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Abstract— This paper addresses the persistent monitoring
problem defined on a network where a set of nodes (targets)
needs to be monitored by a team of dynamic energy-aware
agents. The objective is to control the agents’ motion to
jointly optimize the overall agent energy consumption and
a measure of overall node state uncertainty, evaluated over
a finite period of interest. To achieve these objectives, we
extend an established event-driven Receding Horizon Control
(RHC) solution by adding an optimal controller to account for
agent motion dynamics and associated energy consumption. The
resulting RHC solution is computationally efficient, distributed
and on-line. Finally, numerical results are provided highlighting
improvements compared to an existing RHC solution that uses
energy-agnostic first-order agents.

I. INTRODUCTION

We consider the problem of controlling a group of mobile
agents deployed to monitor a finite set of “points of interest”
(henceforth called targets) in a mission space. In particular,
each agent follows second-order unicycle dynamics and each
target has an “uncertainty” metric associated with its state
that increases when no agent is monitoring (i.e., sensing
or collecting information from) the target and decreases
when one or more agents are monitoring it by dwelling in
its vicinity. The goal is to optimally control each agent’s
motion so as to collectively minimize the overall agent
energy consumption and a measure of target uncertainties -
evaluated over a fixed period of interest. This problem setup
is widely known as the persistent monitoring problem and it
encompasses applications such as environmental sensing [1],
surveillance [2], traffic monitoring [3], data collection [4],
event detection [5] and energy management [6]. In order to
suit different application scenarios, this persistent monitoring
problem has been studied in the literature under different
objective functions [7], agent dynamic models [8], [9] and
target state dynamic models [10], [11].

This paper considers the class of persistent monitoring
problems that assumes the shapes of trajectory segments
(available for the agents to travel between targets) as pre-
defined [4], [10], [12]. The goal is to optimize agent target
visiting schedules (i.e., the sequence of targets to visit and
respective dwell-times to be spent at visited targets) and
agent controls over corresponding trajectory segments. The
work in [10] sees this as a Persistent Monitoring on a Net-
work (PMN) problem where targets and trajectory segments
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are modeled as nodes and edges of a network, respectively.
Such PMN problems are significantly more complicated than
the NP-hard traveling salesman problems [13] and thus have
motivated many different solution approaches [8], [10], [12].

The work in [12] proposes a centralized off-line greedy
algorithm to determine the optimal target visiting schedules
of agents in PMN problems. In contrast, for the same task,
[10] proposes a gradient-based distributed on-line approach
which, however, requires a brief centralized off-line ini-
tialization stage to address non-convexities. An alternative
approach is taken in the recent work [8] which exploits the
event-driven nature of PMN systems to develop a distributed
on-line solution based on event-driven Receding Horizon
Control (RHC) [14]. This RHC solution enjoys many promis-
ing features such as being computationally cheap, parameter-
free, gradient-free and robust in the presence of various forms
of state and system perturbations.

However, the work mentioned above [8], [10], [12] ignores
agent dynamics by assuming each trajectory segment has a
predefined transit-time value that an agent has to spend in
order to travel on it. This assumption allows one to focus on
determining the optimal target visiting schedules of agents,
ignoring how the agents are governed during the transition
periods where they travel on trajectory segments. In essence,
it is identical to assuming each agent follows a first-order
dynamic model controlled by its velocity.

In contrast, in this paper, we assume each agent follows
a second-order dynamic model governed by acceleration
rather than velocity. This leads to a better approximation
of actual agent behaviors in practice and smoother agent
state trajectories [9]. In particular, we incorporate agent
energy consumption into the objective function to limit agent
accelerations and velocities and also to motivate agents to
make energy-efficient decisions. Under these modifications,
we show how each agent needs to optimally select each
transit-time value on its trajectory based on current local
state information - instead of using a fixed set of predefined
transit-time values. Moreover, we explicitly derive optimal
control laws to govern each agent on each trajectory segment.

In this paper, first, we show that each agent’s trajectory is
fully characterized by the sequence of decisions it makes
at specific discrete event-times in its trajectory. Second,
considering an agent at each such event-time, we formulate
a Receding Horizon Control Problem (RHCP) that deter-
mines the agent’s optimal immediate control decisions over
an optimally determined planning horizon. These control
decisions are subsequently executed over a shorter action
horizon defined by the next event that the agent observes, and
the same process is continued in this event-driven manner. As
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the third step, we show that this RHCP includes an optimal
control component and the RHCP is then solved considering
energy-aware second-order agents. Finally, several different
numerical examples (PMN problems) are used to compare
the developed RHC solution with respect to the RHC solution
proposed in [8] that uses energy-agnostic first-order agents.

This paper is organized as follows. Section II presents the
problem formulation and overview of the RHC approach.
Section III presents the formulation and solution of the
RHCP with second-order agents. Numerical results are pro-
vided in Section IV. Finally, Section V concludes the paper.

