time an agent a ∈ A arrives at a target i ∈ V , it has to
determine a dwell time τ a

i ∈ R≥0 and a next visit target va
i ∈ Ni.

Therefore, for the set of agents, the optimal control solution that
minimizes the objective JT takes the form of a set of optimal
dwelling time and next visit target sequences.

Determining such an optimal solution is a challenging task
even for the simplest PMN problem configurations due to the
nature of the involved search space. This is also clear from com-
paring the PMN problem to the NP-hard TSP problem – which
is much simpler as it only requires finding an optimal sequence
of targets to visit – yet still has no known global solutions or
performance bound guarantees (except for special cases Held &
Karp, 1971).

Threshold-based control policy. To address this challenge, we
adopt the threshold-based control policy (TCP) proposed in Zhou
et al. (2019). In particular, under this TCP, each agent a ∈ A

makes its decisions by adhering to a set of pre-specified parame-
ters denoted by Θa

∈ RM×M which serve as thresholds on target
uncertainties. Note that the (i, j)th parameter in the Θa matrix is
denoted as θ a

ij ∈ R≥0 ∀i, j ∈ V .
We denote the set of neighbors of a target i that violates their

thresholds (i.e., have higher uncertainty values than respective
3

Fig. 1. An example target topology with five targets and one agent with its
threshold parameters.

thresholds) with respect to an agent a residing in target i at time
t by N a

i (t) ⊆ Ni (also called active neighbors) where

N a
i (t) ≜ {j : Rj(t) > θ a

ij , j ∈ Ni}. (3)

Assume an agent a arrives at target i at a time t = t ′. Then,
the dwell time τ a

i to be spent at target i is determined by: (i)
the diagonal element θ a

ii based on the threshold satisfaction con-
dition Ri(t) < θ a

ii and (ii) the active neighbor existence condition
|N a

i (t)| > 0 at t = t ′ + τ a
i (|·| is the cardinality operator).

Subsequently, agent a’s next visit target va
i is chosen from the set

of active neighbors N a
i (t) ⊆ Ni using the off-diagonal thresholds

{θ a
iv : v ∈ N a

i (t)} at t = t ′ + τ a
i . Formally,

τ a
i :=arginf

τ≥0
1

{
[Ri(t ′ + τ ) < θ a

ii ] & [|N a
i (t ′ + τ )| > 0]

}
,

va
i := argmax

v∈N a
i (t ′+τai )

{
Rv(t ′ + τ a

i ) − θ a
iv

}
.

(4)

While the first condition in the τ a
i expression in (4) ensures that

agent awill dwell at target i until at least its own uncertainty Ri(t)
drops below θ a

ii , the second condition ensures that when agent a
is ready to leave target i there will be at least one neighbor v ∈ Ni
whose uncertainty Rv(t) has increased beyond the threshold θ a

iv .
The va

i expression in (4) implies that va
i is the neighboring target

of i chosen from the set N a
i (t ′ + τ a

i ) ⊆ Ni with the largest
threshold violation. In all, the update equations in (4) define each
agent’s dwell time and next visit decision sequence under the
TCP.

A key advantage of this TCP approach is that, based on (3) and
(4), each agent now only needs to use the neighboring target state
information. Thus, each agent operates in a distributed manner.
An example target topology and an agent threshold matrix are
shown in Fig. 1. Note that when certain edges are missing in the
graph, the respective off-diagonal entries in Θa are irrelevant and
hence denoted by θ a

ij = ∞.

Discrete event system view. Under the TCP mentioned above, the
behavior of the PMN system is fully defined by the set of agent
decision sequences

U (Θ) = {(τ a
i(l)(Θ

a), va
i(l)(Θ

a)) : l ∈ Z>0, a ∈ A },

where Θ ∈ RM×M×N is the collection of all agent threshold
matrices and i : Z>0 → V (in other words, i(l) is the lth
target visited by agent a). Following from (4), the PMN system
is a discrete event system (DES) (Cassandras & Lafortune, 2010)
where the event set consists of: (i) agent arrivals and departures
at/from targets, (ii) instances where a target uncertainty reaches
0 from above, and (iii) the ‘start’ and the ‘end’ events triggered
respectively at times t = 0 and t = T . The sequence of event
times observed is denoted as {tk : k ∈ {0, 1, . . . , K }} with t0 = 0
and tK = T .

Since the behavior of the PMN system is dependent on the
used TCP Θ , the objective function JT in (2) is also dependent on
Θ . Therefore, within this TCP class of agent controllers, our aim
is to determine an optimal TCP (OTCP) Θ∗ such that

Θ∗
= argmin JT (Θ) =

1
T

M∑ K∑∫ tk+1

k
Ri(t)dt. (5)
Θ≥0 i=1 k=0 t
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ifferentiating the cost JT (Θ) w.r.t. parameters Θ yields,

JT (Θ) =
1
T

M∑
i=1

K∑
k=0

∫ tk+1

tk
∇Ri(t)dt,

where ∇ ≡
∂

∂Θ
. As shown in Zhou et al. (2019), it is easy to see

hat ∇JT (Θ) reduces to:

JT (Θ) =
1
T

M∑
i=1

K∑
k=0

∇Ri(tk)(tk+1
− tk). (6)

The solution proposed in Zhou et al. (2019) uses Infinitesimal
Perturbation Analysis (IPA) (Cassandras et al., 2010) to evaluate
the ∇Ri(tk) terms (hence ∇JT (Θ)) in (6) in an on-line distributed
anner. This enables the use of a gradient descent algorithm:
(l+1)

=
[
Θ (l)

− β (l)
∇JT (Θ (l))

]+
(7)

o update the TCP Θ iteratively so as to optimize the parame-
erized objective function JT (Θ) ([·]+ = max{0, ·}). The step size
(l) is selected so that it diminishes with l following the standard
onditions

∑
∞

l=1 β (l)
= ∞ and liml→∞ β (l)

= 0 (Bertsekas, 2016).
Note that we cannot make any assumption regarding the

ature of the function JT (Θ) (hence, it is generally considered a
on-convex function). Therefore, finding globally optimal solu-
ions or performance bound guarantees for (5) is exceptionally
hallenging without significantly simplifying the PMN problem
etup.

nitialization Θ (0). The work in Zhou et al. (2019) has used a
andomly generated set of initial thresholds as Θ (0) for (7). Due
o the non-convexity of the objective function (5), the resulting
alue of Θ when (7) converges is a local minimum that depends
eavily on Θ (0). Hence, a carefully selected high-performing Θ (0)

an be expected to provide significant improvements over the
ocal minimum obtained from randomly selected Θ (0). Motivated
y this idea, we first investigate the structural and behavioral
roperties of the underlying PMN system. Then, that knowledge
s used to construct a candidate for Θ (0).

verview of the PMN solution. For single-agent PMN systems
i.e., with A = {a}), the work in Zhou et al. (2019) has proved
hat it is optimal to make the target uncertainty Ri(t) = 0 on
ach visit of agent a to a target i ∈ V . This implies that in the
TCP, θ a

ii = 0 (Zhou et al., 2019). Moreover, the empirical results
btained based on Zhou et al. (2019) provide some intuition
bout high-performing agent behaviors: (i) each agent after a
rief initial transient phase converges to a steady state periodic
ehavior where it cycles across a fixed subset of targets and (ii)
gents do not tend to share targets with other agents while in
his steady state.

Throughout this paper, we exploit the aforementioned obser-
ations to efficiently construct a high-performing (favorable) set
f agent trajectories so that it can be translated into a better
andidate TCP for Θ (0) in (7) compared to a randomly generated
(0). It is clear that such a favorable set of agent trajectories takes

he form of a non-overlapping set of target-cycles on the given
raph. This non-overlapping property implies that if we develop a
olution for the single-agent PMN problem, it can be extended to
ulti-agent PMN problems using appropriate graph partitioning
nd assignment techniques.
Inspired by this discussion, the PMN solution proposed in this

aper follows the steps outlined in Alg. 1. Note that we have
lready discussed Step 6. A key step of Alg. 1 is Step 2, as it
equires a technique to find a high-performing agent trajectory (a
arget-cycle) on a given partition of the graph. In fact, in single-
gent PMN problems, we only need to execute Steps 2, 5 and 6

f Alg. 1. Hence, in the following Sections 3 and 4, we assume

4

hat only one agent is available (i.e., N = 1) and develop a PMN
olution by discussing the details of Steps 2 and 5 of Alg. 1. In
articular, Section 3 assumes the network to be sufficiently dense
nd Section 4 relaxes that assumption. The subsequent Section 5
xtends the proposed solution to multi-agent problems (i.e., N >

) by discussing the details of Steps 1, 3 and 4 of Alg. 1.

