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Residual eccentricity of inspiralling orbits at the gravitational-wave
detection threshold: Accurate estimates using post-Newtonian theory
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We use equations of motion containing gravitational radiation-reaction terms through 4.5 post-
Newtonian order to calculate the late-time eccentricities of inspiralling binary systems of nonspinning
compact bodies as they cross the detection threshold of ground-based gravitational-wave interferometers.
The initial eccentricities can be as large as 0.999. We find that the final eccentricities are systematically
smaller than those predicted by the leading quadrupole approximation, by as much as 30 percent for a 300
solar mass binary crossing the LIGO/Virgo detection threshold at 10 Hz, or eight percent smaller for a 60
solar mass binary. We find an analytic formula for the late-time eccentricity that accurately accounts for the
higher-order post-Newtonian effects, generalizing a formula derived by Peters and Mathews in the 1960s.
We also find that the final eccentricities are independent of the ratio of the masses of the two compact

bodies to better than two percent.
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I. INTRODUCTION AND SUMMARY

A notable fact about gravitational radiation from binary
systems is that it takes angular momentum away from the
system as effectively as it takes away energy. A consequence
is that as the binary system shrinks, or inspirals, it circular-
izes, and this effect is so pronounced that the orbits will
generally become extremely circular long before they coa-
lesce. Consider for example, the first detected inspiraling
binary system, the Hulse-Taylor binary pulsar B1913 4 16.
Its orbit has a rather large orbital eccentricity of 0.617. But by
the time its gravitational wave signals cross the LIGO/Virgo
detection threshold of around 10 Hz, about 390 million years
from now, its eccentricity will be only about 5 x 1075,

This fact led to the expectation, borne out by experience,
that the initial gravitational wave signals detected by the
LIGO/Virgo network would be from compact binary
sources whose orbits were essentially perfectly circular,
apart from their monotonic inspiral (see, however [1,2]
for preliminary evidence of a highly eccentric merger in
GW190521).

But this assumes systems that undergo isolated evolution
from wide, nonrelativistic orbits over long periods of time.
However, there is reason to expect that some detectable
gravitational wave signals will not come from such pristine
sources. A system could be formed in a tight but highly
eccentric orbit by three-body processes that send one body
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far from the system, leaving a tight binary remnant [3], or
by direct capture from an unbound orbit into a bound
eccentric orbit by gravitational-wave emission during the
close passage [4]. In a hierarchical three-body system
consisting of a compact binary in the presence of a distant
third body, the famous Kozai-Lidov oscillations [5,6] could
drive the binary’s eccentricity to large values, even as
gravitational-wave emission causes the orbit to shrink and
attempts to circularize it [7-13].

The idea that compact binary systems could enter the
LIGO/Virgo band with nontrivial orbital eccentricity has
two implications:

(1) The theoretical template gravitational waveforms
used in the initial detections and analyses were
based on quasicircular models for the orbits. Such
templates may not be as effective in detecting signals
from eccentric inspirals, and may introduce biases in
estimating the parameters of the sources. Accord-
ingly, the construction of eccentric templates is
important, and considerable effort in this direction
is ongoing [14-36].

(2) Conversely, the detection and measurement of
eccentric inspiral events could serve to confirm or
distinguish among various proposed astrophysical
formation channels for these inspiralling compact
binaries (see [37] for discussion and references).
This only works, however, if the residual eccen-
tricities are above a reasonable detection threshold.

Our goal in this paper is to provide an accurate map from
the initial parameters of an arbitrarily eccentric binary orbit
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to the orbital eccentricity when the gravitational wave
frequency reaches a detection threshold for a given detec-
tor. We imagine a binary consisting of two nonspinning
“point” bodies of arbitrary mass whose evolution is
dominated by two-body relativistic effects, i.e., in which
other perturbations, such as Kozai-Lidov effects, can be
ignored. We will be concerned only with the long-term
evolution of such systems leading up to their entering the
sensitive band of the detector, not with the subsequent
evolution leading to merger and ringdown. We ignore
finite-size effects, such as tidal interactions, as these are
relevant mainly for the late-time, highly relativistic regime.
We also ignore spin effects.

Such a map already exists. It is based on the classic
1963-1964 papers by Philip Peters and Jon Mathews
[38,39], who computed the energy and angular momentum
flux due to gravitational waves at the quadrupole order of
approximation, leading to the map (see Eq. (5.11) of [39])

g(e
P =D ) : (L.1)
where

g(e) — 612/19(304 + 12162)870/2299, (12)
and where p; and e; are the initial semilatus rectum and
eccentricity of the orbit and p and e are the values at a later
time. Recall that p is related to the Newtonian orbital
angular momentum, and that p = a(1 — e?) where a is the
semimajor axis, related to the Newtonian energy.

We improve this map by incorporating post-Newtonian
(PN) corrections. We use equations of motion for the
binary system that include conservative terms through
third post-Newtonian (3PN) order, and radiation-reaction
terms through 4.5PN order, including the leading 4PN
“tail” terms. We then obtain the long-term, orbit-averaged
evolution equations for p and e. On integrating these
equations numerically, we find that the late-time values of
eccentricity are independent (to better than two percent) of
the value of the symmetric mass ratio # = m,m,/m?, where
m = m; + m,. Thus, whereas the factor # controls the rate
of emission of energy and angular momentum and thus the
lifetime of the system (with 7"« 1/#), it has essentially no
effect on the relation between eccentricity and semilatus
rectum. This relation is then as valid for equal-mass binary
inspirals as for extreme mass-ratio inspirals (EMRISs).