II. PROBLEM FORMULATION

We consider a 2-dimensional mission space containing
M targets (nodes) in the set T = {1,2, . . . ,M} where the
location of target i ∈ T is fixed at Yi ∈ R2. A team of N
agents in the set A = {1,2, . . . ,N} is deployed to monitor the
targets. Each agent a ∈A moves within this mission space
where its location and orientation at time t are denoted by
sa(t) ∈ R2 and θa(t) ∈ [0,2π], respectively.

a) Target Model: Each target i ∈T has an associated
uncertainty state Ri(t)∈R which follows the dynamics [10]:

Ṙi(t) =

{
Ai−BiNi(t) if Ri(t)> 0 or Ai−BiNi(t)> 0
0 otherwise,

(1)

where Ni(t) =∑a∈A 1{sa(t) =Yi} (1{·} denotes the indicator
function) is the number of agents present at target i at time
t. According to (1): (i) Ri(t) increases at a rate Ai > 0 when
no agent is visiting target i, (ii) Ri(t) decreases at a rate
Ai−BiNi(t) where Bi > 0 is the uncertainty removal rate by
a visiting agent to the target i and (iii) Ri(t)≥ 0, ∀t.

b) Agent Model: The location sa(t) and orientation
θa(t) of an agent a ∈ A follows the second-order unicycle
dynamics given by

ṡa(t)= va(t)
[

cos(θa(t))
sin(θa(t))

]
, v̇a(t)= ua(t), θ̇a(t)=wa(t), (2)

where va(t) is the tangential velocity, ua(t) is the tangential
acceleration and wa(t) is the angular velocity. We consider
ua(t) and wa(t) as the agent control inputs.

Note that according to (1), the agent has to stay stationary
on a target i ∈ T for some positive amount of time to
contribute to decreasing a positive target uncertainty Ri(t).
Therefore, during such a dwell-time period, the agent must
enforce ua(t) = va(t) = 0 with sa(t) = Yi.

c) Objective: Our aim is to minimize the composite
objective JT of the total energy spent Je (called the energy
objective) and the mean system uncertainty Js (called the
sensing objective) over a finite time interval [0,T ]:

JT = α

∫ T

0
∑

a∈A
u2

a(t)dt︸ ︷︷ ︸
, Je

+
1
T

∫ T

0
∑

i∈T
Ri(t)dt︸ ︷︷ ︸

, Js

, (3)

by controlling agent control inputs ua(t),wa(t),∀a ∈A , t ∈
[0,T ]. Note that α in (3) is a weight factor that can also be
manipulated to constrain the resulting optimal agent controls

(due to space limitations, details on selecting α to ensure
proper normalization of the JT components are provided in
[15]). Note also that the cost of angular velocity (steering)
control is not included in (3).

d) Graph Topology: We embed a directed graph topol-
ogy G = (T ,E ) into the mission space so that the targets
are represented by the graph vertices T = {1,2, . . . ,M} and
the inter-target trajectory segments are represented by the
graph edges E ⊆{(i, j) : i, j ∈T }. These trajectory segments
may take arbitrary (prespecified) shapes so as to account
for constraints in the mission space and agent motion. We
use ρi j to denote the transit-time that an agent spends on a
trajectory segment (i, j)∈ E to reach target j from target i. In
contrast to [10] and [8] where these transit-time values were
treated as predefined, in this work they are considered as
control-dependent. We also use Pi j to represent the transit-
time interval (Pi j ⊂ [0,T ] of length ρi j) corresponding to
the transit-time ρi j. The neighbor set and the neighborhood
of a target i∈T are defined based on the available trajectory
segments in E as Ni , { j : (i, j) ∈ E } and ¯Ni = Ni∪{i}.

e) Control: As stated earlier, when an agent a ∈ A
dwells on a target i ∈ T , the agent control ua(t) is zero.
However, over such a dwell-time period, the agent control
wa(t) may or may not be zero (exact details will be provided
later). Next, when the agent is ready to leave the target i, it
needs to decide the next-visit target j ∈Ni along with the
corresponding control profiles ua(t),wa(t) to be used on the
trajectory segment (i, j) ∈ E over t ∈Pi j.

In essence, the overall control exerted on an agent can be
seen as a sequence of: dwell-times δi ∈R≥0, next-visit targets
j ∈ Ni and control profile segments {(ua(τ),wa(τ)) : τ ∈
Pi j}. Our goal is to determine (δi(ts), j(ts),{(ua(τ),wa(τ)) :
τ ∈Pi j(ts)}) for any agent a ∈ A residing at any target
i ∈ T at any time ts ∈ [0,T ], which is optimal in the sense
of minimizing (3).

f) Receding Horizon Control: As a solution to this
PMN problem, inspired by the prior work [8] (where we
dealt with first-order agents without agent energy concerns),
this paper proposes an Event-Driven Receding Horizon Con-
troller (RHC) at each agent. The key idea behind RHC
derives from Model Predictive Control (MPC). However,
RHC exploits the problem’s event-driven nature to signifi-
cantly reduce the complexity by effectively decreasing the
frequency of control updates. As introduced and extended
later on in [14] and [16], [8] respectively, the RHC is
invoked by the agents in a distributed manner at specific
events of interest in their trajectories. Upon invoking it, RHC
determines the agent controls that optimize the objective
(3) over a planning horizon and subsequently executes the
determined optimal controls over a shorter action horizon.