. Single-agent PMN solution: Bi-triangular networks

In this section, we focus only on single-agent persistent mon-
toring problems on sufficiently dense graphs. More precisely,
e consider a given graph to be ‘sufficiently dense’ if it is bi-

riangular.

efinition 1. A directed graph G = (V , E ) with |V | > 3 is
i-triangular if for all (i, j) ∈ E there exists k, l ∈ V such that
i, k), (k, j) ∈ E , (i, l), (l, j) ∈ E , and k ̸= l.

The network shown in Fig. 17(a) is an example of a bi-
riangular graph (a counterexample can be seen in Fig. 14(a)). The
ollowing Assumption 1 formally states the conditions assumed
in the analysis given in this section. Still, we highlight that this
assumption is relaxed in subsequent sections.

Assumption 1. (i) Only one agent is available (i.e., A = {a}) and
(ii) The given target topology G = (V , E ) is bi-triangular.

Due to Assumption 1, in this section, we first search for a
single high-performing target-cycle (i.e., a favorable agent tra-
jectory) in the given graph G using an iterative greedy scheme.
Such a target-cycle is then transformed to a TCP Θ (0) for the
subsequent use in the gradient descent process (7) so as to obtain
an OTCP Θ∗. We point out that these three steps correspond to
teps 2, 5 and 6 of Alg. 1, respectively.
We note that this single-agent persistent monitoring setup

as introduced in Welikala and Cassandras (2020) without proofs
r explicit algorithms. Sections 4 and 5 provide the generaliza-
ions to arbitrary networks and multi-agent systems respectively,
oth not included in Welikala and Cassandras (2020).

.1. Analysis of an unconstrained target-cycle

We formally define a target-cycle as a finite sequence of targets
elected from V of the given graph G = (V , E ) such that the
orresponding sequence of edges also exists in E . An uncon-
trained target-cycle is a target-cycle with no target on it being
epeated. We define C to be the set of all possible unconstrained
arget-cycles on the graph G . A generic unconstrained target-
ycle in C is denoted by Ξi = {i1, i2, . . . , im} ⊆ V , where ij ∈

, ∀j ∈ {1, 2, . . . ,m} and m = |Ξi| ≤ M . The corresponding

Algorithm 1 The main steps of the PMN solution.

Input: (i) Target topology (graph) G = (V , E ), (ii) Set of
agents A = {1, 2, . . . ,N} and (iii) Initial conditions: {Ri(0) :

i ∈ V }, {sa(0) : a ∈ A }.
Output: A locally optimal TCP candidate for Θ∗ in (5).

1: Partition the given graph G into N sub-graphs {Ga}a∈A .
2: Find a high-performing agent trajectory in each sub-graph.
3: Refine the sub-graphs along with the agent trajectories.
4: Assign agents to the determined refined agent trajectories (on

respective sub-graphs) based on initial agent locations.
5: Obtain the corresponding TCP as Θ (0)

= {Θa(0)
: a ∈ A }.

6: Use Θ (0) in (7) and update Θ (l) using IPA gradients (Zhou et al.,
2019).



S. Welikala and C.G. Cassandras Automatica 134 (2021) 109943

s

0

(

f

∆

1

τ

T
(
I

τ

w

Fig. 2. A generic single-agent unconstrained target-cycle Ξ .

Fig. 3. Variation of target uncertainties during agent tours.

equence of edges (fully defined by Ξi) is denoted by ξi =

{(im, i1), (i1, i2), . . . , (im−1, im)} ⊆ E .
Since we aim to greedily construct a target-cycle which results

in a high-performing mean system uncertainty value (i.e., a low
JT in (2)), we need to have an assessment criterion for any given
arbitrary target-cycle. Thus, we define the steady state mean cycle
uncertainty metric Jss(Ξi):

Jss(Ξi) = lim
T→∞

1
T

∫ T

0

∑
j∈Ξi

Rj(t)dt. (8)

We now present a computationally efficient off-line method to
evaluate Jss(Ξi) for any Ξi ∈ C . For notational convenience, we
first relabel Ξi and its targets as Ξ = {1, 2, . . . , n, n + 1, . . . ,m}

by omitting the subscript i (see Fig. 2). We then make the follow-
ing assumption regarding the agent’s behavior on a corresponding
target-cycle Ξ ∈ C .

Assumption 2. After visiting a target n ∈ Ξ , the agent will leave
it if and only if the target uncertainty Rn reaches zero.

Here, the ‘only if ’ component follows from the aforementioned
theoretical result in Zhou et al. (2019): it is optimal to make the
target uncertainty Rn(t) = 0 whenever the agent visits target
n ∈ Ξ . The ‘if ’ component restricts agent decisions by assuming
the existence of an active neighbor to target n as soon as Rn(t) =

occurs in (4). At this point, we recall that our main focus is
only on initializing (7) and thus any potential sub-optimalities
arsing from the use of Assumption 2 will be compensated by the
eventual use of (7).

A tour on the target-cycle Ξ (shown in Fig. 2) starts/ends
when the agent (i.e., a) leaves the last target m to reach target
1. The dwell time spent on a target n ∈ Ξ when the agent is
in its kth tour on Ξ is denoted as τ a

n,k and the travel time spent
on an edge (n − 1, n) ∈ E is ρ(n−1)n by definition. Without any
ambiguity, we use the notation τn,k and ρn (with ρ1 = ρm1) to
represent these two quantities respectively. Moreover, target n’s
uncertainty level at the end of the kth tour is denoted by Rn,k.
Under this notation, the trajectory of the target uncertainty Rn(t)
over kth and (k+1)th tours is shown in Fig. 3. The geometry of the
XYZ triangle shown in Fig. 3 can be used to derive the dynamics
5

of target n’s dwell time τn,k (w.r.t. k) as

Bn−An)τn,k+1 = An

( m∑
i=n+1

[
ρi + τi,k

]
+

n−1∑
i=1

[
ρi + τi,k+1

]
+ρn

)
. (9)

Setting αn ≜ Bn−An
An

and ρΞ ≜
∑m

i=1 ρi (the total cycle travel time),
the above relationship (9) can be simplified as:

−

n−1∑
i=1

τi,k+1 + αnτn,k+1 = ρΞ +

m∑
i=n+1

τi,k. (10)

Note that (10) can be written for all n ∈ Ξ in a compact form us-
ing the vectors τ̄k = [τ1,k, τ2,k, . . . , τm,k]

T , ᾱ = [α1, α2, . . . , αm]
T

and 1̄m = [1, 1, . . . , 1]T ∈ Rm, as:

∆1τ̄k+1 = ∆2τ̄k + 1̄mρΞ , (11)

where ∆2 ∈ Rm×m is the strictly upper triangular matrix with all
non-zero elements being 1 and ∆1 = diag(ᾱ) − ∆T

2 . The affine
linear system expression in (11) describes the evolution of agent
dwell times at targets on the target-cycle Ξ over the number of
tours completed k. To get an explicit expression for the steady
state mean cycle uncertainty Jss(Ξ ) defined in (8), we make use
of the following three lemmas.

Lemma 1 (Shermon–Morrison Lemma, Miller, 1981). Suppose A ∈

Rm×m is an invertible matrix and u, v ∈ Rm×1 are vectors. Then,
det(A + uvT ) = (1 + vTA−1u)det(A) and

(1 + vTA−1u) ̸= 0 ⇐⇒ (A + uvT )−1
= A−1

−
A−1uvTA−1

1 + vTA−1u
.

Lemma 2. When
∑m

i=1
Ai
Bi

< 1, the dynamic system given in (11)
has a feasible equilibrium point τ̄eq (reached at k = keq),

τ̄eq =

(
β̄

1 − 1̄T
mβ̄

)
ρΞ , i.e., τn,keq =

(
βn

1 −
∑m

i=1 βi

)
ρΞ , (12)

or all n ∈ Ξ with βn ≜ An
Bn

and β̄ = [β1, β2, . . . , βm]
T .

Proof. At k = keq, in (11), τ̄k+1 = τ̄k = τ̄eq. Therefore, τ̄eq = (∆1 −

2)−11̄mρΞ . Using ∆1 = diag(ᾱ)−∆T
2 and diag(1̄m)+∆T

2 +∆2 =

¯m1̄T
m, τ̄eq can be simplified as:

¯eq = (diag(ᾱ + 1̄m) − 1̄m1̄T
m)

−11̄mρΞ . (13)

he αn, βn expressions give that (αn + 1)−1
= βn. Therefore,

diag(ᾱ + 1̄m))−1
= diag(β̄). Also, note that diag(β̄)1̄m = β̄ and

m ∈ Rm×m is an identity matrix. Now, using Lemma 1,

¯eq = diag(β̄)
(
Im +

1̄m1̄T
mdiag(β̄)

1 − 1̄T
mβ̄

)
1̄mρΞ =

(
β̄

1 − 1̄T
mβ̄

)
ρΞ .

Components of τ̄eq are non-negative only when 1 − 1̄T
mβ̄ > 0.

Thus, using the definition of β̄ , we get 1̄T
mβ̄ =

∑m
i=1

Ai
Bi

< 1. ■

To establish the stability properties of τ̄eq given by Lemma 2,
we next make the following assumption.