Using the approximate relation between gravitational
wave frequency f and semilatus rectum p in the limit
of small eccentricity, p ~ (Gm)'/3/(zf)*3, we plot the
expected eccentricity as a function of the mass of the
binary, assuming a threshold detection frequency relevant
to advanced LIGO/Virgo of 10 Hz. The results are shown
in Fig. 1. We choose three sets of initial values for
X, = c? pi/Gm: 100, 250, and 1000, and three initial
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FIG. 1. Final eccentricity vs total mass of the binary system, for
LIGO/Virgo sources, assuming a 10 Hz threshold detection
frequency. Solid, dashed and dotted lines correspond to initial
eccentricities of 0.999, 0.5 and 0.2, respectively. Green, red and
blue curves correspond to p; = 100, 250 and 1000Gm/c?,
respectively. For a third generation detector with a threshold
detection frequency f3g, multiply the masses by 10/ f3g.

eccentricities, 0.999, 0.5 and 0.2. For larger initial values
of p, the residual eccentricities are smaller, reflecting the
increased time for radiation reaction to circularize the orbit.
The larger the mass of the binary, the smaller the residual
eccentricity, because higher mass systems cross the 10 Hz
detection threshold at smaller values of separation (smaller
values of p), thus after additional circularization has
occurred. Consider, for example, a 20 M, equal-mass
binary system with the initial values p; = 250(Gm/c?) and
e; = 0.999, corresponding to a pericenter separation of
3500 km and an apocenter separation of almost 7.5 million
km. By the time the binary enters the LIGO/Virgo band
around 13 days later, its eccentricity will have decreased to
0.086, illustrating the strong circularization property of
gravitational radiation reaction.

Notice that the final eccentricity depends on x;~
(3/aGmfy)*3, where fy, is the threshold detection
frequency. As a result, should that frequency be reduced
from 10 Hz to a lower frequency f3g, say in third-
generation detectors such as ET or Cosmic Explorer, then
the final eccentricities are still given by Fig. 1, but with the
mass values on the horizontal axis multiplied by 10/ f5g.

After some experimentation, we have found a simple,
analytic, PN-corrected map that fits these numerical results
to better than two percent over the relevant range of
parameters. In terms of the dimensionless semilatus rectum
x = c?p/Gm, it is given by

B 14+2/x\ (1 =4/x,\'%1 g(e)
x_x"<1+2/x)<1—4/x> gler)

(1.3)
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FIG. 2. Analytic fits to the final eccentricity. Solid curves are
the values of e, obtained from Eq. (1.3), while dashed curves are
values obtained from the Peters-Mathews map (1.1), all normal-
ized to the numerical results. The black dotted curve shows the
(negative) of the effect on the numerical results of the 5.5PN
corrections in the equations of motion.

Figure 2 displays values of e; from the PN-corrected
map (1.3) normalized to the numerical results, as a function
of x;. The agreement is better than two percent over the
entire range of x,. Three initial values of x: 100, 250 and
1000 are displayed; in all cases shown, the initial eccen-
tricity is 0.999. For comparison, we show the Peters-
Mathews (PM) map, also normalized to the numerical
values. From these results we conclude that the Peters-
Mathews formula consistently overestimates the late-time
eccentricity. Also plotted in black dots is a curve showing
the effect of adding 5.5PN terms to the equations of motion,
as a way to illustrate the rough errors in the PN approxi-
mation. We discuss our tests of the validity of the PN
approximation in more detail in Sec. III B.

The remainder of the paper provides the details
behind these results. In Sec. II, we write down the
post-Newtonian equations of motion to the order used
in our analysis, obtain the Lagrange planetary equations
for the evolution of the osculating orbit elements of the
binary, and find the long-term evolution equations for
the orbit elements using a “two timescale” approach. In
Sec. III, we integrate the evolution equations numeri-
cally and explore the dependence of the relationship
between eccentricity and semilatus rectum on the sym-
metric mass ratio # and on the post-Newtonian order
used. We then obtain our PN-corrected map, as well as
an accurate analytic approximation for the evolution time.
Final remarks are made in Sec. IV. In the Appendixes we
display the coefficients that appear in the post-Newtonian
equations of motion, and describe the calculation of the
tail term and 5.5PN effects on the long-term evolution of
the orbit elements.

II. EVOLUTION OF COMPACT BINARY ORBITS
TO HIGH POST-NEWTONIAN ORDER

A. Equations of motion

We analyze the orbital evolution of a binary system
of compact, nonspinning bodies in the post-Newtonian
approximation. We work in harmonic coordinates, the
natural basis for post-Newtonian theory, gravitational
radiation and radiation reaction (see [40] for a pedagogical
treatment of post-Newtonian theory). Letting r, and m,
respectively denote the position and mass of body a €
{1,2}, we define the relative position vector r=r; —r,
and unit vector n = r/r pointing from body 2 to body 1, the
total mass m = m; + m,, and the symmetric mass ratio
n = mm,/m?. The relative velocity, acceleration and
angular momentum vectors are v = dr/dt, a = dv/dt,
and h = r x v. The equations of motion in terms of relative
coordinates take the general form

a:—@n—l—G—m(ACn#— Bv)

2
8 GmG
o T (FAn + Byy) + arg. (2.1)
512 réd

Here, A, =AY + A% + AY and B, = B + B?

