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Abstract— This paper addresses the problem of safety-critical
control for systems with unknown dynamics. It has been
shown that stabilizing affine control systems to desired (sets
of) states while optimizing quadratic costs subject to state and
control constraints can be reduced to a sequence of quadratic
programs (QPs) by using Control Barrier Functions (CBFs) and
Control Lyapunov Functions (CLFs). Our recently proposed
High Order CBFs (HOCBFs) can accommodate constraints
of arbitrary relative degree. One of the main challenges in
this approach is obtaining accurate system dynamics, which
is especially difficult for systems that require online model
identification given limited computational resources and system
data. In order to approximate the real unmodeled system
dynamics, we define adaptive affine control dynamics which are
updated based on the error states obtained by real-time sensor
measurements. We define an HOCBF for a safety requirement
on the unmodeled system based on the adaptive dynamics and
error states, and reformulate the safety-critical control problem
as the above mentioned QP. Then, we determine the events
required to solve the QP in order to guarantee safety, and derive
a condition that guarantees the satisfaction of the HOCBF
constraint between events. We illustrate the effectiveness of the
proposed framework on adaptive cruise control and compare
it with the classical time-driven approach.

I. INTRODUCTION

Constrained optimal control problems with safety specifi-
cations are central to increasingly widespread safety critical
autonomous and cyber physical systems. Control barrier
functions enforcing safety have received increased attention
in recent years [1] [2] [3].

Barrier functions (BFs) are Lyapunov-like functions [4],
[5], whose use can be traced back to optimization problems
[6]. More recently, they have been employed to prove set
invariance [7], [8], [9] and for multi-objective control [10].
In [4], it was proved that if a BF for a given set satisfies
Lyapunov-like conditions, then the set is forward invariant. A
less restrictive form of a BF, which is allowed to grow when
far away from the boundary of the set, was proposed in [1].
Another approach that allows a BF to be zero was proposed
in [2], [11]. This simpler form has also been considered in
time-varying cases and applied to enforce Signal Temporal
Logic (STL) formulas as hard constraints [11].

Control BFs (CBFs) are extensions of BFs for control
systems, and are used to map a constraint defined over system
states to a constraint on the control input. The CBFs from
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[1] and [2] work for constraints that have relative degree
one with respect to the system dynamics. A backstepping
approach was introduced in [12] to address higher relative
degree constraints, and it was shown to work for relative
degree two. A CBF method for position-based constraints
with relative degree two was also proposed in [13]. A
more general form [14] for arbitrarily high relative degree
constraints employs input-output linearization and finds a
pole placement controller with negative poles. The high order
CBF (HOCBF) proposed in [3] is simpler and more general
than the exponential CBF [14].

Most works using CBFs to enforce safety are based on
the assumption that the control system is affine in controls
and the cost is quadratic in controls. Convergence to desired
states is achieved by Control Lyapunov Functions (CLFs)
[15]. The time domain is discretized, and the state is assumed
to be constant over each time interval. The optimal control
problem becomes a Quadratic Program (QP) in each time in-
terval and the control is kept constant for the whole interval.
Using this approach, the original optimal control problem is
reduced to a (possibly large) sequence of quadratic programs
(QP) - one for each interval [16]. One of the challenges
in this QP-based approach is to determine the next time to
solve the QP such that safety can still be guaranteed due
to time discretization. The work in [17] proposed to find
the next time to solve the QP by considering the system
Lipschitz constants, and the work in [18] used a similar idea
as the event-triggered control for Lyapunov functions [19].
All these approaches assume that the dynamics are accurately
modeled, which is often not the case in reality.

In order to find accurate dynamics for systems with
uncertainties, [20] proposed to use machine learning tech-
niques; this, however, is computationally expensive and is
not guaranteed to yield sufficiently accurate dynamics for the
CBF method. The work in [21] proposed to use piecewise
linear systems to estimate the system dynamics, which is also
computationally expensive. All these works fail to work for
systems (such as time-varying systems) that require online
model identification.

