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Abstract

We study quantum SU(M) spins with all-to-all and random Heisenberg exchange interactions of root-
mean-square strength J. The M — oo model has a quantum spin liquid ground state with the spinons
obeying the equations of the Sachdev-Ye-Kitaev (SYK) model. Numerical studies of the SU(2) model
with S = 1/2 spins show spin glass order in the ground state, but also display SYK spin liquid behavior
in the intermediate frequency spin spectrum. We employ a 1 /M expansion to describe the crossover from
fractionalized fermionic spinons to a confining spin glass state with weak spin glass order ¢g4. The SYK
spin liquid behavior persists down to a frequency w, ~ Jqga, and for w < w,, the spin spectral density
is linear in w, thus quenching the extensive zero temperature entropy of the spin liquid. The linear w
spectrum is qualitatively similar to that obtained earlier using bosonic spinons for large qp4. We argue
that the extensive SYK spin liquid entropy is transformed as T" — 0 to an extensive complexity of the spin

glass state. We comment on holographic connections of the confinement transition to the fragmentation

of black holes with AdSs horizons.
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I. INTRODUCTION

A common theme in many experimental studies of the hole-doped cuprate compounds below
optimal doping is that while there is nearly static spin or charge order at low temperatures, the
intermediate temperature pseudogap regime can be described in terms of an underlying quantum
spin liquid state. Among recent studies, we note the nuclear magnetic resonance observations
in Las_,Sr,CuQ, of Frachet et al. [1] showing spin glass order at low temperature all the way
up to optimal doping; the neutron scattering observations of Ma et al. on Ma et al. [2] on
Lay 6_.Ndg 451, CuO,4 showing spin stripe order at low temperature under the entire superconduct-
ing dome; and angle-dependent magnetoresistance observations Fang et al. [3] in the pseudogap
metal showing evidence for the breakdown of the Luttinger Fermi surface, which can be interpreted
in terms of a fractionalized Fermi liquid containing a background quantum spin liquid [4]. In the

undoped antiferromagnet, we recall the observations of Dalla Piazza et al. [5] showing intermediate
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energy spinon continua at wavevector (m,0) in a system with long-range Néel order at wavevector
(7, 7).
In this paper, we will study a random quantum Heisenbeg magnet with all-to-all exchange
interactions J;
H—LXN:J”S-'S- (1.1)
VN i<j=1 T .
We study an ensemble of models, where the J;; are independent random variables for each pair

(1,7), and their ensemble averages are
Jij =0 , Ji=J% (1.2)

This model generalizes the classical Sherrington-Kirkpatrik model with Ising spins o; = +£1 to
quantum SU(2) spins S;, acting on a Hilbert space of states with angular momentum S = 1/2 on
each site.

Although such a random exchange model is far from the microscopic situation in the cuprates, it
can successfully capture many aspects of cuprate phenomenology [6]. Here, we will show that it ex-
hibits a deconfinement-to-confinement crossover, and we will obtain explicit results for the dynamic
spin susceptibility across this crossover. This is one of the rare instances in which fractionalization
and subsequent confinement can be described in a strongly-coupled system with gapless matter.

The generalization of the model (1.1) to SU(M) spins, and the limits N — oo followed by
M — oo, yield a fractionalized quantum spin liquid ground state [7] whose fermionic spinons obey
the same equations as the complex Sachdev-Ye-Kitaev (SYK) model [8-11]. On the other hand,
numerical studies [12-14] of the N — oo limit of the model (1.1) for SU(2) and spin S = 1/2 show
the presence of spin glass order in the ground state (in contrast to the SYK model itself, which
does not have spin glass order [15]). However, the recent numerical study of the S = 1/2 SU(2)
model argued [14] that the spin spectral density at intermediate frequencies matched that of the
SYK spin liquid. Specifically, they observed

p sgn(w)
X'(w) ~ =

The leading term in (1.3) has its origins in the spinons obeying the SYK equations [7]; it is often

P—gwy} L w <|w < J,T=0. (1.3)

called the ‘marginal’ spectrum, because electrons scattering off such spin fluctuations acquire a
marginal Fermi liquid Green’s function. (The subleading term, with positive co-efficient ¢, is
related to the co-efficient of the Schwarzian effective action [11].) Neutron scattering observations
[2] on Laj g, Ndg 4Sr,CuOy yield a momentum-integrated inelastic spin spectrum which is doping-
independent, with some similarities to (1.3), along with a doping-dependent static spin stripe
order; these features are similar to the numerical results on the random ¢-J model [14], with the

spin glass order replacing the spin stripe order.



A marginal spectrum is also obtained in the density fluctuations in a model with density-density
interactions, and this has been argued [16] to be related to the anomalous continuum observed
in dynamic charge response measurements [17, 18] on optimally doped Biy1Sr;.9Ca; oCus0Os;
(Bi-2212) using momentum-resolved electron energy-loss spectroscopy (M-EELS).

In the present paper, we will obtain an estimate of the low frequency bound w, of the marginal
spectrum, and also describe the nature of the crossover at w ~ ws.

This paper addresses the nature of the crossover from the spectrum in (1.3) to frequencies
w < wy. The presence of spin glass order implies a delta function at zero frequency

TY"(w)
w

:WqEAé(w) (1'4)

where qg 4 is the spin glass order parameter. We find that the crossover occurs at a frequency

Wy = J(ZEAa for dpa < 17 (15)
and for smaller frequency
X' (w) = Yoy 0<|w <ws, T=0. (1.6)
i ’ ’

Given the numerical estimate gga ~ 0.02 [14], the quantum spin liquid behavior of (1.3) is visible
over a wide range of frequencies.