35-3) denote the conservative contributions at 1PN, 2PN,
and 3PN orders, respectively, and A, = .Ag s Aﬁrz ) 4
.A,(T3 ) and B, = Bi(rl ) + Bgz ) + BS ) denote radiation reaction
terms at 2.5PN, 3.5PN, and 4.5PN orders respectively. To

the orders of interest, the A and B coefficients take the
general forms

(N) 5l+m+nN Gm\!
A = [Z Imn (T)

Zb 51+m+nN G l )n
Lm,n e r ’
N N 51 m+n, G ! s2\m n
AN = chmi;c;& = — ()" (v?)",
lm,n
51 m-n, Gm ! \m n
= Sy e (S pay. @2)
Lm,n

The explicit expressions for the coefficients {a, b, c, d}%ﬂl
for general mass ratios are given in Appendix A.

The final term in Eq. (2.1) is the lowest order 4PN tail
term, given formally by [41,42]

: 4G? © ()
A = ——g mr* / ZUR (t—s)In(s/2)ds,  (2.3)
0

5¢8

where, to the required PN order,
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TUK = pm (rjrk - % r2(5jk> (2.4)
is the trace-free quadrupole moment of the system, the
symbol (7) atop Z denotes seven time derivatives, and
the integral is over the past history of the binary system.
The explicit calculation of the effect of the tail term on the
evolution of the orbital elements of the binary will be
carried out in Appendix B.

B. Osculating orbits and the perturbed Kepler problem

We employ the “osculating orbit” approach to solving the
perturbed Kepler problem (see, for example [40]). In this
method, the equations of motion (2.1) are summarized as

Gm
a=—-—n + da.
r

(2.5)
The perturbed orbit is defined by six “osculating” orbit
elements, given by the elements of a pure Keplerian orbit that
is momentarily “tangent” to the perturbed orbit, i.e., that has
the same momentary values of r and v. Because the orbit is
perturbed, these osculating elements are no longer constant
in time (see Fig. 3). They are the semilatus rectum p,
eccentricity e, orbital inclination z, nodal angle €, pericenter
angle @ and time of pericenter passage 7 (this sixth element
will not be relevant for our purposes). They can be defined by
the following set of equations

r=pn/(1+ ecosf),
n = (cosQcos ¢ —cosisinQsin¢)ey
+ (sin Qcos ¢ + cosicos Qsin ¢g)ey + sinisin gey,

A=0n/0g, h=nxA,

h=rxv= \/Gmpiz,

i = (he/p)sinf, (2.6)

pericenter

-------

_“ascending node

/
a

FIG. 3. Orbital elements of the effective one-body orbit of a
binary system.

where [ = ¢ — w is the true anomaly, ¢ is the orbital phase
measured from the ascending node, and e, are chosen
reference basis vectors. From the given definitions, we see
that v = in + (h/r)A. To avoid the well-known problem of
the singular behavior of @ in the circular limit, we will use the
alternative orbit elements:

a=ecosw, p=esinw, (2.7)
which are regular when e — 0.

We then compute the radial R =n - da, cross-track
S =A-da, and out-of-plane W = h-sa components of
the perturbing acceleration. Because the perturbations lie
within the orbital plane, W = 0.

The “Lagrange planetary equations” then describe the
evolution of the orbital parameters in response to the
perturbing accelerations:

dp . r

o= 2emS

@—’—2{73' ¢+ S(a+ ¢)<1+i>]

i~ Gm sin a + cos o)1
%zGr—;{—Rcosgﬁ—l—S(ﬂ—l—Sincp)(l—l—i)},

di

ap ="

dQ

=" (2.8)

together with the relationship between ¢ and time,

dgp h
— =, 2.9
dt  r? (29)
This simple relation follows from the fact that Q and : are
constant.

C. Two-timescale analysis

The Lagrange planetary equations are of the general
form

dax,(¢)
dg

where y, 6 label the orbit element, and ¢ is a small
parameter that characterizes the perturbation. We anticipate
that the solutions for the X, will have pieces that vary on a
“short” orbital timescale, corresponding to the periodic
functions of ¢, and pieces that vary on a long timescale
characterized by a variable 6 = e¢. In a two-timescale
analysis [43—47], one treats these two times formally as
independent variables, and solves the ordinary differential
equations as if they were partial differential equations for

= er(X6(¢)’¢)’ (210)
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the two variables. We write the derivative with respect
to ¢ as

d o 0
—=€—+=— 2.11
s 00 " og (2.11)
and make an ansatz for the solution for X, (6, ¢):
X,(0.9)=X,(0) + €Y, (X5(0). p). (2.12)
The split is defined by
X,(0) = (X,(0.9).  (Y,(X5(6).4)) =0. (2.13)
where the “average” (...) is defined by
1 2z
() = 5- / A0, §)do. (2.14)
7 Jo

holding @ fixed. For any function A(6, ¢) we define the
“average-free” part as

AF(A) = A(0. ) — (A). (2.15)

We now substitute Egs. (2.11) and (2.12) into (2.10), divide
by the parameter ¢, and take the average and average-free
parts of the resulting equation to obtain

dX

76;/ = <Qy()~(5 +€Y5.9)), (2.16a)
Y, . Y, dX;
94 = AT Ryt ) —ep TR (2.16b)

These equations can then be iterated in a straightforward

eYﬁl) + €2Y£2) + - --. We then integrate Eq. (2.16b) holding
0 fixed to obtain Y(y). The iteration continues until one
obtains all contributions to df(y /dO compatible with the
order in e to which Q, is known. The final solution
including periodic terms is given by Eq. (2.12), with the
secular evolution of the )N(y given by solutions of
Egs. (2.16a). From these solutions one can reconstruct
the instantaneous orbit using Eqgs. (2.6).