In order to address the problem of safety-critical control
for systems with unknown dynamics, especially for systems
for which accurate modeling is hard and online identification
is required, this paper contributes to define adaptive affine
dynamics that are updated in a time-efficient way to approx-
imate the actual unmodeled dynamics. The adaptive and real
dynamics are related through the error states obtained by
real-time sensor measurements. We define an HOCBF for a
safety requirement on the actual system based on the adaptive
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dynamics and error states, and reformulate the problem as
the above mentioned QP. We determine the events required
to solve the QP in order to guarantee safety and derive a
condition that guarantees the satisfaction of the HOCBF con-
straint between events. The adaptive dynamics are updated
at each event to accommodate the real dynamics according
to the error states; this can reduce the number of events, thus
improving the computational efficiency. Our framework can
accommodate measurement uncertainties, guarantee safety
for systems with unknown dynamics, and is time efficient.
We illustrate our approach and compare with the classical
time driven method on an ACC problem.

II. PRELIMINARIES
We assume the reader is familiar with the definitions of

a class K function, relative degree of a (sufficiently many
times) differentiable function or constraint, and forward
invariance of a set with respect to given dynamics; otherwise,
please refer to [22] [3] for details.

Consider an affine control system (assumed to be known
in this section) of the form:

ẋ = f(x) + g(x)u (1)

where x ∈ X ⊂ Rn, f : Rn → Rn and g : Rn → Rn×q
are Lipschitz continuous, and u ∈ U ⊂ Rq is the control
constraint set defined as (umin,umax ∈ Rq):

U := {u ∈ Rq : umin ≤ u ≤ umax}. (2)

where the inequalities are interpreted elementwise.
For a constraint b(x) ≥ 0 with relative degree m, b :

Rn → R, and ψ0(x) := b(x), we define a sequence of
functions ψi : Rn → R, i ∈ {1, . . . ,m}:

ψi(x) := ψ̇i−1(x) + αi(ψi−1(x)), i ∈ {1, . . . ,m}, (3)

where αi(·), i ∈ {1, . . . ,m} denotes a (m − i)th order
differentiable class K function.

We further define a sequence of sets Ci, i ∈ {1, . . . ,m}
associated with (3) in the form:

Ci := {x ∈ Rn : ψi−1(x) ≥ 0}, i ∈ {1, . . . ,m}. (4)

Definition 1: (High Order Control Barrier Function
(HOCBF) [3]) Let C1, . . . , Cm be defined by (4) and
ψ1(x), . . . , ψm(x) be defined by (3). A function b : Rn →
R is a High Order Control Barrier Function (HOCBF) of
relative degree m for system (1) if there exist (m − i)th

order differentiable class K functions αi, i ∈ {1, . . . ,m−1}
and a class K function αm such that

sup
u∈U

[Lmf b(x) + LgL
m−1
f b(x)u+R(b(x)) + αm(ψm−1(x))] ≥ 0,

(5)
for all x ∈ C1∩, . . . ,∩Cm. In (5), Lmf (Lg) denotes Lie
derivatives along f (g) m (one) times, and R(·) denotes the
remaining Lie derivatives along f with degree less than or
equal to m− 1 (omitted for simplicity, see [22]).

The HOCBF is a general form of the relative degree one
CBF [1], [2], [11], i.e., setting m = 1 reduces the HOCBF
to the common CBF form:

Lfb(x) + Lgb(x)u+ α1(b(x)) ≥ 0, (6)

and it is also a general form of the exponential CBF [14].
Theorem 1: ([3]) Given an HOCBF b(x) from Def. 1

with the associated sets C1, . . . , Cm defined by (4), if x(0) ∈
C1∩, . . . ,∩Cm, then any Lipschitz continuous controller
u(t) that satisfies (5), ∀t ≥ 0 renders C1∩, . . . ,∩Cm forward
invariant for system (1).

