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Abstract—The Traffic Assignment Problem (TAP) is a widely
used formulation for designing, analyzing and evaluating trans-
portation networks. The inputs to this model, besides the network
topology, are the Origin-Destination (OD) demand matrix and
travel latency cost functions. It has been observed that small
perturbations to these inputs have a large impact on the solution.
However, most efforts on estimating these using data do so sepa-
rately and are typically based on parametric models or surveys.
In this paper, we present a kernel-based framework that jointly
estimates the OD demand matrix and travel latency function in
single and multi-class vehicle networks. To that end, we formulate
a bilevel optimization problem and then we transform it to a
Quadratic Constraint Quadratic Program (QCQP). To solve this
QCQP, we propose a trust-region feasible direction algorithm that
sequentially solves a quadratic program. In addition, we also
provide an alternating optimization method. Our results show
that the QCQP method achieves better estimates when compared
with disjoint and sequential methods. We show the applicability
of the method by performing case studies using data for the
transportation networks of Eastern Massachusetts and New York
City.

Index Terms—Multi-class transportation networks; variational
inequalities; inverse optimization; travel latency function; conges-
tion function estimation; demand estimation.

I. INTRODUCTION

THE continuous increase of traffic congestion in urban ar-
eas, together with the availability of massive amounts of

speed data, has motivated researchers, companies, and policy-
makers to improve urban mobility through traffic control.
A fundamental step when implementing new transportation
policies or infrastructure projects is to create models that help
us understand the outcomes of an intervention. One of the
most common tools to analyze transportation networks —and
the one used in this paper— is the Traffic Assignment Problem
(TAP) which requires, apart from the network topology, two
main inputs: (i) an Origin Destination (OD) demand matrix;
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and (ii) a link latency cost or travel time function that relates
traffic flows with travel times. The user-centric TAP assumes
that users selfishly choose the best available route instead
of cooperating towards a social objective, which results in
an equilibrium known as the Wardrop equilibrium. Modeling
commuters’ routing behavior under this assumption is widely-
used for the purpose of analyzing transportation networks, with
applications in traffic diagnosis, control, and optimization.

An important drawback that has been observed when using
the user-centric TAP is that small perturbations in the inputs
to the problem, namely the OD demands and travel time
functions have a large impact on the equilibrium solution [1],
[2]. Therefore, the problem of accurately estimating these
inputs is relevant to design interventions with reliable models.
This joint estimation problem, that relies on traffic counts data,
can be formally written as

minβ,g F1(x(β,g),x
d),

where F1 measures a non-negative “distance” between the
TAP flows x(g,β) and the flow data xd; g represents the
OD demand; β represents the parameters specifying a travel
latency function and x(g,β) is the solution to the TAP.
Literature Review: The problem of estimating g alone (for

a fixed β) has received extensive attention. In practice, urban
planners estimate OD demand patterns through surveys. This
task is expensive and time consuming, which makes it imprac-
tical to perform on a regular basis. In contrast, academics have
estimated g assuming access to flow data and using a variety
of methods. An appropriate way to classify the literature on
OD demand estimation is by considering the level of conges-
tion in the network. For uncongested networks, where path
enumeration connecting each OD pair is possible and flows
do not impact the routing decisions of users, entropy maxi-
mization [3], [4], multi-objective optimization [5], generalized
least squares [6], [7], maximum likelihood estimation [8],
and Bayesian inference [9] have been employed. See [10]
for a comparison between these approaches. Alternatively, for
congested networks, where there exist a circular dependence
between the OD estimation problem and the traffic assignment
problem, the problem has been posed as a bilevel problem.
The first works to formulate this bilevel problem were [11]
and [12] and they tackled it by sequentially solving an entropy
maximization and a user assignment problem. After that, [13]
proposed a gradient-descent heuristic algorithm that calculates
derivatives by assuming that routing decisions are locally
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constant for small perturbations of g and solved the problem
sequentially. Since then, many approaches have been proposed
for the congested case, including coordinate descent [14],
fixed point algorithms with generalized least squares [15], and
extensions to a stochastic user equilibrium setting [16], [17]
that incorporates uncertainty in the routing decision process.
In addition to these, [18] solves the problem by writing the
augmented Largrangian problem and solving it using a Frank-
Wolfe algorithm. However all of these approaches assume full
knowledge of β.

Estimating travel time functions has received less attention
than the OD demand. In general, this problem has been ad-
dressed by fitting data of a particular link using regression [19],
[20], simulation [21], and more recently by incorporating
stochasticity in the link’s capacity [22]. In contrast to single-
link methods, there has been some work trying to solve the
inverse TAP which assumes knowledge of x and g and aims to
recover β. In this context [23] estimates a single parameter β
and uses a column-generation alternating approach. A different
method that stands out is [2]. Here, a kernel method is used,
allowing more flexibility in the specification of the travel
latency function. This last method serves as the basis of our
work.

To the best of our knowledge, solving the joint (OD demand
and travel time functions) estimation problem has only been
studied in [24] where the authors considered the parametric
BPR-type function and a heuristic algorithm to solve the
joint problem. Different to [24], in this paper we allow
more flexibility in the travel latency function by specifying
it as any monotonically increasing polynomial. Similar to
the joint problem, several studies have estimated the OD
demand together with the route-choice dispersion parameter
θ encountered in the stochastic user equilibrium (SUE). [25]
used a two-stage method and showed its convergence to a
local minimum for uncongested networks. For the congested
case, [1] proposed a sequential quadratic procedure that re-
quires estimating flow derivatives with respect to θ and g.
To compute the derivatives they used [26] and showed that
their algorithm converges only under certain circumstances.
Moreover, [27] and [28] solved the same problem using an
alternating method, and [29] tackled the problem with an
augmented Lagrangian method.

The contribution of this paper is threefold. First, we tackle
the problem of jointly estimating (instead of separately) the
OD demands and travel latency functions using exclusively
network flow data. To achieve this, we consider a bilevel
problem which we solve using two different methodologies.
One involves an alternating method that solves sequentially
the two estimation problems. The second entails including the
first-order necessary conditions of the lower-level problem as
constraints to the upper-level problem. This transforms the
original bilevel program to a quadratically constraint quadratic
program (QCQP) for which we provide a relaxation and an
iterative trust-region feasible direction method that seeks to
find a local minimum. Our second contribution is the extension
of these methods from single- to multi-class vehicle networks
which allows us to estimate g and β for different vehicle
types such as self-driving vehicles, trucks, or bikes. Our third

contribution is to perform experiments and case studies using
real urban and suburban transportation networks and speed
data. In particular, we use the Eastern Massachusetts Area
(EMA) and New York City (NYC) transportation networks
and we observe that our joint methods converge to a solution
that yields better estimates than solving the two estimation
problems separately.