Assumption 3. The matrix ∆−1
1 ∆2 is Schur stable (Bof, Carli, &

Schenato, 2018).

Note that the eigenvalues of ∆2 are located at the origin as it is
a strictly upper triangular matrix. Further, the eigenvalues of ∆−1

1
are located at {

1
αi

: i ∈ Ξ} since ∆1 is a lower triangular matrix
with its diagonal elements being {αi : i ∈ Ξ}. Using the definition
of αi(=

Bi−Ai
Ai

), it is easy to show that |
1
αi

| < 1 ⇐⇒ 0 ≤
Ai
Bi

< 1
2 ,

hich is a less restrictive condition than
∑m

i=1
Ai
Bi

< 1 required in
Lemma 2. Therefore, it seems reasonable to conjecture that the
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igenvalues of ∆−1
1 ∆2 are located within the unit circle; however,

o date, we have not provided a formal proof to the statement in
ssumption 3. Nevertheless, since both ∆1 and ∆2 matrices are
nown, the validity of this assumption for any given system (11)
an be verified easily.

emma 3. Under Assumption 3, the equilibrium point τ̄eq given in
emma 2 for the affine linear system (11) is globally asymptotically
table (i.e., limk→∞ τ̄k = τ̄eq, irrespective of τ̄0).

roof. Let ēk = τ̄k − τ̄eq as the steady state error. Then, we can
rite ēk+1 = τ̄k+1 − τ̄eq and using (11) and Lemma 2,

¯k+1 = (∆−1
1 ∆2τ̄k + ∆−1

1 1̄mρΞ ) − (∆−1
1 ∆2τ̄eq + ∆−1

1 1̄mρΞ ),

o that, ēk+1 = ∆−1
1 ∆2ēk. Therefore, under Assumption 3, all the

igenvalues of ∆−1
1 ∆2 are within the unit circle. Thus, the equi-

ibrium point τ̄eq given in (12) of (11) is globally asymptotically
stable (Bof et al., 2018). ■

We now present our main theorem regarding the steady state
mean cycle uncertainty (8) of the PMN system in Fig. 2.

heorem 1. Under Assumptions 2 and 3 with
∑m

i=1
Ai
Bi

< 1,
the generic (single-agent) unconstrained target-cycle Ξ in Fig. 2
achieves a steady state mean cycle uncertainty value (i.e., (8)),

Jss(Ξ ) =
1
2
(B̄ − Ā)T τ̄eq, (14)

here B̄ = [B1, B2, . . . , Bm]
T , Ā = [A1, A2, . . . , Am]

T , and τ̄eq is
given in (12).

Proof. Both Lemmas 2 and 3 are applicable under the given
conditions. Therefore, using (8) we can write,

Jss(Ξ ) = lim
T→∞

1
T

∫ T

0

m∑
n=1

Rn(t)dt =
1
TΞ

∫
∂TΞ

m∑
n=1

Rn(t)dt,

where TΞ ≜ ρΞ + 1̄T
mτ̄eq represents the steady state tour duration

and ∂TΞ is a time period of a tour occurring after achieving steady
state. This can be further simplified into

Jss(Ξ ) =

m∑
n=1

1
TΞ

∫
∂TΞ

Rn(t)dt.

Using the Rn(t) trajectory shown in Fig. 3 note that when equi-
ibrium is achieved (as T → ∞, hence k → ∞), the final tour
ncertainties will become stationary (i.e., Rn,k = Rn,k+1, ∀n ∈ Ξ ).
ence the area under the Rn(t) trajectory evaluated over a period
Ξ becomes equivalent to that of a triangle where the base is TΞ

nd the height is (Bn − An)τn,∞, ∀n ∈ Ξ . Therefore,

Jss(Ξ ) =

m∑
n=1

1
TΞ

1
2
TΞ (Bn − An)τn,∞ =

1
2
(B̄ − Ā)T τ̄eq. ■

Theorem 1 enables assessing simple agent trajectories (e.g., the
target-cycle in Fig. 2) efficiently and will be used to construct a
high-performing target-cycle on the graph G .

3.2. Greedy target-cycle construction

Theorem 1 can be used to identify the best performing (steady
state) target-cycle in C if |C | is small via exhaustive search
evaluating (14) over all Ξ :

Ξ∗
= argmin

Ξ∈C
Jss(Ξ ). (15)

ince this brute-force approach becomes computationally expen-
ive as |C | grows exponentially with the number of targets or
 (

6

edges, we propose instead a computationally efficient greedy
scheme to construct a sub-optimal target-cycle (denoted as Ξ#)
as a candidate for Ξ∗ in (15). In this greedy scheme, each iteration
search expands a current target-cycle Ξ by adding an unvisited
target i ∈ V \Ξ to Ξ (·\· is the set subtraction operation). The
constructed Ξ#

∈ C is then transformed to a TCP which is used
as Θ (0) in (7). Therefore, determining the optimal target-cycle
Ξ∗ is not essential at this stage as opposed to the importance
of keeping the overall process of obtaining Θ (0) efficient.

We now define the finite horizon version of Jss(Ξi) in (8) as
the finite horizon mean cycle uncertainty JT (Ξi), where

JT (Ξi) =
1
T

∫ T

0

∑
j∈Ξi

Rj(t)dt. (16)

ote that if V = Ξi, this JT (Ξi) metric is equivalent to the mean
ystem uncertainty metric JT defined in (2).

ontribution of a neglected target. Formally, a neglected target
s a target that is not visited by any agent during the period
0, T ]. As our main objective JT in (2) is evaluated over a finite
orizon T , if one or more targets are located remotely compared
o the rest of the targets, then neglecting such remote targets
ight be better than trying to visit them. The following lemma
haracterizes the contribution of such a neglected target to the
ain objective JT in (2).

emma 4. The contribution of a neglected target i ∈ V to the mean
ystem uncertainty JT (defined in (2)) is

(
Ri,0 +

AiT
2

)
.

Proof. The mean system uncertainty JT defined in (2) (for the
original PMN problem setting with M targets in V = {1, 2, . . . ,
M}) can be decomposed as JT =

1
T

∫ T
0

∑
j∈V \{i} Rj(t)dt +

1
T

∫ T
0 Ri(t)

dt , where the second term represents the contribution of target i
to the main objective JT . Since target i is not being visited by any
agent during t ∈ [0, T ] and from (1), Ṙi(t) = Ai ∀t ∈ [0, T ]. Also
note that the initial target uncertainty of target i is Ri(0) = Ri,0.
Therefore, the contribution of target i can be simplified as

1
T

∫ T

0
Ri(t)dt =

1
T

∫ T

0
(Ri,0 + Ait)dt =

(
Ri,0 +

AiT
2

)
. ■

Assumption 4. For any target-cycle Ξ ∈ C , the difference
between the steady state mean cycle uncertainty Jss(Ξ ) (defined
in (8)) and the finite horizon mean cycle uncertainty JT (Ξ ) (de-
ined in (16)) is bounded by some finite constant Ke ∈ R≥0,
.e., |Jss(Ξ ) − JT (Ξ )| < Ke.

The greedy target-cycle construction scheme uses the Jss(·)
etric defined in (8) to compare the performance of different

arget-cycles as it can be evaluated efficiently using Theorem 1.
owever, since the original objective JT in (2) is evaluated over
finite horizon T , the JT (·) metric defined in (16) is more ap-

propriate to evaluate (and compare) different target-cycle per-
formances. The above assumption states that JT (·) will always lie
within Jss(·) ± Ke and we point out that Ke is small whenever: (i)
the steady state tour duration TΞ and the finite horizon T is such
that T ≫ TΞ , and (ii) the dynamics of the steady state error of
(11) are faster (i.e., according to Lemma 3, when Ai

Bi
≪ 1).

Target-Cycle Expansion Operation (TCEO). Consider the target-
cycle Ξ = {1, 2, . . . ,m} with its corresponding sequence of edges

= {(m, 1), (1, 2), . . . , (m − 1,m)}. As shown in Fig. 4, in order
o expand Ξ so that it includes one more target i chosen from
he set of neglected targets V \Ξ , we have to: (i) replace one
dge (n − 1, n) chosen from ξ with two new consecutive edges
n − 1, i), (i, n) ∈ E and (ii) insert the neglected target i into Ξ
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Fig. 4. A basic target-cycle expanding operation (TCEO).

between targets n−1 and n. Whenever |V \Ξ | > 0, the existence
of a such i and (n − 1, n) is guaranteed by the bi-triangularity
condition in Assumption 1. Upon executing these two operations,
a new (expanded) target-cycle Ξ ′ (and ξ ′) is attained as shown in
Fig. 4. The following theorem derives the marginal gain (denoted
as ∆JT (i|ξ, (n − 1, n))) in the main objective JT in (2) due to such
a target-cycle expansion in terms of Jss(·) in (8).