Definition 2: (Control Lyapunov Function (CLF) [15]) A
continuously differentiable function V : Rn → R is an
exponentially stabilizing control Lyapunov function (CLF)
for system (1) if there exist constants c1 > 0, c2 > 0, c3 > 0
such that for ∀x ∈ Rn, c1||x||2 ≤ V (x) ≤ c2||x||2,

inf
u∈U

[LfV (x) + LgV (x)u+ c3V (x)] ≤ 0. (7)

Many existing works [1], [14] combine CBFs and CLFs
for systems with relative degree one with quadratic costs to
form optimizations. Time is discretized, and these constraints
are linear in control since the state value is fixed at the
beginning of the interval. Therefore, each optimization is a
quadratic program (QP). The optimal control obtained by
solving each QP is applied at the current time step and held
constant for the whole interval. The state is updated using
dynamics (1), and the procedure is repeated. Replacing CBFs
by HOCBFs allows us to handle constraints with arbitrary
relative degree [22]. Throughout the paper, we will refer to
this method as the time driven approach. The CBF method
works if (1) is an accurate model for the system. However,
this is often not the case in reality, especially for time-varying
systems. In what follows, we show how we can find a safety-
guaranteed controller for systems with unknown dynamics.

III. PROBLEM FORMULATION AND APPROACH

We consider a system (state x ∈ Rn and control u ∈
U ) with unknown dynamics, as shown in Fig. 1. For the
unknown dynamics, we make the following assumption:

Assumption 1: The relative degree of each component of
x is known with repect to the real unknown dynamics.

For example, if the position of a vehicle (whose dynamics
are unknown) is a component in x and the control is
acceleration, then the relative degree of the position with
respect to the unknown vehicle dynamics is two by Newton’s
law. We assume that we have sensors to monitor x and its
derivatives with or without controls. Measuring derivatives
of x is challenging, but accurate measurements may not
be necessary: we can relax this requirement by limiting
meansurement accuracy within some bound, as shown later.

Objective: (Minimizing cost) Consider an optimal control
problem for the real unknown dynamics with the cost:

min
u(t)

∫ T

0

C(||u(t)||)dt+ p0||x(T )−K||2 (8)

where T > 0, p0 > 0,K ∈ Rn, || · || denotes the 2-norm of a
vector, C(·) is a strictly increasing function of its argument.

Safety requirements: The real unknown dynamics should
always satisfy a safety requirement:

b(x(t)) ≥ 0, ∀t ∈ [0, T ]. (9)
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where b : Rn → R is continuously differentiable and has
relative degree m ∈ N with respect to the real system. The
relative degree m is known by Assumption 1.

Control constraints: The control of the real system
should always satisfy control bounds in the form of (2).

Problem 1: Find a control policy for the real unknown
dynamics such that the cost (8) is minimized, and constraints
(9) and (2) are satisfied.

Approach: Our approach to solve Problem 1 relies on the
CBF-based QP method [1], and the solution is sub-optimal.
In order to achieve solutions that are both safe and close
to optimal, we may use desired planned trajectories to be
optimally tracked as shown in [23]. There are four steps
involved in the solution:

Step 1: Define adaptive affine dynamics. Under Assump.
1, we define affine dynamics that have the same relative de-
gree for (9) as the real system to estimate the real dynamics:

˙̄x = fa(x̄) + ga(x̄)u (10)

where fa : Rn → R, ga : Rn → Rn×q , and x̄ ∈ X ⊂ Rn is
the state vector corresponding to x in the unknown dynamics.
Since fa(·), ga(·) in (10) can be adaptively updated to
accommodate the real unknown dynamics, as shown in the
next section, we call (10) adaptive affine dynamics. The
real unknown dynamics and (10) are related through the
error states obtained from the real-time measurements of the
system and the integration of (10). Clearly, we would like the
adaptive dynamics (10) to “stay close” to the real dynamics.
This notion will be formalized in the next section.

Step 2: Find an HOCBF that guarantees (9). Based on
(10), the error state and its derivatives, we use an HOCBF
to enforce (9). Details are shown in the next section.

Step 3: Formulate the CBF-based QP. We use a relaxed
CLF to achieve a minimal value of the terminal state penalty
in (8). If C(||u(t)||) = ||u(t)||2 in (8), then we can formulate
Problem 1 using a CBF-CLF-QP approach [1], with a CBF
replaced by an HOCBF [3] if m > 1.