Building on our preliminary analysis in [30], in this pa-
per: (i) We extend our method from single- to multi-class
transportation networks. To that end, we use the methodol-
ogy introduced in [31] and discuss its implications in the
joint demand-cost estimation problem. (ii) We propose an
alternating (apart from the QCQP) optimization method and
compare the performance of the two methods against the
framework of estimating g while keeping β constant, and
with a vanilla gradient-descent method. This is relevant, as it
demonstrates the benefits of our approach and helps us assess
its advantages/disadvantages against other methodologies. (iii)
Unlike [30], we perform a series of experiments using real
transportation networks. To accomplish this, we gathered the
network topology together with large volumes of historical
speed data. We transformed the speed data into flow data using
the fundamental diagram of traffic flow (see Appendix B for
details). Then, we estimated the OD demand matrix and travel
latency functions for the EMA highway network and the NYC
urban network. For both settings, we report the estimated OD
demand matrix and the travel latency function.

The remainder of this paper is organized as follows. In
Sec. II we introduce definitions and preliminaries. In Sec. III
we introduce the user-centric multi-class TAP and Wardrop
Equilibrium conditions together with its inverse formulation
for recovering the travel latency function. In Sec. IV we
formulate the joint problem written as a bilevel program, as
well as its transformation to QCQP. We then introduce the
trust-region feasible direction method. Finally, we validate
the approach through experiments and consider case studies
in Sec. V. Limitations and conclusions are in Sections VI
and VII, respectively.

Notation: All vectors are column vectors and denoted by
bold lowercase letters. Bold uppercase letters denote matrices.
We use “prime” to denote the transpose of a matrix or vector.
We denote by 0 and I the vector of all zeroes and the identity
matrix, respectively. Unless otherwise specified, ‖ · ‖ denotes
the `2 norm. |D| denotes the cardinality of a set D, and [[D]]
the set {1, . . . , |D|}.

II. PRELIMINARIES

A. Multi-class Transportation Network Model

Let Ũ be the set of user (or vehicle) classes and, without loss
of generality, assume that all vehicle classes travel in the same
transportation network. Let the original network be denoted
with a directed graph G̃ =

(
Ṽ, Ã, W̃

)
where Ṽ is the set of

nodes, Ã is the set of arcs, and W̃ is the set of K OD pairs
defined as W̃ =

{
wk : wk := (wsk, wtk), k = 1, . . . ,K

}
.

In order to include multiple vehicle classes, we use the idea
in [31] of making |Ũ | copies of G̃, each corresponding to
a vehicle class. We use these graphs to create an enlarged
network, denoted with G = (V,A,W), where the sets of arcs,
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nodes and OD pairs are constructed as the collection of all |Ũ |
graphs. Formally:

V =
{
v(i, u) : i ∈ [[Ṽ]], u ∈ [[Ũ ]]

}
, (1a)

A =
{
a(i, u) : i ∈ [[Ã]], u ∈ [[Ũ ]]

}
, (1b)

W =
{
w(k, u) : w(k, u) := (ws(k, u), wt(k, u)),

k ∈ [[W̃]], u ∈ [[Ũ ]]
}
. (1c)

Let the node-link incidence matrix of G be
N ∈ {0, 1,−1}|V|×|A| and let eiu denote the |A|-
dimensional vector where all entries are zero except the entry
corresponding to link a(i, u) which is set to one. To account
for users’ demand, for every OD k ∈ [[W̃]] and class u ∈ [[Ũ ]]
let dw(k,u) be its flow demand rate from node ws(k, u) to
node wt(k, u). Moreover, let the vector dw(k,u) ∈ R|V| be
composed of all zeros except for the coordinates of nodes
ws(k, u) and wt(k, u) which take values −dw(k,u) and
dw(k,u), respectively. Let F be the set of feasible flow vectors
defined as

F =
{
x ∈ R|A|≥0 : x =

∑
w∈W

xw, Nxw = dw, ∀w ∈ W
}
,

where x =
(
xiu; i ∈ [[Ã]], u ∈ [[Ũ ]]

)
, and xiu denotes the flow

of class u on link a(i, u). Let xu =
(
xiu; i ∈ [[Ã]]

)
be the

flow vector for class u and xai =
(
xiu; u ∈ [[Ũ ]]

)
the flow

vector of all classes corresponding to the ith physical arc.
It has been shown that the single-class formulation is a

special case of the multi-class model, and more interestingly,
that we can treat the multi-class model as an enlarged single-
class model [32]. Thus, we only need to consider general
multi-class models. However, due to coupling of flows in the
latency function from different classes of vehicles, some of the
properties of the single-class might differ to the multi-class
case. These are further discussed in the following subsection
and in Remark 1. For convenience, we vectorize the demand
for vehicle class u with gu =

(
dw(k,u); ∈ [[W̃]]

)
and denote

with g =
(
gu;u ∈ [[Ũ ]]

)
the full demand vector.

B. BPR-type Cost Functions

We consider the vector of travel latency functions to be
defined by:

t(x) =
(
tiu(xai); i ∈ [[Ã]], u ∈ [[Ũ ]]

)
, (2)

where the cost on a physical link does not depend on the
flows elsewhere, but on the flows present in the link from all
classes. To simplify the analysis, we will restrict our travel
latency functions to have the form of a generalized Bureau of
Public Roads (BPR) form. This is, for each link i ∈ [[Ã]] and
user type u ∈ [[Ũ ]] we have

tiu(x) = t0iuf(θ
′xai/mi) (3)

where t0iu is the free-flow travel time for vehicle class u on link
i; f(·) is a travel latency function which satisfies f(0) = 1,
is strictly increasing and is continuously differentiable on R+;
mi is the flow capacity of link i, and θ =

(
θu; u ∈ [[Ũ ]]

)
is a

weight vector such that θu ≥ 1, ∀u ∈ [[Ũ ]]. As a special case,
the single-class network corresponds to |Ũ | = 1 and θ1 = 1.

Finally, we make the following standard assumption in the
context of the TAP for our analysis of the models.

Assumption A. (i) G is strongly connected (there is at least
one route connecting any origin with its destination). (ii)
Demands dw are non-negative. (iii) Travel time functions are
positive and continuous for every link.

III. MODELS

In this section we present the models employed in this work
to later construct the joint problem. We review the variational
inequality of the TAP, as well as, an inverse TAP model. We
begin by defining the notion of a Wardrop Equilibrium.

Definition 1. A feasible flow x∗ ∈ F is a Wardrop Equilibrium
if for every OD pair w ∈ W , and any route riu connecting
(ws(i, u), wt(i, u)) with positive flow hriu , the cost of travel-
ing along that route is no greater than the cost of traveling
along any other route.

For an OD pair w(k, u) let rku be a path connecting its
origin to its destination and Rw(k,u) the set of all paths.
Furthermore, let hrku be the flow assigned to path rku. Then
a Wardrop Equilibrium exists if

hrku > 0 =⇒ crku = πw(k,u), ∀rku ∈ Rw(k,u) (4a)

hrku = 0 =⇒ crku ≥ πw(k,u), ∀rku ∈ Rw(k,u) (4b)

where crku is the travel time in route rku and πw(k,u) is the
travel time on the fastest route of w(k, u).