In particular, when the RHC is invoked at some event-time
ts ∈ [0,T ] by an agent a ∈A while residing at target i ∈T ,
it determines: (i) the remaining dwell-time δi(ts) at target i,
(ii) the next-visit target j(ts) ∈ Ni, (iii) the control profile
segments {ua(τ),wa(τ) : τ ∈ Pi j(ts)} and (iv) the dwell-
time δ j(ts) at target j(ts). These control decisions are jointly
represented by Uia(ts) and its optimal value is determined by
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solving an optimization problem of the form:

U∗ia(ts) = argmin
Uia(ts) ∈ U(ts)

JH(Xia(ts),Uia(ts);H)+ ĴH(Xia(ts +H)),

where Xia(ts) is the current local state and U(ts) is the feasi-
ble control set at time ts (exact definitions are provided later).
The term JH(Xia(ts),Uia(ts);H) represents the immediate cost
over the planning horizon [ts, ts +H] and ĴH(Xia(ts +H)) is
an estimate of the future cost based on the state at ts+H. We
follow the variable horizon concept proposed in [8] where
the planning horizon length is treated as an upper-bounded
function of control decisions w(Uia(ts)) ≤ H rather than an
exogenously selected value H, and the ĴH(Xia(ts +H)) term
is ignored. Thus, this approach incorporates the selection of
planning horizon length w(Uia(ts)) into the above optimiza-
tion problem, which now can be re-stated as

U∗ia(ts) = argmin
Uia(ts) ∈ U(ts)

JH(Xia(ts),Uia(ts); w(Uia(ts)))

subject to w(Uia(ts))≤ H.
(4)

1) Preliminary Results: According to (1), the target state
(uncertainty) Ri(t) of a target i ∈T is piece-wise linear and
its gradient Ṙi(t) changes only when one of the following
(strictly local) events occurs: (i) an agent arrival at i, (ii) Ri(t)
switches from positive to zero, denoted as [Ri(t)→ 0+], or
(iii) an agent departure from i. Let us denote the sequence
of such event-times (associated with target i) as tk

i where
k ∈ Z>0 with t0

i = 0. Then, it is easy to see from (1) that

Ṙi(t) = Ṙi(tk
i ), ∀t ∈ [tk

i , t
k+1
i ). (5)

Remark 1: As pointed out in [8], [17] (and the references
therein), allowing multiple agents to simultaneously reside
on a target (known also as “simultaneous target sharing”)
is known to lead to solutions with poor performance levels.
Thus, we enforce a constraint on the controller to ensure [8]:

Ni(t) ∈ {0,1}, ∀t ∈ [0,T ], ∀i ∈T . (6)

Clearly, this constraint only applies if N ≥ 2.
Under (6), it follows from (1) and (5) that the sequence

{Ṙi(tk
i )}k=0,1,... is a cyclic order of three elements: {−(Bi−

Ai),0,Ai}. Next, in order to make sure that each agent is
capable of enforcing the event [Ri→ 0+] at any target i∈T ,
we assume the following simple stability condition [8]:

Assumption 1: Target uncertainty rate parameters Ai and
Bi of each target i ∈T satisfy 0 < Ai < Bi.

a) Decomposition of the Sensing Objective Js: The
following theorem provides a target-wise and temporal de-
composition of the sensing objective Js defined in (3).

Theorem 1: ([8, Th.1]) The contribution to the term Js in
(3) by a target i ∈T during a time period [t0, t1)⊆ [tk

i , t
k+1
i )

for some k ∈ Z≥0 is 1
T Ji(t0, t1), where,

Ji(t0, t1) =
∫ t1

t0
Ri(t)dt =

(t1− t0)
2

[2Ri(t0)+ Ṙi(t0)(t1− t0)].

(7)

b) Local Sensing Objective Function: The local sens-
ing objective function of a target i ∈ T over a period
[t0, t1)⊆ [0,T ] is defined as

J̄i(t0, t1) = ∑
j∈ ¯Ni

J j(t0, t1), (8)

where each J j(t0, t1) term is evaluated using Theorem 1.
c) Decomposition of the Energy Objective Je: A simi-

lar decomposition result as Theorem 1 applies to the energy
objective Je defined in (3). The contribution to Je by an agent
a ∈ A from traversing a trajectory segment (i, j) ∈ E over
the transit-time interval [to, t f ], Pi j is Ja(to, t f ), where,

Ja(to, t f ) =
∫ t f

to
u2

a(t)dt. (9)

Note that the agent does not contribute to the Je term during
dwell-time intervals as ua(t) = 0 during such periods.

d) Agent Angular Velocity Profile wa(t): The control
profile segment {wa(t) : t ∈Pi j} that needs to be used by
an agent a ∈ A over the transit-time interval Pi j on the
trajectory segment (i, j) ∈ E can be obtained using only the
following information: (i) the agent tangential acceleration
profile {ua(t) : t ∈Pi j} and (ii) the shape of the trajectory
segment (i, j) given in a parametric form {(x(p),y(p)) : p ∈
[po, p f ]}. Note that the parameter values po and p f corre-
spond to the terminal target locations Yi and Yj, respectively.
For convenience, let us use the notation: x′p =

dx(p)
d p .