Step 4: Determine the events required to solve the
QP and the condition that guarantees the satisfaction
of (9) between events. Since there is a difference between
the adaptive dynamics (10) and the real unknown dynamics,
in order to guarantee safety in the real system, we need to
properly define events (dependent on the error state and the
state of (10)) to solve the QP. In other words, we need to
determine the times tk, k = 1, 2, . . . (t1 = 0) at which the
QP must be solved in order to guarantee (9) for the plant.

The proposed solution framework is shown in Fig. 1 where
we note that we apply the same control from the QP to both
the real unknown dynamics and (10).

IV. EVENT-TRIGGERED CONTROL

In this section, we provide the technical details involved
in formulating the CBF-based QPs that guarantee the sat-
isfaction of the safety constraint (9) for the real unknown
system. We start with the case of a relative-degree-one safety
constraint (9).

Fig. 1. The solution framework for Problem 1 and the connection between
the real unknown dynamics and the adaptive affine dynamics (10). The state
x is from the sensor measurements of the plant.

A. Relative-degree-one Constraints

Suppose the safety constraint in (9) has relative degree one
with respect to both dynamics (10) and the actual dynamics.

Next, we show how to find a CBF that guarantees (9) for
the real unknown dynamics. Let

e := x− x̄. (11)

Note that x and x̄ are state vectors from direct measurements
and from the adaptive dynamics (10), respectively. Then,

b(x) = b(x̄+ e). (12)

Differentiating b(x̄+ e), we have

db(x̄+ e)

dt
=
∂b(x̄+ e)

∂x̄
˙̄x+

∂b(x̄+ e)

∂e
ė (13)

The CBF constraint that guarantees (9) for known dynam-
ics (1) is as in (6), which is done by replacing ẋ with (1).
However, for the unknown dynamics, the CBF constraint is:
db(x)
dt + α1(b(x)) ≥ 0. Equivalently, we have

db(x̄+ e)

dt
+ α1(b(x̄+ e)) ≥ 0. (14)

Combining (13), (14) and (10), we get the CBF constraint
that guarantees (9):

∂b(x)

∂x̄
fa(x̄) +

∂b(x)

∂x̄
ga(x̄)u+

∂b(x)

∂e
ė+ α1(b(x)) ≥ 0.

(15)
where ė = ẋ − ˙̄x is evaluated online through ẋ (from
direct measurements of the actual state derivative) and ˙̄x as
given through (10). Then, the satisfaction of (15) implies the
satisfaction of b(x̄+e) ≥ 0 by Thm. 1 and (12), therefore, (9)
is guaranteed to be satisfied for the real unknown dynamics.

Now, we can formulate an optimal control problem:

min
u(t),δ(t)

∫ T

0

(
||u(t)||2 + pδ2(t)

)
dt (16)

subject to (15), (2), and the CLF constraint

LfaV (x̄) + LgaV (x̄)u+ εV (x̄) ≤ δ(t), (17)

where V (x̄) = ||x̄ −K||2, c3 = ε > 0 in Def. 2, p > 0,
δ(t) is a relaxation for the CLF constraint.

Following the approach introduced at the end of Sec.
II, we solve the probem (16) at time tk, k = 1, 2 . . . .
However, at time tk, the QP (16) does not generally know
the error state e(t) and its derivative ė(t), ∀t > tk. Thus,
it cannot guarantee that the CBF constraint (15) is satisfied
in the time interval (tk, tk+1], where tk+1 is the next time
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instant to solve the QP. In order to find a condition that
guarantees the satisfaction of (15) ∀t ∈ (tk, tk+1], we first
let e = (e1, . . . , en) and ė = (ė1, . . . , ėn) be bounded by
w = (w1, . . . , wn) ∈ Rn>0 and ν = (ν1, . . . , νn) ∈ Rn>0:

|ei| ≤ wi, |ėi| ≤ νi, i ∈ {1, . . . , n}, (18)

which can be rewritten as |e| ≤ w, |ė| ≤ ν for simplicity.
We now consider the state x̄ at time tk, which satisfies:

x̄(tk)− s ≤ x̄(t) ≤ x̄(tk) + s, (19)

where the inequalities are interpreted componentwise and
s ∈ Rn>0. The choice of s will be discussed later. We denote
the set of states that satisfy (19) at time tk by

S(tk) = {y ∈ X : x̄(tk)− s ≤ y ≤ x̄(tk) + s}. (20)

Now, with (18) and (19), we are ready to find a condition
that guarantees the satisfaction of (15) in the time interval
(tk, tk+1]. This is done by considering the minimum value
of each component in (15), as shown next.