Theorem 2. Under Assumptions 1, 2 and 4, the marginal gain in
the mean system uncertainty JT (defined in (2)) due to the basic
target-cycle expansion operation (shown in Fig. 4) is

∆JT (i|ξ, (n − 1, n)) =

(
Ri,0 +

AiT
2

)
+ Jss(Ξ ) − Jss(Ξ ′). (17)

ere, Ξ ′ is the expanded cycle and Jss(·) is given in Theorem 1. The
ssociated estimation error of this term is ±2Ke.

Proof. When target i is neglected, Lemma 4 gives the mean
system uncertainty as

(
Ri,0 +

AiT
2

)
+ JT (Ξ ). After the target-cycle

expansion, the mean system uncertainty is JT (Ξ ′) (Note that now
i ∈ Ξ ′ and JT (·) is defined in (16)). Therefore, the gain in mean
system uncertainty is

(
Ri,0 +

AiT
2

)
+ JT (Ξ ) − JT (Ξ ′). Now, adding

and subtracting a (Jss(Ξ ) − Jss(Ξ ′)) term and applying Assump-
tion 4 twice (for JT (Ξ ), JT (Ξ ′) terms) shows that the above ‘‘gain’’
can be estimated by the marginal gain expression given in (17)
(with a tolerance of ±2Ke). ■

Greedy algorithm. Based on the discussion above and exploiting
Theorem 2, Alg. 2 provides a systematic way to construct a can-
didate (sub-optimal) unconstrained target-cycle Ξ# as a solution
for (15). Note that Step 1 of Alg. 2 involves |E | evaluations of
ss(·) (using Theorem 1). In the kth iteration of the subsequent
terative process, if G is fully connected, Step 3 of Alg. 2 requires
k + 1) × (|V | − k − 1) evaluations of ∆JT (using Theorem 2),
here (k + 1) is the number of edges in the current target-cycle
nd (|V | − k − 1) is the number of remaining neglected targets.
ence the required number of total evaluations of ∆JT is clearly
uch smaller than |C | in (15).

Algorithm 2 Greedy target-cycle construction for (15).

Input: Graph topology G = (V , E ).
Output: A sub-optimal target-cycle Ξ# (and ξ#) for (15).

1: Find the target-cycle Ξ in G with only two targets (i.e., |Ξ |=

2) that has the minimum Jss(·) value.
2: while True do
3: Find the optimal way (i.e., maximizes the marginal gain

∆JT in (17)) to expand Ξ over all possible edges to
remove in ξ and targets to add in V \Ξ .

4: If the corresponding marginal gain ∆JT > 0 execute the
expansion (i.e., update Ξ ), otherwise, Break.

5: end while
6: Ξ#

:= Ξ ; ξ#
:= ξ ; Return;
7

Fig. 5. The generated initial threshold matrix Θa(0) (right) for the refined
sub-optimal target-cycle ΞR (left).

TSP-inspired target-cycle refinements. Note that the PMN prob-
lem is more complicated than the Traveling Salesman Problem
(TSP) for several reasons; for instance, in PMN problems, a tour
cost value JT (·), cannot be assigned to individual edges of the
topology, but can only be assigned to target-cycles using The-
orem 1. However, we can still adopt local search techniques
developed for the TSP to further improve the sub-optimal target-
cycle Ξ# (given by Alg. 2) for the PMN problem. Specifically, we
use the conventional 2-Opt and 3-Opt techniques (Blazinskas &
Misevicius, 2011; Nilsson, 2003). The main idea behind a step in
these two methods is to perturb the shape of Ξ# slightly (say into
Ξ ′) and then to check whether Jss(Ξ ′) < Jss(Ξ#). If so, the update
Ξ#

:= Ξ ′ is executed.

3.3. Generating an initial TCP: Θ (0)

Let us denote the final refined sub-optimal target-cycle as
ΞR (and ξ R). We now need to transform ΞR into a set of TCP
parameters to be used as Θ (0) in (7). Since A = {a} under
Assumption 1, we can write Θ (0)

= Θa(0)
∈ RM×M . Further,

note that the TCP values in Θ (0) should be such that they guide
the agent according to Assumption 2 on ΞR. To achieve this,
we simply follow the steps given in Alg. 3. Note that Step 1 of
Alg. 3 ensures that the agent remains at target i ∈ ΞR until
Ri(t) = 0, whenever it is visited. Moreover, Steps 2, 3 of Alg. 3
nsure that the agent follows the target-cycle ΞR (recall that TΞR

epresents the steady state tour duration on the target-cycle ΞR).
n example input/output for this algorithm corresponding to the
arget topology in Fig. 1 is shown in Fig. 5.
Algorithm 3 Generating Θa(0) from the target-cycle ΞR, ξ R.

Input: Graph G = (V , E ), and the target-cycle ΞR, ξ R.
Output: Initial TCP Θa(0) for the use in (7).

1: All the diagonal entries of Θa(0) are set to 0.
2: The (i, j)th entry of Θa(0) is set to 0 for all (i, j) ∈ ξ R.
3: All other (valid/finite) entries of Θa(0) are set to a large

constant P ∈ R where P > TΞR maxi∈V Ai.

4. Single-agent PMN solution: General networks

In this section, we relax the bi-triangularity assumption in
Assumption 1(ii) so as to generalize the developed single-agent
PMN solution for any network. As a reminder, we will also relax
the single-agent assumption in the next section.

When the network G = (V , E ) is sparse, due to the lack
of edges in E , the bi-triangularity assumption made in Assump-
tion 1(ii) may no longer hold. As a result of this assumption
violation, the iterative target-cycle expansion process (i.e., Alg. 2)
might halt prematurely (i.e., while |V \Ξ | > 0) due to the lack
of feasible expansions. Two such examples are shown in Fig. 6.
One obvious approach to overcome this assumption violation is
by inserting (artificial) edges into the network with higher travel
time values. However, while such an approach can make Alg. 2
run without halting, the resulting target-cycle Ξ# will contain
the edges that were artificially introduced, compromising the
target-cycle performance J (Ξ#).
ss
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Fig. 6. Two example sparse networks where Alg. 2 has halted prematurely while
xecuting target-cycle expansion iterations.

Fig. 7. Converting constrained target-cycles into unconstrained target-cycles
with the use of auxiliary targets.

Auxiliary targets. As opposed to introducing artificial edges, we
propose to introduce artificial targets (henceforth called aux-
iliary targets) into the network so as to deal with this issue.
Unlike artificial edges, an auxiliary target is always associated
with a corresponding target in the original network. The physical
interpretation of an auxiliary target is provided in the sequel.

Note that if certain targets in a network can be visited more
than once, the target-cycle expansion process may not have
to be halted due to the lack of edges (sparseness or non-bi-
triangularity) in the network. Therefore, we propose to allow
targets to be visited more than once during a tour on a target-
cycle and we call such target-cycles constrained target-cycles. For
example, in both networks shown in Fig. 6, if target 3 is allowed
to be visited more than once during a tour, we can construct
the constrained target-cycles Ξ̄ = {2, 1, 3, 4, 3} and Ξ̄ =

{6, 7, 3, 2, 1, 4, 3, 5}, respectively. Note that we use the notation
‘‘ ·̄ ’’ to indicate that the target-cycle is constrained (i.e., some
elements are being repeated).

To analyze such constrained target-cycles (i.e., to evaluate
their Jss(·) values in (8)), we use the previously mentioned con-
cept of auxiliary targets. As we will see in the sequel, replac-
ing the repeated targets with a set of carefully chosen aux-
iliary targets can transform a constrained target-cycle into an
equivalent unconstrained target-cycle, enabling the application of
Theorem 1.

Consider a constrained target-cycle Ξ̄ with a target i ∈ Ξ̄

being visited n times during a tour. Then, we first introduce an
auxiliary target pool Ti = {i1, i2, . . . , in} where each auxiliary
target ij ∈ Ti can be thought of as an artificial target located in the
same physical location of target i (i.e., at Xi in the mission space),
but with its own parameters: an uncertainty rate Aj

i and a sensing
rate Bj

i (to be defined). Next, we replace the repeated elements of
target i in Ξ̄ with the elements taken from auxiliary target pool
Ti. Then, we repeat this process for all i ∈ Ξ̄ with |Ti| > 1. This
results in an unconstrained target-cycle which we denote as Ξ

(i.e., without ‘‘ ·̄ ’’, we follow this notational convention in the rest
of this paper).

For example, consider the constrained target-cycles proposed
for the graphs in Fig. 6. Now, using the auxiliary target pool T3 =

{31, 32
} (for both graphs), their respective unconstrained target-

cycles Ξ = {2, 1, 31, 4, 32
} and Ξ = {6, 7, 31, 2, 1, 4, 32, 5} in

Fig. 7 can be obtained.