First, we require a minor technical assumption regarding
the said trajectory segment shape parameterization.

Assumption 2: There exists an injective function f :
[po, p f ]→ [0,yi j] such that f (p) ,

∫ p
po

(
(x′p)

2 +(y′p)
2
) 1

2 d p,
with f (p f ) = yi j and a corresponding inverse function f−1.

Second, let F(p) , (x′py′′p − y′px′′p)/
(
(x′p)

2 +(y′p)
2
) 3

2 and
la(t) be the total distance the agent has traveled on the
trajectory segment (i, j) by time t. Finally, notice that la(t) =∫ t

to va(t)dt and va(t) =
∫ t

to ua(t)dt, ∀t ∈ [to, t f ] , Pi j with
terminal conditions: la(t f ) = yi j and va(t f ) = 0.

The following Theorem 2 allows us to dispense of wa(t)
as an agent control by obtaining it in terms of va(t). Note
that, due to space limitations, all proofs are provided in [15].

Theorem 2: The required agent angular velocity profile
{wa(t) : t ∈Pi j} on trajectory segment (i, j) ∈ E is

wa(t) = F( f−1(la(t)))va(t), (10)

where f (·) and F(·) are the functions defined earlier.
Two example usages of this theorem are provided in [15].

e) The Equivalent Dynamic Agent Model: Since we
now have discussed how an agent a ∈ A can control its
angular velocity wa(t) (i.e., via (10)), we can omit angular
dynamics from (2) to construct an equivalent dynamic agent
model, that focuses only on the tangential dynamics on a
trajectory segment (i, j) ∈ E . In particular, upon taking the
state vector as [la(t), va(t)]T for some t ∈ Pi j, we can
express the corresponding state dynamics as a second-order
single-input linear system:[

l̇a(t)
v̇a(t)

]
=

[
0 1
0 0

][
la(t)
va(t)

]
+

[
0
1

]
ua(t). (11)
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2) ED-RHC Problem (RHCP) Formulation: Consider an
agent a ∈ A residing on a target i ∈ T at some time ts ∈
[0,T ]. Recall that control Uia(ts) in (4) includes dwell-time
decisions δi and δ j at the current target i and the next-visit
target j ∈Ni, respectively. As shown in Fig. 1, a dwell-time
decision δi (or δ j) can be divided into two interdependent
decisions: (i) the active time τi (or τ j) and (ii) the inactive
(or idle) time τ̄i (or τ̄ j). Therefore, the agent has to optimally
choose decision variables which form the control vector
Uia(ts) = [τi, τ̄i, j,{ua(t)},τ j, τ̄ j]. Note that here we have:
(i) omitted representing each of these decision variable’s
dependence on ts, (ii) used the notation {ua(t)} to represent
{ua(t) : t ∈Pi j(ts)} and (iii) omitted {wa(t) : t ∈Pi j(ts)} as
it can be found directly from {ua(t)} via (10).

a) The Receding Horizon Control Problem (RHCP):
Let us denote the real-valued component of the control vector
Uia(ts) in (4) as Uia j(ts) = [τi, τ̄i,{ua(t)},τ j, τ̄ j]. The discrete
component of Uia(ts) is simply the next-visit target j ∈Ni. In
this setting (see also Fig. 1), we define the planning horizon
length w(Uia(ts)) in (4) as

w(Uia j(ts)), τi + τ̄i +ρi j + τ j + τ̄ j. (12)

The current local state Xia(ts) in (4) is considered as Xia(ts) =
[sa,va,θa,{R j : j ∈ ¯Ni}] (again, omitting the dependence on
ts). Then, the optimal controls are obtained by solving (4),
which can be re-stated as the following set of optimization
problems, henceforth called the RHC Problem (RHCP):

U∗ia j = argmin
Uia j ∈ U

JH(Xia(ts),Uia j; w(Uia j)); ∀ j ∈Ni,

subject to w(Uia j)≤ H,
(13)

j∗ = argmin
j ∈Ni

JH(Xia(ts),U∗ia j; w(U∗ia j)). (14)

Note that (13) requires solving |Ni| optimization problems,
one for each neighboring target j ∈Ni (| · | is the cardinality
operator). The next step (14) is a simple comparison to
determine the optimal next-visit target j∗. Therefore, the final
optimal controls of the RHCP are U∗ia(ts) = [U∗ia j∗ , j∗].