In (15), let bfa,min(tk) ∈ R be the minimum value of
∂b(x̄+e)
∂x̄ fa(x̄) for the preceding time interval that satisfies

y ∈ S(tk), |e| ≤ w,y + e ∈ C1 starting at time tk, i.e., let

bfa,min(tk) = min
y∈S(tk),|e|≤w,y+e∈C1

∂b(y + e)

∂y
fa(y) (21)

Similarly, we can also find the minimum value
bα1,min(tk) ∈ R and be,min(tk) ∈ R of α1(b(x)) and
∂b(x)
∂e ė, respectively, for the preceding time interval that

satisfies y ∈ S(tk), |e| ≤ w,y + e ∈ C1, |ė| ≤ ν starting at
time tk, i.e., let

bα1,min(tk) = min
y∈S(tk),|e|≤w,y+e∈C1

α1(b(y + e)) (22)

be,min(tk) = min
y∈S(tk),|e|≤w,|ė|≤ν,y+e∈C1

∂b(y + e)

∂e
ė (23)

For the remaining term in (15), if ∂b(x)
∂x̄ ga(x̄) is independent

of x̄ and e, then we do not need to find its limit value within
the bound y ∈ S(tk), |e| ≤ w,y + e ∈ C1; otherwise,
let x̄ = (x̄1, . . . , x̄n) ∈ Rn, u = (u1, . . . , uq) ∈ Rq and
ga = (g1, . . . , gq) ∈ Rn×q . We assume each component of
∂b(x)
∂x̄ ga(x̄) does not change sign ∀x ∈ X; otherwise, we

can define each sign change to be an update-triggering event
(this is the subject of future work). The sign of ui(tk), i ∈
{1, . . . , q}, k = 1, 2 . . . can be determined by solving the
CBF-based QP (16) at tk.

We can then determine the limit value bgi,lim(tk) ∈ R, i ∈
{1, . . . , q} of ∂b(x)

∂x̄ gi(x̄) by

bgi,lim(tk)=

 min
y∈S(tk),|e|≤w,y+e∈C1

∂b(y+e)
∂y

gi(y), if ui(tk)≥0,

max
y∈S(tk),|e|≤w,y+e∈C1

∂b(y+e)
∂y

gi(y), otherwise

(24)
Let bga,lim(tk) = (bg1,lim(tk), . . . , bgq,lim(tk)) ∈ Rq , and
we set bga,lim(tk) = ∂b(x)

∂x̄ ga(x̄) if ∂b(x)
∂x̄ g(x̄) is independent

of x̄ and e for notational simplicity.
The condition that guarantees the satisfaction of (15) in

the time interval (tk, tk+1] is then given by

bfa,min(tk) + bga,lim(tk)u(tk) + be,min(tk) + bα1,min(tk) ≥ 0.
(25)

In order to apply the above condition to the QP (16), we
just replace (15) by (25), i.e., we have

min
u(tk),δ(tk)

||u(tk)||2 + pδ2(tk), s.t. (25), (2), (17) (26)

Based on the above, we define three events that determine
the condition that triggers an instance of solving the QP (26):
• Event 1: |e| ≤ w is about to be violated.
• Event 2: |ė| ≤ ν is about to be violated.
• Event 3: x̄ of (10) reaches the boundaries of S(tk).
In other words, the next time instant tk+1, k = 1, 2 . . . to

solve the QP (26) is determined by:

tk+1 = min{t > tk : |e(t)| = w or |ė(t)| = ν

or |x̄(t)− x̄(tk)| = s},
(27)

where t1 = 0. The first two events can be detected by direct
sensor measurements after applying u(tk), while Event 3 can
be detected by monitoring the dynamics (10). The selected
magnitude of each component of s is a tradeoff between the
time complexity and the conservativeness of this approach. If
the magnitude is large, then the number of events is small but
the approach is conservative as we determine (25) through
the minimum values as in (21)-(24).