We note that a linear spectrum, qualitatively similar to (1.6), was found in an earlier theory
[19, 20] of the spin fluctuations by bosonic spinons. The bosonic spinon theory is valid for large
S, and so leads to a large qpa (see Appendix A); it also requires an additional assumption of
marginal stability of a replica symmetry breaking solution to obtain the gapless spectrum. Our
analysis uses fermionic spinons, does not require any additional marginal stability criteria, and
is applicable for small gg4. It is reassuring that the same qualitative behavior is obtained by
fermionic and bosonic spinons. Thus we have a ‘duality’ between fermionic and bosonic spinons
present not only in the gapless, fractionalized, spin liquid regime [7], but also in the crossover to
the confining spin glass state. We note that boson-fermion dualities have seen much discussion in
the context of disorder-free gapless spin liquids on the square lattice [21, 22].

At non-zero temperature, our results have interesting implications for the temperature depen-
dence of the entropy, as sketched in Fig. 1. The fractionalized SYK spin liquid has an extrapolated
entropy which is extensive at 7' = 0 [20]. The SU(2) model in (1.1) has a phase transition to
a spin glass state with gga # 0 at a small temperature Ty,, which is estimated in (4.19) in the
SU(M — oo) limit. Below T, the entropy decreases so that there is no extensive entropy at 7' = 0.
This spin glass entropy should be interpreted as the entropy of quantum and thermal fluctuations

NXY

within a given sector of phase space. However, the spin glass state also has a large number, e, of
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FIG. 1: Schematic plot of the temperature dependence of the entropy. There is a phase
transition at T,,. The « co-efficient is related to the coefficient of the Schwarzian in the theory of
the spin liquid. We argue that the extrapolated T' = 0 entropy of the spin liquid (denoted by the
filled circle) turns into the complexity of the spin glass by the fragmentation of phase space into

an exponentially large number of disconnected sectors at temperatures below T,.

disconnected sectors measured by the exponential of the complezity ¥ [23-28]. We will estimate 3
for our quantum model here, and find that it remains non-zero as 7' — 0. So we conclude that as
we increase 1" past T4, the sectors reconnect, and the complexity turns into the quantum entropy
of the SYK spin liquid.

The SYK spin liquid has a holographic description in terms of the AdS, horizons of charged
black holes [8, 29, 30]. Interestingly, AdSs horizons have a fragmentation instability [31], and this
has been connected to the physics of spin glasses [28, 32-34]. The spin glass transition in Fig. 1
is therefore an instance of this instability of AdS,: the fact that the spin glass state has vanishing
zero temperature entropy implies that the instability can proceed to completion to a state without
black hole horizons. Indeed, the instability of AdSs depends upon the ultra-violet completion of
the quantum gravity theory: it is not present for the SYK model [15], but is present for the SU(2)
spin model in (1.1).

We will begin in Section Il by formulating the path integral of the random SU(M) magnet for
large N but general M. This will be a G-X-Q) theory, involving a path integral over the fermionic
spinon Green’s function and self energy, GG, ¥, and the spin auto-correlation ). We will present the
M — oo limit of this theory in Section I1I, which yields the quantum spin liquid state of Ref. [7].
Spin glass order is absent at M = oo, but is present at any finite M because of a logarithm-squared

divergence of the spin glass susceptibility [20]. We will describe such finite M effects in Section IV,



and present the structure of the effective action for ¢z and the spin autocorrelation function in
powers of 1/M. Section V combines our results to obtain the feedback of the spin glass order on
the dynamic spin spectrum. The low temperature complexity of the quantum spin glass state is

discussed in Section VI.

II. LARGE N ACTION

All our analysis will be carried out in the N — oo limit of a model with SU(M) symmetry. We
will keep M arbitrary in the present section. We consider the SU(M) spin model

N M
1
H= J.:S¢()SP (4 2.1
N7 i<§j:1a,§5:1 S5 (1)S5(7) (2.1)

where S§(i) = [S5(i)]" are generators of SU(M) on each site i, with o, = 1... M. Each site
contains states corresponding to the antisymmetric product of kM (integer) fundamentals, and

these are realized by fermionic spinons with
Sg(i) = fh) @) —kog, > L)) = kM (2.2)

with fermions f®(i) on each site i; the model with bosons on each site realized the symmetric
product of fundamentals, and is briefly discussed in Appendix A. Note that (2.2) implies that the
spinons carry a U(1) gauge charge (see Appendix B), unlike the fermions of the SYK model. We
have made the spin operators traceless, and will restrict ourselves to the particle-hole symmetric
case k = 1/2. The Hamiltonian in (2.1) reduces to the S = 1/2 case of the SU(2) Hamiltonian in
(1.1) for M =2 and k = 1/2 (apart from an overall factor of 1/+/2).

We introduce replicas a = 1...n, and average over J;; to obtain the averaged, replicated

partition function
- / D0, 7YDA (i, ) exp [—S — 5]

5= [ [00.£200) + (@) (FLa(12) - k)]

Z 31, 7) bézT] Z Sb,yj, )] (2.3)

We can now decouple S; with a Hubbard-Stratonovich field Qg 55(7,7') and take the large N
limit. Then the problem reduced to finding saddle points of the single site action

SlQ

N = ar | 1@ ss(r )l n Z4(Q)] (2.4)

J2
S; = “INM drdr’




where Z¢[()] is the single site partition function

21Q) = [ Di DA exp S - 5] (25)
So = [ dr (0002 + ida (Lt~ B1)] (2.6)
Sy = 2’;4 Ardr' Q) 5s(7. ™) [Fla() 1E() = 2] L)) — ko] 27)

Note that now there is no remaining path integral over ). We simply have to find the saddle
points of the action S[Q] in (2.4).
Let us assume that the saddle point does not break spin rotation symmetry: this is true in both

the spin glass, and quantum spin liquid phases. So we make the ansatz [7]

QZZ@;(T, ') = 5?573 Qup(T —7") (2.8)
where (QQu(7) is a real function. Also, because there is no path integral over ), we can also assume

from now on that Qu(7) is independent of 7 for a # b [35]. Then (2.4) is replaced by

while (2.7) is replaced by

J2

[SP—
f oM

Ardr' Qu(r = 7') | Fla (P LD () () = 1M (2.10)

