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We address the problem of optimizing the performance of a dynamic system while satisfying
hard safety constraints at all times. Implementing an optimal control solution is limited by the
computational cost required to derive it in real time, especially when constraints become active, as
well as the need to rely on simple linear dynamics, simple objective functions, and ignoring noise. The
recently proposed Control Barrier Function (CBF) method may be used for safety-critical control at the
expense of sub-optimal performance. In this paper, we develop a real-time control framework that
combines optimal trajectories generated through optimal control with the computationally efficient
CBF method providing safety guarantees. We use Hamiltonian analysis to obtain a tractable optimal
solution for a linear or linearized system, then employ High Order CBFs (HOCBFs) and Control Lyapunov
Functions (CLFs) to account for constraints with arbitrary relative degrees and to track the optimal
state, respectively. We further show how to deal with noise in arbitrary relative degree systems.
The proposed framework is then applied to the optimal traffic merging problem for Connected and
Automated Vehicles (CAVs) where the objective is to jointly minimize the travel time and energy
consumption of each CAV subject to speed, acceleration, and speed-dependent safety constraints.
In addition, when considering more complex objective functions, nonlinear dynamics and passenger
comfort requirements for which analytical optimal control solutions are unavailable, we adapt the
HOCBF method to such problems. Simulation examples are included to compare the performance of the
proposed framework to optimal solutions (when available) and to a baseline provided by human-driven
vehicles with results showing significant improvements in all metrics.
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1. Introduction These applications provide the main motivation for the control

framework presented in this paper.

Optimizing a cost function associated with the operation of a
dynamical system while also satisfying hard safety constraints at
all times is a fundamental and challenging problem. The challenge
is even greater when stabilizing some system state variables to
desired values is an additional requirement. With the growing
role of autonomy, the importance of these problems has also
grown and one now frequently encounters them in the oper-
ation of autonomous vehicles in robotics and traffic networks.
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Optimal control problems with safety-critical constraints can
be solved through standard methods (Ansari & Murphey, 2016;
Bryson & Ho, 1969), with applications found in robotics and
autonomous vehicles in traffic networks (Chitour et al., 2012;
Malikopoulos et al., 2018; Mita et al., 2001; Xiao & Cassandras,
2019). However, analytical solutions are only possible for simple
system dynamics and constraints. Moreover, the computational
complexity for deriving such solutions significantly increases as
one or more constraints become active and it grows as a power
function of the number of constraints. This fact limits the use of
optimal control methods for autonomous systems when solutions
need to be derived and executed on line. Additional factors which
further limit the real-time use of these methods include the pres-
ence of noise in the dynamics, model inaccuracies, environmental
perturbations, and communication delays in the information ex-
change among system components. Thus, there is a gap between
optimal control solutions (which represent a lower bound for the
optimal achievable cost) and the execution of controllers aiming
to achieve such solutions under realistic operational conditions.
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In order to bridge this gap and obtain real-time controls for
safety-critical problems, Model Predictive Control (MPC) (Bem-
porad et al., 2002; Garcia & Prett, 1989; Mayne, 2014) has been
widely used to approximate optimal control solutions. An explicit
approximate MPC controller can also be obtained for systems
with quantized input, which is achieved by a piecewise constant
approximation of the optimal solution (Grancharova & Johansen,
2008). Whether linear or nonlinear MPC methods are used, a
time-discretized predictive model is needed and a receding hori-
zon control problem is formulated and solved at all discretized
receding time instants taking into account all safety constraints
involved. Nonetheless, the computational cost significantly in-
creases with the model nonlinearity and the time horizon over
which a problem is solved.

An alternative approach which has the potential to avoid the
drawbacks above is based on the use of Control Barrier Function
(CBFs). Barrier functions are Lyapunov-like functions (Wieland &
Allgower, 2007) whose use can be traced back to optimization
theory (Boyd & Vandenberghe, 2004). More recently, they have
been employed in verification and control, e.g., to prove set
invariance (Aubin, 2009; Prajna et al., 2007; Wisniewski & Sloth,
2013), and for multi-objective control (Panagou et al., 2013). CBFs
are extensions of barrier functions for control systems (Ames
et al.,, 2014) and have been recently generalized to consider arbi-
trary relative degree constraints in Nguyen and Sreenath (2016)
and Xiao and Belta (2019). It has also been shown that CBFs
can be combined with Control Lyapunov Functions (CLFs) (Ames
et al,, 2012; Freeman & Kokotovic, 1996; Sontag, 1983) to form
constrained quadratic programs (QPs) (Galloway et al., 2015) for
nonlinear control systems that are affine in controls. The main
advantages of CBF-based control compared to MPC lie in the
fact that (i) feasible state sets under CBF-based control possess
a forward invariance guarantee property, (ii) The QPs involved at
every time step can be solved in real time, as long as each QP
is feasible, and (iii) the method is easier to adapt when handling
nonlinear systems with complex constraints.

The contribution of this paper is to synthesize controllers that
combine the optimal control and the CBF methods aiming for
both optimality and guaranteed safety in real-time control. The
key idea is to first generate trajectories by solving a tractable
optimal control problem and then seek to track these trajec-
tories using a controller which simultaneously ensures that all
state and control constraints are satisfied at all times. This is
accomplished in two steps. The first step is to solve a constrained
optimal control problem. Given a set of initial conditions, it is
usually possible to derive simple conditions under which it can be
shown that no constraint becomes active. In this case, executing
the unconstrained optimal control solution becomes a relatively
simple tracking problem. Otherwise, we can still often derive an
optimal control solution consisting of both unconstrained and
constrained arcs. However, such derivations may not always be
feasible in real time. Either way, using the best possible analytical
solution within reasonable real-time computational constraints
(possibly just the unconstrained solution), this step leads to a
reference control u(t), t € [0, T]. The second step is then to
use High Order CBFs (HOCBFs) (Xiao & Belta, 2019) to account
for constraints with arbitrary relative degrees, and define a se-
quence of QPs whose goal is to optimally track u.s(t) at each
discrete time step over [0, T]. In this step, we can allow noise
in the system dynamics and include nonlinearities which were
ignored in the original optimal control solution. The resulting
controller is termed Optimal control with Control Barrier Func-
tions (OCBF). We will show that using an OCBF controller we
can achieve near-optimal performance relative to the one under
optimal control while guaranteeing constraint satisfaction under
more general dynamics and the presence of disturbances that the
original optimal control solution cannot capture.
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The OCBF idea was used in our recent work (Xiao, Cassan-
dras et al., 2019) to address the merging problem for Connected
Automated Vehicles (CAVs) in traffic networks. This is one of
the most challenging problems within a transportation system
in terms of safety, congestion, and energy consumption, in ad-
dition to being a source of stress for many drivers (Schrank
et al, 2015; Tideman et al., 2007; Waard et al., 2009). More
broadly, advances in transportation system technologies and the
emergence of CAVs have the potential to drastically improve a
transportation network’s performance by better assisting drivers
in making decisions, ultimately reducing energy consumption,
air pollution, congestion and accidents. Early efforts exploiting
the benefit of CAVs were proposed in Levine and Athans (1966)
and Varaiya (1993). In terms of optimal trajectory planning, a
number of centralized and decentralized merging control mech-
anisms have been proposed (Milanes et al.,, 2012; Raravi et al,,
2007; Scarinci & Heydecker, 2014; Tideman et al., 2007). In the
case of decentralized control, all computation is performed on
board each vehicle and shared only with a small number of
other vehicles which are affected by it. The objectives specified
for optimal control problems may target the minimization of
acceleration as in Rios-Torres and Malikopoulos (2017) or the
maximization of passenger comfort (measured as the acceleration
derivative or jerk) as in Ntousakis et al. (2016) and Rathgeber
et al. (2015). MPC techniques are employed as an alternative,
primarily to account for additional constraints and to compensate
for disturbances by re-evaluating optimal actions (Cao et al,
2015; Mukai et al., 2017; Ntousakis et al., 2016). As an alternative
to MPC, CBF methods were used in Xiao, Belta et al. (2019) where
a decentralized optimal control problem with explicit analytical
solutions for each CAV was derived.

In this paper, we generalize the OCBF controller introduced in
Xiao, Cassandras et al. (2019) that only works for relative degree
one constraints to allow constraints with relative degree greater
than one and also allow for noise in the system dynamics. We
consider optimal control problems with constraints of arbitrary
relative degrees which are handled by using HOCBFs. We will
show that by using HOCBFs we can incorporate complex objective
functions, nonlinear dynamics, and comfort requirements which
otherwise prohibit even unconstrained optimal control solutions
from being derived. This also allows us to study the trade-off
between travel time, energy consumption, and comfort. Extensive
simulations have been conducted to demonstrate the effective-
ness of the proposed framework for the traffic merging problem
relative to other approaches.