A. Variational Inequality

One way of modeling and solving, the TAP is via a Varia-
tional Inequality (VI) formulation [33]. In this context, let h
be a feasible route flow vector. Utilizing Assumption A and
the conditions described in (4), h∗ is a Wardrop Equilibrium
flow vector if and only if

c(h∗)′(h− h∗) ≥ 0, ∀h ∈ H, (5)

where H is a convex feasible set for the route-based problem.
If we also assume that the route costs are additive for a set of
links, we can rewrite these conditions in the link-based form:

t(x∗)′(x− x∗) ≥ 0, ∀x ∈ F . (6)

The existence and uniqueness of the solution to (6) for the
single- and multi-class networks is shown in Theorems 2.4
and 2.5 of [32] as long as t(·) is strongly monotone over F ,
t(·) is continuously differentiable, and F contains an interior
point (Slater’s condition).

Unfortunately, as stated in [34], it is not easy to verify
that t(·) is strongly monotone over F for general multi-class
transportation networks. This happens because the cost t(·)
of a particular link depends on more than one vehicle class.
This, in turn, creates an asymmetric Jacobian matrix of t(·)
for which first-order methods may not be sufficient to find
the solution to (6). We therefore cannot always guarantee
obtaining unique link flows for each vehicle class. However,
we still hope to accurately estimate the cost functions by
using a weighted sum of link flows (cf. (3)) for different user
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types. Still, for both single- and multi-class cases there are
many standard algorithms to solve (6) such as the Method
of Successive Averages (MSA) [32] and the Frank-Wolfe
algorithm [35].

B. User-Centric Inverse Model

The objective of the inverse model is to estimate the latency
cost function t(·) (specifically f(·) in (3)) using data. The
key idea is to use observable equilibrium flow data and
known OD demands to estimate f(·) by formulating an inverse
optimization model [2].

To do so, we assume that we are given |K| samples of the
link flow vector x. One can think of these as flow samples
which are produced by the same t(·). The inverse formulation
seeks to learn f(·) so that the flow observations are as close
as possible to an equilibrium. Given that this formulation
relies on measured data, we expect some measurement noise.
Hence, the notion of an approximate solution to (6) is needed.
Therefore, for a given ε > 0, we define:

Definition 2 (ε-approximate VI). Given ε > 0, x̂ ∈ F is
called an ε-approximate solution to (6) if

t(x̂)′(x− x̂) ≥ −ε, ∀x ∈ F . (7)

Assume now we are given |K| link flow observations. For
each κ ∈ [[K]] we have x(κ) =

(
x
(κ)
iu ; u ∈ [[Ũ ]]

)
; i ∈ [[Ã]]). The

inverse problem is then finding a function t(·) such that x(k) is
an εκ-approximate solution of (6). Letting ε := (εκ;κ ∈ [[K]]),
we formulate the inverse VI problem as

min
t,ε
‖ε‖ (8a)

s.t. t(x(κ))′(x− x(κ)) ≥ −εκ, ∀x ∈ F (κ), κ ∈ [[K]], (8b)
εκ > 0, ∀κ ∈ [[K]], (8c)

where the optimization is over ε, and the selection of function
t(·). Note that (8) is not solvable yet as we have not specified
t(·). Also observe that the set of constraints restricts the
travel time function to be within εk units of the Wardrop
equilibrium flows for each sample. In this sense, if we solve
the problem using a large [[K]] corresponding to multiple
observed networks, we will find a more “stable” travel latency
function as we expect the variance of the estimated parameters
to decrease.

To solve (8), we require to give more structure to
t(·), or more specifically f(·). Aiming to recover a func-
tion with good data reconciling and generalization proper-
ties, we apply an approach which expresses the function
f(·) in a Reproducing Kernel Hilbert Space (RKHS) H
as in [2]. Hence, we introduce the set of dual variables
y =

(
yw ∈ R|V|; w ∈ W(κ), κ ∈ [[K]]

)
which can be in-

terpreted as the “cost” of transporting dw units of flow trough
the network. Then, the inverse problem is to

min
f,ε,y

‖ε‖+ γ‖f‖2H (9a)

s.t. e′iuN
′
κy

w ≤ t0iuf(θ
′x(κ)
ai /mi), (9b)

∀i ∈ [[Ã]], u ∈ [[Ũ ]], w ∈ W(κ), κ ∈ [[K]],

|Ã|∑
i=1

( |Ũ|∑
u=1

t0iux
(κ)
aiu f(θ′x(κ)

ai /mi

)
(9c)

−
∑

w∈Wκ

(dw)′yw ≤ εκ, ∀κ ∈ [[K]],

f(θ′x(κ)
ai /mi) < f(θ′x(κ)

aĩ
/mĩ), (9d)

∀i, ĩ ∈ [[Ã]] s.t.
θ′x

(κ)
ai

mi
<
θ′x

(κ)
aĩ

mĩ

; ∀κ ∈ [[K]],

f(0) = 1, (9e)
ε ≥ 0, f ∈ H,

where Nκ is the node-link incidence matrix of the κ-th
network and where we have replaced constraints (8b) with
(9b)-(9e). In the objective, γ is a regularization parameter and
‖f‖2H denotes the squared norm of f(·) in H (note that to
solve (9), f(·) still need to be specified). The first constraint
(9b) corresponds to dual feasibility, (9c) states that the solution
to the κ-th network is within εκ distance, in other words, it is
the suboptimality constraint (primal-dual gap). (9d) enforces
f(·) to be strictly increasing, and (9e) is for normalization
purposes (see (3)). Note that a larger γ implies giving more
weight to estimating a “better” f(·) that generalizes better
out-of-sample, rather than fitting the data better. In contrast,
a smaller γ would recover a “tighter” f(·) in terms of data
reconciliation but might not provide good generalization.

One question that may arise is: How does ‖ε‖ behaves
as we increase the number of data samples? To answer this
question, we refer to Theorems 6 and 7 of [2, Sec. 6] where
the convergence of (9) is discussed in detail.

So far, solving (9) is ambiguous since it optimizes over un-
defined functions f(·). To make the estimation problem solv-
able, we specify H (and thus the class of f(·)) by choosing its
reproducing kernel [36] as a polynomial φ(x, y) = (c+ xy)n

for some choice of c ∈ R≥0 and n ∈ N. We believe this is a
good choice since it matches our intuition on how congestion
affects the latency cost of links (cf. (3)). The polynomial kernel
function is

φ(x, y) = (c+ xy)n =
n∑
i=0

(
n

i

)
cn−1xiyi.

Using the representer theorem for kernel functions, we modify
the travel latency function of (9) to a quadratic function
parameterized by β = {βj : j = [[n]]} where n is the degree
of the polynomial. This renders to the following tractable
Quadratic Programming (QP) problem (see (3.2), (3.2), and
(3.6) in [36] for details)

min
β,y,ε

‖ε‖+ γ
n∑
j=0

β2
j(

n
j

)
cn−j

(10)

s.t. (9b)− (9d), β0 = 1.