Finally, we express Z¢[Q] as a G-X theory [30, 36]. We define the spinon Green’s function
Gap(T,7) = ——Zfa ) fL (7). (2.11)

Then we can write

Z¢Q] = exp <_k22j2 /deT ZQab T—1 ) /DGab 7,7 VDX (7, 7' )DAo () exp [-MI[Q)]]

" (2.12)

where the action [Q)] is

IQ] = —Indet [—5'(7 = Yo — ()3T — 7')0a — Sa(T, #)1 — ik / dr (1)

—i—/deT’ |:—Eab(7', )Gpa (7', 7) + %Qab(T — 7)Ga(T, T’)Gba(T',T)l ) (2.13)

We note that (2.12) and (2.13) constitute an exact formulation of the theory for all M. Our
remaining task is to evaluate the path integral over G, (7, 7"), Xup(7,7’), and A,(7) in (2.12), and
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then determine the saddle-point solutions for Q. (7) in (2.9). The saddle point equations for @
from (2.9), (2.10), and (2.13) are

1 k2
Qu(r=7) = 35 (@ BEOIEEE), =57
k2
— —<Gab(7_7 T/)Gba(T,’T)>Zf[Q] — M s (214)

but we will find it more convenient to obtain them directly from the functional form of S[Q].
From the resulting Q. (7), we obtain two different characterizations of the spin glass order
[19, 20, 28, 35, 37, 38]. At T' =0, we can examine the long-time limit of the replica diagonal @

QZIimEZQm(T%OO), T=0, (2.15)

n—0 N
a

and g is one measure of the spin-glass order. Alternatively, we can examine the off-diagonal

components, which are necessarily time-independent

Gab = Qab(T) ; a ?A b. (216)

In the n — 0 limit, it is conventional to describe the ultra-metric structure of ¢,, by the Parisi
function ¢(z), 0 < z < 1, and the Edwards-Anderson spin glass order parameter is ¢gg4 = ¢q(1).
Consistency between the two different characterizations requires that § = gga, and this is an
important feature of earlier studies of quantum spin glasses [35].

These definitions also allow us to place a bound on spin-glass order. The state with maximum
order has the spins frozen in a state in which the fermions occupy the states with, say, a =1... kM,

while the other values of « are empty. Evaluating (2.14) on such a state, we obtain

k(1 — k)

7 (2.17)

qea <

Note that (2.17) vanishes as M — oo, and g4 is at most O(1/M) in the large M limit; this is
consistent with our results in Sections III and IV. In Appendix A we review the bosonic spinon
case of (2.1), and find there that gg4 can be O(M?) in that large M limit. We also note that for
SU(2), the definition of the spin glass order from (2.14) is gga = (S;) - (S;)/2, and this is a factor
of 2 smaller than the usual definition; so the bound in (2.17) is ¢gga < 1/8.

We would now like to evaluate In Z¢[Q)] for general Qu(7), with Q4 independent of 7 for a # b.

We first do this at M = oo in Section III, and then examine 1/M corrections in Section IV.



III. LARGE M LIMIT

Assuming a general Qq,(7), the large M limit of the path-integral in (2.12) leads to the following

saddle-point equations for the fermion Green’s function and self-energy

Eab(T) - J2Qab(7—)Gab(7—)
Gap(iw) = [iwdap — S (iw)] ™" (3.1)
where A\, = 0 at the k& = 1/2 saddle-point because of particle-hole symmetry. However, we must

keep in mind that there cannot be any off-diagonal components of the fermion Green’s function at

the saddle-point, because it is not possible for fermions to condense. So we write
Gup(1,7') = Go(r — )0 , M =00, (3.2)

and similarly for ¥,,. From the large N saddle-point equation for Qg in (2.14), we see that Qu

must also be replica diagonal,

Qab<7-> - Q(T)éab ) M =0, (33)

and so there is no spin glass order at M = oo [7]. The large M saddle point equations (3.1)

therefore reduce to

So(r) = J*Q(1)Gq(r)
Goliw) = [iw — Bo(iw)] ™" . (3.4)

These equations hold for general Q(7), and we have emphasized this by the subscript @ on G and
Y. Upon including the large N saddle point equation for @ in (2.14), we obtain

Q1) = —Go(1)Go(-T7), M =occ. (3.5)

The combination of (3.4) and (3.5) yields precisely the large N equations of the fermion of the
complex SYK model [7]. In the following sections, we include corrections from the replica off-
diagonal and two-time fluctuations of G, (7, 7’) and X.(7, 7’), and these will modify (3.5), but we
will continue to use (3.4).

For completeness, we also present the expressions for the path integral in (2.13):

zQ) _ 1@, K Jari S ut -
a,b

Mn n 2Mn
@ = —Indet {—5'(7‘ —7') = 3g(T — 7")] (3.6)

2

+ /deT' [—ZQ(T —1Go(T' —7) + %Q(T —1Go(r —7)Go(T — 1)
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IV. 1/M EXPANSION

This section will describe 1/M corrections to In Z;[@] in (2.9). We will see below that these
corrections are characterized by a divergent spin glass susceptibility, and so spin glass order is
present for any finite M [20].

To evaluate these finite M fluctuations, we extend (3.2) for the fermion Green’s function and

self-energy, and for the constraint Lagrange multiplier by

Gup(7,7') = Go(T — 7")0up + 0Gap(7,7')
Y1, 7)) = Xo(t — 7)) + 080 (1, 7') — 10X (7)0(T — 7')dup
() = Ag +00(7), (4.1)

where \, = 0 at the M = oo saddle point for the particle-hole symmetric case k = 1 /2. We can use
the gauge invariance discussed in Appendix B to choose a gauge in which d\,(7) is 7 independent.
Then the time-independent value of 6\, can be absorbed into \,, and evaluating the path integral
over 6Aq(7) to relative order 1/M? reduces to computing the shift in the saddle-point value of ),
to order 1/M [39, 40]. This shift in the value of \, has to be included in G¢. Also, while the
expectation values of Gu(7,7"), Xap(7,7") must depend only upon 7 — 7/ and have to be replica
diagonal, the fluctuations 0G (7, 7"), 024 (7,7') of both replica diagonal and replica off-diagonal

components must include full dependence on both 7 and 7'.