Although we are interested in the effects of radiation
reaction, we must include the conservative terms in the
equations of motion. This is because, for example, a
conservative 1PN contribution to Y substituted back into
the 2.5PN contribution to Q will lead to a 3.5PN term, as
will a 2.5PN contribution to Y substituted back into the
1PN contribution to Q. These must be added to the straight
3.5PN contribution to Q. When working to higher orders in
the expansion parameter, these so-called ‘“‘cross-term”
effects cannot be neglected (see [45,47] for examples in
post-Newtonian theory, in Newtonian triple system dynam-
ics [48,49], and in triple system dynamics with PN
corrections [50,51]).

D. Results

We carry out this procedure on the conservative (to 3PN)
plus radiation-reaction (to 4.5PN) terms in the equations of
motion (2.1) to obtain secular evolution equations for p, @,
and § in terms of the orbital phase 6. The evolution
equations resulting from the tail term are derived separately
in Appendix B. Using Eq. (2.7) we convert from da/d6 and
dp/de to dé/d6 and di/dO. We then rescale p by Gm/c?
by defining

way. At zeroth order, Eq. (2.16) yields df(},/dﬁ =(0Y) = Cz_p (2.17)
where Q% = Q,(X;.¢), which is the conventional result - Gm’ '
whereby one averages the perturbation holding the orbit
elements fixed. We define the expansion Y, = Y;O) +  and obtain the set of equations
|
de 1 5
— = ——nex™/2(304 + 1212
T 5 1ex (304 + 121e°)
1 1
+ %nex”/z [ﬁ (144392 — 34768 — 2251¢*) + (1272 — 1829¢? — 538¢)y
1 —4 2 4 6
34560 "17¢x (4538880 + 6876288~ + 581208¢* + 623¢°)
1 1
92| 2 _ 4 6
2071€* {252 (43837360 + 4258932¢* — 1211290e* + 77535¢€°)
1
+— (1239608 — 3232202¢> + 898433e* + 13130e%)n — (9216 + 243532 + 45704e* + 4304¢%)* |, (2.18a)

14
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dx 8
ax % -3 2
yT: S (84 7¢%)

15 14

1
— ——nax—3(18432 + 55872¢* + 7056e* — 49¢°)

1 1
+ —nx/? [ (22072 — 6064¢* — 1483¢*) + 4(36 — 127 — 79¢*)

360
1 1
T {ﬁ (8272600 + 777972¢% — 947991 ¢* — 4743¢5)

T84

The terms at odd half powers of 1/x are the 2.5, 3.5 and
4.5PN contributions respectively (including the relevant
cross-term contributions), while the terms at order x~* and
x73 are the 4PN tail contributions to de/d6 and dx/d6.
Note that the long timescale phase @ is time divided by the
orbital period. The conservative terms in the equations of
motion leave x and e unchanged, reflecting the conserva-
tion of energy and angular momentum in the absence of
gravitational radiation. The conservative terms and the 4PN
tail term do induce an advance of the pericenter @ (the 2.5,
3.5 and 4.5PN terms do not), but this has no bearing on the
evolution of x and e, so we will not consider the pericenter
advance further.

III. NUMERICAL EVOLUTIONS AND
THE FINAL ECCENTRICITY

We now apply the analytic results obtained in the
previous section to the long-term evolution of highly
eccentric orbits. Note that the rescaling of p eliminates
the total mass of the binary from the equations, so the
evolution of x and e depends only on their initial values x;
and e; and on 7. The only place where the mass m of the
binary will enter the problem is in the conversion from
orbital phase to time via the orbital period, and in
determining the endpoint of the integrations.

Since we are interested in the residual eccentricity in
binary inspirals detected via gravitational radiation, we will
set that endpoint x; to be where the gravitational wave
frequency corresponds to the frequency where the signal
enters the sensitive band of the detector in question. In this
paper we will focus on ground-based detectors, although
the results can easily be applied to inspiralling binaries
in the LISA band. For a gravitational wave signal of
frequency f, and for an orbit of small eccentricity (which
is what we expect for the late stage of inspiral), x; can be
approximated by

2/3 2/3
> :47.12(20 Mo 10 HZ> . (3.)
m f

C3
Xr =
I = \zGmf

1
(232328 — 1581612¢2 + 598485¢* + 6300e°)y — (384 + 1025¢> + 5276e* + 632e%)17% .

(2.18b)

|
Figure 4 shows x, as a function of total mass m for a
threshold detection frequency of 10 Hz. Note that the
values of x, are sufficiently large that our use of
the Newtonian formula for the orbital period P =
27[p/(1 = €)]>3/(Gm)'/? is justified, as is the use of
the post-Newtonian approximation to analyze the
evolutions to this end point. And as next generation
detectors, such as Einstein Telescope and Cosmic
Explorer, begin detecting even lower frequency signals
(larger x;) the PN approximation for estimating residual
eccentricities for a given binary system mass will be
even better.