The output of (10) contains β∗, and therefore the f(·) estima-
tor is

f̂(x) :=
n∑
i=0

β∗i x
i = 1 +

n∑
i=1

β∗i x
i,
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where we set β0 = 1 to have f(0) = 1. Note that the well-
recognized vanilla BPR function (i.e., f(x) = 1 + 0.15x4)
is a special case of the proposed polynomial f̂(x) when
β = [1, 0, 0, 0, 0.15].

Remark 1. In the above QP formulation, we have assumed
that the parameter vector θ and the set of user classes Ũ are
the same for all |K| networks. Since (3) is a weighed sum
of link flows of different classes of vehicles. Hence, as noted
previously, we aim to accurately recover the travel latency
function from such weighted sum of link flows. In Sec. V we
will illustrate this by conducting a numerical experiment.

To facilitate the analysis, let us write (10) using the follow-
ing compact notation:

min
β,y,ε

ε′Iε+ β′Hβ (11a)

s.t. A(g)y +Bβ +Cε+ h ≤ 0, (11b)

where H is a positive definite matrix and A(g) depends on the
demand vector g through constraint (9c). Therefore, we have
properly defined an optimization problem to estimate f(·) via
β. This formulation was proposed for single-class networks
in [2] and employed in [37] to estimate the Price of Anarchy
(ratio between the solutions of the user-centric and system-
optimal TAP). We have extended this model for the multi-class
case and in the next section we present our main contribution,
the joint estimation of f(·) and g for the multi-class TAP.

IV. THE JOINT PROBLEM

A. Bilevel Formulation

Unlike most previous work in this field, we would like to
recover the travel time function f(·) (i.e., β = (β0, . . . , βn))
and the OD demand vector g jointly. To achieve this, we define
the joint problem as a bilevel formulation and we propose an
algorithm to find its solution. To ease notation, for any β and
g we let x(β,g) = (xai(β,g); ∀i ∈ [[Ã]]) be the optimal
solution to (6) (i.e. the TAP).

Assume that we observe |K| different equilibrium link flow
vectors x(κ), and let xd := (x(κ), ∀κ ∈ [[K]]) be the vectorized
version of all the observed data. Using these definitions we
write the bilevel optimization problem as

min
β,g

F̂ (β,g) :=

|K|∑
κ=1

|Ũ|∑
u=1

|Ã|∑
i=1

([x(β,g)]iu − x(κ)iu )2 (12a)

s.t. [x(β,g)]u = TAP(β,g), ∀u ∈ [[Ũ ]]

(β,y, ε) = arg min
β,y,ε

{
ε′Iε+ β′Hβ, (12b)

s.t. A(g)y +B(xd)β +Cε+ h ≤ 0
}
.

Remark 2. Typically, most related work aiming to solve this
problem include a term in (12a) which penalize the deviation
of the estimated demand g from a known demand vector g0.
To include this penalty one requires prior knowledge (or a
good estimate) of the true demand through g0. We believe
this term has been historically included due to the fact that
the optimization problem is non-convex in terms of x. Hence,
this prior knowledge aims to steer the solution towards a local
optimum close to the initial demand estimate g0. In contrast,

we avoid imposing such connection with an initial demand
estimate. Still, our methodology allows, if desired, to include
such term in the objective function.

B. Optimality conditions of (12b)

To write (12) as a computationally solvable joint optimiza-
tion problem, we replace the lower-level problem (12b) by its
optimality conditions and write (12) as a single-level problem.
Note that both (12) and (11) have convex quadratic objectives
as the only non-zero entries in their objective are in the
diagonal of the Q matrix in their canonical QP standard form.
We begin our analysis by writing the Lagrangian function:

L(β,y, ε;ν) = ε′Iε+β′Hβ+ν ′(Ay+Bβ+Cε+h), (13)

where ν denotes the dual variables corresponding to con-
straints (11b). To simplify the notation, we dropped the de-
pendence of A and B on g and xd, respectively. Furthermore,
the first-order conditions of (11) are

∂L/∂ε =2Iε+C′ν = 0⇒ ε = −(1/2)I−1C′ν, (14a)

∂L/∂β =2Hβ +B′ν = 0⇒ β = −(1/2)H−1B′ν, (14b)
∂L/∂y =A′ν = 0, (14c)

which, by substituting ε and β in (13) using (14), yields to
the dual function

D(ν) = −(1/4)ν ′(CIC′ +BH−1B)ν + h′ν.

It follows that for each primal-dual pair (β,y, ε; ν) in (12b),
the necessary and sufficient conditions are

Ay +Bβ +Cε+ h ≤ 0, (15a)
A′ν = 0, (15b)
ν ≥ 0, (15c)

ε′Iε+ β′Hβ = −1

4
(ν ′CIC′ + ν ′BH−1B

′
+ h′)ν, (15d)

where (15a)-(15c) correspond to primal and dual feasibility
and (15d) equates the primal and dual objectives to ensure
strong duality.

C. Relaxation and Trust-Region Feasible-Direction Method

At this point we are ready to convert the bilevel problem
to a single-level joint problem. We do this by replacing the
lower-level problem (12b) by its KKT conditions (15). In other
words, we minimize (12a) subject to (15). However, note
that (15d), corresponding to strong duality, is a non-convex
quadratic equality constraint. To address this issue, we relax
this constraint by requiring that the gap is upper bounded by
some ξ ∈ R≥0. We penalize this gap in the objective using
some λ. Then, the new joint formulation becomes

min
β,g,y,ν,ε,ξ

F (β,g, ξ) := F̂ (β,g) + λξ (16a)

s.t. (15a), (15b),

ε′Iε+ β′Hβ +
1

4
ν ′(CIC′ +BH

−1
B
′
)ν − h′ν ≤ ξ,

(16b)
ν, g,β, ξ ≥ 0, (16c)
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where β and g are the quantities of interest; y and ν are the
dual variables defined in (9) and (13), respectively; and ε and
ξ are the primal-dual gap relaxations.

Unfortunately, both the objective and the constraints,
through A, are nonlinear functions of g, y and ν. Therefore,
to solve (16), we propose an iterative trust-region feasible
direction method. To do so, let z = (β,g, ξ) and denote with j
the iteration count. With this sequential approach, we evaluate
the gradient of F (·) at the previous iteration and seek the
steepest feasible direction of descent by solving the following
optimization problem:

min
zj ,y,ν,ε

∇F (zj−1)′(zj−1 − zj) (17a)

s.t. (15a), (15b), (16b)

gj−1 − c1je ≤ gj ≤ gj−1 + c2je, (17b)

βj−1 − d1je ≤ βj ≤ βj−1 + d2je, (17c)

ν, zj ≥ 0, (17d)

where e denote the vector of all ones and c1j , c2j , d1j , d2j
are used as step-size parameters. The matrix A in the con-
straint (15a), and (15b) is a function of g and we approximate
it by using gj−1. Then, the gradient in (17a) is expressed by

∇F (zj)′ =
[ |Ũ|∑
u=1

|Ã|∑
i=1

2(xiu(z
j)− x∗iu)

∂xiu(β
j ,gj)

∂βl
, l = [[n]];

|Ã|∑
i=1

2(xiu(z
j)− x∗iu)

∂xiu(β
j ,gj)

∂gku
, k = [[W̃]], u = [[Ũ ]];λ

]
.