Equivalence criteria. For the analysis of the constrained target-
cycles, we enforce the requirement that both the targets in Ξ
8

Fig. 8. Sub-cycle unit vectors and sub-cycle matrix (right) for a given
constrained target-cycle Ξ̄ (left).

and Ξ̄ should perform/behave in an equivalent manner at steady
state. Specifically, we enforce the following equivalence criteria
between the targets in Ξ and Ξ̄ .

(1) The dwell time spent at ij ∈ Ξ is equal to the dwell time
spent at i ∈ Ξ̄ on its jth visit during a tour.

(2) The physical location of ij ∈ Ξ is the same as that of i ∈ Ξ̄ .
(3) The contribution to the main objective JT (2) by Ti ⊂ Ξ is

equal to that of target i ∈ Ξ̄ , during a tour.

The first two conditions ensure that the time required to
complete a tour (for an agent) is the same for both Ξ and Ξ̄ .
The third condition implies Jss(Ξ̄ ) = Jss(Ξ ). Hence, if the auxiliary
target parameters are known, Theorem 1 will yield the value of
Jss(Ξ̄ ).

Sub-cycles. Notice that each ij ∈ Ξ can be assigned a sub-cycle
denoted by Ξ

j
i ⊂ Ξ where Ξ

j
i starts with the immediate next

target to ij−1
∈ Ξ and ends with target ij. Therefore, Ξ can

be written as a concatenation of sub-cycles of a target i ∈ Ξ̄ ,
i.e., Ξ =

⋃
ij∈Ti

Ξ
j
i . Also, if for some i ∈ Ξ̄ , |Ti| = 1 (i.e., no

auxiliary targets), then its sub-cycle is Ξ 1
i = Ξ . For example,

for the unconstrained target-cycle Ξ shown in the first graph of
Fig. 7, sub-cycles corresponding to 31, 32

∈ Ξ are Ξ 1
3 = {2, 1, 31

}

and Ξ 2
3 = {4, 32

}, respectively.
The sub-cycle unit vector of Ξ

j
i is denoted by 1̄j

i ∈ R|Ξ | and
its nth element is 1 only if the nth element of Ξ belongs to Ξ

j
i .

Therefore, if 1̄|Ξ | ∈ R|Ξ | is a vector of all ones, with respect to
target i ∈ Ξ̄ , we can write 1̄|Ξ | =

∑
ij∈Ti

1̄j
i. Also, if for some

i ∈ Ξ̄ , |Ti| = 1, then its sub-cycle unit vector is 1̄1
i = 1̄|Ξ |.

The sub-cycle matrix of Ξ is denoted by 1Ξ ∈ R|Ξ |×|Ξ | and its
nth column is the sub-cycle unit vector of the nth element of Ξ .
Note that if ∀i ∈ Ξ̄ , |Ti| = 1, then all elements of 1Ξ will be 1.
Fig. 8 shows an example sub-cycle matrix.

4.1. Analysis of constrained target-cycles

We are now ready to analyze a generic constrained target-
cycle Ξ̄ . Throughout this analysis, we will use the constrained
target-cycle example shown in Fig. 9 for illustration purposes.
Note that in this particular constrained target-cycle, Ξ̄ =

{1, 2, . . . , n, . . . , n + m − 1, n} and target n ∈ Ξ̄ is visited twice
during a tour. Introducing auxiliary targets Tn = {n1, n2

}, Ξ̄ can
be converted to its equivalent unconstrained version Ξ . The sub-
cycles of n1 and n2 in Ξ are Ξ 1

n = {1, 2, . . . , n − 1, n1
} and

Ξ 2
n = {n + 1, n + 2, . . . , n + m − 1, n2

}, respectively. A tour on
Ξ̄ starts/ends when the agent leaves target n to reach target 1 and
we assume the agent behavior on Ξ̄ to follow Assumption 2. We
label the inter-target travel times on Ξ̄ same as before (see Figs. 2
and 9) and define ρ̄Ξ = [ρ1, ρ2, . . . , ρ

1
n , . . . , ρn+m−1, ρ

2
n ]

T as the
travel time vector of the target-cycle Ξ̄ . To simplify the analysis,
we skip the transient analysis of the constrained target-cycle Ξ̄

and directly make the following assumption (see also Remark 1).

Assumption 5. The dwell time dynamics of the constrained
target-cycle Ξ̄ have a feasible and globally asymptotically stable
equilibrium point.
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Fig. 9. A general constrained target-cycle with target n being visited twice
during the cycle.

Fig. 10. Variation of the target uncertainties of the constrained target-cycle
shown in Fig. 9 - after achieving steady state.

Fig. 10 shows the steady state behavior of the target un-
certainties during a tour on the target-cycle Ξ̄ . The notation
τ̄Ξ = [τ1, τ2, . . . , τ

1
n , . . . , τn+m−1, τ

2
n ]

T is used to represent the
steady state dwell times of targets in Ξ . The following lemma
generalizes Lemma 2 to evaluate τ̄Ξ for any target-cycle Ξ̄ .

Lemma 5. Under Assumptions 2 and 5, when a single agent
traverses a generic constrained target-cycle Ξ̄ (with Ξ being the
equivalent unconstrained version of Ξ̄ ), the steady state dwell times
τ̄Ξ are given by

τ̄Ξ = [diag(γ̄Ξ ) − 1Ξ ]
−11Ξ ρ̄Ξ , (18)

where γ̄Ξ ∈ R|Ξ | is such that if the ith target of Ξ̄ is j, then, the ith

element of γ̄Ξ is Bj
Aj
, and 1Ξ is the sub-cycle matrix and ρ̄Ξ is the

ravel time vector of the target-cycle Ξ .

roof. By inspection of the Rn(t) profile in Fig. 10, for each target
∈ Ξ̄ and for each auxiliary target nj

∈ Tn, considering its
orresponding sub-cycle Ξ

j
n’s time period, we can write: (Bn −

n)τ
j
n = An(T

j
n − τ

j
n) ⇐⇒ Bnτ

j
n = AnT

j
n, where T j

n is the total time
aken to complete the sub-cycle Ξ

j
n. Now, using the sub-cycle unit

ectors, we can substitute for T j
n to get: Bnτ

j
n = An(1̄

j
n)T (ρ̄Ξ + τ̄Ξ ).

his relationship gives |Ξ | equations which we need to solve
or τ̄Ξ ∈ R|Ξ |. Arranging all the equations in a matrix form:
iag(γ̄Ξ )τ̄Ξ = 1Ξ (ρ̄Ξ + τ̄Ξ ) gives the result in (18). ■

emark 1. Note that (18) is only valid under Assumption 5,
.e., if the dwell times observed in the kth tour on Ξ̄ (say τ̄Ξ ,k)
onverge to an equilibrium point (τ̄Ξ ) as k → ∞. However,
ased on the form of (18), we can conclude that the conditions
or the existence and feasibility of such an equilibrium point
re |diag(γ̄Ξ ) − 1Ξ | ̸= 0 and [diag(γ̄Ξ ) − 1Ξ ]

−11Ξ ρ̄Ξ > 0,
respectively.

Remark 2. Even though we cannot apply Lemma 1 to simplify
the inverse: [diag(γ̄Ξ ) − 1Ξ ]

−1, using the fact that: rank(1Ξ ) =

(number of auxiliary targets in Ξ ) ≪ |Ξ |, we can apply the
Ken-Miller theorem (Miller, 1981) to efficiently compute this
inverse.
9

Since Lemma 5 gives the dwell time vector τ̄Ξ , we now can
find the total sub-cycle time denoted by T j

n for all targets nj
∈ Ξ

using T j
n = (1̄j

n)T (ρ̄Ξ + τ̄Ξ ). Moreover, we can find the total cycle
time denoted by TΞ using TΞ = 1̄T

|Ξ |
(ρ̄Ξ + τ̄Ξ ).

Lemma 6. Under the same conditions stated in Lemma 5, the
auxiliary target parameters of any nj

∈ Ξ (i.e., Aj
n and Bj

n) are:

Aj
n =

T j
n

TΞ

τ
j
n(Bn − An)

(TΞ − τ
j
n)

and Bj
n =

T j
n(Bn − An)

(TΞ − τ
j
n)

. (19)

roof. Observing the auxiliary target uncertainty profiles R1
n(t)

and R2
n(t) (of auxiliary targets n1 and n2, respectively) illustrated

in Fig. 10 for the target-cycle shown in Fig. 9, note that the shape
f these profiles should satisfy the equivalence criteria that we
reviously established. Therefore, for any generic target-cycle Ξ̄ ,
he first equivalence criterion is guaranteed by:
j
nτ

j
n = Aj

nT
j
n, ∀nj

∈ Tn, ∀n ∈ Ξ̄ . (20)

Using (2), we can write the contribution from a target n ∈

¯ to the main objective JT during a total cycle time period (of
ength TΞ , at steady state) as 1

T

∫
TΞ

Rn(t)dt . Therefore, to en-
force the third equivalence criterion, we need: 1

T

∫
TΞ

Rn(t)dt =

1
T

∫
TΞ

∑
nj∈Tn

Rj
n(t)dt . However, since we can decompose TΞ into

sub-cycle time periods, we can write: 1
T

∫
TΞ

Rn(t)dt =
1
T

∑
nj∈Tn∫

T jn
Rn(t)dt . We use these two relationships to create a system

f equations:
∫
TΞ

Rj
n(t)dt =

∫
T jn

Rn(t)dt, ∀nj
∈ Tn, ∀n ∈ Ξ̄ . As

ncertainty profiles are piece-wise linear, we can evaluate these
ntegrals and simplify this system of equations as:

Ξ (Bj
n − Aj

n) = T j
n(Bn − An), ∀nj

∈ Tn, ∀n ∈ Ξ̄ . (21)

Finally, we can solve (20) and (21) to obtain the auxiliary
target parameters: {(Aj

n, B
j
n) : ∀nj

∈ Tn, ∀n ∈ Ξ̄} as in (19). ■
Using the auxiliary target parameters given by Lemma 6, we

now lump all the respective parameters of targets in Ξ into
vectors as ĀΞ and B̄Ξ . For example, for the target-cycle shown
in Fig. 9, ĀΞ = [A1, A2, . . . , A1

n, . . . , An+m−1, A2
n]

T .