A. Determinant of quadratic fluctuations

We begin with the first 1/M corrections, which are associated with quadratic fluctuations of
0Gap(7,7"), 0%a (7, 7). Expanding the action (2.13) to second order in fluctuations around the
large M saddle point, we find the quadratic action

1 1
I[Q] = 5 /dﬁ coedmy Z SX2 (11, 7) - Aupea(T1, 72573, 1) - 0Xea(T3, 1) = 5 0XT. A -5X
a,b,c,d
(4.2)
where matrix multiplication involves the following structures:
0Gap(T1,72),
X =6 Xpp(11,72) = (1, 72) ,

0B ap(T1,T2)

(4.3)

A = Agpca(m1, 723 73, T4)

J? Qap(T1,72)0(714)0(732)  —6(T14)6(732) s

ad%bc »
—0(714)0(732) GQ(T14)Gq(T32)

and the dot product is defined as indicated in terms of integration over pairs of time arguments and

summation over pairs of replica indices.
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aTl CT3
Kavica(T1,T2; 73, T4) =

b 7'2) d T4

FIG. 2: Pictorial representation of the ‘ladder’ kernel featuring in the fluctuation determinant.

Having reducedyflge problem to a Gausgipgintegral,
bution to the free energy F (M Bn) ! In Z¢[Q)] orjembes

We denote this contribution &

272
1
Bn Fsg = % drdr > " Qup(7,7) + 5 Indet A+ oM. (4.4)

Let us focus on tife fl§ iof i v ‘ panded in terms of a ladder kernel:
K3+ ... (4.5)
where the ladder kernel and the identity operator are defined as

K= Kab;Cd(Tlv 72573, 7—4) = ‘]2 Qab(Tla TQ)GQ(Tl - T3)GQ(T4 o TZ) 5a06bd ’
1=68(1 — 713)0(74 — 72) Gaclbd -

(4.6)

In Fig. 2 we introduce a diagrammatic notation for the kernel.! Fig. 3 further illustrates the above
contributions to the free energy diagrammatically. One can check that the first diagram, Tr K, is cancelled

by the first term in (4.4).2 The traces of higher powers of the ladder kernel yield:

1 4
_ETYK2 = —JZ dry - -dry % Qab(T1, 72)Qab (73, Ta) Rg)(ﬁ:s)Rg)(Tm) ;
1 Jb 7 , , (4.8)
——TrK® = — /dﬁ : "dTGZQab(TlaTQ)Qab(T3aT4)Qab(7—577—6)Rég)(71377—35)R22)(72477—46)7
6 6 —
and so on, where the time splitting functions are given by the spinon loops
2\ —
RG (1) = Gq(1)Go(—7),
@ Qe (4.9)

R (r,7') = Ga(7)Go(r)Ga(—7 — 7).

I The diagrams focus on the structure of replica indices. To recover the fermionic description one uses a double
line notation where the wiggly line fattens into two lines carrying SU(M) indices.

2 In the computation of Tr K we use the following point splitting prescription to be consistent with the fermionic
description:

TrK = lim [ dridrs Y Kapas(r1, 72i 71+ 2,72 — ). (4.7)
a,b
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N

Kapiea(T1, 72373, T4) = Qab

(b77—2) GQ (d,7'4)

\L\é

FIG. 3: Some diagrams contributing to — In Z;[Q)] at the first subleading order, i.e., O(M?).

. for Qup, ’@gﬁ% ) and (2.16). Without loss of generality,
z as follows:

Qab(Ta 7_/) = [Q(T - T/) + 6] dab + dab » Gaa = 0. (410)

We then find a simple expression for the contribution of Z¢[Q] to the free energy per spin. In particular,

the subleading terms described above yield a contribution to the free energy, which we denote as

In Z¢[Q _ _ o 1 _ _ 1
fng—Bﬁ]:—Co—ﬁq—sz—dﬁ q2+;zng —3q° —caq —da 3 q4+EZQ§b
a#b a#b

(4.11)

where we organize the expression as an expansion in powers of ¢ and q,;,. The coefficients are given by

J* J8

da —R(Q)( =0)?%, dy = —Réz)(zwl =0, iwg = 0, iwz = 0)?, (4.12)
and
= ;l];Z R(Qz) (iw)2Q( Z R (iw, iw')?Q(iw) Q(iw — iw')Q(iw")
+ é]; Z Rg) (iw, i, iw")2Qiw)Q(iw — i )Q(iw — i) Qi) + ...
4
= % RS)( ZR(?’) (iw, 0)2Q(iw)? + 252 ZRQ iw,iw’,0)2Q(iw)Q(iw — i) Qi) + . ..

. [2R§2)(zw 0,07 + R (i, i,0) }Q(zw>2+--. ,

(4.13)

where all Q and Rg) in the above equations are frequency space expressions. We also used their symmetry

properties,
R (—iw, ..., —iwn—1) = (=1)" RS (iw1, ... ,iwn_1), (4.14)
to simplify some expressions and to conclude that coefficients such as d3 = d5 = ... = 0 (for the particle-

hole symmetric case k = 1/2). Note that we have reinstated explicit S-dependence in the above formulas
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in order to make manifest that only the terms multiplying dj are linearly proportional to 8 in the low
temperature limit, 8 — oco. In general, we find that the coefficients of these linearly divergent terms are

always negative and given by

J* (1 ’
do = - (5 ZGQ(m)%> (k=1,2,...). (4.15)

When evaluated on the spin liquid Green’s function Gg(iw) ~ 1/4/w, we find a further divergence in the
values of doy in (4.15): dog ~ (£2F=2. However, this divergence is cutoff when we compute dgj, using the
self-consistent results for Gg(iw) to be computed in Section V: the cutoff frequency scale is w, in (1.5),
and hence dyp, ~ qi{fk. The net contribution of all the dgy terms in (4.11) to the free energy is therefore
of order S¢% 4. For k = 1, there is an additional logarithm of 3 (or w.), as noted below in (4.18).