The paper is structured as follows. In Section 2, we provide
definitions and results on the HOCBF method. We formulate
a general constrained optimal control problem and develop its
OCBEF solution in Sections 3 and 4, respectively. As an application
of the OCBF framework, in Section 5 we present the traffic merg-
ing process model and formulate the optimal merging control
problem including all safety, state and control constraints that
must be satisfied at all times. In Section 6, the optimal solution for
the merging problem is reviewed for the unconstrained as well as
the constrained cases and the OCBF method is applied to it. We
provide simulation examples and performance comparisons with
human-driven vehicles in Section 7 and conclude with Section 8.

2. Preliminaries

Consider an affine control system of the form

x=f(x)+g(xu (1)

where x ¢ X C R, f : R" - R'and g : R" — R™¢
are globally Lipschitz, and u € U C RY (U denotes the control
constraint set). Solutions x(t) of (1), starting at x%(0), t > 0, are
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forward complete. The control constraint set U is defined as (the
inequality is interpreted componentwise, Uy, Umey € R?):

U= {ueR!: typ < U < g} (2)

Definition 1 (Class K Function Khalil, 2002). A continuous function
o : [0,a) - [0,00),a > 0 is said to belong to class K if it is
strictly increasing and «(0) = 0.

Definition 2. A set C C R" is forward invariant for system (1) if
its solutions starting at any x(0) € C satisfy x(t) € C, Vt > 0.

Definition 3 (Relative Degree). The relative degree of a (suffi-
ciently many times) differentiable function b : R" — R with
respect to system (1) is the number of times it is differentiated
along the dynamics (1) until the control u explicitly shows in the
corresponding derivative.

In this paper, the function b is used to define a constraint
b(x) > 0. Therefore, we will also refer to the relative degree of b
as the relative degree of the constraint. For a constraint b(x) > 0
with relative degree m, b : R" — R, and ¥(x) := b(x), we define
a sequence of functions v; : R" — R,i e {1,...,m}:

YilX) = Y (®) + ai(Yia®), i€ {1,...,m), (3)

where «;(-), i € {1, ..., m} denotes a (m— i)™ order differentiable
class K function. We further define a sequence of sets C;,i €
{1, ..., m} associated with (3) in the form:

C:={xecR":¢y;_1(x) >0}, ie{l,...,m}. (4)

Definition 4 (High Order Control Barrier Function (HOCBF) Xiao &
Belta, 2019). Let Cq, ..., Gy be defined by (4) and ¥1(X), . .., ¥m(x)
be defined by (3). A function b : R" — R is a high order
control barrier function (HOCBF) of relative degree m for system
(1) if there exist (m — i)th order differentiable class K functions
aj,ie€{1,...,m— 1} and a class K function «;, such that
suE[Lfmb(x) + LeL{" ' b(x) + S(b(X)) + ctm(Ym—1(%))] = 0 (5)
uec

forall x € CiN, ..., NCxp. In (5), LT (Lg) denotes Lie derivatives
along f (g) m (one) times, and S(~) denotes the remaining Lie
derivatives along f with degree less than or equal to m — 1.

The HOCBF constraints in (5) may sometimes conflict with the
control constraints in (2), which can limit the existence of feasible
solutions for the optimal control problem that we will formulate
later. In order to minimize this effect, the penalty method (Xiao &
Belta, 2019) replaces «;(;—1(x)) by pi-ai(¥i—1(x)), Vi € {1, ..., m},
where p; > 0 is a multiplicative penalty factor which can be tuned
appropriately.

Theorem 1 (Xiao & Belta, 2019). Given a HOCBF b(x) from
Definition 4 with the associated sets Cy,...,Cy, defined by (4),
if X(0) € CiN,...,NCy, then any Lipschitz continuous controller
u(t) € U that satisfies (5), Vt > 0 renders C1N, ..., NCy forward
invariant for system (1).

The HOCBF is a general form of the relative degree one CBF
(Ames et al., 2014; Glotfelter et al., 2017) (i.e., setting m = 1
reduces the HOCBF to the common CBF form in Ames et al., 2014;
Glotfelter et al., 2017). The exponential CBF (Nguyen & Sreenath,
2016) is a special case of the HOCBF.

Definition 5 (Control Lyapunov Function (CLF) Ames et al., 2012). A
continuously differentiable function V : R" — R is an exponen-
tially stabilizing control Lyapunov function (CLF) for system (1) if
there exist constants ¢; > 0, ¢c; > 0, c3 > 0 such that

cillxl® < V(&) < ¢ |lx? (6)
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inf[LV(x) 4+ LV (x)u 4 c3V(x)] < 0. (7)

ueU

for Vx € X.

Theorem 2 (Ames et al., 2012). Given an exponentially stabilizing
CLFV as in Definition 5, any Lipschitz continuous controller u(t) € U
that satisfies (7), Vt > 0 exponentially stabilizes system (1) to the
origin.

Note that (7) can be relaxed by replacing 0 by a relaxation
variable § > 0 at its right-hand side which can be subsequently
minimized (Ames et al., 2012).

Many existing works (Ames et al., 2014; Nguyen & Sreenath,
2016; Yang et al., 2019) combine CBFs for systems with relative
degree one with quadratic costs to form optimization problems.
We can discretize the time, and an optimization problem with
constraints given by the CBFs (inequalities of the form (5)) is
solved at each time step. The inter-sampling effect is considered
in Yang et al. (2019). If convergence to a state is desired, then
a CLF constraint of the form (7) is added, as in Ames et al.
(2014) and Yang et al. (2019). Note that these constraints are
linear in control since the state value is fixed at the beginning of
the interval, therefore, each optimization problem is a quadratic
program (QP). The optimal control obtained by solving each QP
is applied at the current time step and held constant for the
whole interval. The state is updated using dynamics (1), and the
procedure is repeated. Replacing CBFs by HOCBFs allows us to
handle constraints with arbitrary relative degree (Xiao & Belta,
2019).

3. Problem formulation and approach

Objective: (Cost minimization) Consider an optimal control
problem for system (1) with the cost defined as:

J= [f [B + C(x, u, t)]dt, (8)

where to, tf denote the initial and final times, respectively, and
C : R" x RY x [to, tf] — R* is a cost function. The parameter
B > 01is used to capture a trade-off between the minimization of
the time interval (t; — to) and the operational cost C(x, u, t). The
terminal time ¢ is constrained as follows:

Terminal state constraint: The state of system (1) is con-
strained to reach a point X € X, i.e.,

x() =X, (9)

Note that t; is generally free (unspecified).
Constraint 1 (Safety constraints): Let S, denote an index set
for a set of safety constraints. System (1) should always satisfy

bi(x(t)) > 0, Vt € [to, tr]. (10)

where each b; : R" — R, j € S, is continuously differentiable.
Constraint 2 (Control constraints): These are provided by the
control constraint set in (2).
Constraint 3 (State constraints): System (1) should always
satisfy the state constraints (componentwise):

Xmin fX(t) fxmaXth € [tOstf] (]])

where Xn,in € R" and Xn.x € R". Note that we distinguish
the state constraints from the safety constraints in (10) since
the latter are viewed as hard, while the former usually capture
system capability limitations that can be relaxed to improve the
problem feasibility; for example, in traffic networks vehicles are
constrained by upper and lower speed limits.
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Problem 1. Find a control policy for system (1) such that the
cost (8) is minimized, constraints (10), (2) and (11) are strictly
satisfied, and deviations ||x(t;) — X |> from the terminal state
constraint (9) are minimized.

The cost in (8) can be properly normalized by defining 8 :=

o sup. z C(xu,t
xex ued, E[t()’ 4] where « € [0, 1) and then multiplying (8)
by & Thus we construct a convex combination as follows:

t
[ (e
to

If « = 1, then we solve (8) as a minimum time problem. The
normalized cost (12) facilitates a trade-off analysis between the
two metrics. However, we will use the simpler cost expression
(8) throughout this paper. Thus, we can take 8 > 0 as a weight
factor that can be adjusted to penalize time relative to the cost
C(x,u,t)in (8).

Approach: Step 1: We use Hamiltonian analysis to obtain an
optimal control u*(t) and optimal state x*(t), t € [to, ] for the
cost (8) and system (1), under the terminal state constraint (9),
the safety constraints (10), and the control and state constraints
(2), (11). In order to get an analytical optimal solution, we may
linearize or simplify the dynamics (1).