(18)

As a result, problem (17) has a linear objective (provided that
we can evaluate the partial derivatives) and constraints that are
linear and convex quadratic, making it a tractable problem.
In fact, this problem can be written as a quadratic program
by replacing ξj in the objective (17a) by the left-hand side
of constraint (16b). Given these “constant” approximations of
the constraints at the prior iterate, the role of c1j , c2j , d1j , d2j
is to ensure that the optimization takes place in a relatively
small “trust” region for (βj ,gj) that is not too far from the
prior iterate (βj−1,gj−1). Note, however, that to solve (17),
we still need to estimate the partial derivatives of the flows
with respect to g and β.

D. Derivatives

It has been observed that it is hard to derive analytical
expressions for the partial derivatives of x(β,g) with respect
to β and g. To overcome this, we use classical approximation
techniques. We refer the interested reader to a comprehensive
discussion carried out in [38].

1) Directional flow derivatives w.r.t OD demand: We derive
an approximation to the gradient of x(β,g) with respect to g.
To that end, fix i ∈ [[Ã]], u ∈ [[Ũ ]] and add the flows over the
OD pairs demands

xiu(β,g) =
∑
k∈[[W̃]]

∑
r∈Rku

δa(i,u)r pkru gku

=
∑
k∈[[W̃]]

gku
∑
r∈Rku

δa(i,u)r pkru , (19)

where Rku denotes the set of feasible routes for vehicle class u
in OD pair k; pwru stands for the percentage of class u vehicles
using route r ∈ Rku, and

δa(i,u)r :=

{
1, if route r uses link a(i, u),
0, otherwise.

(20)

As pointed out by [39], [13], for all k ∈ [[W̃]] and all u ∈ [[Ũ ]],
and assuming that the route probabilities are locally constant,
equation (19) implies

∂xiu(β,g)

∂gku
=

{∑
r∈Rku

δa(i,u)r pkru ,

0, otherwise.
(21)

If we only consider the shortest route rku(β,g) based on the
travel latency cost, we have that

∂xiu(β,g)

∂gku
≈ δa(i,u)rku(β,g)

=

{
1, if a(i, u) ∈ rku(β,g),
0, otherwise,

(22)

where a(i, u) ∈ rku(β,g) indicates that the shortest route
rku(β,g) uses link a(i, u). By (22) we obtain an approxima-
tion to the Jacobian matrix[

∂xiu(β,g)

∂gku
; i ∈ [[Ã]], u ∈ [[Ũ ]], k ∈ [[W̃]]

]
. (23)

The reasons to consider only the shortest routes for the purpose
of calculating these gradients are: (i) GPS routing services
are widely-used by vehicle drivers so they tend to always
select the fastest routes, (ii) considering only the fastest routes
significantly simplifies the calculation of the route-choice
probabilities, and (iii) extensive numerical experiments and
algorithms show that such an approximation of the gradients
performs well, e.g., TAPAS, or MSA.

2) Directional flow derivatives w.r.t coefficients of the travel
latency function: To the best of our knowledge there are
two main techniques to calculate directional derivatives of
the link flows with respect to a perturbation ρ on the cost
coefficients β. In [26], [38], sensitivity analysis is performed
with respect to the routes and require solving a linear system
that it is hard to solve for large-scale networks. To overcome
this issue, [40] develops a QP formulation to calculate such
derivatives. However, this QP has a similar complexity as the
TAP. Therefore, although we are able to use any of these
methods to calculate ∂xiu(β,g)/∂βl, we prefer to use a finite-
difference approximation. This is because, (i) the complexity
of solving the TAP is similar to that of the QP proposed in
[40]; (ii) there are fast algorithms such as MSA, Frank-Wolfe,
TAPAS to solve the TAP efficiently; and (iii) the TAP allows
to include all routes connecting any OD pair of any class rather
than defining a route set as in [40]. Using TAPiu(·) to denote
the solution of the TAP for link i and class u, for some small
enough ρ we compute

∂xiu(β
j ,gj)

∂βl
≈ TAPiu(βj + ρel,g

j)− TAPiu(βj ,gj)
ρ

,

where el is the lth unit vector.
Using these two approximation to the partial derivatives

we have developed a complete method for solving the joint
problem. We summarize our approach in Algorithm 1.
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Algorithm 1 Joint cost-demand estimation.

Input: G; λ; ρ; (g0,β0): initial OD demand and travel latency
function; step-size rule; (η, T ) : precision parameters.

Initialize: Set j = 0, calculate F (β0,g0), if: F (β0,g0) = 0
then: terminate and output (β0,g0) else:

1: Compute xju = TAPu(gj ,βj) for every u ∈ [[Ũ ]].
2: Obtain derivatives ∂x(βj ,gj)/∂βj and ∂x(βj ,gj)/∂gj

using (23) and (24), respectively.
3: Approximate the descent direction∇F (βj ,gj) using (18).
4: Choose a trust region/step size.
5: Solve for a steepest descent direction using (17), and

obtain βj+1 and gj+1.
6: (Termination criterion)

• if ‖F (βj ,gj)−F (βj+1,gj+1)‖2
F (β0,g0)

≥ η and j < T then
let j = j + 1 and go to Step 1,

• else Terminate and output: (βj+1,gj+1).

Our algorithm proceeds as a trust-region feasible direction
method that seeks to solve the joint cost-demand estimation
problem (defined in (12)). The key idea of the algorithm is
to jointly select, at every iteration j, the vectors βj and gj

that maximize the reduction in the objective function of (12)
by solving (17). To achieve this, we evaluate the gradient
of the function at the previous iteration of βj and gj and
restrict our new iterates to be within a trust region. By
recursively performing this procedure, we expect (and observe
empirically) the algorithm to converge to a local minimum.

Note that Alg. 1 is a method that solves a sequence of
quadratic problems. This approach has some similarities to
the one in [1] where, in general, convergence cannot be
guaranteed. This is due to the dependence between β and g.
In addition, a convergence analysis would need to account for
the fact that A(gj) is approximated by A(gj−1), which is not
straightforward. A potential approach to address this issue is
by selecting a small step-size and by using the minimization
rule. To that end, we need to perform a line search at every it-
eration (this is standard in alternating methods, see [41], [42]).
However computing x(β,g) is computationally demanding
and line search would be too expensive.

Moreover, we point out that solving (17) recursively is
computationally intensive as it involves solving a large op-
timization problem (e.g., the dimensions of ν and y are
O(|K| × |A|) and O(|K| × (|W| × |V|)), respectively) with
a linear objective and quadratic constraints. We leave the de-
velopment of techniques to reduce the computational burden,
such as the one described in [2], to future work.