Higher orders in the 1/M expansion can be computed in a similar fashion. In short, these are charac-

terized by more complicated diagrams build from the kernel K. We elaborate on this in Appendix C.

B. Free energy

In order for the theory to be consistent we will need to ensure that physical quantities such as the free
energy are finite as  — co. As we discuss next, this follows indeed from the equations of motion for the
spin glass parameters ¢ and qgp.

The free energy including the corrections to first subleading in the 1/M expansion reads as follows:

_S[Q] _ Bn?
bnF =3~ 1

6n
M

530 QU +27QMiw =00+ 8 | 7+ 3 | | +11Q1+ 7 Fau+ 0T,

a#b
(4.16)
where the leading terms were given in (2.9) and (3.6), while the F, term was computed in (4.11). Of

particular importance is the term quadratic in the spin glass order parameter

S[Ql _pnJ* [ 5 1 2 J?
v +quab 1_MXIOC o (4.17)
a#b
where xioc = —Rg) (iw = 0) is the local spin susceptibility. The term in square brackets in (4.17) is
precisely that appearing in the denominator of the spin glass susceptibility [20]. In the SYK spin liquid

state [7] (this is evident from the Hilbert transform of (1.3)),

B
Yoo = /0 Q(T)dfzjjﬁln(w), (4.18)

and so the term in square brackets becomes negative at low enough temperatures provided M is finite.

Once this term is negative, spin glass order will appear, and we obtain an estimate

T, ~ Jexp (—\/W) (4.19)

13



for the critical temperature [20]. For temperatures below T¢, xioc is finite at 7= 0 in the presence of spin
glass order, as we will see in Section V.
The simplest ansatz for evaluating the free energy assumes a replica symmetric off-diagonal spin glass

order of the form q,«, = gga. In this case, we employ the following simplification as n — 0:

1
- qub = (n—=1)gga — —dpa- (4.20)
a#b
Extremization of F with respect to gza then yields the following equation of motion:
J? 1 3 )
?QEA:M[2d2QEA+4d4QEA+'-'} +O(M™#). (4.21)

Similarly, extremization with respect to q gives:

J? 1 1 1
5 [q+ BQ(O)] =7 [ doG+4daq + ... + 3 (c1 4+ 202G+ 3c37 +4ea@ +...) | + O(M™?). (4.22)
Evidently, these equations imply
G=qea+0O(B). (4.23)

Evaluated on this solution, the free energy is indeed finite as 8 — oo since all dangerous terms are of the

following form as n — O:

2
F= L@~ aha) — 57 3 o (P — ) + OO L +O(8) = 08", (424
E>1

where in the last step we used the relation (4.23). In Appendix C we compute some examples of contri-
butions at higher orders in the 1/M expansion, and show that these also have a finite limit as § — oo.
A notable feature of this analysis is that the free energy is finite in the S — oo limit, even though there
are many individual terms that diverge in this limit. There is a delicate cancellation of the divergent terms
between the replica diagonal and off-diagonal contributions in the n — 0 limit [35]. This cancellation was
overlooked in an early work on the random quantum magnet [41]: they only included the replica diagonal
terms, which in fact diverge as 5 — oo, and so their energy estimates are not meaningful. Such divergent
contributions to the free energy are also present in various EDMFT theories of strongly correlated phases
[42-47], and we believe that the energy estimates in such theories are not reliable in the phase with

long-range order at very low temperatures.

V. SPECTRUM OF THE SPIN GLASS STATE

We have seen in Section IV that the order parameter characterizing the spin glass ground state, gqp,
is determined entirely by corrections to the leading large M saddle point. Moreover, as 8 — oo, the long

time limit of the spin autocorrelation function, g, equals the Edwards-Anderson order parameter gga
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(which is in turn determined from ¢u). In this section, we will address the feedback of the onset of spin
glass order on the spinon Green’s function and the dynamic spin susceptibility.

In Section I1I, we determined the large M equations, (3.4), obeyed by the fermion Green’s function
for a general spin autocorrelation function Q(7). In the spin glass phase, we mapped Q(7) — Q(7) +¢ in
(4.10) to allow for a non-zero long time limit. The computations of Section IV, will lead to corrections
to Q(7) at order 1/M, along with allowing for a non-zero §. In our analysis here, we will ignore the 1/M
corrections to Q(7), as they have a structure similar to that obtained in the M = oo theory. However,
we will keep the non-zero value of § = gg4 because it has a singular effect on the low frequency fermion
spectrum, as we will now show.

The upshot of this discussion is that we can determine the fermion Green’s function by solving (3.4),
while (3.5) is modified to

Q1) = =Gq(1)Go(—7) + qpa. (5.1)

Remarkably, the equations (3.4) and (5.1) have been solved previously [48, 49|, in different contexts.
Ref. [48] considered a random t-J model in a particular large M limit, with r.m.s. exchange J, and
r.m.s. hopping ¢. Ref. [49] considered a SYK model with a random 4-fermion interaction term with r.m.s.
strength J, and a random 2-fermion hopping term t. The equations of the latter model map onto (3.4)
and (5.1) with ¢t = J,/gea. Their main result was that there was a crossover from SYK non-Fermi liquid
behavior to Fermi liquid behavior at a coherence energy scale ~ t2/J [48, 49] which equals Jqg4. From
this, we can obtain the structure of the low frequency spectrum in the spin glass phase when gp4 < 1.
For the spinon spectral density, we have
1