A. Dependence on 7

We first explore the dependence of the final eccentricity
on the symmetric mass ratio 7. Although dx/d0 and de/df
are proportional to 7, that factor cancels in the ratio dx/de,
so the only dependence on 7 arises through the various PN
correction terms. Not surprisingly, these effects are small,
as can be seen in the left panel of Fig. 5, where we plot the

80

60 -

40

¢?p/Gm at threshold 10 Hz

20

X =

0 L | L | L | L | L | L | L
0 50 100 150 200 250 300 350
binary total mass (M)

FIG. 4. Dependence of x; on total mass m at the detection
threshold of 10 Hz.
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FIG. 5. Dependence of e, on 7. Left: Plotted is e, normalized

by its value for 7 = 5 x 107> (effectively zero), vs n for various
initial values of x and for x; = 16 corresponding to a 100 M
binary entering the LIGO/Virgo band at 10 Hz. Right: Percent
difference between e, for equal-mass and extreme mass-ratio
systems, as a function of X

percent variation in e (1) relative to e(0) as a function of
n, for a selection of x; and for x, corresponding to a
100 M source entering the LIGO/Virgo band at 10 Hz. In
the numerical integrations we choose 7 = 5 x 1073 in lieu
of zero. In the right panel we plot the percent difference
between e, for n = 1/4 and e for n = 0 as a function of
xy. The variations are less than two percent over the ranges
of the parameters.

Figure 1 shows the eccentricities reached at the LIGO/
Virgo detection threshold as a function of the total mass of
the binary system, for various initial values of x and e.
Figure 6 shows the final eccentricities as a function of
initial eccentricities for various initial values of x and of the
total mass.

(=}
—

final eccentricity e,
o
2

—_
=3
&

0 02 04 0.6 0.8 1

initial eccentricity e,
FIG. 6. Final eccentricity vs initial eccentricity. Solid and
dashed lines correspond to total masses of m of 100 My and

20 M, respectively. Green, red and blue curves correspond to
x; = 100, 250 and 1000, respectively.

B. Accuracy of the PN approximation

We next investigate the accuracy of the PN approxima-
tion. There is no formal way to do this because the PN
sequence is not known to be a convergent series (at best, it
might be an asymptotic sequence), but one way to estimate
the accuracy is to add terms at the next PN order, and to
study their effects. We use the equations of evolution for
test-body orbits taken from black hole perturbation theory
obtained by Sago and Fujita (SF) [52]. After showing that,
following a suitable transformation between their defini-
tions of orbit elements and ours (see the discussion in
Appendix C), the equations are in agreement through
4.5PN order, we add the 5.5PN terms. These have the form
de nex~11/2
df|ss 349272000

— 6186148025656¢> — 4964186588931¢%),
-9/2

(1790315545528

dx nx
E (294262221896 — 621776393808
20|, ~ 87318000 ¢

— 658790352267¢* — 277665065676¢%).

(3.2)

We add these terms directly to Eqgs. (2.18), without
worrying about “PN cross term” contributions at this order,
and carry out various numerical integrations. A typical
result is plotted in Fig. 7, showing the fractional difference
es(5.5PN)/e;(4.5PN) — 1 for e; = 0.999 and x; = 1000
as a function of x;. The effect is less than one percent over a
wide range of x;, reaching 10 percent only for very massive
sources entering the LIGO/Virgo band in a highly relativ-
istic regime, xy ~ 8 (m ~ 300 Mg).

Another way to explore the behavior of the PN approxi-
mation is to examine the values of e, as a function of the
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FIG. 7. Effect of 55PN terms on e, at the LIGO/Virgo
threshold, for e; = 0.999 and x; = 1000. The effect is very
small, except for the most massive systems, which are very
relativistic when they cross the threshold.
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FIG. 8. Effect of PN corrections on values of e, as compared to

the Peters-Mathews map. At 2.5PN order the numerical results
agree with the PM values. At 3.5PN order, the sign difference
between the 3.5PN and 2.5PN terms causes e to begin to grow
when x ~ 8.5, leading to e; at x; = 8 around 42 times the PM
value. Adding additional PN terms mitigates this singular
behavior, leading to values that behave “nicely” as PN orders
are added.

post-Newtonian order of the equations of evolution (2.18).
At the lowest 2.5PN order, our numerical results for e, as a
function of x; are in close agreement with those obtained
from the Peters-Mathews map, Eq. (1.1). In Fig. 8 we plot
our numerical results for e, normalized by the values from
the PM formula, when the various PN corrections are added
one by one to the system of equations. The initial
conditions in all the examples are e; =0.999 and
x; = 250; the final values of x range from 8 to 24. The
first conclusion is that in all cases, the results seem to
“converge,” in the sense of behaving “nicely” as PN orders
are added. Needless to say, demonstrating actual conver-
gence is essentially impossible. The other notable feature is
that the first PN corrections to the leading terms, i.e., the
3.5PN corrections, have the effect of increasing the value of
ey relative to the PM value. This is because of the relative
negative sign between the 2.5PN and the 3.5PN terms in
Egs. (2.18). In fact, for the most relativistic case of x; = 8
the 3.5PN terms actually dominate the 2.5PN terms when x
reaches about 8.5, leading to a growing eccentricity,
eventually producing a final eccentricity 42 times larger
than the PM value! Adding the 4PN tail term, the 4.5PN
term and the 5.5PN term mitigates this behavior, leading to
a well-behaved sequence of values for ey, even in the very
relativistic regime. In all cases the PN-corrected values for
e are smaller than the Peters-Mathews values. In the next
subsection we search for an analytic extension of the PM
formula that accurately encapsulates these post-Newtonian
corrections.