Step 2: There are usually unmodeled dynamics and measure-
ment noise in (1). Thus, we consider a modified version of system
(1) to denote the real dynamics:

x=f(x)+g(x)u+ w, (13)

where w € R" denotes all unmodeled uncertainties in the
dynamics. We consider x as a measured state which includes
the effects of such unmodeled dynamics and measurement noise
and which can be used in what follows. Allowing for the noisy
dynamics (13), we set u.(t) = u*(t) (more generally, u,(t) =
h(u*(t), x*(t), x(t)), h : RY x R" x R" — RY) and use the HOCBF
method to track the optimal control as a reference, i.e.,

(1 — a)c(x, u, t) )dt' 12)

SupxeX,ueU.re[to,tfj C(x,u, )

ff
min [ u(0) - w0t (14)
ut) Jy,
subject to (i) the HOCBF constraints (5) corresponding to the
safety constraints (10), (ii) the state constraints (11), and (iii) the
control constraints (2). In order to better track the optimal state
x*(t) and minimize the deviation ||x(t;) — X||? from the terminal
state constraint, we define a CLF V(x — x*). Thus, the cost (14) is
also subject to the corresponding CLF constraint (7). The resulting
problem can then be solved by the approach described at the end
of Section 2.

4. From planning to execution

In this section, we describe how to solve Problem 1 combining
optimality with safety guarantees.

4.1. Optimal trajectory planning

Let us consider a properly linearized version of (13) without
the noise w:

?;’:AX—I—BH, (15)

where ¥ = (x1, ..., %), 0= (ug,...,Uq), A€ R”" Be R™,

Let A(t) be the costate vector corresponding to the state x
n (15) and b(x) denote the vector obtained by concatenating
all bj(x),j € S,. The Hamiltonian with the state constraints,
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control constraints and safety constraints adjoined (omitting time
arguments for simplicity) is

H(x, A, u) = C(x, u, t) + AT (Ax + Bu) + ! (4 — tay)
] (thin — 1) + (X — Xmax) + 1] (Xmin — ) (16)
—pulb(x)+ B
The components of the Lagrange multiplier vectors

Mas Mps Be, Iy, e are positive when the constraints are active
and become 0 when the constraints are strict.

First, we assume all the constraints (2), (10), (11) are not active
in the time interval [to, tr]. The Hamiltonian (16) then reduces
to

H(x, A, u) = C(x,u,t) + AT(Ax + Bu) + 8 (17)

Observing that the terminal constraints (9) ¢ = x — X = 0are
not explicit functions of time, the transversality condition (Bryson
& Ho, 1969) is

H(x(t), A(t), u(t))|i=, =0 (18)

with A(tr) = [(v T""’) le=g; as the costate boundary condition,
where v denotes a vector of Lagrange multipliers. The Euler-
Lagrange equations become:

oH oC(x,u,t)

A= =0 AT, (19)
0x 0x

and the necessary condition for optimality is
oH oC(x,u,t)
ou  du

With (17)-(20), the initial state of system (13), and the termi-
nal constraint x(tf) = X, we can derive an unconstrained optimal
state trajectory x*(t) and optimal control u*(t), t € [to, tf], for
Problem 1.

When one or more constraints in (2), (10), (11) become active
in the time interval [to, tf], we use the interior point analy-
sis (Bryson & Ho, 1969) to determine the conditions that must
hold on a constrained arc entry point and exit point (if one
exists prior to t;). We can then determine the optimal entry
and exit points, as well as the constrained optimal control u*(t)
and optimal state trajectory x*(t), t € [to, tr]. Depending on
the computational complexity involved in deriving the complete
constrained optimal solution, we can specify a planned reference
control u.s(t) and state trajectory X.s(t), t € [to, tf]. For ex-
ample, we may just plan for a safety-constrained solution and
omit the state and control constraints (2), (11), or even plan for
only the unconstrained optimal solution to simplify the trajectory
planning process.

+B"A=0. (20)

4.2. Safety-critical optimal control with HOCBFs

We now introduce a method that tracks the planned optimal
control and state trajectory while guaranteeing the satisfaction of
all constraints (2), (10), (11) in Problem 1.

As detailed in Section 4.1, we use u*(t) and x*(t), t € [t, tf], to
denote the optimal control and state trajectory derived under no
active constraints or with some (or all) of the constraints active,
depending on the associated computational complexity consid-
ered acceptable in a particular setting. We can then reformulate
(8) as the following optimization problem:

min [ Ju(e) — g 0%t (21)

u(t)
subject to (2), (10), (11
Urer (£) = Fy(u™(¢), x*(t), x(t)) (22)

), where
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is a specific function of the optimal control and state trajectory, as
well as the actual state under noise w from (13). A typical choice
for Fy(u*(t), x*(t), x(t)) is

x (r) x(t)

Z”

Upy(t) = u'(t), (23)

where x;(t), j € {1,...,n} denote the observed state variables
under noise w from (13), x]’f(t),j ef{1,...,nLui(t),iefl,...,q}
denote the optimal state and control from the last subsectlon and
oj > 0,j € {1,...,n} are weight parameters. In (23), the sign
of the term xf(t) — x;(t) depends on whether x;(t) is increasing
with u;(t). In particular, when x;(t) > x;‘(t), forallj e {1,...,n},
we have u;(t) < uj(t) and the state errors can be automatically
eliminated. If x;(t) < x;‘(t), for all j € {1,...,n}, the state
errors can similarly be automatically eliminated. However, when
xj(t) > xf(t) and xj1(t) < x]H(t), we may wish to enforce u;(t) <
ui(t),i € {1,..., q}. Thus, it is desirable that o; < o} (similarly,
when x;(t) < x]’-“(t) and xj1(t) > x;;](t)). In summary, we select
0j>0,je{l,...,n}such that o < 0j41,j € {1,...,n—1}.
Alternative forms of (22) include

XI(t)

] *
> ok (t) (24)

uref(t) = X
je(t...mp Y

and the state feedback tracking control approach from Khalil
(2002):

U (t) = U* t)+Zk] t) — xi(t)), (25)

where k; > 0,e€ {1,...,n}. Clearly, there are several possible
choices for the form of u(t) which may depend on the specific
application of interest.

We emphasize that the cost (21) is subject to all the con-
straints (2), (10), (11). We use HOCBFs to implement these con-
straints, as well as CLFs to better track the optimal state x*(t), as
shown in the following subsections.

4.2.1. Optimal state tracking

First, we aim to track the optimal state x*(t) obtained in
Section 4.1 using CLFs. We can always find a state variable xy,
k € {1,...,n} in x that has relative degree one (assume x; is
the output) with respect to system (13). This is because we only
take the Lie derivative of the Lyapunov function once in the CLF
constraint (7). Then, we define a controller aiming to drive x,(t)
to Xef(t) Where Xpef(t) is of the form

Xref (£) = Fx(x"(t), x(t)) (26)
A typical choice analogous to (23) is

5 x]’.*(r)—xj(t)
X (£) = €90 ) (27)

where oj > 0,j € {1,...,n}\kand {1, ..., n}\ k denotes exclud-
ing k from the set {1, ..., n} . An alternative form analogous to

(24) is
X5(t)
Xref (£) = %Xi(f) (28)

jef1,...,n\k

where x;‘(t),j € {1,...,n} \ k are the (unconstrained or con-
strained) optimal state trajectories from Section 4.1, and x;(t) #
0; otherwise, we can use (27). In (28), if x;(t) > x]’f(t), then
Xref(t) < x;(t), thus automatically reducing (or eliminating) the
tracking error. Note that while x,.¢(t) in (28) depends heavily on
the exact value of x;(t), an advantage of (27) is that it allows
Xref(t) to depend only on the error. Clearly, we can define different
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tracking forms instead of (28) and (27) depending on the specific
characteristics of an application.

Using a specific selected form of X (t), we can now proceed
as in Definition 5 and define an output y(t) := x(t) — X (t) for
the state variable x; which has relative degree one. Accordingly,
we define a CLF V(y,(t)) = yﬁ(t) withc; =c; =1,c3 =€ >0as
in Definition 5. Then, any control input u(t) should satisfy, for all
t € [to, tr],

LeV(yi(t)) + LgV(yr(O))u(t) + eV(yi(t)) < 8i(t) (29)

where §;(t) is a relaxation variable (to be minimized as explained
in the sequel) enabling the treatment of the requirement x,(t) =
Xref(t) as a soft constraint. Note that we may also identify other
state variables with relative degree one and define multiple CLFs
to better track the optimal state. Note that (29) does not include
any (unknown) noise term. Also note that selecting a larger € can
improve the state convergence rate (Ames et al., 2012).