Formally, we have the following theorem to show that the
satisfaction of the safety constraint (9) is guaranteed for the
plant with the condition (25) (proof is given in [24]):

Theorem 2: Given an HOCBF b(x) with m = 1 as in
Def. 1, let tk+1, k = 1, 2 . . . be determined by (27) with
t1 = 0, and (25) be determined by (21)-(24), respectively.
Then, under Assumption 1, any control u(tk) that satisfies
(25) and updates the real unknown dynamics and the adaptive
dynamics (10) within time interval [tk, tk+1) renders the set
C1 forward invariant for the real unknown dynamics.

Remark 1: We may also consider the minimum value
of ∂b(y+e)

∂y fa(y) + ∂b(y+e)
∂e ė + α1(b(y + e)) within y ∈

S(tk), |e| ≤ w,y + e ∈ C1, |ė| ≤ ν instead of considering
them separately as in (21)-(24). This will be less conservative
as the constraint (25) is stronger compared with the CBF
constraint (15), and we wish to find the largest possible value
of the left-hand side of (15) that can support Thm. 2.

Events 1 and 2 will be frequently triggered if the modeling
of the adaptive dynamics (10) has a large error with respect
to the real dynamics. Therefore, we would like to model the
adaptive dynamics (10) as accurately as possible in order to
reduce the number of events required to solve the QP (26).

An additional important step is to synchronize the state
of the real unknown dynamics and (10) such that we always
have e(tk) = 0 and make ė(tk) close to 0 by setting

x̄(tk) = x(tk), (28)

and by updating fa(x̄(t)) of the adaptive dynamics (10) right
after (t+) an event occurs at t:

fa(x̄(t+)) = fa(x̄(t−)) +

k∑
i=0

ė(ti). (29)

where t+, t− denote instants right after and before t. In this
way, the dynamics (10) are adaptively updated at each event,
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i.e., at tk, k = 1, 2, . . . . Note that we may also update ga(·),
which is harder than updating fa(·) since ga(·) is multiplied
by u that is to be determined, i.e., the update of ga(·) will
depend on u. This possibility is the subject of ongoing work.

Assuming the functions that define the real unknown
dynamics and fa, ga in (10) are Lipschitz continuous, then
there exists lower bounds for the occurance times of the three
events [24]. As a summary, we get measurements from the
plant at time tk, k = 1, 2, . . . , and update (learn) the adaptive
dynamics (10) by (28), (29). Then we solve the QP (26) at tk,
and apply the optimal control to the plant and (10). After tk,
we keep collecting measurements from the plant and evaluate
the next event time tk+1 by (27) to solve the QP (26). This
process is repeated until the final time. The algorithm for
this event-triggered control can be found in [24].

Remark 2: (Measurement uncertainties) If the measure-
ments x and ẋ are subject to uncertainties, and the uncer-
tainties are bounded, then we can employ some filters to the
measurements and apply the bounds of x and ẋ in evaluating
tk+1 by (27) instead of x and ẋ themselves. In other words,
e(t) and ė(t) are determined by the bounds of x, ẋ and
the state of the adaptive system (10). This can also relax the
earlier assumption that we can (exactly) measure x and ẋ.

B. High-relative-degree Constraints
In this subsection, we consider the safety constraint (9)

whose relative degree is larger than one with respect to
the real unknown dynamics and (10). In other words, we
consider the HOCBF constraint (5). The technique is similar
to the last section, and thus, the details are skipped due to
space limitation, but can be found in [24].

Similar to the last subsection, we find the error state e by
(11), and have an alternative form of the HOCBF b(x) as in
(12). The difference is that we have e(i) = x(i) − x̄(i), i ∈
{1, . . . ,m} (the ith derivative), and is evaluated online by
x(i) (from a sensor) of the real system and x̄(i) of (10).