C. A PN-corrected map for e

Our goal is to obtain an analytic map for the eccentricity
of a generic binary inspiral at a given value of x that extends
the Peters-Mathews map (1.1) into the relativistic regime.
Our criteria are that the map be trivially satisfied when
e = e; and x = x;, that in the limit of large x; and x it tend
to the PM map, and finally that it differ from the numerical
values by only a few percent, down to x; ~ 8. After some
experimentation, we arrived at Eq. (1.3). Formally, e will
then be given by

[ () () e o

In practice, of course, Eq. (3.3) must be solved numerically
for e. If one prefers to work in terms of semimajor
axis rather than semilatus rectum, the conversion is x =
a(c?/Gm)(1 — e?).

D. Evolution time

In order to determine the probability of a given final
eccentricity arising from astrophysically meaningful initial
conditions, it is important also to know the time for
the system to evolve from the initial state to the final state.
That time can be found by numerically integrating the
system of equations dx/dt = (2z/P)dx/d6 and de/dt =
(27/P)de/dO, where P is the orbital period. Because the
total time is strongly dominated by the nonrelativistic part
of the orbit, it suffices to use the Keplerian orbital period,
P =21(Gm/c*)x*?(1 — e*)73/2. At the lowest, 2.5PN
order of approximation, Egs. (2.18) yield

dx - 64 3

7
e p—x3 (1 =22 1+ =€ ). 3.4
a5 Gmt 1) <+8€> (34)

In the circular limit (e = 0), integrating this equation
directly yields

5 Gm x4
T—=— (224 1=2L).
%®<@>%( ﬁ)

If the initial eccentricity is large, most of the time will be
spent in the large e regime. From Egs. (2.18), again at 2.5PN
order, we can thus approximate dx/de =~ (72/85)x/e,
and thus e = e;(x/x;)%/72. We then obtain

(3.5)

dz 3 1 — £2,85/36)3/2
LSO YR Gk
dt Gm z

(3.6)
where z = x/x;. Because of the very weak dependence of the
time on x; when x; < x; [see Eq. (3.5)], we can integrate this
equation from z = 0 to z = 1, with the result

104023-8



RESIDUAL ECCENTRICITY OF INSPIRALLING ORBITS AT ...

PHYS. REV. D 104, 104023 (2021)

1 /Gm
T=—|— |xtG(e;). 3.7
s ()it 37)
where
1 2dz
G(e;) =4A (1= e2557%)32
3 144 229
= F _—— 2
2 1<2’ 85 ° 85 ’e’)
288/85
z__If—z_-592574-&0919 = 4., (3.8)
— e

i

where , F (a, b; c; z) is the hypergeometric function, and the
final expression is the expansion for e; ~ 1 [39,47,53]. The
singular behavior of G(e;) merely reflects the enormous
amount of time bodies in eccentric orbits spend going to
apocenter and back, with no relativistic consequences to
speak of.

Our goal then is to combine Eq. (3.5) with Eq. (3.7), and
to tweak the result to obtain a decent fit to the numerical
values for the time 7. After some experimentation, we
obtain the (less than elegant) result

5 (Gm 8(1—¢?)
T = 256, (7) (xf = x}) (1 + T) G(e;)
1 m x \*¢
~024(5.) (') (o)
4 iy
x(1-§>(«+g%;i§g@m

where

(3.9)

1.02

— x = 1000
— x,= 250

1.015

= 1
=
0.995 o
0.99 PR NN WA N TR N S Y | ! | ! | ! | !
0 02 04 06 08 1 200 400 600 800 1000
e X:

FIG. 9. Comparison between the analytic fit for 7 and the
numerical values, plotted vs e; and x;.

288 /1 —12¢4
G(e;) ::1-%———»<———A95L-1)

85 1—e?

5
—ge%(l—elz)@—l—elg—l—e;‘). (3.10)
This formula agrees with the numerically generated values

of T to better than two percent over the range 100 < x; <
1000 and 0 < e; < 0.999 (see Fig. 9).

IV. DISCUSSION AND CONCLUSIONS

We have used post-Newtonian equations of motion con-
taining radiation-reaction terms through 4.5PN order to
analyse the late-time eccentricities of inspiralling binary
systems of nonspinning compact bodies of arbitrary
masses. We have found that, apart from the overall
dependence of the inspiral time 7 on the symmetric mass
ratio 7, the final eccentricities are essentially independent
of #. We found an analytic map for the final eccentricity in
terms of the initial eccentricity and semi-latus rectum that
generalizes the Peters-Mathews formula, and that agrees
with the numerically generated values to a few percent. We
also find that the Peters-Mathews formula produces con-
sistently larger values, by as much as 60 percent, than those
predicted by the full 4.5PN dynamics. These results may be
useful for assessing the levels of orbital eccentricity that
must be incorporated into gravitational-waveform tem-
plates, and for relating measured late-time eccentricities
to the astrophysical origins of compact binary inspirals.