NG
with w, given by (1.5). The scaling function ®, obeys ®,(0) = 1, and ®,(w > 1) ~ 1/v/w. We present

() = T Gglw) = (/). (5.2)

result for p(w) in Fig. 4, comparing with the scaling in (5.2).
Similarly, for the spin spectral density we have

K'() = ~In Q) = S8y (w/w). 53

Note that the full dynamic spin susceptibility has the delta function in (1.4), which is not included in
(5.3). The scaling function ®, (@) has the form given by (1.6) at @ < 1, and by (1.3) for @ > 1, and this
is illustrated in Fig. 5.
The real part of the local spin response function i.e. the local static susceptibility has a logarithmic
contribution which violates scaling: the gg4 = 0 result in (4.18) is replaced by
Xloc = J\l/% In(J/wy), T=0. (5.4)
This is illustrated in Fig. 6.
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FIG. 4: Numerical results for the spinon spectral density obtained by the solution of (3.4) and
(5.1). The results scale as in (5.2) for small gga. The solutions were obtained with n frequency

points.

VI. COMPLEXITY

In the quantum spin liquid phase, the model features an exponential density of states and an extensive
(in N) thermodynamic entropy. As the system enters the spin glass phase and thermal fluctuations
are further reduced, the thermodynamic entropy approaches zero. Instead, an extensive configurational
entropy counts an exponential number of possible meta-stable glass states. This configurational entropy is
often referred to as the complexity X, which can be expressed as a functional of the free energy F and the
break-point parameter m of the replica symmetry breaking ansatz [23-25].> The number of meta-stable

states in a given free energy band of width 1/(mf) is then given by
Q(F, m) = NEFm) (6.1)

In practice we compute the complexity as the Legendre transform of the free energy with respect to m.

As a function of (3, m), this can be computed as:
¥(8,m) = Bm? 0 F(B,m). (6.2)

We will now show how to evaluate this expression in our model.

3 See also [26] for a review, [27] for a textbook discussion, and [28] for a recent application.
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FIG. 5: Numerical results for the spin spectral density obtained by the solution of (3.4) and
(5.1). The results scale as in (5.3) for small gga.
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FIG. 6: The real part of the local susceptibility x' = X1oc-

Consider the following simple Landau free energy, which exhibits the basic structure of our model:

Trg? Trg?

_ 5 Trg? e3 e 1
_ 2 2 (-3 4 4
Fisgls qav) = —d2 3 <q +n>—36 (q + 37 )—dw q +nzbqab +... (63)

The coefficients ds, e3, d4 are dimensionful but finite as § — oco. We computed ds and d4 in Section 1V;

the coefficient e3 is generated at O(M~!), see Appendix C. We dropped terms that do not contribute to
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the zero-temperature complexity, as well as terms at higher orders in g and ggp.

To evaluate the free energy, we now go beyond the replica symmetric ansatz and consider full replica
symmetry breaking (FRSB). This is implemented by starting from the Parisi ansatz for k-step replica
symmetry breaking [50] and then considering the limit k& — oo: we first make an ansatz for g, with
constant blocks along the diagonal and then successively refine the structure by breaking up blocks into

smaller blocks:

Am, A,
A,y qo A, Q1
dab = ) Am1 == (64)

qO Am1 Q1 Am?
Am, A,

and so on, where A;,, is an m; X m; matrix with blocks A, along the diagonal and all off-diagonal
entries filled with ¢; such that n = )", m;. In the analytic continuation n — 0 we replace the matrix
dab by a monotonously increasing function ¢(z), which extrapolates the structure above. The variable
x € [0,1] parametrizes continuous breaking of replica symmetry. The analog of the Edwards-Anderson
parameter is gga = q(x = 1).

With this ansatz, the free energy (6.3) then becomes a functional of ¢(z):

1
Fsqld:a(2)] = /0 dz {dzﬁ (a(2)? = @) + daf (a(x)" — ")

(6.5)
€3 _ _ r
-5 5 <q3 —374(2)” +zq(x)’ + 3q() / dy q(y)2> 4. }
0
Extremizing the action with respect to ¢(x) leads to the following continuous solution [51]:
x
E dEA , (NS [Oa m]
q(z) = (6.6)
dEA , HARS [mv 1]

where m = 1623%1 qra plays the role of the break point parameter of an equilibrium solution. The extrem-

ization procedure also relates the value of the diagonal contribution G to qga:

do + 64
7= qpa — =484 (6.7)
e33

Note that we do not separately extremize with respect to g because even perturbatively the ansatz (6.3)
only captures part of the full g-dependence of our system.
Evaluated on the saddle point solution for ¢(z), the free energy takes the following value:

didym®  d3m(4 —2m+m?)  d3(2 — m)(4 —2m +m?)B.
fsg(mvﬂe):_ 20410 — Qm( m m)+ 2( m)( m m)ﬁ

e%ﬁg 6e2 5. 96d, (6.5)
dge§(2 — m)?’ﬁg’ e§[48 —5m(4 — m)Q]ﬁg’ '
6(24d4)? 15(48dy)3 o
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where 8. = mf is an effective temperature, conjugate to the free energy. Expanding in large 8, we obtain:

&2 Adod 3642 B
Fog(m, B) = ;§QEA+ 2 4q%A+5734q%A+(’)(6 S (6.9)

Note again that the free energy is finite as § — oo. This was not guaranteed to happen. It is a consequence
of the specific way in which g appeared in (6.3) and of the extremization condition (6.7).
In order to compute the low temperature complexity we take an m-derivative (at fixed ) and then

expand in large 8. According to (6.2), we find:

S(m, B) = Bm*0mFsg(m, B) = B205, Fsg(m, Be)

12d 2 -
3

(6.10)

The fact that the complexity X is finite as § — oo means that the spin glass at zero temperature is

characterized by an extensive number e/¥* of meta-stable states.