4.2.2. Safety constraints and state limitations

Next, we use HOCBFs to map the safety constraints (10) and
state limitations (11) from the state x(t) to the control input u(t).
Let bj(x), j € S,, be the HOCBF corresponding to the jth safety
constraint. In addition, let b; max(X) = Ximax — Xi and b; min(X) =
Xi — Ximin, | € {1,...,n}, be the HOCBFs for all state limitations,
where Xmax = (X1,max: - -+ Xnmax)y X¥min = (X1,min, - - - » X, min)-
The relative degrees of b; max(X), bimin(%), i € {1,. } are m;,
and the relative degrees of bj(x), j € S, are m;. Therefore, in
Definition 4, we choose HOCBFs with m = m; or mj, including the
penalty factors p;min > 0, Pimax > 0, Pisae > O (see discussion
after Definition 4) for all the class K functions. Following (5), any
control input u;(t) should satisfy

Ly bi(®)+ Lo bi(2)u-+S(by(X))+ P safetm, (Yim,—1(%)) = 0.5 € S,
(30)
LF b max(X) + LgL{" ™ by max(2)1 + S(bi.max(%))
+ Di.max@m;(Vm;—1(%)) > 0, (31a)
L7 b min(%) + LgLf" ™ by min(2)81 + S(by min(%))
+ Dimin@m;(Vm;—1(%)) > 0, (31b)

forallt e [to, tf],i € {1, ..., n}. Note that u € U in (2) are already
constraints on the control inputs, hence, we do not need to use
HOCBFs for them.

4.2.3. Joint optimal and HOCBF (OCBF) controller
Using the HOCBFs and CLFs introduced in the last two subsec-
tions, we can reformulate objective (21) in the form:

fy
/ (BS(6) + l[u(t) — ey (0)]%) dt, (32)
to

subject to (13),(29),(30),(31), and (2), the initial conditions x(ty),
and given to. Thus, we have combined the HOCBF method and the
optimal control solution by using (22) to link the optimal state
and control to u.(t), and using (26) in the CLF (x(t) —xref(t))2 to
combine with (14). We refer to the resulting control u(t) in (32)
as the OCBF control.

Finally, we partition the continuous time interval [to, ;] into
equal time intervals {[to + wAt, to+(w+1)At)}, w=10,1,2,....
In each interval [ty +wAt, ty+(w+ 1)At), we assume the control
is constant and find a solution to the optimization problem in
(32) using the CLF y, = (xx(t) —xref(t))2 and associated relaxation
variable 8;(t). Specifically, at t = tg + wAt (w =0,1,2,...), we
solve

QP (w(t), 8;(t)) = argmin [BS(t) + llu(t) —

uref(t)”Z] (33)
t=ty+wAt u(t), 8k (t)
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subject to

Aar[u(t), 8(0)]" < bar (34)
Aot tim[u(t), 8()]" < beo tim (35)
Act satel8(t), 8i(E)]" < bepf safe (36)

The constraint parameters Ay, bgr pertain to the reference state
tracking CLF constraint (29):

Aclf = [Lgv(yk(t))’ _1]’
bar = —LeV(yi(t)) — €V(yil(t)).

On the other hand, the constraint parameters Acpf lim» Debf lim
capture the state HOCBF constraints (31) and the control bounds

(2):

(37)

__LgL?i_lbi.max(x(t)), 0
Acf lim = _LgL?ii]bi,min(X(f)), 0l
) 1, 0
L -1, 0
_L}"".bi,max(X) + S(bi max(¥)) + Di,maxm; (¥m;—1(X))
b 1 = | 1 Dimin(X) + S(Bimin(X)) + Pimintm, (Vim;—1(X))
. umax
L —Umin

(38)

for alli € {1,...,n}. Finally, the constraint parameters Acpf safe,
bebs safe capture the safety HOCBF constraints (30), for all j € S,:

Acbf_safe = [—LgL;nj_ bj(X), 0] ,
bt safe = L}mbj(x) + S(b](X)) + pj,safeamj(wmjfl(x))'

From a computational complexity point of view, it normally takes
a fraction of a second (see explicit results in Section 7) to solve
(33) in MATLAB, rendering the OCBF controller very efficient for
real-time implementation. After solving each (33) we obtain an
optimal OCBF control u*(t), not to be confused with a solution
of the original optimal control problem (8). We then update (13)
and apply it to all ¢ € [ty + wAt, tp + (w + 1)At).

1
(39)

Remark 1. If we can find conditions such that the constraints
are not active, then we can simply track the unconstrained op-
timal control and state. This simplifies the implementation of
the optimal trajectory planning without considering constraints,
i.e., we can directly apply u,s in (22) as the control input of
system (13) instead of solving (33). The feasibility of QP (33) can
be improved through smaller p; min, Pi max» Pj,safe at the expense of
possibly shrinking the initial feasible set (Xiao & Belta, 2019).

4.3. Constraint violation due to noise

The presence of noise in the dynamics (13) will generally
result in the violation of the constraints (11) or (10), which pre-
vents the HOCBF method from satisfying the forward invariance
property (Xiao & Belta, 2019). Therefore, we seek to minimize the
time during which such a constraint is violated.

4.3.1. Relative degree one constraints

Suppose that a constraint b(x(t)) > 0 (one of the constraints
in (11), (10)) has relative degree one for system (13). Let us first
assume that w in (13) is bounded by ||w| < W, where W > 0 is
a scalar. Then, the following modified CBF constraint (Lindemann
& Dimarogonas, 2019) can guarantee that b(x(t)) > 0 is always
satisfied under ||w| < W:

Leb(x(t)) + Lgb(x(t))u(t) + c(b(x(t))) — H I

db(x(1)) H W =>0. (40)
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We may also consider
Lyb(x(t)) + Leb(x(t))u(t) + a(b(x(t))) — ‘db(;:({t))‘ w=>0.  (41)

if the noise is bounded in the form ||w| < W, W > 0 (compo-
nentwise). The HOCBF constraint (5) with m = 1 is equivalent
to Leb(x(t)) + Lgb(x(t))u(t) + a(b(x(t))) + %w > 0 if we
take the derivative of b(x(t)) along the noisy dynamics (13). Thus,
the satisfaction of (41) implies the satisfaction of this constraint.
Note that the modified CBF constraint (41) is conservative since
it always considers the (deterministic) noise bound W.

Next, suppose a bound W is unknown, in which case we can
proceed as follows. Assume the constraint is violated at time t; €
[to. tr] due to noise, i.e., we have b(x(t;)) < 0. We need to ensure
that b(x(t)) is strictly increasing after time ¢y, i.e., b(x(t)) > c(t),
where c(t) is positive and is desired to take the largest possible
value maintaining the feasibility of the QP (33), i.e., we wish to
maximize c(t) at each time step (alternatively, we can set c(t) =
¢ > 0 as a positive constant). Using Lie derivatives, we evaluate
the change in b(x(t)) along the flow defined by the state vector.
Then, any control u(t) must satisfy

Leb(x(t)) + Leb(x(t)u(t) = c(t) (42)

since we wish to maximize c(t) so that b(x(t)) is strictly increas-
ing even if the system is subject to the worst possible noise case.
For this reason, in what follows we assume that the random
process w(t) in (13) is characterized by a probability density
function with finite support and we incorporate the maximization
of ¢(t) into the cost (32) as follows:

. g 2 2
womin f (BSF(6) + Il — e |* — Kc (1) dt, (43)
where K > 0 is a large scalar weight parameter.

Note that several constraints may be violated at the same
time. Starting from t;, we apply the constraint (42) to the HOCBF
optimizer instead of the HOCBF constraint (5), and b(x(t)) will be
positive again in finite time since it is strictly increasing. When
b(x(t)) becomes positive again at t; € [ti, tf], we can once again
apply the HOCBF constraint (5).

4.3.2. High relative degree constraints

If a constraint b(x(t)) > 0 is such that b : R" — R has relative
degree m > 1 for (13), we can no longer find a modified CBF
constraint as in (41) that guarantees b(x(t)) > 0 under noise w.
This is because we need to know the bounds of the derivatives
of w as b(x(t)) will be differentiated m times. In other words, we
need to recursively drive b)(x(t)) = % to be positive from
i = mtoi = 1 after it is violated at some time t € [to, tf].
Therefore, we need knowledge of the positive degree of b(x(t))
at t which is defined as follows.

Definition 6 (Positive Degree). The positive degree p(t) of a rel-
ative degree m function b : R" — R at time ¢t is defined as:

min. i, ifdie{0,...,m—1}
o(t) = {ielo,... m—1}:b(x(t))>0 (44)
m otherwise

If bO(x(t)) < 0, foralli e {0,...,m — 1}, u(t) shows up in
b™(x(t)) since the function b has relative degree m for system
(13). Therefore, we may choose a proper control input u(t) such
that b™(x(t)) > 0, and, in this case, p(t) = m. The positive degree
of b(x(t)) at time ¢t is O if b(x(t)) > 0.
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Letting ¥o(x,t) := b(x(t)),
functions ¢; : R" — R, Vi € {1, .

1/:/1‘—13 lfl < p(t)7
Vi(x) == Yioa(x) — ¢, if i = p(t), (45)
Yi_1(x) + ai(¥i_1(x)), otherwise.

where o;(-),i € {1,...,m}, denote class K functions of their
argument and ¢ > 0 is a constant. We may choose ¢ >

‘d‘//‘ W if w is bounded as in (41).