In order to find a conditon that guarantees the satisfaction
of the last equation in [ti, ti+1), i = 1, 2, . . . , we define
bounds for e and e(i), i ∈ {1, . . . ,m} as in (18). As in
(21)-(24), we get a condition that guarantees the satisfaction
of the safety constraint in the time interval [tk, tk+1) by

bfm
a ,min(tk) + bga,lim(tk)u(tk) + bem,min(tk)

+bαm,min(tk) + bR,min(tk) ≥ 0.
(30)

The parameters above are the min./lim. values corresponding
to the error-state based HOCBF constraint as in (15).

The three events to solve the QP and the event time tk+1

are determined as in the last section. A result similar to Thm.
2 that shows the satisfaction of (9) can be found in [24].

V. CASE STUDIES
In this section, we consider the case study of an ACC prob-

lem. All the computations and simulations were conducted
in MATLAB. We used quadprog to solve the quadratic
programs and ode45 to integrate the dynamics.

The real vehicle dynamics are unknown to the controller:[
v̇(t)
ż(t)

]
=

[
σ1(t) + σ3(t)

M
u(t)− 1

M
Fr(v(t))

σ2(t) + vp − v(t)

]
(31)

where x = (v, z) and z(t) denotes the distance between
the preceding and the ego vehicle, vp > 0, v(t) denote the
velocities of the preceding and ego vehicles along the lane
(the velocity of the preceding vehicle is assumed constant),
respectively, and u(t) is the control of the ego vehicle.
σ1(t), σ2(t), σ3(t) denote three random processes whose
pdf’s have finite support. M denotes the mass of the ego
vehicle and Fr(v(t)) denotes the resistance force, which
is expressed [25] as: Fr(v(t)) = f0sgn(v(t)) + f1v(t) +
f2v

2(t), where f0 > 0, f1 > 0 and f2 > 0 are unknown.
The adaptive dynamics will be automatically updated as

shown in (29), and are in the form:[
˙̄v(t)
˙̄z(t)

]
︸ ︷︷ ︸

˙̄x(t)

=

[
h1(t)− 1

M
Fn(v̄(t))

h2(t) + vp − v̄(t)

]
︸ ︷︷ ︸

fa(x̄(t))

+

[
1
M
0

]
︸ ︷︷ ︸
ga(x̄(t))

u(t) (32)

where h1(t) ∈ R, h2(t) ∈ R denote the two adaptive terms in
(29), h1(0) = 0, h2(0) = 0. z̄(t), v̄(t) are corresponding to
z(t), v(t) in (31). Fn(v̄(t)) = g0sgn(v̄(t))+g1v̄(t)+g2v̄

2(t),
which is different from Fr in (31), where g0 > 0, g1 > 0
and g2 > 0 are empirically determined.

The control bound is defined as: −cdMg ≤ u(t) ≤ caMg,
where ca > 0 and cd > 0 are the maximum acceleration and
deceleration coefficients, respectively, and g is the gravity
constant. We require that the distance z(t) between the
ego vehicle (real dynamics) and its immediately preceding
vehicle be greater than lp > 0, i.e.,

z(t) ≥ lp, ∀t ≥ 0. (33)

The objective is to minimize
∫ T

0
((u(t)−Fr(v(t)))/M)2dt.

The ego vehicle is also trying to achieve a desired speed
vd > 0, which is implemented by a CLF V (x̄) = (v̄ − vd)2

as in Def. 2. Since the relative degree of the constraint (33)
is two, we define an HOCBF b(x) = z− lp with α1(b(x)) =
b(x) and α2(ψ1(x)) = ψ1(x) as in Def. 1 to implement the
safety constraint. Then, the HOCBF constraint (5) which in
this case is (with respect to the real dynamics (31)): b̈(x) +
2ḃ(x)+b(x) ≥ 0. Combining (11), (32) and this equation, we
have an HOCBF constraint in the form: −h1(t) + Fn(v̄(t))

M +
−1
M u(t)+ ë2(t)+2(h2(t)+vp− v̄(t)+ ė2(t))+ z̄(t)+e2(t)−
lp ≥ 0, where e = (e1, e2), e1 = v − v̄, e2 = z − z̄.