Both the computational burden and the hardness of proving
convergence motivate us to propose an alternating method
described in Alg 2. This algorithm proceeds by adjusting g
using gradient descent, and then estimating the restricted travel
latency function using (9) with constraint (17c). The algorithm
possesses two advantages over Alg. 1. First, it decomposes the
problem making it more computationally tractable. Second,
we can guarantee its convergence. This follows by observing
that F (β,g) is lower-bounded by 0 and by observing that at
every iteration the objective is either reduced or stays at its
current value. To show this, we argue that if c1 < 0 < c2

Algorithm 2 Alternating cost-demand estimation.

Input: G; λ; ρ; (g0,β0): initial OD demand and travel latency
function; step-size rule; (η, T ) : precision parameters.

Initialize: Set j = 0, calculate F (β0,g0), if: F (β0,g0) = 0
then: terminate and output (β0,g0) else:

1: Compute xju = TAPu(gj ,βj) for every u ∈ [[Ũ ]].
2: Obtain derivative ∂x(βj ,gj)/∂βj using (23).
3: Find best step-size by doing line-search:

α = argminc1≤α≤c2 F (β
j ,g − α∇gF (β

j ,gj))
4: Take a gradient-step: gj+1 = gj − α∇gF (β

j ,gj+1)
5: Obtain βj+1 by solving (9) for a fixed gj+1 and con-

straint (17c).
6: If F (gj+1,βj+1) > F (gj+1,βj) let βj+1 = βj .
7: (Termination criterion): Same as in Alg. 1

then Step 3 certifies F (βj ,gj+1) ≤ F (βj ,gj) since we can
always select α = 0. Moreover, by imposing Step 6 we
ensure a similar argument for β. Thus, by using the monotone
convergence theorem [43] we guarantee its convergence. Its
main drawback is that the steepest directions of both g and β
are done independently rather than jointly as in Alg 1 and it
may not converge to a local minimum of the joint problem.

V. MODEL VALIDATION AND CASE STUDIES

We report numerical experiments conducted on a benchmark
network and subnetworks from the Eastern Massachusetts
Area (EMA) and New York City (NYC). We begin by vali-
dating our methods on single-class and multi-class variants of
the well-known Braess Network. Then, we perform additional
validation experiments using real networks: first on the EMA
network focusing on an interstate highway subnetwork and
then on an urban network in NYC.

A. Model Validation

To perform these experiments, we generate “ground truth”
data by selecting specific OD demands and cost functions
(β∗,g∗). Then, we solve the TAP problem using these “true”
inputs to obtain x∗, the “true” flow (note that, normally, we
would obtain x∗ from data). To test the performance, we take
the generated flows, x∗ as input to Alg. 1 and compare the
resulting (βj ,gj) to the ground truth. In addition to reporting
the performance of the methods developed herein, we compare
them with simpler algorithms. In particular: (i) the approach
of just estimating OD demands by assuming a fixed travel
latency cost function (f(·) = BPR), and (ii) a gradient descent
method (GD) using the estimated derivatives in (23), (24).

1) Single-Class Braess Network: As our first experiment,
we use the Braess network (Fig. 1a). We generate ground
truth data by considering a single OD pair which transports
4, 000 vehicles per hour from node 1 to 2 and with a true
travel latency function f(x) = 1 + 0.45x4. The resulting
“true” flows when solving the TAP for this network are:
(2095, 1904, 2095, 0, 1904, 1) for links (1, 2, 3, 4, 5) respec-
tively. Then, we initiate Alg. 1 with g0 = 0 and β0 =
(1, 0, 0, 0, 0.15, 0). We set c = 30, λ = 0.1, ρ = 0.1, n = 5,
and adaptive step-sizes c1j = c2j =

200√
j

, d1j = d2j =
0.02
j3/4

.
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Fig. 1. Network topologies.
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Fig. 2. Model validation on Braess Network. f(·) solves the problem using
a static BPR function; GD uses a gradient decent; Alternating solves the two
problems sequentially; Joint solves the problem using Alg. 1

In the left plot of Fig. 2 we observe the objective function
of the joint problem (16a) converging to zero when solving the
problem jointly. In contrast, when only adjusting OD Demands
with a fixed f(·), the method converges to a higher value. In
addition, the right hand side plot of Fig. 2 shows the norm
between the true demand and the estimated one. We see that
this distance converges to a lower value when solving the
joint problem in contrast to all other methods. Highlighting the
benefits of solving the joint formulation over other approaches.
It is imperative to point out that the algorithm is sensitive to the
selected parameters. In particular, the selection of step sizes is
relevant as it may cause the algorithm to diverge. We believe
this happens because the matrix A is evaluated at the previous
iterations and therefore, the selection of (c1j , c2j , d1j , d2j) has
a direct impact on both the closeness to the previous iteration
and the algorithm’s convergence rate.

2) Multi-Class Braess Network: We introduce two types
of vehicles: cars and commercial trucks (|Ũ | = 2). For
each vehicle class we generate ground truth demands g∗car =
[4000, 0] and , g∗truck = [400, 0] for OD pairs (1, 2) and (2, 1),
respectively. Recall that now we are interested on estimating
the OD demand for each vehicle type, i.e., gcar and gtruck, and
the travel latency function f(·). We select T = 500, λ = 0.1,
ρ = 0.1, n = 5, c1j = c2j = 400

j , d1j = d2j = 0.05/j and
run Alg. 1 with parameters as in the single-class case (i.e.,
f(x) = 1 + 0.15x4, g0 = 0). To consider the relatively lower
speed and larger physical dimensions of trucks compared to
cars, we assume the flow weight vector to be θ = (1, 2)
for cars and trucks, respectively. We assume t0i,car = t0i and
t0i,truck = 1.1t0i , where t0i is the free-flow travel time for the
physical link indexed by i. The details regarding the road
characteristics used for the free flow speeds and capacities,
as well as the algorithms employed in this paper are available

(a) (b)

(c) (d)

Fig. 3. Validation Results for the Multi-Class Braess Network. (a) Objective
Function, (b) f(·) evolution, (c) Car demand estimator, (d) Truck demand
estimator.

in our online public repository1. Figures 3c and 3d show how
Alg. 1 recovers the true OD demands for both vehicle classes.
In Fig. 3b we see how f̂(x) (our estimate of f(x)) is getting
closer to the true travel latency function. Finally, in Fig. 3a we
show how the objective function converges to a value close to
zero. In this experiment we observe that we are able to recover
the truth demand and travel latency function regardless the
limitation of the multi-class model as pointed in Sec III-A.

3) EMA: Seeking for more realistic networks, we perform
a validation experiment using the road network of EMA. We
select this network since it helps to emulate the conditions of a
interstate highway road network. The graph (Fig. 1b) consists
of 8 nodes, 24 links and 56 OD pairs.