Theorem 3. Under Assumptions 2 and 5, when a single agent
traverses a generic constrained target-cycle Ξ̄ (with Ξ being the
equivalent unconstrained version of Ξ̄ ), the steady state mean cycle
uncertainty Jss(Ξ̄ ) (defined in (8)) is

Jss(Ξ̄ ) =
1
2
(B̄Ξ − ĀΞ )T τ̄Ξ , (22)

here τ̄Ξ is given by Lemma 5 and auxiliary target parameters
ncluded in the vectors ĀΞ and B̄Ξ are given by Lemma 6.

roof. Note that Ξ is an unconstrained target-cycle. Therefore,
e can directly use Theorem 1 to write Jss(Ξ ) =

1
2 (B̄Ξ − ĀΞ )T τ̄Ξ ,

where τ̄Ξ is given by Lemma 5 and unknown parameters in
ĀΞ and B̄Ξ are given by Lemma 6. Finally, according to the
equivalence criterion 3: Jss(Ξ̄ ) = Jss(Ξ ). ■

4.2. Greedy target-cycle construction

Let D denote the set of all possible target-cycles on G . Com-
pared to C in (15), D ⊇ C as D now also includes all the
constrained target-cycles. Clearly, |D| = ∞ and thus, exhaus-
tive search methods (exploiting Theorem 3) cannot be used to
determine the best performing target-cycle in D:

Ξ̄∗
= arg min Jss(Ξ̄ ). (23)
Ξ̄∈D
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Fig. 11. Target-cycle expansion operations (TCEOs).

ence, we seek to efficiently construct a sub-optimal target-cycle
¯ #

∈ D as a candidate for Ξ̄∗ in (23) using a greedy iterative
arget-cycle expansion process identical to Alg. 2.

Notice that having the capability to make repeated visits to
he targets during a tour on a target-cycle (in other words, the
apability to add auxiliary targets) provides flexibility in ways we
an expand a given target-cycle. Therefore, in this paradigm, we
re not constrained to use only the basic target-cycle expansion
peration (labeled TCEO-1) used before – shown in Fig. 4 and

copied in Fig. 11(b). Motivated by this flexibility, we propose two
additional TCEOs labeled TCEO-2 and TCEO-3 shown Fig. 11(c)
and (d), respectively. In particular, TCEO-2 adds a neglected target
to the current target-cycle by creating a new auxiliary target. For
example, compare Fig. 11(a) and (c) to see that the neglected tar-
et i is only included in the expanded target-cycle via the newly
dded auxiliary target 33. In contrast, TCEO-3 adds a neglected
arget to the current target-cycle by eliminating one or more
xisting auxiliary targets. For example, compare Fig. 11(a) and (d)
o see that the neglected target i is only included in the expanded
arget-cycle via the removal of the auxiliary targets 22 and 51.

Regardless of the type of the TCEO, note that we can use
heorems 3 and 2 to determine the corresponding marginal gain.
his enables us to use an identical target-cycle construction algo-
ithm to the one shown in Alg. 2 for the purpose of constructing
sub-optimal target-cycle Ξ̄#

∈ D as a candidate for Ξ̄∗ in
23). However, note that in each greedy target-cycle expansion
teration (i.e., in Step 3 of Alg. 2), we now need to determine the
est feasible target-cycle expansion considering all three types of
CEOs not limiting to TCEO-1. These additional two greedy search
pace dimensions introduced (due to TCEO-2 and TCEO-3) resolve
he issue of ‘premature halting’ of the target-cycle expansion
rocess, because there is always a feasible target-cycle expansion
hat belongs to the type TCEO-2 whenever there are neglected
argets (i.e., when |V \Ξ̄ | > 0) and the network is connected.

SP-inspired target-cycle refinements. If the sub-optimal target-
ycle Ξ̄# given by the greedy target-cycle construction algorithm
s an unconstrained one, we can directly apply the 2-Opt and
-Opt techniques adopted from the TSP literature (Blazinskas &
isevicius, 2011) to refine the solution Ξ̄# further. However, if

¯ # is a constrained target-cycle, application of such 2-Opt or
-Opt techniques requires a few additional steps that we omit
iscussing here, but can be found in Welikala and Cassandras
2019). In the sequel, we denote the refined version of Ξ̄# as Ξ̄R.

.3. Generating an initial TCP: Θ (0)

Recall that our final goal is to transform Ξ̄R into a set of
TCP parameters and then to use them as the initial condition
Θ (0) in the gradient descent process (7). Due to the single-agent
10
Fig. 12. The generated threshold matrix Θa(0) for the refined sub-optimal
arget-cycle Ξ̄R shown (left).

ssumption (i.e., Assumption 1(i)), we can write A = {a} and
Θ (0)

= Θa(0). Note that even though Ξ̄R might be a constrained
arget-cycle, we still can use Alg. 3 to get the corresponding
TCP Θa(0), but under few minor conditions (provided in We-
likala & Cassandras, 2019). Fig. 12 shows an example constrained
target-cycle and its corresponding TCP Θa(0) given by Alg. 3.

5. Multi-agent PMN solution

In the previous two sections, we focused on the single-agent
PMN problem and developed techniques to (i) identify a favor-
able agent trajectory in a given network and (ii) transform the
identified trajectory into a TCP Θ (0) for the subsequent use in
gradient process (7). Now, in order to conveniently generalize

hese single-agent techniques to multi-agent PMNs, as outlined
n Alg. 1, we will partition the network G into N sub-graphs
recall N = |A |). This ‘divide and conquer’ approach allows us
o use the developed single-agent techniques (that respectively
orrespond to Steps 2 and 5 of Alg. 1) independently in each
f the sub-graphs. Therefore, this section presents the proposed
raph partitioning, refining and agent assigning processes that
espectively correspond to Steps 1, 3 and 4 of Alg. 1 (i.e., of the
verall PMN solution). However, for these processes, we largely
dapt known techniques from Ahuja, Magnanti, and Orlin (1993),

Ng, Jordan, and Weiss (2001), Shi and Malik (2000) and von
Luxburg (2007), and thus we omit some technical details in this
section (which can be found in Welikala & Cassandras, 2019) so
as to emphasize our own contributions to achieve this adaptation.
Before getting into details, we emphasize again that each of these
processes is conducted only to arrive at favorable initial TCP
efficiently, and hence the subsequent use of gradient descent (7)
may compensate for any sub-optimalities in the used processes.

5.1. Graph partitioning using spectral clustering

To partition the graph G = (V , E ), we use the spectral cluster-
ing (von Luxburg, 2007) technique – which is a commonly used
global graph partitioning method that also has the advantages
of: (i) simple implementation, (ii) efficient evaluation and (iii)
better results compared to traditional techniques such as the k-
means algorithm (von Luxburg, 2007). In spectral clustering, the
graph partitions of G are derived based on a set of inter-target
similarity values {sij : i, j ∈ V } so that the similarity value between
two targets is high if they belong to the same partition and low
otherwise.

Remark 3. In a typical data-point clustering application, the
graph representation (also called the “similarity graph”) arises
from the known similarity values between the data-points. How-
ever, this is not the case for PMN problems where the physical
graph G (which is different from the similarity graph) is known,
while the similarity values between its targets are unknown.
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eriving similarity values. We exploit the knowledge of the
arget topology G and target parameters to derive appropriate
imilarity values. Typically, a similarity value sij ≥ 0 is obtained
based on a disparity value d(i, j) as

sij = exp
(

−
|d(i, j)|2

2σ 2

)
, i, j ∈ V , (24)

here d : V × V → R and σ 2 is a user defined scaling
parameter that controls how rapidly the similarity sij falls off with
the disparity between i and j (i.e., with d(i, j)) (Ng et al., 2001).
his function (24) is known as the Gaussian similarity function.
ote also that the disparity and similarity values are inversely
elated. We next focus on defining an appropriate disparity metric
or the PMN problems.