VII. DISCUSSION

The initial analysis [7] of the SU(M) random quantum magnet (2.1) found a gapless quantum spin
liquid ground state in the large M limits realized by fermionic and bosonic spinons, and both limits
yielded a ‘marginal’ dynamic spin susceptibility with x”(w) ~ sgn(w) at small w. This fractionalized spin
liquid is unstable to spin glass order at low enough temperatures for any finite M [20], and (4.19) contains
an estimate of the critical temperature for fermionic spinons. A theory of a spin glass ground state was
presented in Refs. [19, 20] using bosonic spinons, in which case the spin glass order can be large, with
qea = O(MY) (see (A2)). However, numerical studies of the SU(2) case show that the spin glass order is
small [13, 14], and the intermediate frequency spin spectrum was a better match with the large M theory
with fermionic spinons [11, 14]. Here we have presented an analysis which is closest to the numerical
observations: a theory for the onset of weak spin glass order using fermionic spinons, where gg4 is at
most O(M 1) (see (2.17)). We identified a frequency scale w, = Jqga, and showed that x”(w) ~ w in the
fermionic spinon theory, as had also been found for small w in the bosonic spinon theory. For the case
of small qg 4, there is a universal crossover from the physics of a quantum spin liquid with fractionalized
spinons for w > wy, to the physics of a confining spin glass for w < wy, and we obtained results for the
crossover functions.

In Section V, we mapped the crossover from the spectrum of the SYK spin liquid to the spin glass to
the crossover from non-Fermi liquid to Fermi liquid behavior in the model of Ref. [49]. We now comment
on why this can be interpreted as a crossover from fractionalization to confinement in our context of
the random quantum magnet. Unlike the case for the model of Ref. [49], the fermions in our quantum

magnet, and in the ¢-J models of Refs. [48, 52|, carry a U(1) gauge charge: (2.2) is invariant under the
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gauge transformation f®(i) — f*(i)e'? (") (see Appendix B). Consequently the SYK spin liquid can be
regarded as a gapless quantum spin liquid with fractionalized fermionic spinons. The crossover to the
spin glass phase is induced by the gg4 term in (5.1), which turns out to be identical to the influence
of the ¢ term in the ¢-J models of Refs. [48, 52]. The latter ¢ term is known to break the U(1) gauge
symmetry, and therefore, by Higgs-confinement continuity, we can regard the low frequency regime of our
quantum magnet as a confining regime of the U(1) gauge symmetry. It is also interesting to compare
with the analysis of the quantum magnet using bosonic spinons in Refs. [19, 20]: that model also exhibits
a fractionalized spin liquid regime, and spin glass order appears by the condensation of bosonic spinons,
which explicitly higgses the U(1) gauge symmetry (see Appendix A). Moreover the dynamic spectrum
X" (w) ~ w appears not only for bosonic and fermionic spinons in the spin glass regime, but also for the
Ising and rotor spin glasses [28, 35, 38] where there is no fractionalization at any frequency scale. So, as
we noted in Section I, the random quantum magnet analyzed here yields a realization of fermion-boson
duality, and a solvable theory of deconfinement-confinement crossover in a gapless system with finite
density matter. We are not aware of other solvable examples of such phenomena.

In Section VI, we employed the insights gained from the structure of the spin glass state to make
some general remarks on the complexity of infinite-range quantum spin glasses in the low temperature
limit. Our main result was that the complexity is generically non-zero and extensive in the limit of
vanishing temperature. For the random quantum magnets considered here, the SU(M — oo) models
have a quantum spin liquid ground state with a non-zero extensive entropy in the limit of vanishing
temperature [20] (here ‘extensive’ refers to proportionality to NN, the number of sites, and not to M).
For finite M, we have shown that this entropy is quenched at an energy scale w.. Below w,, we obtain
a spin glass state which in the limit of vanishing temperature has no extensive entropy but an extensive
complexity. It appears that the chaotic quantum dynamics in the exponentially large phase space explored
by the quantum spin liquid gets turned off at low temperatures, and the phase space fragments into an
exponentially large number of subspaces. It would be interesting to explore this idea in the context of
the holographic nAdS,;/nCFT; paradigm, which gives a gravitational interpretation of the low-energy
Schwarzian sector describing the quantum spin liquid phase at strong coupling [8, 53]: motivated by the
existence of landscapes of multi-centered black hole solutions in four dimensional supergravity [54, 55],
it was previously suggested [28, 32-34] that the spin glass crossover could be realized gravitationally in
terms of the fragmentation instability of AdSs spacetimes [31]. The latter gives rise to a landscape of
asymptotically AdSo geometries characterized by the number, location, and charge of fragmented throats.
It might then be possible to interpret the complexity of the spin glass state as a measure of the volume

of the moduli space of gravitational solutions.

20



Acknowledgements

We thank Tom Banks, Debanjan Chowdhury, Antoine Georges, Darshan Joshi, Chenyuan Li, Juan
Maldacena, Olivier Parcollet, Henry Shackleton, Grigory Tarnopolsky, Maria Tikhanovskaya, and Alexan-
der Wietek for helpful discussions. This research was supported by the National Science Foundation under
Grant No. DMR-2002850. This work was also supported by the Simons Collaboration on Ultra-Quantum
Matter, which is a grant from the Simons Foundation (651440, S.S.). F.H. is supported by the U.S. De-
partment of Energy, Office of Science, Office of High Energy Physics under Award Number DE-SC0009988,
and by the Paul Dirac and Sivian Funds.