Here we note that, in the limit e¢; < 1, Tanay et al. [24]
obtained a PN-corrected map by adding post-Newtonian
corrections to the inversion of the PM map (1.1) expressed
as a power series in e; [14].
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APPENDIX A: COEFFICIENTS IN THE PN
EQUATIONS OF MOTION

Here we list the coefficients agfxi, bgr]zz, CEZL, and d%}l

that appear in the conservative and radiation-reaction parts
of the equations of motion (2.1). See [54] for a review of the
conservative contributions in Table I. The 3.5PN terms in
Table II are taken from [55]. The 4.5PN terms are taken
from [56]; because the terms were derived from an energy
and angular momentum balance argument, there are 12
arbitrary gauge-type parameters (Table III). Those param-
eters disappear in the orbit-averaged equations for the orbit
elements.
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TABLE I. Coefficients in conservative terms.
N N
{l, m’ n} aEmZL bgmzl
1 PN Order (N = 1)
{1,0,0} 2(2+1n) 0
{0,1,0} 5 2(2-n)
{0,0,1} —(1+3n) 0
2 PN Order (N = 2)
{2,0,0} —2(12+299) 0
{0,2,0} —Ly(1-3n) —-3n(3+2)
{0,0,2} —n(3 —4n) 0
{1.1,0} 2+ 25n + 21 —3(4+41n+8np%)
{1.0,1} 3n(13 = 4n) 0
{0,1,1} 3n(3 —4n) $n(15 + 4n)
3 PN Order (N = 3)
{3,0,0} 16 + (5596 — 12372 + 17044) 0
{0,3,0} 20(1 =57+ 51%) Bn(3—8n1—21p%)
{0,0,3} —1n(11 — 497 4 521%) 0
{2, 1,0} -1 = (2%;7 4+ 615 615 2)’1 11 ’12 + 7’73 4 + (58%9 + 123 2)’,, 25,] _ 87]
{2’07 1} ’7(23%7 + 12% 2 2) 0
{1,2,0} —1n(158 - 6911 60,°) —+n(329 4 1775 + 1087?)
{I,1,1} n(121 — 165 — 201?) n(15 + 277 + 10n?)
{1,0,2} —1n(75 + 327 — 40n%) 0
{0.2,1} —2n(4— 187+ 17%) —3n(16 =377 — 161%)
{0,1,2} 31(20 — 791 + 60p%) §1(65 — 15257 — 48,%)
TABLE II. Coefficients in radiation reaction terms. (In [47], the first term in the parentheses in CE)?I).Z was
incorrectly given as 295.).
N N
{l» m, n} Cgmr)l d;ml)l
2.5 PN Order (N = 1)
{1,0,0} g -3
{0,1,0} 0 0
{0,0,1} 3 -1
3.5 PN Order (N = 2)
{2,0,0} —33(43 + 14n) 25 (1325 + 546n)
{0,2,0} =70 75
{0,0,2} — 5 (61 +70n) 3 (313 +427)
{1.1,0} — (147 + 188y) 5 (205 + 424n)
{1,0,1} -5 (519 = 1267n) -5 (205 +777n)
{0,1,1} 13(19 + 29 —2(113 4 2n)
4.5 PN Order (N = 3)
{3.0,0} 7+ (289079 + 2841271 + 226321%) + C399 - e (395929 + 3987001 + 870484%) + Dsg
{0, 3, 0} 6030 18 (291 9197] + 977’] ) + D030
{0,0,3} 165 (779 + 60417 — 70907%) + Coo3 — 2 (834 = 19561 — 17431%) + Dyo3
{2,1,0} (250221 — 60327 + T41345%) + Cyy9 5 (37992 + 6283217 + 96495%) + D,y
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TABLE II. (Continued)

(N) (N)
{l, " n} Clmn dlmn
{2,0,1} — 515 (20916 — 243245 + 2348352) + Capy 555 (26703 + 213044 + 284864) + Doy,
252 252
{1,2,0} 555 (108322 — 439961 + 128397%) + Cia9 —55(99499 + 240027 + 334431%) + D
252 252
{1,1,1} — (218401 — 1602275 + 959871%) + Cy1; =2 (200244 + 654605 + 83501%%) + Dy,
504 504
{1,0,2} L2 (40758 — 88311y + 4347417) + Cn — <L (16731 + 24785y + 41471%) + Dy
{0,2,1} 2 (87 = 2157 = 97%) + Cony — 125 (6889 — 216317 + 23807%) + Dy,
{0, 1,2} —L(1205 — 2601 — 87851%) + Cy1» L (21280 — 607335 — 119994%) + Dy,
84 168
. 3
TABLE III. 4.5PN fficients. a .
gauge coefficients f— G_(” _ esinu), (B2)
{l’ m, I’l} Clmn Dlmn "
{3,0,0} —2up5 — 3y —ys where a is the semi-major axis, together with the relations
{0.3.0} =7 —Txs
{0.0.3} 3(yv2 = x6) Wi cosu—e _ V1 -—e’sinu
{2.1,0} ~2y6 — Sy — Ty 3y — 2y3 — Sy cosf=q—— . osinf=—r o= (B3)
{2,0,1} 39 = 2p3 — 3we + 3y Vs —y3
{1,2,0} —2p4 = Ty7 — 8y —26 = Sxs = 619 A common way to invert Eq. (B2) is to expand in powers
{1,1,1} 26+ 5Sys + 6y9 — 4 3x9 — 3y — 4 . ; :
o A6 T X8 T DX — Y A9 = X6 — Y1 of e < 1; in order to be compatible with the orders of our
{1,0,2} ?}Z“:;T_Z;’fg _124_1/;3% nontail expressions, we will expand to order e°:
=3y, + 3y 6
{0,2,1} T(rs —wa +y7) 5(rs = x6) u :i_g_Zliei, (B4)
fo.1,2} 506 —X8 —y2 +wa) 3(x6 —v1) P

APPENDIX B: 4PN TAIL TERMS

In this Appendix, we derive the effects of the leading
4PN gravitational-wave “tail” term on the evolution of
e and x. Our starting point is Eq. (2.3) with the trace-free
quadrupole moment given by Eq. (2.4).