Similar to (18), (19), we consider the state and bound
the errors at step tk, k = 1, 2 . . . for the above HOCBF
constraint in the form: v̄(tk)− s1 ≤ v̄ ≤ v̄(tk) + s1, z̄(tk)−
s2 ≤ z̄ ≤ z̄(tk) + s2, |e2| ≤ w2, |ė2| ≤ ν2,1, |ë2| ≤ ν2,2,
where s1 > 0, s2 > 0, w2 > 0, ν2,1 > 0, ν2,2 > 0.

As in (20), (29), we also synchronize the state and update
the adaptive dynamics (32) at step tk, k = 1, 2 . . . in the
form: v̄(tk) = v(tk), z̄(tk) = z(tk), h1(t+) = h1(t−)−∑k
i=0 ë2(ti), h2(t+)=h2(t−)+

∑k
i=0 ė2(ti), where ė2(tk) =

ż(tk)−(h2 +vp− v̄(tk)), ë2(tk) = z̈(tk)− Fn(v̄(tk))−u(t−k )

M +
h1(tk), u(t−k ) = u(tk−1) and u(t0) = 0. ż(tk), z̈(tk) are
estimated by a sensor that measures the dynamics (31) at tk.

Then, we can find the limit values similar to (21)-(24),
solve a QP similar to (26) at each time step tk, k = 1, 2 . . . ,
and evaluate the next time step tk+1 as in (27) afterwards.
In the evaluation of tk+1, we have e2 = z − z̄, ė2 = ż −
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(h2 + vp − v̄), ë2 = z̈ − Fn(v̄)−u(tk)
M + h1, where z, ż, z̈ are

estimated by a sensor that measures the ego real dynamics
(31), and u(tk) is already obtained by solving the QP and
is held as a constant until we find tk+1. The optimizations
similar to (21)-(24) are either QPs or LPs. Each QP or LP can
be solved with a computational time < 0.01s in MATLAB
(Intel(R) Core(TM) i7-8700 CPU @ 3.2GHz×2).

The simulation parameters can be found in [24]. The
pdf’s of σ1(t), σ2(t), σ3(t) are uniform over the intervals
[−0.2, 0.2]m/s2, [−2, 2]m/s, [0.9, 1], respectively. The sen-
sor sampling rate is 20Hz. We compare the proposed event
driven framework with the time driven approach. The dis-
cretization time for the time driven approach is ∆t = 0.1.

The simulation results are shown in Figs. 2(a) and 2(b).
In the event-driven approach (blue lines), the control varies
largely in order to be responsive to the random processes
in the real dynamics. If we decrease the uncertainty levels
by 10 times, the control is smoother (magenta lines). Thus,
highly accurately modeled adaptive dynamics are desired.

It follows from Fig. 2(b) that the set C1 ∩ C2 is forward
invariant for the real vehicle dynamics (31), i.e., the safety
constraint (33) is guaranteed with the proposed event driven
approach. However, the safety is not guaranteed even with
state synchronization under the time-driven approach.

(a) Speed and control profiles. (b) b(x(t)) and ψ1(x(t)).

Fig. 2. Results for the proposed event driven framework and time driven
with or without synchronization. b(x(t)) ≥ 0 and ψ1(x(t)) ≥ 0 imply the
forward invariance of C1 ∩ C2 (for the proposed event driven framework,
but not for the time driven case with or without synchronization).

In the event-driven approach, the number of QPs (events)
within time [0, T ] is reduced by about 50% compared with
the time-driven approach. If we multiply the bounds of
the random processes σ1(t), σ2(t) by 2, then the number
of events increases by about 23% for both the 20Hz and
100Hz sensor sampling rate, which shows that accurate
adaptive dynamics can reduce the number of events, and thus
improves the computational efficient.

VI. CONCLUSION & FUTURE WORK

This paper proposes an event-triggered framework for
safety-critical control of systems with unknown dynamics.
This framework is based on defining adaptive affine dynam-
ics to estimate the real system, an event-trigger mechanism
for solving the problem and the finding of a condition that
guarantees safety between events. The effectiveness has been
demonstrated on adaptive cruise control. In the future, we
will study the conservativeness of the proposed framework.
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