We run Algs. 1 and 2 with T = 60, λ = 0.1, ρ = 0.1,
n = 5, c1j = c2j = 250

j , d1j = d2j = 0.02√
j

and we initialize
it with β0 = (1, 0, 0, 0, 0, 15, 0) and g0 = 0. In the left plot
of Fig. 4, we observe that jointly adjusting the cost function
while estimating demands is beneficial for approximating the
flows. We believe this is the case since Alg. 1 takes the joint
steepest descent direction compared with taking these steps
separately as in the Alternating method. In the right hand side
plot of Fig. 4, we see the progress of ‖(gj−g∗)‖ (which is not
minimized explicitly). We observe the joint method reaches a
lower level than all of the other approaches, especially against
the BPR approach. However, after iteration 9, this quantity
begins to increase. We believe this happens due to the fact
that the optimization process advances by adjusting both f̂
and g and might deviate the estimated demand while tuning
the travel latency function.

4) NYC: To test our method in congested urban areas, we
created a NYC validation network (Fig. 1c) consisting of 28
nodes, 90 edges and 8 Zones (green dots). To build this net-
work we used two data sources: OpenStreetMaps, from which
we retrieve the network topology and road characteristics, and

1https://github.com/salomonw/tnet
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Fig. 4. Validation Results for the EMA Network. Left and right plots show
the progress over the iterations of the objective function and the OD demand
deviation from a specified “truth” demand g∗, respectively.
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Fig. 5. Validation Results for the NYC Network. Left and right plots show
the progress over the iterations of the objective function and the OD demand
deviation from a specified “truth” demand g∗, respectively

Uber Movement Speed Data set, which we use for assigning
speed data to each link in the network. With this in hand,
we estimated travel times, speeds, densities and flows. See
Appendix A for details.

We run the algorithms with T = 30, λ = 0.1, ρ = 0.1,
n = 5, c1j = c2j = 100√

j
, d1j = d2j = 0.02

j(3/4)
, β0 =

(1, 0, 0, 0, 0, 15, 0), and g0i = 1000 for all i ∈ [[W ]]. Consistent
with the other examples we observe in Fig. 5 similar results
as in the Braess and the EMA networks where using the joint
methodology is beneficial.

B. Case Studies
1) EMA: We use speed data from April, 20th, 2012 from 8

to 9 a.m. provided by the Central Transportation Planning Staff
(CTPS) of the Boston Metropolitan Planning Organization
(MPO). We converted this speed to flow data using the
procedure described in Appendix B. With this, we run the
algorithms using T = 60, λ = 1e − 3, ρ = 0.1, n = 5,
c1j = c2j =

100
j , d1j = d2j =

0.02√
j

, β0 = (1, 0, 0, 0, 0, 15, 0),
and g0 = 0. And report the estimated OD matrix in Table I.

From field observations we understand that the traffic
patterns for EMA are similar to most urban areas. In the
morning, commuters travel to work towards the city center
and on the afternoon, they travel to residential areas. Table I
matches this intuition by estimating higher demand for OD
pairs with destination in the city center. In particular for nodes
4 (Worcester) and 6 (Downtown Boston). Likewise, the origin
for which most flow is generated is 8 (Taunton), corresponding
to the southern most node which accounts for all the southern
flow that commutes towards the Boston Metropolitan Area.
In addition, our results also suggests that travelers are more
sensitive to lower flows than the ones proposed by the BPR
function (see that the estimated Joint f(·) is above the BPR
in the left plot of Fig. 6). This is relevant for designing and
planning transportation networks.

TABLE I
ESTIMATED OD (VEH/H) DEMANDS FOR THE EMA NETWORK.

O/D 1 2 3 4 5 6 7 8 sum
1 0.0 1.1 0.0 515.1 298.1 803.4 36.3 310.0 1964.1
2 0.0 0.0 0.0 590.5 205.3 645.3 130.5 325.8 1897.3
3 0.0 1.1 0.0 598.6 173.6 662.4 130.3 257.0 1822.9
4 0.0 1.1 0.0 0.0 349.6 720.4 20.2 331.7 1423.1
5 0.0 1.1 0.0 563.6 0.0 645.1 87.4 320.9 1618.1
6 0.0 1.1 0.0 483.5 184.3 0.0 1.7 212.8 883.3
7 0.0 1.1 0.0 619.2 283.4 807.9 0.0 197.9 1909.5
8 1706.3 0.0 0.0 1355.2 65.8 898.0 1.7 0.0 4027.0
sum 1706.3 6.6 0.0 4725.6 1560.1 5182.5 408.1 1956.1 15545.3
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Fig. 6. Case Study results for EMA

2) New York City Network: We perform a similar case study
using the NYC subnetwork. We run our algorithms for traffic
data on Feb 13th, 2017 at 9 am. The right hand plot in Fig 7
show our results of the joint approach yielding to lower flow
error than the other estimation methods. Similar to the EMA
case, these results confirm our understanding of the morning
traffic pattern in NYC. Table II shows that node 10 is a favorite
origin and destination. This node represents Midtown, one of
the busiest neighborhoods in Manhattan due to high density
of offices and businesses. Moreover, we see that nodes 1
and 20 are desired destinations. These nodes represent Wall
Street and Lower Manhattan areas, respectively. This follows
our intuition as the south of Manhattan (also known as the
Financial District) it is densely populated with offices.

In summary, the numerical results reported in this Section
suggest that Alg. 1 works well in terms of reducing the ob-
jective function value of (12) while improving the estimation
accuracy for the cost function and demands.

VI. LIMITATIONS

We acknowledge some limitations of our method that we
believe can serve as a basis for future work, in particular we
identify: (i) We cannot guarantee the adjusted OD demands to
be close to the ground truth demand (since we are estimating
g by closing the gap between x and x∗) and the problem
is non-convex; (ii) In practice, the output of our algorithm
would heavily depend on the initial demand data (since the
joint problem is non-convex), as well as, on the accuracy of the
flow observations. Hence, good initial estimates are important
for the success of recovering the true parameters; (iii) The
selection of (c1j , c2j , d1j , d2j) has a direct impact on both the
closeness to the previous iterate and the algorithm’s conver-
gence rate which trades-off speed and accuracy. To overcome
the parameter selection issue, we suggest that practitioners use
cross-validation techniques or armijo-type rules when possible;
(iv) At each iteration we are solving a QP which can be solved
in polynomial time. However, the requirement for memory
increases exponentially with the size of the network and the
number of OD pairs. Therefore, decomposition techniques
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TABLE II
ESTIMATED OD DEMANDS (VEH/H) FOR THE NYC NETWORK.

O/D 1 4 20 10 17 21 25 26 sum
1 0.0 20.6 243.2 210.1 0.0 0.0 0.0 0.0 473.9
4 0.0 0.0 312.8 199.3 0.0 0.0 0.0 0.0 512.2
20 0.0 156.2 0.0 0.0 0.0 239.4 162.8 0.0 558.4
10 713.8 0.0 0.0 0.0 270.1 0.0 0.0 19.7 1003.6
17 0.0 86.4 0.0 0.0 0.0 185.5 140.5 0.0 412.4
21 0.0 86.4 0.0 0.0 0.0 0.0 140.5 0.0 226.9
25 0.0 0.0 0.0 52.2 0.0 0.0 0.0 41.1 93.3
26 0.0 0.0 0.0 52.2 0.0 0.0 0.0 0.0 52.2
sum 713.8 349.6 556.0 513.9 270.1 424.8 443.8 60.8 3332.8
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Fig. 7. Case Study results for the NYC

for the QP should be explored to increase the computational
efficiency of the method.