For the considered PMN problem setup, neither of using d(i, j)
s the physical distance (i.e., ∥Xi − Xj∥) nor the shortest distance
etween the targets i and j provides a good characterization
o the underlying persistent monitoring aspects of the problem
ecause they disregard target parameters and agent behaviors
hen monitoring targets.
Therefore, we propose a novel disparity metric named mini-

um mean covering cycle uncertainty (CCU):

(i, j) = dCC (i, j) ≜ min
Ξ̄ : i,j∈Ξ̄

Jss(Ξ̄ ). (25)

he argmin of the above problem is named the optimal covering
ycle (OCC) and we denote it as Ξ̄∗

ij . In other words, the OCC Ξ̄∗

ij
s the best way to cover targets i and j in a single target-cycle
o that the corresponding steady state mean cycle uncertainty
s minimized. Therefore, if the CCU value is higher for a certain
arget pair, it implies that it is difficult to cover those two tar-
ets in a single target-cycle. Hence, it is clear that this disparity
etric dCC (i, j) in (25) provides a good characterization to the
nderlying persistent monitoring aspects of the PMN problems.
s an example, if all the trajectory segments in E follow the
riangle inequality in terms of respective travel times, then, for
ny (i, j) ∈ E , the corresponding OCC is Ξ̄∗

ij = {i, j} and CCU is
ss({i, j}).

Motivated by the above example, to estimate the disparity
etric values: dCC (i, j), ∀i, j ∈ V we propose a modified version
f the Dijkstra’s algorithm (Ahuja et al., 1993) coupled with
he cycle expanding and refining techniques discussed in Sec-
ion 4 (details are omitted for brevity, but can be found in We-
ikala & Cassandras, 2019). The resulting disparity values are then
ransformed using (24) to obtain the respective similarity values
ij ∀i, j ∈ V .

pectral clustering algorithm. Finally, based on these similarity
alues, the normalized spectral clustering technique proposed
n Shi and Malik (2000) is applied to derive the set of target
partitions of V , i.e., {Va : a ∈ A } and the respective sub-graphs
{Ga : a ∈ A } where each Ga = (Va, Ea) and Ea ⊆ E is the set of
intra-cluster edges (details are provided in Welikala & Cassandras,
2019).

5.2. Refining the graph partitions

Once the sub-graphs are formed (i.e., Step 1 of Alg. 1), we
execute the target-cycle construction procedure (i.e., Step 2 of
Alg. 1, presented in Section 4) on each sub-graph. The resulting
target-cycle on a sub-graph Ga is denoted as Ξ̄a and is assumed
to be assigned to an arbitrary agent a ∈ A . Note, however, that in
Section 5.3, we will explicitly assign target-cycles to the agents.

An agent a ∈ A can remove a target i ∈ Ξ̄a from its target-
cycle Ξ̄a by reconstructing a new target-cycle over its sub-graph
G while ignoring target i. We call such a process a target-cycle
a

11
Fig. 13. The generated initial TCP Θa(0) when the agent a is initially at target 5
and have been assigned to the target-cycle Ξ̄b = {3, 1, 2} with the fastest path
being Φab = {5, 4, 3}.

ontraction. In contrast, an agent b ∈ A can expand its target-
ycle Ξ̄b to include an external target i ̸∈ Ξ̄b by simply carrying
ut the best possible target-cycle expansion out of the three TCEOs
hown in Fig. 11. Using such contraction and expansion opera-
ions, two agents a, b ∈ A can trade a target i ∈ Ξ̄a between
each other, if the marginal gain ∆Jab,iss ≜ (Jss(Ξ̄a) + Jss(Ξ̄b)) −

(Jss(Ξ̄ ′
a) + Jss(Ξ̄ ′

b)) > 0, where Ξ̄ ′
a and Ξ̄ ′

b are the contracted
and expanded target-cycles, respectively. Upon such a trade, the
agents can update their sub-graphs Ga and Gb appropriately.

We call a set of sub-graphs “balanced” if there is no a, b ∈ A

nd i ∈ Va such that ∆Jab,iss > 0. The spectral clustering method
sed often provides a balanced set of sub-graphs. However, when
his is not the case, we propose a distributed greedy algorithm
details are provided in Welikala & Cassandras, 2019) for the
gents to use so as to balance the sub-graphs by systematically
xecuting trades with positive marginal gains. The convergence
f such a greedy algorithm can be ascertained by observing the
act that each greedy step (i.e., each ‘trade’) decreases the met-
ic:

∑
a∈A Jss(Ξ̄a), which is lower bounded by 0. With that, we

onclude the discussion about Step 3 of Alg. 1.

.3. Assigning agents to the target-cycles

So far, we have identified a set of target-cycles {Ξ̄b : b ∈ B}

n the corresponding set of balanced sub-graphs of G , where B

s the set of target-cycle indexes (identical to the set A ). We now
xplicitly assign these target-cycles {Ξ̄b : b ∈ B} to the agents
ased on initial agent locations {sa(0) : a ∈ A }. First, let us define
he assignment cost between an agent a ∈ A and a target-cycle
¯ b, b ∈ B as hab where hab represents the total travel time on the
astest available path to reach any one of the targets in Ξ̄b starting
rom sa(0). We use Dijkstra’s shortest path algorithm (Ahuja et al.,
993) to compute all these assignment weights. Subsequently,
he assignment problem (between a’s and b’s) is solved using the
hortest augmenting path algorithm (Ahuja et al., 1993).

enerating an initial TCP: Θ (0). Let us assume agent a ∈ A is
ptimally assigned to the target-cycle Ξ̄b and the corresponding
astest path from sa(0) to reach Ξ̄b is Φab = {i1, i2, . . . , in} ⊂ V .
ote that in ∈ Ξ̄b and Xi1 = sa(0). Next, let us define Φ ′

ab =

ab\{in}. We now use Alg. 3 with Ξ̄b to get a corresponding TCP
or agent a as Θa. Note that Alg. 3 only assigns the set of rows:
j : j ∈ Ξ̄b} in Θa as it is sufficient to keep the agent on the target-
ycle Ξ̄b (this corresponds to rows 1–3 in the example TCP Θa

hown in Fig. 13). Therefore, to make sure that agent a follows the
ath Φab, we assign the set of rows: {j : j ∈ Φ ′

ab} in Θa as follows
this corresponds to rows 4–5 in the example TCP Θa shown in
ig. 13). If j and k are two consecutive entries in Φab, in the jth row
f Θa we set: θ a

jj = 0, θ a
jk = 0 and any other entry θ a

jl is set to P or
depending on whether (j, l) ∈ E . Finally, we set Θa(0)

= Θa.
This concludes the discussion about Steps 4 and 5 of Alg. 1,

nd thus, we have now covered all the steps involved in Alg. 1 -
hich is the proposed PMN solution in this paper.
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Fig. 14. Single-agent simulation example 1 (SASE1): Started with a random Θ (0) ,
onverged to a TCP with JT = 129.2.

Remark 4. In some persistent monitoring applications, agents
have limited energy and need to be occasionally recharged. Thus,
it is crucial to plan for agent recharging periods (also known as
incorporating ‘‘endurance constraints’’). One approach to incorpo-
rate such endurance constraints is by appropriately selecting the
planning horizon length T so that all the agents can endure such
a period. Another approach is to consider the available charging
stations as targets with relatively slower uncertainty growth rates
so as to ensure occasional agent visits there. Details are beyond
this paper’s scope and part of ongoing research.

6. Simulation results

In this section, we provide several numerical examples to
show how the greedy initialization process we have developed
can benefit the performance of the TCP used in solving PMN prob-
lems. As a starting point, consider the single-agent PMN problem
configuration (labeled SASE1) shown in Fig. 14(a). In this figure
(and similar figures used in the sequel), blue circles represent the
targets, while black lines represent available trajectory segments
that agents can take to travel between targets. Red triangles and
the yellow vertical bars respectively indicate the agent locations
and the target uncertainty levels. Since both of those quantities
are time-varying (i.e., sa(t) and Ri(t)), we only indicate their state
at the terminal time t = T in a simulation where the best TCP
found so far is used. In all numerical examples, the PMN problem
parameters have been chosen as follows. The target parameters
are: Ai = 1, Bi = 10, Ri(0) = 0.5, ∀i ∈ V and the target locations
(i.e., Xi) are specified in each problem configuration figure. In all
the examples, all the targets have been placed inside a 600 × 600
mission space. The time horizon is taken as T = 500. Each agent is
assumed to have first-order dynamics (following from Zhou et al.,
2019) with a maximum speed of 50 units per second. The initial
locations of the agents are chosen such that they are uniformly
distributed among the targets at t = 0 (i.e., sa(0) = Xi with
i = 1 + (a − 1) ∗ round(M/N)). In cases where the initial TCP
Θ (0) is randomly generated, each finite element in Θ (0) is chosen
from the uniform distribution unif(0, 10).