The objective function JH(·) in (13) is chosen to reflect the
contribution to the main objective JT in (3) by the targets in
the neighborhood ¯Ni and by the agent a, over the planning
horizon [ts, ts +w] as

JH(Xia(ts),Uia j; w), αH Ja(to, t f )︸ ︷︷ ︸
,JeH

+
1
w

J̄i(ts, ts +w)︸ ︷︷ ︸
,JsH

. (15)

where w= w(Uia j) and αH , α (i.e., the weight factor used
in (3)). In (15), the form of the JsH component has been
selected so that it is analogous to the Js component in (3)
(with T replaced by w). As illustrated in Fig. 1, note also
that te , ts +w, [to, t f ], Pi j ⊆ [ts, te] and ρi j , t f − to.

b) Planning Horizon: In conventional RHC methods,
the RHCP objective function is evaluated over a fixed plan-
ning horizon length H, where H is selected exogenously.
This makes the RHCP solution dependent on the choice
of H. In contrast, through (15) and (12) above, we have

Fig. 1: Event timeline and control decisions in ED-RHC.

made the RHCP solution (i.e., (13) and (14)) free of the
parameter H, by using H only as an upper-bound to the
actual planning horizon length w(Uia j) in (12) and selecting
H to be sufficiently large (e.g., H = T − ts).

In fact, since the planning horizon length w(Uia j) is a
control-dependent, the above RHCP formulation simultane-
ously determines the optimal planning horizon length w∗ =
w(U∗ia j∗). Moreover, as shown in Fig. 1, the time to depart
from the current target i (i.e., to), the time to arrive at the
destination target j (i.e., t f ) and the corresponding transit-
time ρi j = t f − to, are also control-dependent. Hence, this
RHCP formulation also determines the optimal values of
each of these quantities: t∗o , t∗f and ρ∗i j∗ , respectively.

c) Overview of the RHCP Solution Process: Looking
back at (7) and (8), notice that the sensing component JsH
of the RHCP objective (15) does not explicitly depend on
the agent control profile segment {ua(t) : t ∈Pi j}, but, it
depends on the agent’s transit-time ρi j value and on the other
control decisions in Uia j: τi, τ̄i,τ j, τ̄ j. Therefore, let us denote
JsH as a function parameterized by ρi j: JsH(τi, τ̄i,τ j, τ̄ j; ρi j).

In contrast, based on (9), notice that the energy component
JeH of the RHCP objective (15) only depends on agent
control profile segments, specifically on {ua(t) : t ∈Pi j}.
Therefore, let us denote JeH simply as JeH({ua(t)}).

As illustrated in Fig. 2, we exploit this property of the
RHCP objective components (JsH and JeH ) to solve the
RHCP (13). In particular, we start with analytically solving
the optimization problem which we label as RHCP(ρi j):

J∗sH(ρi j), min
(τi, τ̄i,τ j, τ̄ j) ∈ Us(ρi j)

JsH(τi, τ̄i,τ j, τ̄ j; ρi j). (16)

For this purpose, we exploit a few results established in [8]
where RHCP(ρi j) (16) has already been solved while treating
ρi j as a known constant.

Next, we use the J∗sH(ρi j) function obtained from (16) and
the relationship ρi j = t f − to to reformulate the problem of
optimizing the RHCP objective (15) as an optimal control
problem (OCP):

[t∗o , t
∗
f ,{u∗a(t)}] = argmin

to, t f , {ua(t)}
αHJe({ua(t)})+ J∗sH(t f − to).

(17)
Finally, as shown in Fig. 2, it is straightforward how

the RHCP (13) solution U∗ia j can be constructed from the
obtained solutions of the OCP (17) and the RHCP(ρi j) (16).

d) Event-Driven Action Horizon: Each RHCP solution
(i.e., U∗ia(ts) = [U∗ia j∗ , j∗] from (13)-(14)) obtained over a
planning horizon w(U∗ia j∗)≤ H is generally executed over a
shorter action horizon h≤ w(U∗ia j∗). In particular, the action
horizon h is determined by the first event that takes place
after ts, the time when the RHCP was last solved. Such
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Fig. 2: Overview of the three-step RHCP solution process
when solving (13) for some next-visit target j ∈ Ni: 1.
Solving the receding horizon control component of (13) (i.e.,
(16)); 2. Solving the optimal control component of (13) (i.e.,
(17)); 3. Constructing the final solution of (13).

a subsequent event may be controllable if it results from
executing the last solved RHCP solution or uncontrollable if
it results from a random or an external event (if allowed).

When executing the RHCP solution obtained by an agent
at target i at time ts, there are three mutually exclusive
controllable events that may occur subsequently. They are:

1. Event [h→ τ∗i ]: This event is feasible only if τ∗i (ts)>
0 and it occurs at a time t = ts + τ∗i (ts). If Ri(t) > 0, it
coincides with a departure event from target i. Otherwise,
i.e., if Ri(t) = 0, it coincides with a [Ri→ 0+] event.

2. Event [h→ τ̄∗i ]: This event is feasible if τ∗i (ts) = 0
(when Ri(ts) = 0) and τ̄∗i (ts)≥ 0. It occurs at t = ts + τ̄∗i (ts)
and coincides with a departure event from target i.