VII. CONCLUSION AND FUTURE WORK

In this paper, we address the problem of estimating OD
demands and cost functions jointly in a multi-class transporta-
tion network. We tackle this problem by rewriting the bilevel
optimization problem (12) using the lower-level optimality
conditions (16). To solve the resulting model, we propose
an iterative approach (17) by relaxing some constraints and
allowing a penalized gap to exist between the primal and dual
objectives. To solve the joint problem we proposed a trust-
region feasible direction and an alternating method described
in Algs. 1 and 2, respectively.

Our results show that we can always reduce the objective
function value of (12) to some extent, sometimes significantly,
thanks to the the construction of the algorithms. However,
the precision of the output highly depends on the inputs due
to the non-convexity nature of the bilevel problem. We show
empirically that there is value in jointly solving this problem
as it reaches better estimates of the flows x, cost function
f(·), and OD demands g. To do it, we compare our methods
with the one of exclusively adjusting g and with a vanilla
gradient decent method, which our approaches outperformed.
Nevertheless, we believe the GD and alternating methods are
good alternatives when dealing with large networks. This is
because GD and Alternating typically converge close to the
Joint solution (see Fig. 4 and Fig. 5) and rely exclusively
on the solution of the TAP [44], [45], [46]. We hope this
work nudges transportation experts to include cost function
adjustments when estimating OD demands from data. An ad-
ditional advantage of our methods is that it solves the problem
using gradient descent. This helps to overcome the burden of
inverting large sparse matrices required when estimating the
OD demands as in other methods [7]. This implies that our
method is easier to implement, and allow for decomposition
schemes as network size and OD pairs increase.

We identify potential future directions: First, to perform
sensitivity analysis of link congestion metrics with respect

to key quantities, such as link capacity and free-flow speed
trough the estimation of f(·) to enable the transportation
agencies to prioritize congestion-reducing interventions [47].
Second, to integrate our algorithms to a dynamic OD demand
estimation problem setting e.g., [48]. The potential outcome
would be to provide a more trustworthy method to predict
the “Estimated Time of Arrival” more accurately. Third, it
is possible to improve the running time of our algorithm by
(i) utilizing previous iterations as starting feasible solutions
for subsequent iterates; (ii) exploring better stopping criteria;
(iii) implementing coordinate descent schemes and accelerated
methods; (iv) employing more efficient data structures, and (v)
aggregating flows at the link- or bush-level.
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APPENDIX

A. Description of datasets
Eastern Massachusetts Area (EMA): The Boston Region

Metropolitan Planning Organization (MPO) has given us access to
two datasets of the EMA network: (i) A dataset reporting average
speeds for more than 13,000 road segments for 2012 and 2015. For
each road segment we obtained 10-min data on the average speed,
and free-flow speeds, date, time, and travel time; (ii) A capacity (in
vehicles per hour) dataset which includes data for more than 100,000
road segments in EMA.

New York City (NYC): We built the NYC transportation network
through two open source datasets: (i) OpenStreetMaps (OSM) [49]
from where we retrieved the network topology and road character-
istics; (2) the Uber Movement Speed Data set [50] which contains
average speeds of road segments on an hourly basis and which we
matched with OSM.

B. Preprocessing
1) Selecting a sub-network: To mitigate the computational

complexity while still capturing the key elements of the EMA net-
work, we considered a representative highway sub-network (Fig. 1b)
where we include 701 road segments, composing a network with 8
nodes and 24 links. We consider every node as a zone, yielding to
8× 8 OD pairs. To provide an example using an urban environment,
we reduced the dimensionality of the full NYC network. We first
select the set of nodes from the full network to be the nodes of the
NYC subnetwork (Fig. 1c). Then, we create edges between these
nodes following the grid connectivity of NYC. To find the travel
times of each arc, we solve a shortest path problem on the larger
(original) network and use these travel times in the smaller network.
With these travel times, we compute speeds on each link.

2) Calculating average speed and free-flow speed: For EMA
and NYC, we construct the set T consisting of multiple time intervals
of interest and calculate the average speed for every road segment in
every time interval. Then, for each road segment we compute a proxy
of the free-flow speed by using the 85th-percentile of the observed
speeds on that segment.

3) Aggregating flows of the segments on each link: For i ∈
[[Ã]], let {vji , t

j
i , v

0j
i , t

0j
i ,m

j
i ; j = 1, . . . , Ji} denote the available

observations (vji , tji ), and parameters (v0ji , t0ji , mj
i ) of the segments

composing the ith physical link. For each segment j, the average
speed is vji and the free-flow speed is v0ji , both in miles per hour.
Moreover, tji (resp., t0ji ) is the travel time (resp., free-flow travel
time) in hours, and mj

i is the segment capacity in veh/hr). Then,
using the fundamental diagram of traffic flow, we calculate the flow

(in veh/hr) on segment j by x̂ji =
4m

j
i

v
0j
i

vji −
4m

j
i

(v
0j
i )2

(vji )
2. In our

analysis, we enforce vji ≤ v0ji to make sure that the flow given by
x̂ji is non-negative. In particular, if for some time instance vji > v0ji
(this rarely happens), we set vji = v0ji . Aggregating over all segments
composed of link i we compute:

x̂i =

∑Ji
j=1 x̂

j
i t

j
i∑Ji

j=1 t
j
i

; t0i =
∑Ji

j=1
t0ji ; mi =

∑Ji
j=1m

j
i t

0j
i∑Ji

j=1 t
0j
i

,

where t0ji = vji t
j
i/v

0j
i , j = 1, . . . , Ji.

4) Adjusting link flows to satisfy conservation: For i ∈ [[Ã]],
let x̂i denote the original estimate of the flow on link i. Note that
these may not comply with conservation of flow. Hence, we let xi be
its adjustment, and ξiu the flow percentage on link i for vehicle class
u ∈ [[Ũ ]] (note that ξiu ≥ 0 and

∑|Ũ|
u=1 ξiu = 1). Then, xiu = ξiuxi

(recall that xiu denotes the flow on link a(i, u); i.e., xiu is the flow
on link i for vehicle class u). To ensure that the flows are conserved,
we solve the following Least Squares problem:

min
x≥0

|Ã|∑
i=1

|Ũ|∑
u=1

ξ2iu (xi − x̂i)
2

(24a)

s.t.
∑

i∈I(j)
ξiuxi =

∑
i∈O(j)

ξiuxi, ∀j ∈ V, u ∈ [[Ũ ]], (24b)

where the first constraint enforces flow conservation for each node
j ∈ Ṽ with I(j) (resp., O(j)) denoting the set of incoming (resp.,
outgoing) links to (resp., from) node j.
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