We can then define a sequence of sets C; similar to (4) as-
sociated with the v;_q(x),i € {1,...,m} functions in (45). We
replace the definitions of ¥;_1(x), G, i € {1, ..., m} in Definition 4
to define b(x) to be a HOCBF. .

If p(t) = m, then ¥,(x(t)) = Ym_1(x(t)) — & > 0, which is
equivalent to the HOCBF constraint (5). The control u that satisfies
Ym_1(x(t)) > & > 0 will drive ¥,,_1(x(t)) > 0 in finite time.
Otherwise, since ¥,)(X(t)) > 0 according to Definition 6, we can
always choose proper class K functions «;(-), i € {p(t)+1, ..., m}
such that ¥;(x) > 0, i.e, we can construct a non-empty set
Coty+1 N ... N Gy (Xiao & Belta, 2019). By Theorem 1, the set
Coity+1 N ... N Gy is forward invariant if the HOCBF constraint
(5) is satlsfled In other words, ¥, ((t)) > 0 is guaranteed.
Since (X)) = iyt 1(X0) — 6. then Y 1(K(E) = £ > 0.
The function Yor)—1(X(t)) will become positive in finite time, and
the positive degree of b(x(t)) will decrease by one. Proceeding
recursively at most m times, eventually the positive degree of
b(x(t)) will be 0, i.e., the original constraint b(x(t)) > 0 is satisfied
in finite time. The time needed for the constraint b(x(t)) > 0 to
be satisfied depends on the magnitude of ¢.

we can construct a sequence of
m} similar to (3):

5. Traffic merging problem

In the rest of the paper, we apply the OCBF framework de-
veloped thus far to the traffic merging problem where the goal
is to optimally control CAVs approaching a merging point while
guaranteeing safety constraints at all times.

The merging problem arises when traffic must be joined from
two different roads, usually associated with a main lane and a
merging lane as shown in Fig. 1. We consider the case where all
traffic consists of CAVs randomly arriving at the two lanes joined
at the Merging Point (MP) M where a collision may occur. The
segment from the origin O or O’ to the MP M has a length L
for both lanes, and is called the Control Zone (CZ). We assume
that CAVs do not overtake each other in the CZ. A coordinator
is associated with the MP whose function is to maintain a First-
In-First-Out (FIFO) queue of CAVs based on their arrival time at
the CZ and enable real-time communication with the CAVs that
are in the CZ as well as the last one leaving the CZ. The FIFO
assumption imposed so that CAVs cross the MP in their order of
arrival is made for simplicity and often to ensure fairness, but
can be relaxed through dynamic resequencing schemes, e.g., as
described in Xiao and Cassandras (2020). Let S(t) be the set of
FIFO-ordered indices of all CAVs located in the CZ at time t along
with the CAV (whose index is 0 as shown in Fig. 1) that has just
left the CZ. Let N(t) be the cardinality of S(t). Thus, if a CAV arrives
at time t it is assigned the index N(t). All CAV indices in S(t)
decrease by one when a CAV passes over the MP and the CAV
with index —1 is dropped.

We review next the optimal merging control problem as pre-
sented in Xiao and Cassandras (2021) so as to apply the OCBF
framework to it. The vehicle dynamics for each CAV i € S(t) along
the lane to which it belongs take the form

xi(t) vy(t)
[i),-(t)} = [u,-m] (46)
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Fig. 1. The merging problem.

where x;(t) denotes the distance to the origin O (0’) along the
main (merging) lane if the vehicle i is located in the main (merg-
ing) lane, v;(t) denotes the velocity, and u;(t) denotes the control
input (acceleration). We consider two objectives for each CAV
subject to three constraints, as detailed next.

Objective 1 (Minimizing travel time): Let ¢ and t™ denote the
time that CAV i € S(t) arrives at the origin O or O’ and the MP
M, respectively. We wish to minimize the travel time tiM - ti0 for
CAV i.

Objective 2 (Minimizing energy consumption): We also wish
to minimize energy consumption for each CAV i € S(t) expressed
as
™M

ey = [

Cluy(t))dt, (47)

where C(-) is a strictly increasing function of its argument.
Constraint 1 (Safety constraints): Let i, denote the index of
the CAV which physically immediately precedes i in the CZ (if one
is present). We require that the distance z; ;,(t) := x;,(t) —xi(t) be
constrained by the speed v;(t) of CAV i € S(t) so that

23, (1) > @ui(t) + 8o, Vt € [t), "], (48)

where ¢ denotes the reaction time (as a rule, ¢ = 1.8 is used,
e.g., Vogel, 2003). If we define z;;, to be the distance from the
center of CAV i to the center of CAV i,, then 8y is a constant
determined by the length of these two CAVs (generally dependent
on i and i, but taken to be a constant over all CAVs for simplicity).

Constraint 2 (Safe merging): There should be enough safe
space at the MP M for a merging CAV to cut in, i.e.,

z10(t1") = oui(t)") + do. (49)

Constraint 3 (Vehicle limitations): Finally, there are con-
straints on the speed and acceleration for each i € 5(t), i.e

Umin < Vi(t) < vmax, Vt € [to tM ,

50
Umin < Uj(t) < Umax, Vt € [to tM ) 0)

where vpax > 0 and vpin, > 0 denote the maximum and
minimum speed allowed in the CZ, while upi, < 0 and tpa.x > 0
denote the minimum and maximum control input, respectively.

The common way to minimize energy consumption is by
minimizing the control input effort ul.z(t). By normalizing travel
time and uiz(t), and using « € [0, 1], we construct a convex
combination as in (12):

r,»M o)l
Jiu(£)) = / (a + M)z(i)> dt. (51)
t,p max{umax’ umin}
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If o =
Otherwise, by defining g :=

1, then we solve (51) as a minimum time problem.
a max(u%nax,u2

min) and multiplying the

2(1—a)
last equation by g we have:
M 1
Jmm»=mW—®+/;5ﬁmm, (52)

G
where 8 > 0 is a weight factor that can be adjusted to pe-
nalize travel time relative to the energy cost. Note that all the
constraints in the merging problem are with relative degree one.

Similar to (13), we will also include the possibility of system
model uncertainties, errors due to signal transmission, as well as
computation errors by adding two noise terms in (46) to get

xi(t) | _ [wilt) + wiq(t)
[bim} = [ui(t) + wf;m] (53)

where w; 1(t), w; »(t) denote two random processes defined in an
appropriate probability space.

6. Merging problem analysis

In this section, we first review the decentralized optimal con-
trol (OC) solution derived in Xiao and Cassandras (2021) for those
CAVs whose constraints in (48)-(50) will not become active in
the CZ. This is to ensure that these solutions are indeed compu-
tationally efficient. When one or more constraints become active,
we use the CBF method to account for these constraints and
take the unconstrained optimal solution as reference. When more
complex objective functions, nonlinear dynamics, and comfort are
involved, we adapt the CBF method to such problems. In addition,
we show how we can deal with the constraint violation problem
due to perturbations, such as the noise in (53) and other unknown
random events.

We need to distinguish between the following two cases: (i)
ip = i—1,ie, iy is the CAV immediately preceding i in the
FIFO queue (such as CAV 3 or 5 in Fig. 1), and (ii) i, < i — 1
(such as CAV 2 or 4 in Fig. 1), which implies CAV i — 1 is in
a different lane from i. We can solve the merging problem for
all i € S(t) in a decentralized way, in the sense that CAV i can
solve it using only its own local information (position, velocity
and acceleration) along with that of its “neighbor” CAVsi— 1 and
ip. Observe that if i, =i — 1, then (49) is a redundant constraint.
Otherwise, we need to consider (48) and (49) independently.

Let x;(t) := (x;(t), vi(t)) be the state vector and A;(t) =
(A%(t), A{(t)) be the costate vector (for simplicity, in the sequel
we omit explicit time dependence when no ambiguity arises). The
Hamiltonian for the merging problem with the state, control, and
safety constraints adjoined is

1 2 X v a
Hi(x;, i, u;) =B + iui + A{vi + AU+ g (Ui — Uax)
+ M?(umin —u)+ M,‘C(Ui — Umax) (54)
+ 1 (Vmin — Vi) + 5 (X + @vi + 8o — X;,)

The Lagrange multipliers u?, u?, u¢, ud, ¢ are positive when the
constraints are active and become 0 when the constraints are
strict. Note that when the safety constraint (48) becomes active,
the expression above involves x;,(t) in the last term. When i = 1,
the optimal trajectory is obtained without this term, since (48)
is inactive over all [t?, t{"’], Thus, once the solution fori = 1 is
obtained, x] is a given function of time and available to i = 2.
Based on this information, the optimal trajectory of i = 2 is
obtained. Similarly, all subsequent optimal trajectories for i > 2
can be recursively obtained based on x;;(t).
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6.1. CAVs with unconstrained optimal control

Assuming that (48) and (50) remain inactive over [t?, t"], and
the safe merging constraint (49) is not violated at tiM , we can
obtain the unconstrained optimal solution as shown in Xiao and
Cassandras (2021):

ui(t) = ait + b (55)
1

zﬂﬂ:imﬂ+muwi (56)

* 1 3 1 2

X; (t) = ga,-t —+ Ebjt + cit + d,’ (57)

where a;, b;, ¢; and d; are integration constants obtained by solving
the following five nonlinear algebraic equations:

1
Sai- (t?Y + bit? 4+ ¢; = v?,

1 1

5@ (&) 4 Sbi- () + it +d; =0,

1 1

S (7 + b (' et +d =L (58)
a,~tiM +b; =0,

1
,3 + *aiz . (l’iM)z =+ aib,-t{‘/' + aijc; = 0.