Appendix A: Bosonic spinons

The Appendix briefly reviews the bosonic spinon theory of the spin glass state [19, 20] of (2.1).
Each site now contains states corresponding to the symmetric product of KM (integer) fundamentals,

and (2.2) is replaced by
S5 (i) = b;(i)ba(i) — KO3, Z bl ()b (i) = kKM (A1)

with bosons b®(i) on each site . The bosonic and fermionic spinon models co-incide only for the SU(2)
case of physical interest, with M =2, k =k =1/2.
Now the perfectly ordered spin-glass has kM bosons in the o = 1 state (say), and this replaces the

bound in (2.17) by

K2(M —1)
—
Note that (2.17) and (A2) agree for the SU(2) case. However, unlike (2.17), the bound in (A2) does not

qeA < (A2)

vanish in the M — oo limit, and so spin glass order can be order unity in M = oo theory. This order is

realized by a Higgs condensate of the bosonic spinons [19, 20]
() = VM (gpa)""* 61 - (A3)

This condensate breaks the U(1) gauge symmetry associated with the bosonic analog of (A1). In the
replica theory, condensate requires replica off-diagonal components in the boson Green’s function G, at
zero frequency [19, 20]

Gap(iwn) = 6apG (iwn) + BOw,,0 Gab - (A4)

The replica off-diagonal components of g, break replica symmetry, and this symmetry breaking has to

satisfy a marginal stability criterion to obtain a gapless boson spectrum.
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Appendix B: U(1) gauge invariance

Consider the following gauge transformation:

for) — 2O (ry, flr) — e O (1), AalT) — Aa(T) — 070 (B1)

This is an invariance of the fermionic formulation of the theory, e.g., (2.4). In the G-X formulation (2.13),

one can see that the action is invariant under the following transformations:
Gap(1,7) — D= G (7, 7')
Sap(r,7) — PN Sy (7, ) (B2)
Aa(T) — Ao(T) — 000

We can use this gauge symmetry to make A\, time-independent, but cannot remove it entirely because of

the periodicity condition on the fields.

Appendix C: Higher orders in 1/M

In this appendix we compute higher orders in the 1/M expansion of the free energy.
We first clarify some notation: we use a matrix dot product both for fields with two and with four
indices. Every ‘matrix’ multiplication always involves half of the available indices. Relevant quantities

occurring below are:

0¥ =020 (11, m2), Gq =Go(112)0ar, K= Kapea(T1,72;73,74) - (C1)
These multiply as follows:

5 Ga = [ 3 6%ulri m) (Glm)ia)
¢ (C2)
K-K:/dT5dT6ZKab;ef(Tl,TQS7'5,TG)Kef;cd(T5776;7—377—4)'
ef

Let us now explain the 1/M expansion of the free energy. We need to consider higher powers of §%

in the expansion of I[Q]. From (2.13), we find that such terms originate from expanding the logarithm:

— Indet {—5,(7' - T,)(Sab - (Eab(Ta 7-,) + 52@1)(7_’ 7-/))}
) . (C3)
=+ T (63 Gq)’ + ;T (0% Gq)' 4+ 0(0%P).

where we omitted constant, linear and quadratic terms, which are already taken care of. In the functional

integral over (6Gap, 6%4,) we include these higher order terms by introducing a bilocal source Jg; for 63,
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in the integral (4.2):

k

= 0J
B J=0 (C4)
1 M, 8\ 1
x [det(K—1)]72 exp | — kz>3 = Tr <5J> exp {M WQ[J}} ,

where we discarded the leading contribution obtained by evaluating Z; on the large M saddle point, and
we defined

J? 1
WolJ] = —5 dry---drg Z Jab(T1, 72) Jea(73, 1) Qea(76, T4) G (T15) G (736) (1 — K) .0 (T2, 755 76, T4)

a,b,c,d
(C5)

In order to compute the subleading contributions to the free energy, we need to evaluate the new
contributions to — In Z¢[Q)], which are generated by derivatives with respect to J. Note that the logarithm
does not simply remove the exponential in (C4) due to the structure of contractions. For instance, the
terms involving four and six J-derivatives take the following form:

2
1 5\* 1 5\° 1 5\*
—InZ =... —Tr(— ) W2 —Tr|—=) ——— |Tr | = S+ ...
n2s(Q) &z r(éJ) Q" | 3672 r(éJ) 108M [ r<5J> o+
(C6)
It is most useful to think about these expressions diagrammatically: the J-derivatives produce different

Wick contractions among the powers of K. For instance, at O(M ') we obtain the following contribution

to the free energy from the first term in (CG6):

J4
x M/d71d72d73d7'4 za:Qaa(Tls)Qaa(Tm)Rg)(ﬁzx,T43,7'32) (C7)

6
X JM / dTl NN dTG Z(ag)abggQ)gg%(Tg;l)Qca )R(QZ) (7—45)R8) (7-61) (CS)

a,b,c
K(Lb;(fd(7-7 T’; 7—"7 T/H) = Qab
(M~2) we get cubic terms such as the folloying fom the second ¢ shown in (C6):
3
(725)Qab(73 53)R(Q)(7'4277'26)
TrK? =

/dTl codre Y Qab(7-13)Qaa(TQS)Qab(TALG)Rg)(7—14)RS)(7—3277—26a T65)

a,b

D G,



We can now see how further potentially divergent terms are generated in the free energy functional at
higher orders in 1/M. For example, the diagram (C8) and the last diagram shown in (C9) lead to new

contributions to the free energy, which are cubic in the spin glass parameters:
e Trg®?  Trg? Trq?
f@a—;ﬁ<f+m7f+ f)—%m{f+ 5>+~. (C10)

where e3 = O(M~1!) and e = O(M~2). All possible terms in the Landau functional theory (e.g., Ref.

[35]) are generated systematically this way. The other diagrams shown above give 1/M corrections to the
coefficients ¢; and d; that we already included in (4.11).

Note that the free energy contribution proportional to es is naively quadratically divergent as 5 — oo.
However, upon using the replica symmetric ansatz for g, and the extremization condition (4.23), this
divergence is again cured and we obtain a finite limit. This follows from the identity

Trg?2  Trg?
q+ q

7+ 37 — @ —3qqha + 2954 (C11)

for the replica symmetric ansatz as n — 0.
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