The proposed PMN solution in this paper (i.e., Alg. 1) in-
cluding the method proposed in Zhou et al. (2019) have been
implemented in a JavaScript-based interactive simulation plat-
form available at http://www.bu.edu/codes/simulations/shiran2
7/PersistentMonitoring/. Readers are invited to reproduce the
reported results and also to try new problem configurations using
this simulator.

Fig. 14(b) shows the evolution of JT (Θ (l)) in the SASE1 when
the TCP Θ (l) was updated according to (7) starting from a ran-
domly selected initial TCP Θ (0) as proposed in Zhou et al. (2019).

We next apply the PMN solution proposed in this paper to

the SASE1. First, a high-performing target-cycle was constructed (

12
Fig. 15. Greedy target-cycle construction for the SASE1. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 16. SASE1: The TCP Θ (0) given by the target-cycle Ξ̄R (the red trace in (a))
shows local optimality. At l = 100, Θ (l) is randomly perturbed. Yet, converges
back to the initial TCP. Cost JT = 114.9 (Improvement = +14.3 compared to
Fig. 14). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

using the proposed greedy algorithm (Alg. 2).Fig. 15(a)→(d) show
the intermediate target-cycles observed (as red traces) during
this process. The resulting target-cycle in Fig. 15(d) is Ξ̄R

=

{2, 1, 2, 5, 3, 4, 5} with Jss(Ξ̄R) = 121.1. Then, Ξ̄R was trans-
formed into a TCP Θ (0) using Alg. 3 to initialize the gradient
escent (7). Fig. 16(b) shows that the obtained TCP Θ (0) results in
JT value of 114.9 which is not further improved via the gradient
escent (7), i.e., Θ (0) may be directly locally optimal. To ensure
his, after 100 iterations of (7) (at l = 100), Θ (l) was randomly
erturbed and it was observed that Θ (l) converges back to the
ame initial TCP (with JT = 114.9). Regardless, we highlight that
his solution is 11.1% better than the solution given by Zhou et al.
2019) (shown in Fig. 14).

The second simulation example we consider is the single-
gent PMN problem configuration shown in Fig. 17(a) (labeled
ASE2). In particular, we use SASE2 to highlight the importance
f gradient steps (7). As shown in Fig. 17(b), when the initial TCP
(0) was selected randomly, (7) converged to a TCP with JT =

51.3. In contrast, when Θ (0) was derived using the technique
roposed in this paper, it directly yields JT = 607.9. Next, when
7) is used to iteratively update the TCP, unlike in SASE1, we
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Fig. 17. Single-agent simulation example 2 (SASE2): Started with a random Θ (0)

and converged to a TCP with JT = 651.3.

Fig. 18. SASE2: The derived initial TCP Θ (0) has a cost JT = 607.9 and is
urther improved by (7) to reach TCP with a final cost JT = 567.0 (Improvement

+84.3 compared to Fig. 17). (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)

bserved a further improvement in JT , finally reaching JT = 567.0
see Fig. 18(b) and (c)). The main difference between the solutions
n Fig. 18(a) and (b) is that in the former the agent avoids visiting
arget 4 and strictly follows the target-cycle shown in red color,
hereas in the latter gradient descent steps have updated the TCP
uch that the agent trajectory now includes target 4. Compared
o Zhou et al. (2019), the percentage improvement achieved from
eploying the proposed PMN solution is 12.9%.
We now consider four multi-agent PMN problem configu-

ations shown in Fig. 19(a)–(d) as our multi-agent simulation
xamples (MASEs). Note that in MASE2, only two agents were
eployed, whereas in all the rest three agents were deployed.
s shown in Fig. 20, when the initial TCP Θ (0) was chosen ran-
omly, the gradient steps (7) have converged to TCPs with JT

values 270.2, 91.7, 274.0, and 201.3 in respective MASE. The
sub-graphs obtained from the proposed graph partitioning tech-
nique (i.e., Step 1 of Alg. 1) for each of the MASEs are shown
in Fig. 21. The constructed target-cycles in sub-graphs and the
process of sub-graph refinement (i.e., Steps 2 and 3 of Alg. 1)
are demonstrated in Fig. 22(a)–(d) with regard to the MASE1.
Sub-figures in Fig. 23 show the determined respective graph
partitions and target-cycles. It was observed that the initial TCPs
given by Alg. 1 are directly locally optimal (similar to what we
13
Fig. 19. Multi-agent simulation examples (MASEs) at t = 0.

saw in SASE1). However, these TCPs performed better than the
optimal TCPs obtained with randomly initialized Θ (0) (shown in
Fig. 20). In particular, the percentage improvements achieved are:
66.3%, 61.7% 78.2%, and 70.3%, respectively. All the discussed
simulation results so far have been summarized in Table 1.

Next, we consider eight randomly generated MASEs (with N =

, M = 15, see Welikala & Cassandras, 2019 for details) (Dall &
Christensen, 2002). When the proposed PMN solution (i.e., Alg. 1)
was deployed, across these eight MASEs, the average percentage
improvement achieved was 69.1%. In fact, on an Intel R⃝ CoreTM
i7-7800 CPU 3.20 GHz Processor with a 32 GB RAM, the average
execution time taken for the proposed Alg. 1 to generate the TCP
Θ (0) was 13.7 s and all such generated TCPs were immediately lo-
cally optimal (similar to what we saw in SASE1, MASE1-MASE4).
In contrast, when the TCPs Θ (0) were randomly generated, the
average execution time observed for the convergence of the gra-
dient steps (7) was 245.8 s. Therefore, the execution time taken
for the proposed off-line greedy initialization process is much
smaller and, at the same time, highly effective.

Comparison with a Brute-Force approach. Finally, to get a sense
of how close the proposed PMN solution is to the global opti-
mal solution, we consider three simple SASEs shown in Fig. 24
and compare the observed performance levels of the proposed
solution to those of a brute-force (exhaustive search) solution.

In particular, this brute-force solution uses Assumptions 1-
(i) and 2 to reduce the search space size. As a result, it only
requires to search (exhaustively) for the optimal visiting target
sequence for a single agent in the given network. However, the
search space size still exponentially increases with the number of
target visits required (which typically is around 100 target visits
for these examples). To address this challenge, when generating
candidate visiting target sequences, we use a branch and bound
approach and keep only a finite number of candidate solutions
at any iteration. Since this cannot guarantee finding a globally
optimal solution, we limit ourselves to simple cases (such as the
ones shown in Fig. 24).

Based on the observed results reported in Fig. 24, it is clear
that the proposed solution scheme in this paper achieves virtually
the same performance levels while only requiring a fraction of the
execution time to determine the brute-force (globally optimal)

solutions.
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Table 1
A summary of obtained simulation results (see also (Welikala & Cassandras, 2019)).
Cost of the optimal TCP Θ∗

(found using (7)): JT (Θ∗)
Single-agent simulation examples Multi-agent simulation examples

1 2 3 1 2 3 4

With randomly generated
initial TCP Θ (0)

129.2 651.3 497.9 270.2 91.7 274.0 201.3

With initial TCP Θ (0) given by
the proposed Alg. 1

114.6 567.0 449.5 90.9 35.1 59.5 59.8

Percentage improvement (%) 11.1 12.9 9.7 66.3 61.7 78.2 70.3
d

Fig. 20. Cost JT achieved in each MASE upon convergence when started with a
random Θ (0) (Config. at t = T is shown).

Fig. 21. Clustering results obtained for the considered MASEs.
14
Fig. 22. For the MASE1: (a) initial sub-graphs, (b) initial target-cycles, (c)–(d)
two ‘trading’ steps and (d) the final sub-graph/target-cycle arrangement.

Fig. 23. Cost JT and improvement achieved in each MASE compared to Fig. 20.
Each MASE started (7) with the TCP Θ (0) given by Alg. 1 and found that Θ (0) is
irectly locally optimal (Config. at t = T is shown).
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Fig. 24. Simple SASEs (at t = 0) used for the performance comparison between
the proposed solution and the brute force solution. Observed performance
levels are given under each caption. Average percentage performance difference:
0.320%. Average percentage execution time saved: 98.02%.

7. Conclusion

We have considered the optimal multi-agent persistent mon-
itoring problem on a set of targets interconnected according to
a fixed graph topology. We have adopted a class of distributed
threshold-based parametric controllers where IPA can be used to
determine optimal threshold parameters in an on-line manner
using gradient descent. Due to the non-convex nature of the
problem, optimal thresholds given by gradient descent highly
depend on the used initial thresholds. To address this issue, the
asymptotic behavior of the persistent monitoring system was
studied, which leads to a computationally efficient and effective
threshold initialization scheme. Future work is directed at ex-
tending the proposed solution to PMN problems with variable
travel times given by higher-order agent dynamic models.
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