Since we aim for the solution to the optimal merging prob-
lem to be obtained on-board each CAV, it is essential that the
computational cost of solving these five algebraic equations for
the integration constants in (55)-(57) be minimal. If MATLAB
is used, it takes less than 1 s to solve these equations (Intel(R)
Core(TM) i7-8700 CPU @3.2 GHz 3.2 GHz). On the other hand,
when the constraints (48), (49), (50) become active, a complete
OC solution can still be obtained (Malikopoulos et al., 2018; Xiao
& Cassandras, 2021), but the computation time varies between 3
and 30 s depending on whether i, is also safety-constrained or
not. This motivates the derivation of conditions such that these
constraints do not become active in the CZ.

The following assumption requires that if two CAVs arrive
too close to each other, then the first one maintains its optimal
terminal speed past the MP until the second one crosses it as
well. This is to ensure that the first vehicle does not suddenly
decelerate and cause the safety constraint to be violated during
the last segment of its optimal trajectory.

. e 5o
For a given constant { = vilﬂf.-"fl)(p Wy
any CAVi—1 € S(t) such that t™ —t™, < ¢ maintains a constant

speed vi_1(t) = v} ,(tM,) for all ¢ € [, tM].

Assumption 1.

Based on this mild assumption, the following theorems from
Xiao and Cassandras (2019) ensure that the constraints (48), (49),
(50) are satisfied. The first identifies simple to check conditions
such that the safety constraint (48) will not become active within
the CZ and the second identifies conditions such that the safe
merging constraint (49) will not be violated at t}.

Theorem 3 (Xiao & Cassandras, 2019). UnderaAssumgg?n )1 if3e €
0 0 0_ 40 -

(0. 1] such that ev;! < vy and tf —t; > £ + j + Tl then,
under optimal control (55) for both i and i, z; i, (t") > @ui(tM)+ 8.
Moreover, if 3¢, € [t?, ti"p") solved by vi(tp) + ui(tp) — vi:(t,) = 0
such that the safety constraint (48) is satisfied at t, then z;;,(t) >
pvi(t) + 8o, ¥t € [t0, tM].

Theorem 4 (Xiao & Cassandras, 2019). Let i — 1 > i, Under
Assumption 1, if 3¢ € (0, 1] such that ev) < v? , and t) —¢? | >
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3L(1—¢)

T (@ then, under optimal control (55) for both

s
f+ 5+
iand i — 1, the safe merging constraint (49) is satisfied.

Finally, the next result provides conditions such that the speed
constraint in (50) will be satisfied within the CZ:

Theorem 5 (Xiao & Cassandras, 2019). If v} < wo,Vi € S(t)
for vo € [Umin, Vmax), B > 0 and under optimal control (55),
then for any L < Lpax, the speed limitations in (50) are satisfied
vt € [t tM], Vi € S(t), where

4 _ 2 2 _ 3
L _ 8vmax 6vmax Yo zvmﬂx Yo
max — 9/3

Note that all conditions in Theorems 3-5 are based on the
initial conditions v, t? of CAV i € S(t) and information from
other CAVs ahead of i. Although the conditions in Theorem 5
pertain to all CAVs, it can also be easily applied to each individual
CAV i € S5(t). The case of control constraints being active is

addressed in the following remark.

Remark 2. If the conditions in Theorems 3-5 are satisfied for
CAV i € 5(t), but the control constraint in (50) is initially violated
at uygy (since we have that a; < 0 (8 # 0) and uf(ti"") =0 wheni
is under unconstrained OC (55) Xiao & Cassandras, 2021), then the
safety constraint (48), the safe merging constraint (49) and the
speed constraint in (50) are all satisfied when we first apply tqx
starting at tio followed by an unconstrained OC. This is obvious
since the u;,qy-constrained OC has lower speed compared with the
unconstrained OC (55). The derivation of the unconstrained OC
after the uq-constrained arc is easy and time efficient (similar
to (55)).

Once we confirm that a CAV i € S(t) meets all conditions in
Theorems 3-5 (the control constraint violation case is discussed
in Remark 2 and also viewed as an unconstrained OC), we can
directly apply the unconstrained control (55) to CAV i. Consid-
ering the noisy dynamics (53), we wish to find a controller that
tracks both the optimal speed (56) and position (57) since the
safety constraint (48) and the safe merging constraint (49) both
depend on the speed and position. We use the position and speed
exponential feedback control forms in (23)-(25).

Extensive simulation results (see Xiao & Cassandras, 2019)
have shown that the ratio of CAVs that satisfy the conditions in
Theorems 3-5 is large under normal (not exceedingly high) traffic
conditions. Still, when these conditions are not satisfied for some
CAV i € S(t), we can use the OCBF method to account for these
constraints as shown in the sequel.

6.2. OCBF for the merging problem

Suppose that an unconstrained OC solution is available for
the objective (52), obtained through (55)-(57). Our goal here is
to determine a controller for those CAVs that do not satisfy the
conditions in Theorems 3-5. This is achieved by combining the
unconstrained OC solution with a CBF-based controller leading to
an OCBF controller whose goal is to track the former as closely as
possible.

First, we aim to track the optimal speed v;(t) obtained through
(55)-(57). In particular, we define a controller aiming to drive
vi(t) to ver(t) using the form (28) or (27). Using either form
of vper(t), we can now proceed as in (29) and define an output
Yi(t) = vi(t) — ver(t) and a CLF V(yi(t)) = yf(r). The control
should satisfy the CLF constraint (29).

Second, we deal with the safety and vehicle limitation con-
straints (Constraints 1,3) using HOCBFs to map them from the
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state x;(t) to the control input u;(t). In particular, define CBFs
bi q(%:(t)), q € {1, 2, 3} where b; 1(%i(t)) = Umax — vi(t), bi 2(%i(t)) =
Vi(t) — Umin, bis(%i(t)) = z,-,,-p(t) — @vji(t)—8p. The relative degree of
each b; 4, q € {1, 2, 3} is 1. Therefore, in Definition 4, we choose
a HOCBF with m = 1. Any control should satisfy the HOCBF
constraints (30) and (31). Note that u;(t) € [Umin, Umax] iS already
a constraint on the control input, hence, we do not need to use a
HOCBEF for it.

Finally, the safe merging constraint (49) ensures that there
are no collisions when CAVs from different lanes arrive at the
merging point M. It is only imposed at tﬁ"’ and does not apply
toallt e [tio, ti"”). For example, vehicles 4 and 3 in Fig. 1 are not
constrained before they arrive at the merging point M, but have
to satisfy (49) at M. In order to use a HOCBF approach, we need a
version of (49) that is continuous in time when i—1 > i,. Vehicles
i and i — 1 both arrive randomly at O or O, and the minimum
distance along the lane zi’i_l(tio) between vehicle i and i — 1 is
0, i.e., these two CAVs are allowed to arrive at the origin O or
0’ at the same time. The coordinator FIFO queue preserves the
arrival order of i and i — 1 at O or O’ at the merging point M.
When vehicles i and i — 1 arrive at M, they will merge into the
same lane. Therefore, the distance between i and i — 1 must be
greater than or equal to <pv,-(tiM)+80, which is in the form of (49).
However, we have considerable freedom in choosing the reaction
time ¢ from (49) for vehicle i (i — 1 > i,) for all t € (t2, tV). In
the following, we provide a definition for the allowed variation
of ¢:

Definition 7. The reaction time ¢ for vehiclei (i — 1 > i) is a
strictly increasing function @ : R — R that satisfies the initial
condition @(x;(t0)) = —i—g and final condition ®(x;(t)")) = ¢.