3. Event [h→ ρi j∗ ]: This event is feasible only if a
departure event (from target i) occurred at ts. Clearly this
event coincides with an arrival event at target j∗(ts).

In an agent trajectory, at a given time instant, only one
of these three controllable events is feasible. However, there
are two uncontrollable events that may occur at an agent
residing in a target i due to two specific controllable events
at a neighboring target j ∈Ni. These two types of events
are aimed to enforce the “no simultaneous target sharing”
condition (i.e., the control constraint (6)) and thus, they only
apply to multi-agent problems. To enforce this condition, an
agent at target i modifies its neighborhood Ni to Ni\{ j}
when: (i) another agent already resides at target j or (ii)
another agent is en-route to visit target j. Therefore, we
define the following two neighbor-induced events at target
i due to a neighbor j ∈Ni:

4. Covering Event C j, j ∈Ni: This event causes Ni to
be modified to Ni\{ j}.

5. Uncovering Event C̄ j, j ∈Ni: This event causes Ni
to be modified to Ni∪{ j}.

If one of these two events occurs while the agent is
awaiting an event [h→ τ∗i ] or [h→ τ̄∗i ], the RHCP is resolved
to account for the updated neighborhood Ni.

e) Three Forms of RHCPs: The exact form of the
RHCP ((13)-(14)) that needs to be solved at a certain event-
time depends on the event that triggered the end of the
previous action horizon. In particular, corresponding to the
three controllable event types, there are three RHCP forms:

RHCP1: At a target i and time ts, this problem form is

solved upon: (i) the arrival event or (ii) a C j (or C̄ j), j ∈Ni
event, when Ri(ts)> 0.

RHCP2: At a target i and time ts, this problem form is
solved upon: (i) an event [h→ τ∗i ] or (ii) a C j (or C̄ j), j ∈Ni
event, when Ri(ts) = 0. Thus, it is the same as RHCP1 but
with τi = 0 (hence simpler).

RHCP3: At a target i and time ts, this problem form is
solved upon: (i) an event [h→ τ∗i ] with Ri(ts)> 0 or (ii) an
event [h→ τ̄∗i ]. Simply, this problem form is solved whenever
the agent is ready to depart from the target. Therefore, it is
the same as RHCP1 but with τi = τ̄i = 0.

III. SOLVING EVENT-DRIVEN RHCPS

1) Solution of RHCP3: RHCP3 is the simplest RHCP
given that τi = τ̄i = 0 in Uia by default. Therefore, Uia j (i.e.,
the real-valued component of Uia , used in (13)) is limited
to Uia j = [{ua(t)},τ j, τ̄ j] and the planning horizon w(Uia j)
defined in (12) becomes w(Uia j) = ρi j +τ j + τ̄ j. Under these
conditions, we next solve (13) (via solving RHCP(ρi j) (16)
and OCP (17)) and (14) to obtain the RHCP3 solution.

a) Solution of RHCP(ρi j) (16): As mentioned before,
RHCP(ρi j) has already been solved in [8] - while treating ρi j
as a known fixed value. In particular, the RHCP(ρi j) solution
corresponding to the RHCP3 takes the form [8, Th. 2]:

(τ∗j , τ̄
∗
j ) =



(0,0) if D1 > D2 or Ā≥ B j

(D2,0) else if D2 < D3

(D3,0) else if B j > Ā≥ B j

[
1− ρ2

i j
(ρi j+D3)2

]
(D3, D̄1) else if D̄1 ≤ D̄2

(D3, D̄2) otherwise,

(τ∗i , τ̄
∗
i ) = (0,0) and J∗sH(ρi j) = JsH(τ

∗
j , τ̄
∗
j ; ρi j),

(18)
where Ā = ∑m∈ ¯Ni

Am, D1 =
Āρi j
Bi−Ā , D2 = min{D3, H −

ρi j}, D3 =
R j(to)
B j−A j

+
A j

B j−A j
ρi j, D̄1 =

√
(B j−A j)(ρi j+D3)2−B jρ

2
i j

Ā j
−

(ρi j +D3), Ā j = Ā−A j, D̄2 = H−(ρi j +D3), R̄ = ∑m∈ ¯Ni
Rm,

JsH(τ j, τ̄ j; ρi j) =
C1τ2

j +C2τ̄2
j +C3τ j τ̄ j +C4τ j +C5τ̄ j +C6

ρi j + τ j + τ̄ j
,

C1 =
1
2 [Ā−B j], C2 =

Ā j
2 , C3 = Ā j, C4 = [R̄(to)+ Āρi j], C5 =

[R̄ j(to)+ Ā jρi j], R̄ j , R̄−R j, C6 =
ρi j
2 [2R̄(to)+ Āρi j].