The seven time derivatives of Z% in terms of v, m/r
and 7 can be easily calculated by iteratively applying the
Newtonian equations of motion

dr,»
— =,
dt !
dv; Gm
= ——17;,
dt P
dr _1( o 0 _Gm
dt r r )’
dv? Gm

To find the secular evolution of the orbital parameters,
we will need to integrate over the past history of the binary
system, and the structure of that integral dictates that we
work in terms of time. Instead of using the true anomaly f,
we use the eccentric anomaly u#, which has a simple, if
transcendental relation to time via Kepler’s equation

where 7 = t\/Gm/a®. Substituting Eq. (B4) into Eq. (B2),
expanding to O(e)® and demanding that the equality hold
order by order, allows us to solve for the coefficients /;.
Substituting those expressions into Eq. (B4) gives the
relation

- | | - -
u(t) =7+ esint+§e2sin2t—§e3(sint—3sin3t)
1 - -
—864(Sin 27 — 2sin47)
1 - - -
+ﬁe5(2sint— 81 sin 37 + 125 sin 57)

1 ~ . .
+ %66(5 sin 27 — 64 sin 47 + 81 sin 67).
We now follow a similar procedure to that detailed in
Sec. I B, but using the eccentric anomaly instead of the
true anomaly. We place the orbit on the X-Y plane and use
the orbital equations

(BS)

r=a(l—ecosu),

V1 —eé?sinu

€x ey
1—ecosu 1—ecosu
esinu

. Gm
r=4————,
a 1—ecosu

Gml +ecosu

cosu—e
n

UzE

(B6)

a l—ecosu’
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We then compute the radial R = n - aty,;, and cross-track
S =A-ag,; components of the perturbing acceleration
(W =0) and insert these into the Lagrange planetary
equations expressed in terms of ¢ and u:

dp

3
p° (1 —ecosu)
=2/ F———F—S,
dt Gm 1-¢?

de [ p 1 .
e T (] = 212 R
dt Gml—ecosu[( e’) " sinu

+ (2cosu — e(1 + cos?u))S]. (B7)
Substituting Eq. (BS5) into the full expressions for
Egs. (B7) and being careful to expand to the appropriate
order of e, we make the transformation 7 — 7 — 35 in the
evaluated seventh time derivative of ZU). We average over
one orbit with 7 as the variable of integration from 0 to 2.
This gives us the secular evolution equations for dp/dt and
de/dt. To carry out the remaining integral over § into the
infinite past we make use of the well-known results:

[ costpmintar = _Intp) 1
0 P
[ sintm )y == (B3)

where y is the Euler number (see Eqs. 4.441 in [57]). We
then rescale p using Eq. (2.17) and convert from a to x with
a=(Gm/c*)x/(1 — e*). We convert from d/dt to d/df
with dF/dt = (2n/P)dF/df where we only need to
use the Keplerian expression for the orbital period
P =27(Gm/c*)x*?(1 — €*)73/2. We arrive finally at the
terms in Eqgs. (2.18) that are of the order x™* in de/d and
x73 in dx/d6. Because the tail effects are already of 4PN
order, we do not have to worry about “cross terms” in the
two-timescale analysis.

APPENDIX C: 5.5PN TERMS

Here we derive the 5.5PN contributions to dx/dt and
de/dt shown in Egs. (3.2). We combine expressions for
E and L to 3PN order in harmonic coordinates explicitly
given by Will and Maitra (WM) in Egs. (3.24) in [47] with
expressions for the energy and angular momentum flux to

the same 3PN order, calculated to O(e®) by Sago and Fujita
[52] for a point particle orbiting a Kerr black hole using
Boyer-Lindquist (BL) coordinates. For our purposes, we
take the spin to be zero. The Sago-Fujita (SF) results are
given in their Egs. (32) and (33).

First we must translate from SF’s choice of Boyer-
Lindquist orbital variables (eg, pgr) to osculating orbit
elements in harmonic coordinates (e, p), consistent with
our work. We do this by employing the method detailed in
[58], in which one defines an “invariant” dimensionless
semilatus rectum x, and eccentricity e, via the gauge
invariant energy and angular momentum:

X0 =[2,

-~ (E?
e351+L2<?—1>,

(C1)

where we define L = cL/Gm as the dimensionless angular
momentum.

Using the 3PN expressions for E and L given in
equations (A1) and (A2) of [52] within our Eq. (C1), we
express the variables ep; and xp; in terms of ¢, and x; in a
PN expansion. These are, in turn, converted to osculating
orbit elements e and x, utilizing Eqs. (3.24) in WM [47] and
our Eq. (CI).

We substitute the orbital element conversion into the
Sago-Fujita secular evolution equations to find their equa-
tions as a function of osculating orbit elements.

Next we find the secular evolution equations for e and x
with

dx _ (dE/dr)(dL/de) — (dE/de)(dLdt)
dt — (dE/dx)(dL/de) — (dE/de)(dLdx)’
de  (dE/dx)(dL/dt) — (dE/dr)(dLdx)
dt — (dE/dx)(dL/de) — (dE/de)(dLdx)

Finally we convert from d/dt to d/d6 using 6 = (2z/P)t
together with the Keplerian expression for the orbital
period, arriving at the expressions given in Eqs. (3.2). It
is worth noting that this procedure leads to complete
agreement in the # = 0 limit with SF for the 3.5PN and
4.5PN terms. The tail terms given in Egs. (A1) and (A2) of
SF [52], are also in agreement with those obtained in
Appendix B to the corresponding order in powers of e.
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