1

As an example, in Fig. 1 where x,-(tio) = 0 and x(tM) = L,
we have @(x;(t)) = %(t) if § = 0. The lower bound of the
distance from (49) becomes greater as vehicle i approaches the
merging point M such that there is adequate space for the vehicle
in the merging lane to join the main lane. Therefore, a continuous
version of the constraint from (49) oni for i—1 > i, in the control
zone is:

zij-1(t) > @(x(O))i(t) + 8o, VE € [0, 1. (59)

The relative degree of (59) is 1. To enforce safe merging, we
employ a HOCBF that is similar to the ones used for safety (30).

6.2.1. OCBF controller

Along the lines of Section 4.2, we now seek a control input u;(t)
in the HOCBF method which tracks the unconstrained optimal
control uj(t) through a HOCBF controller aiming to drive u;(t) to
Uref(t) defined by (24) or (23).

Following the OCBF approach in Section 4.2, we apply (32) and
consider the objective function:
i
ue) 30) = [

[0

(ﬂaf(t) (o) - urefm)z) dt.  (60)
subject to (53), the corresponding HOCBF constraints as (30), (31),
and the CLF constraint (29), the initial and terminal conditions
x(t?) = 0, x(tM) = L, and given t?, vi(t?). Thus, we have
combined the HOCBF method and the OC solution by using (24)
or (23) to link the optimal position and acceleration to uf(t), and
use (28) or (27) in the CLF (vi(t) — vyer(t))? to combine with (60).
The resulting optimal u;(t) in (60) is the OCBF control.

As in (33), we partition the continuous time interval [t?, tM]
into equal time intervals {[t) + kAt,t) + (k + 1)At)}, k =
0,1,2,... Ineach interval [t + kAt, t? 4 (k+ 1)At), we assume
the control is constant and find a solution to the optimization
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Fig. 2. Tracking performance comparison with vehicle noise between the state feedback control (25) and the exponential feedback control (23) with vehicle limitations

(50).

problem (60). Specifically, at t = tio + kAt (k=0,1,2,...), we
solve
1
QP : ui(t) = argmin Eu,»(t)THui(t) + FTuy(t) (61)

t=td+kAt u;(t)

(o) = [ggﬂ H= [(1) g] Fe |:_”r6f(f)]

subject to the constraints as (34)-(36) as they pertain to the
merging problem. After solving (61) and get an optimal control
ux(t), we update (53) for all t € (t) + kAt, t) + (k + 1)At). As
shown in Section 7, the use of only (28) or (27), yields an OCBF
control which is Lipschitz continuous, whereas using both state
and control trackings improves performance.

7. Simulation results

All controllers in this section have been implemented us-
ing MATLAB and we have used the Vissim microscopic multi-
model traffic flow simulation tool as a baseline for the purpose of
making comparisons between our controllers and human-driven
vehicles adopting standard car-following models used in Vissim.
We used QUADPROG for solving QPs of the form (60) or (A.6) and
ODE45 to integrate the vehicle dynamics.

Referring to Fig. 1, CAVs arrive according to Poisson processes
with arrival rates that we allow to vary in our simulation ex-
amples. The initial speed vi(tl.o) is also randomly generated with
uniform distribution in [15 m/s, 20 m/s] at the origins O and
0, respectively. The parameters for (60) or (A.6) and (53) are:
L = 400m,¢ = 1.8s, 8¢ = Om, Upe = 3.924 m/s%, Upin =
—3.924 m/s?, Vmax 30 m/s, vmin = 0 m/s, B 1, €
10, At = 0.1s, ¢ = 1, and we consider uniformly distributed
noise processes (in [—2, 2] for w;q(t) and in [—0.2, 0.2] for
wi(t)) for all simulations. The value of At is chosen as small
as possible, depending on computational resources available, in
order to address the inter-sampling effect on the HOCBFs and
maintain a guaranteed satisfaction of all constraints.

1. Position and speed feedback tracking implementation
example. First, we provide a simple example of the tracking
control implementation for a single vehicle which considers (60)
as the objective function and employs the unconstrained optimal
control (55). Although we do not consider the vehicle noise, there
is still discretization (At = 0.1s) error in the implementation. The
initial parameters are t? = 0s, v? = 20 m/s, « = 0.26. We first
consider the comparison between exponential feedback control
(23) and directly applied unconstrained control (55), as shown
in terms of average tracking errors in Table 1. We can see that
the feedback control (23) can significantly improve both average
tracking errors. The tracking errors decrease as o1, o, decrease,

10

Table 1
Average tracking error comparison without vehicle noise.

Items u*(t) (55) Feedback control (23)

01,02 4, 12 6, 16 12, 4
%uf(t) 4.4000 4.4396 4.4366 44318
Pos. err. —0.1678 —0.0280 —0.0452 —0.0577
Spd. err. —0.0333 —0.0037 —0.0059 —0.0095

consistent with the argument after (23) that we wish to make
o1 < 07, as shown from the 3rd and 5th columns in Table 1.

Then, under the same randomly generated noise w;(t) €
[2 m/s, —2 m/s] and w;»(t) € [-0.1 m/s?, 0.1 m/s*], we com-
pare the tracking performance between the state feedback control
(25) (k; = 0.25,k; = 0.1) and the exponential feedback control
(23) (01 4, o0y 10, the same coefficients as in (25)),
as shown in Figs. 2(a)-2(c). We can see that the exponential
feedback control (23) can perform almost the same when the
control uj(t) is large and outperforms the state feedback control
(25) as the optimal control become smaller. The control input in
the exponential feedback control input (23) varies less than the
state feedback control (25), as shown in Fig. 2(c).

2. OCBF implementation example. Next, we provide a sim-
ple example of the OCBF controller implementation for a single
vehicle which considers (60) as the objective function. The initial
parameters are the same as the last example. If we only apply
(28) or (27), set uyf(t) = 0 and assume no noise, then we obtain
the control profiles shown in Fig. 3(a). The speed reference form
(27) tends to achieve a closer track of the OC control (black curve)
compared to the form (28) at the expense of larger over-shot; as
a result, performance is worse as shown in Table 2 (values in red
are the best).

If we apply both (28) and (24) without noise, we obtain the
control profiles shown in where the OCBF controller’s perfor-
mance is virtually indistinguishable from that of the OC control,
as shown in Table 2.

With noise added (based on a uniform distribution in [—2, 2]
for w;1(t) and in [—0.2, 0.2] for w;»(t)), we show the control
profiles under different noise levels in Fig. 3(b) with (28) and
(24); and in Fig. 3(c) with (27) and (23). Constraints 1-3 may
be temporarily violated but will be forced to be satisfied again
in finite time through constraint (42). The speed and control
tracking forms (28) and (24) perform better than (27) and (23)
as noise increases.

3. Comparison of OC control from Xiao and Cassandras
(2021), CBF control from Xiao, Belta et al. (2019), and OCBF
control in this paper. Consider the merging problem with the
simple objective function (52) for which we can easily get uncon-
strained optimal solutions. Then, we employ the CBF method and
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Fig. 3. OCBF implementation examples under different tracking equations and noise levels with vehicle limitations (50).

Table 2
Objective function comparison without noise.
Items oC OCBF
Track (28) (27) (27) (28), (24)
o 4 40
Time (s) 15.01 15.07 15.01 15.01 15.01
Tu(r) 4.44 441 46962 4.66 444
Objective 33.33 33.43 33.52 33.50 33.34
Table 3
Comparison (data in average) of OC, CBF and OCBF (with noise).
Method o Noi. Time (s) Ju(t) Obj.
CBF N/A No 14.6978 26.9178 N/A
oc No 25.4291 0.1725 2.1288
OCBE 0.01 No 25.6879 1.0582 3.0256
Yes 25.7494 22373 41976
oc No 17.0472 4.9069 36.4909
OCBE 0.25 No 17.1176 5.5569 37.1139
Yes 17.1396 6.8959 38.1605
oc No 15.1713 10.6508 53.1120
OCBF 0.40 No 15.2286 11.3629 53.7157
Yes 15.2527 127671 54,6325
oc No 13.1035 24.4079 70.2922
OCBE 0.60 No 13.1560 25.2468 70.8720
Yes 13.1692 26.6534 71.4938

the OCBF technique (with (28) and (24)) introduced in Section 6.2.
Simulation results under four different trade-off parameters are
shown in Table 3. We can see that the OCBF method achieves
comparable results to OC, even in the presence of noise.

The computation time in MATLAB with the OCBF method for
each i at each step is less than 0.01s (Intel(R) Core(TM) i7-8700
CPU @ 3.2GHzx2), while the OC method takes between 1s and
30s for each CAV, depending on whether the constraints are
active or not.

We also show in Fig. 4 how the travel time and energy con-
sumption vary as the weight factor « in (51) changes. The sig-
nificance of Fig. 4 is to show how well the OCBF can match the
optimal performance obtained through OC. Examples of the bar-
rier function profiles for the safety constraint (48) under known
and unknown noise bound W are shown in Fig. 5. If W is known,
the safety constraint (48) is guaranteed with some conservative-
ness; Otherwise, the safety constraint (48) is satisfied most of the
time without conservativeness.