Note that in (18), not only J∗sH , but also τ∗j and τ̄∗j are
functions of the transit-time ρi j. To provide intuition about
the J∗sH(ρi j) function form, let us consider the first case
in (18) where (τ∗j , τ̄

∗
j ) = (0,0) that results in J∗sH(ρi j) =

JsH(0,0; ρi j) = R̄(to) + 1
2 Āρi j, under the condition Ā ≥ B j

or D1 > D2. Using the coefficients stated below (18), it can
be shown that D1 > D2 ⇐⇒ ρi j > min{R j(to)(Bi−Ā)

ĀB j−A jBi
, H(1−

Ā
Bi
)}. From this example, it is clear that the function J∗sH(ρi j)

is dependent on the neighborhood parameters (e.g., Ā,B j,Bi)
as well as the current neighborhood state (e.g., R̄(to), R j(to)).
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b) Objective Function of OCP (17): Note that we now
have solved RHCP(ρi j) and have obtained the functions (of
ρi j): τ∗i , τ̄

∗
i ,τ
∗
j , τ̄
∗
j , and, most importantly, J∗sH . Based on the

RHCP solution process outlined in Fig. 2, our next step is
to formulate and solve the corresponding OCP (17).

As seen in (17), the sensing objective component of OCP
is J∗sH(t f − to). Note that we now can explicitly express this
term using the obtained J∗sH(ρi j) function in (18) and the
relationship ρi j = t f − to. For notational convenience, taking
into account that in RHCP3 to is the current event-time
when the RHCP is solved (i.e., to = ts where ts is known),
let us denote the sensing objective component of OCP as
φ(t f ) , J∗sH(t f − to). On the other hand, using (15) and
(9), the energy objective component of OCP (17) can be
expressed as JeH({ua(t)}) =

∫ t f
to u2

a(t)dt.
c) Solution of OCP (17): In the following analysis, for

notational convenience, we use ẋ = Ax(t)+Bu(t) with A =[
0 1
0 0

]
, B =

[
0
1

]
, x(t) =

[
la(t)
va(t)

]
, u(t) = ua(t), to represent

the agent dynamics stated in (11). Under this notation, the
OCP (17) can be stated as

min
t f ,{u(t)}

αH

∫ t f

to
u2(t)dt +φ(t f )

subject to ẋ = Ax(t)+Bu(t),

x(to) = [0,0]T , x(t f ) = [yi j,0]T .

(19)

The last two constraints in (19) are simply terminal con-
straints for the agent motion on the trajectory segment (i, j).
Note that (19) is a standard free final time, fixed initial
and final state optimal control problem. Hence, there is an
established solution procedure [18] (see [15] for details).

Theorem 3: The optimal terminal time t∗f of the OCP (19)
satisfies the equation:

(t f − to)4 dφ(t f )

dt f
= 36αHy2

i j, (20)

where φ(t f ) is known and the corresponding optimal control
law u∗(t) is given by

u∗(t) =
12yi j

(t∗f − to)3

[ t∗f + to
2
− t
]
, ∀t ≡ [to, t f ]. (21)

Using the optimal terminal time t∗f and control u∗(t) (i.e.,
u∗a(t)) given in Theorem 3, the optimal energy objective
component of this OCP can be obtained as JeH({u∗a(t)}) =
12y2

i j/(t
∗
f −to)3. The corresponding optimal sensing objective

component is φ(t∗f )= J∗sH(t
∗
f −to) and the optimal transit-time

value is ρ∗i j = t∗f − to.
d) Solution of RHCP (13) for U∗ia j: As outlined in

Fig. 2, we next conclude solving RHCP (13). First, we apply
the determined ρ∗i j value in (18) to get the optimal control
decisions: τ∗j and τ̄∗j of the control vector U∗ia j (13).

Remark 2: Note that τ∗j and τ̄∗j in (18) are piece-wise
functions of ρi j (with at most five cases). Hence, J∗sH(ρi j)
in (18) is also a piece-wise function of ρi j.

Among the remaining control decisions in U∗ia j (13), we
have already found the optimal tangential acceleration profile
segment {u∗a(t) : t ∈Pi j}. Integrating this, the corresponding

tangential velocity profile segment can be obtained as v∗a(t)=
6yi j
(ρ∗i j)

3 (t − to)(to + ρ∗i j − t), ∀t ∈ Pi j. Finally, the optimal

angular velocity profile segment {w∗a(t) : t ∈Pi j} (required
in U∗ia j) can be found using v∗a(t) in (10) together with the
information about the shape of the trajectory segment (i, j).

Remark 3: Note that the OCP (19) (or (17) in general)
only requires the total length yi j value of the trajectory
segment (i, j). The shape of (i, j) becomes important only
when w∗a(t) has to be determined to facilitate the agent’s
departure from target i to reach target j (i.e., at the end of
an RHCP3 solving process).

e) Solution of RHCP (14) for j∗: We now have solved
RHCP (13) and have obtained the optimal control vector U∗ia j
corresponding to the next-visit target j. Next, this process
should be repeated for all the neighboring targets j ∈ Ni
to get the set of control vectors: {U∗ia j : j ∈ Ni}. Finally,
the optimal next-visit target j∗ can be found from (14) as
j∗ = argmin j∈Ni

JH(Xia(ts),U∗ia j; w(U∗ia j)).
Upon solving RHCP3, the agent a departs from the target

i and starts following the trajectory segment (i, j) while
executing the obtained optimal agent controls until it arrives
at the target j∗. According to the proposed RHC architecture,
upon arrival, the agent will solve an instance of RHCP1.