11
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Fig. 5. Barrier function b(x) under noise wji(t) € [—4,4] m/s, w;a(t)

€
[—0.4, 0.4] m/s%. b(x) > 0 denotes the satisfaction of the safety constraint (48).

4. Comparison of CBF control from Xiao, Belta et al. (2019),
CBF control with objective (A.1) in this paper, and human-
driven vehicles through Vissim. This simulation refers to
the Appendix for the case that the objective function is too com-
plex to get explicit optimal solutions. We consider the objective
function (A.1) which is too complex to allow the derivation of an
OC solution. Thus, we solve (A.1) through the sequence of QPs
(A.6) and select a value 8 = 0.2 in (A.6) through trial and error
to best match the performance in Vissim. We vary the relative
traffic arrival rates of the main and merging lane and show our
results in Tables 4, 5, 6.

In Tables 4 and 5, note that both CBF methods outperform
human-driven vehicles modeled though Vissim. We also observe
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Table 4

Main lane arrival rate : Merging lane arrival rate = 1:1.
Items CBF-(52) CBF-(A.1) Vissim
Ave. time (s) 14.6978 18.1549 25.0813
Main time (s) 14.7000 18.1717 17.9935
Merg. time (s) 14.6956 18.1378 32.3267
Ave. fuel (mL) 57.9532 30.9813 36.9954
Main fuel (mL) 57.7028 30.8856 42.6925
Merg. fuel (mL) 58.2092 31.0791 31.1717

Table 5

Main lane arrival rate : Merging lane arrival rate = 3:1.
Items CBF-(52) CBF-(A.1) Vissim
Ave. time (s) 14.6578 18.1189 23.9300
Main time (s) 14.6794 18.1413 18.3476
Merg. time (s) 14.6074 18.0667 36.9556
Ave. fuel (mL) 60.2624 31.9754 39.8587
Main fuel (mL) 61.0934 32.7556 42.8554
Merg. fuel (mL) 58.3235 30.1549 32.8666

Table 6

Main lane arrival rate : Merging lane arrival rate = 1:3.
Items CBF-(52) CBF-(A.1) Vissim
Ave. time (s) 14.6000 18.0093 29.2035
Main time (s) 14.7133 18.1133 17.8667
Merg. time (s) 14.5761 17.9873 31.5986
Ave. fuel (mL) 61.1607 33.4848 30.5212
Main fuel (mL) 57.3805 30.9263 46.5004
Merg. fuel (mL) 61.9593 34.0253 27.1454

Table 7

Rate = 1:3, adding a lane of length L after the merging point.
Items CBF-(52) CBF-(A.1) Vissim
Ave. time (s) 28.7975 36.3076 50.9987
Main time (s) 28.9857 36.3786 38.8643
Merg. time (s) 28.7569 36.2923 53.6123
Ave. fuel (mL) 88.2784 51.6414 81.6633
Main fuel (mL) 86.6246 48.7578 77.8110
Merg. fuel (mL) 88.6347 52.2625 82.4930

that the CBF method developed in this paper using (A.1) is vastly
superior to that of Xiao, Belta et al. (2019) in the energy com-
ponent with little loss in travel time performance. We also note
that without any control (as in Vissim), the main lane vehicles
have priority over the merging lane and the merging lane vehicles
may even stop before the merging point. Thus, there is heavy
congestion in the merging lane when the ratio between the main
lane and merging lane arrival rates is 1:3.

We observe in Table 6 that the energy consumption of vehicles
in Vissim is significantly lower compared to the CBF methods.
This is due to the fact that the merging lane vehicles frequently
stop before the merging point M, thus having low speeds when
passing over M. In order to achieve a fair comparison, we consider
a longer time horizon over which we measure fuel consumption
and travel time. This is accomplished by extending the trip of each
vehicle for an additional length L beyond the merging point M, as
shown in Table 7. As expected, the overall energy performance
under CBF control is now significantly better (by about 37%) than
that of human-driven vehicles.

8. Conclusions

We have developed a real-time framework that combines
optimal trajectories generated through optimal control with the
computationally efficient HOCBF method providing safety guar-
antees. This allows us to deal with cases where the optimal

12
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control solution becomes computationally costly, as well as to
handle the presence of noise in the system dynamics by exploit-
ing the ability of HOCBFs to add some robustness to an optimal
controller. We applied the proposed framework to the traffic
merging problem for connected and automated vehicles with re-
sults showing significant improvement in performance compared
with human driven vehicles. An ongoing research challenge is
imparting adaptivity to HOCBF-based controllers with respect to
a changing environment. Regarding autonomous vehicles (CAVs)
in a traffic network, ongoing work is aimed at integrating them
with non-CAVs.

Appendix. Complex objectives, dynamics and comfort

As shown in Xiao, Belta et al. (2019), the HOCBF method allows
us to deal with nonlinear systems and to consider more complex
objective functions than (52). In particular, we consider:

!
min B(tM — t2) + f fu(t)de, (A1)
u;(t) tio
where f,(t) represents a more detailed realistic energy model re-
placing the simple expression u?(t) commonly used as a surrogate
energy function. As an example, we have adopted in Xiao, Belta
et al. (2019) the following energy model from Kamal et al. (2013),

which describes fuel consumed per second as

fv(t) =fcruise(t) +faccel(t)v
Foruise(t) = @ + @10(t) + @207 (£) + w3v](),
Jaccel(t) = (ro 4 ryvi(t) + rlviz(t))ui(t)~

where wy, w1, w3, w3, 1y, 1 and r, are positive coefficients (typical
values are reported in Kamal et al. (2013)). It is assumed that
during braking, i.e., uj(t) < 0, no fuel is consumed. Note that
(A.1) is hard to solve through an OC analysis as in the previous
section. However, in the HOCBF approach this can be handled
numerically.

As for the dynamics of CAVs, the HOCBF method can easily
handle nonlinear dynamics instead of just the linear form in (46).
Thus, we use the vehicle dynamics (Khalil, 2002):

(A2)

) i .
[353] - [—ivﬁ((?i(m} * M o). (A3
(1) fx;(0) gxi(t)

where m; denotes the mass of CAV i, and v;(t) is its velocity.
F:(vi(t)) denotes the resistance force, which is normally expressed
(Khalil, 2002) as:

Fr(vi(t)) = kosgn(vi(t)) + kqvi(t) + kav7 (),

where kg > 0,k; > 0 and k; > O are scalars determined
empirically, and sgn is the signum function. The first term in
F:(vi(t)) denotes the Coulomb friction force, the second term
denotes the viscous friction force and the last term denotes the
aerodynamic drag.

In the HOCBF method, we do not explicitly optimize the travel
time shown in (A.1). Instead, we use a CLF to drive v;(t) to a
desired speed such that the travel time is optimized. In Xiao, Belta
et al. (2019), we define an output y;(t) := vj(t) — vmex and choose
a CLF V(y(t)) = yf(t). Any control input u;(t) should satisfy, for
all t e [t?, t1],

Liv(yi(t)) + LeV(yi(t))ui(t) + eV(yi(t)) < 6i(t)

where € > 0 and §;(t) is a relaxation variable that makes the
requirement v;(t) = vma to be treated as a soft constraint. Thus,

(A4)

(A.5)
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we seek to achieve Objective 1 indirectly and consider Objective
2 directly, replacing (A.1) by

M

i
min /
u;(t),8i(t) tiO

subject to the same constraints as in (60) and dynamics (A.3). We
use the QP-based method as introduced in the last subsection
to solve (A.6). Thus, all CAVs can safely pass over the merging
point M while minimizing J;(u;(t), 8;(t)) within each time interval,
hence jointly minimizing the energy consumption captured by
fu(t) and travel time (indirectly) through the minimization of 81.2.
By adjusting the weight § in (A.6), we can trade off between these
two objectives.

When comfort is also concerned in the objective, i.e., we also
want to minimize the jerk of each CAV i, we can directly incorpo-
rate the jerk into (A.6). Noting that f,(t) in (A.6) is linear in u;(t),
we wish to formulate a Linear Program (LP) instead of a QP since
the LP tends to be around 30% more computationally efficient
than the QP, as shown in Xiao, Belta et al. (2019). Including the
comfort requirement, we have

(fu(t) + BS7 (1)) dt (A6)

(t) — u*(t — kAt)

t}"’ .
/[O FoE) + Bibi(t) + Ba | - i~ dt

min (A7)
u;(t),8i(t)

where uj(t — kAt) denotes the optimal control from the last time
interval (initially set to O at tio), and is known. The parameters
B1 > 0, B > 0 trade off fuel consumption, travel time, and
comfort. The LP (A.7) is subject to the same constraints as the
QP (A.6).
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