2) Solution of RHCP1 and RHCP2: Due to space limi-
tations, this topic is omitted here but can be found in [15].

IV. NUMERICAL RESULTS

In this section, we compare the developed RHC solution
with respect to the RHC solution proposed in [8]. While both
these solutions address the same PMN problem, the former
considers the agents as energy-aware and second-order, and
the latter assumes the agents as energy-agnostic and first-
order. In other words, [8] assumes that each trajectory
segment has a predefined transit-time value that an agent
has to spend in order to traverse on it, and disregards the
energy consumption associated with the agent motion.

The FO-0 curve in Fig. 3 shows the tangential velocity
profile over a trajectory segment for such an energy-agnostic
first-order agent [8]. Here, the corresponding transit-time ρF0
is predefined. However, note that we can neither character-
ize the total energy consumption nor control a real-world
agent over such velocity profile due to the instantaneous
accelerations assumed. Therefore, for this comparison, we
approximate the FO-0 curve with the FO-1 curve shown
in Fig. 3. In other words, we assume that each agent on
each trajectory segment follows a sequence of constant
acceleration (of uF1), constant velocity (of vF1) and constant
deceleration (of −uF1) phases. For convenience, we call this
method of controlling agents the “FO-1 Method.” The two
parameters uF1 and vF1 are preselected so that each trajectory
segment has a fixed transit-time value (see [15] for details).

Let us call the proposed RHC based method of
controlling agents with second-order dynamics as the
“SO method”. In this section, we compare the perfor-
mance metrics JT ,Je and Js defined in (3) obtained for
PMN problem configurations (PCs) shown in Fig. 4 un-
der SO and FO-1 methods. These PMN solutions have
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Fig. 3: Tangential agent velocity profiles on a trajectory seg-
ment (i, j) ∈ E of length yi j under: (i) energy-aware second-
order (SO), (ii) energy-agnostic first-order (FO-0) and (iii)
energy-agnostic approximate first-order (FO-1) agent control
methods (with to = 0 and ρF1 = ρF0 = yi j/vF0).

(a) PC1 (b) PC2 (c) PC3 (d) PC4

Fig. 4: Final state of the PMN problem configurations (PCs)
after using the highest performing agent control method: SO.
TABLE I: Comparison of performance metrics: Je, Js, JT (3)
under SO and FO-1 methods for PMN PCs shown in Fig. 4.

PC JT Je×10−4 Js
SO FO-1 SO FO-1 SO FO-1

PC1 1013.9 2090.8 445.9 955.1 62.7 53.2
PC2 705.7 1212.8 306.0 542.6 52.8 55.3
PC3 457.4 776.6 165.7 317.9 103.8 98.5
PC4 432.4 784.4 141.3 314.1 131.0 114.4

Average 652.4 1216.2 264.7 532.4 87.6 80.4

been implemented in a JavaScript based simulator avail-
able at http://www.bu.edu/codes/simulations/
shiran27/PersistentMonitoring/.

In each PC, blue circles represent targets and black lines
represent the trajectory segments available for the agents to
travel between targets. Yellow vertical bars, purple horizontal
bars and red triangles indicate target uncertainty levels,
agent energy consumption levels and agent locations (i.e.,
Ri(t),Ja(0, t) and sa(t)), respectively. The parameters of each
PC were chosen as follows: Ai = 1, Bi = 10, Ri(0) =
0.5, ∀i∈T . Targets were placed inside a 600×600 mission
space and the time horizon was set to T = 500. The initial
locations of the agents were chosen such that sa(0) = Yi
with i = 1+(a−1)∗ round(M/N). The upper bound on the
planning horizon (i.e., H) was chosen as H = T

2 = 250 and
the weight factor α in (3) was chosen as α = 213.3×10−6.

The obtained comparative results are summarized in Tab.
I. According to these results, on average, the energy-aware
second-order agents (i.e., the SO method) have outperformed
the energy-agnostic (approximate) first-order agents (i.e.,
FO-1 method) in terms of the energy Je as well as the total
objective JT by 50.3% and 46.4%, respectively - while only
compromising the sensing objective Js by 9.0%.

V. CONCLUSION

This paper considers the persistent monitoring problem
defined on a network of targets that needs to be monitored
by a team of energy-aware dynamic agents. Starting from

an existing event-driven receding horizon control (RHC)
solution, we exploit optimal control techniques to incorporate
agent dynamics and agent energy consumption into the RHC
problem setup. The proposed overall RHC solution is com-
putationally efficient, distributed, on-line and gradient-free.
Numerical results are provided to highlight the improvements
with respect to an RHC solution that uses energy-agnostic
first-order agents. Ongoing work aims to determine optimal
periodic agent behaviors on networks.
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