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Decentralized Optimal Merging Control for Connected and Automated
Vehicles on Curved Roads

Wei Xiao and Christos G. Cassandras

Abstract— This paper addresses the optimal control of Con-
nected and Automated Vehicles (CAVs) arriving from two
curved roads at a merging point where the objective is to
jointly minimize the travel time, energy consumption, and
passenger discomfort for each CAV. The solution guarantees
that a speed-dependent safety constraint and a lateral rollover
avoidance constraint are always satisfied, both at the merging
point and everywhere within a control zone which precedes
it. Our decentralized solution first determines the analytically
tractable unconstrained optimal solution. We then use the pre-
viously developed joint Optimal Control and Barrier Function
(OCBF) method to obtain a controller which optimally tracks
such a solution while also guaranteeing all safety and control
constraints. Simulation examples are included to compare the
performance of the optimal controller to a baseline of human-
driven vehicles with results showing significant improvements.

I. INTRODUCTION

Traffic management at merging points (usually, highway
on-ramps) is one of the most challenging problems within
a transportation system in terms of safety, congestion, and
energy consumption, in addition to being a source of stress
for many drivers [1], [2], [3]. Advancements in next gener-
ation transportation system technologies and the emergence
of CAVs have the potential to drastically improve a trans-
portation network’s performance by better assisting drivers in
making decisions, ultimately reducing energy consumption,
air pollution, congestion and accidents.

Centralized control mechanisms are normally used in
forming platoons [4], [5], [6] in traffic control problems,
where all vehicles in the same platoon can share the same
control. This framework works when the safety constraints
are independent of speed, and it is conservative for the
merging problem as a vehicle may have to wait for a
long time if there is a long platoon in the competing lane.
Moreover, it is not easily amenable to disturbances.

A number of decentralized merging control mechanisms
have been proposed [7], [8], [9], [10]. In this case, all
computation is performed on board each vehicle and shared
only with a small number of other vehicles which are affected
by it. Optimal control problem formulations are used in
some of these approaches, while Model Predictive Control
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(MPC) techniques are employed as an alternative, primarily
to account for additional constraints and to compensate for
disturbances by re-evaluating optimal actions [11], [12]. An
alternative to MPC is provided in [13], [14] by the use of
Control Barrier Functions (CBFs).

In our previous work [15], we developed a decentralized
optimal control framework for each CAV approaching a
merging point from one of two roads (often, a highway lane
and an on-ramp lane). The objective combines minimizing
(i) the travel time of each CAV over a given road segment
from a point entering a Control Zone (CZ) to the eventual
merging point and (i) a measure of its energy consumption.
However, this optimal control framework is computationally
expensive, especially when one or more constraints become
active. In order to improve the computational efficiency, we
have developed a joint optimal control and barrier function
(OCBF) framework in [13]. This framework can also con-
sider model uncertainties, as well as process or measurement
noise. We note that all the state of the art works mentioned
above define the vehicle coordinates along its lane and do not
consider the curvature of the roads that induces additional
nonlinear safety constraints. Yet, we usually have curved
roads in realistic traffic merging problems, especially in
highway interchanges, in which case the centrifugal comfort
and lateral rollover avoidance are also important.

In this paper, we address curved road merging problems
where the cost is to jointly minimize travel time, energy
consumption, as well as the centrifugal passenger discomfort.
The safety constraints include maintaining a speed-dependent
safe distance for collision avoidance at the merging point
and everywhere within the CZ. The lateral rollover avoidance
constraint is obtained through the Zero Moment Point (ZMP)
[16] method that is usually used in balancing legged robots.
We first derive the optimal solution when no constraints
become active. Then, we employ the OCBF framework [13]
to optimally track this solution while also guaranteeing the
satisfaction of all constraints. Our OCBF framework allows
us to study the tradeoff between travel time, centrifugal
comfort and energy consumption. A simulation study of
an actual curved road merging problem that arises in the
Massachusetts Turnpike is included. The results show signif-
icant improvements in performance of the OCBF controller
compared to a baseline with human-driven vehicles.

II. PROBLEM FORMULATION

The merging problem arises when traffic must be joined
from two different roads, usually associated with a main lane
and a merging lane as shown in Fig.1. We consider the case
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where all traffic consists of CAVs randomly arriving at the
two curved lanes joined at the Merging Point (MP) M where
a lateral collision may occur. The segment from the origin O
or O’ to the merging point M has a length L for both lanes
and radii 7mqin > 0,7merg > 0 for the main and merging
lanes, respectively, and is called the Control Zone (CZ). All
CAVs do not overtake each other in the CZ as each road
consists of a single lane. A multi-lane merging problem has
been studied in [17] (without road curvatures) and allows
overtaking. Thus, the problem we consider in this paper can
be extended to multi-lane cases along similar lines, in which
case there are multiple MPs. A coordinator is associated with
the MP whose function is to maintain a First-In-First-Out
(FIFO) queue of CAVs based on their arrival time at the CZ
and enable real-time communication with the CAVs that are
in the CZ including the last one leaving the CZ. The FIFO
assumption, imposed so that CAVs cross the MP in their
order of arrival, is made for simplicity and often to ensure
fairness, but can be relaxed through dynamic resequencing
schemes [18]. An explicit resequencing method is included
in Section IV.D of this paper.

Merging Point

CAVs exit

Xo, Vo, Uo
X1, Vi, U1

Coordinator
index info.  lane
Origin Xo, Vo tho | main
fo] X1, Vi, ¥y | main

Fig. 1.

The merging problem for roads with curvature

Let S(t) be the set of FIFO-ordered (acccording to arrival
times at O or O’) indices of all CAVs located in the CZ at
time ¢t along with the CAV (whose index is 0 as shown in
Fig.1) that has just left the CZ. Let N(t) be the cardinality
of S(t). Thus, if a CAV arrives at O or O’ at time ¢, it is
assigned the index N (t). All CAV indices in S(t) decrease
by one when a CAV passes over the MP and the vehicle
whose index is —1 is dropped.

The vehicle dynamics for each CAV i € S(t) along the
lane to which it belongs take the form

& (t) = vi(t), 05(t) = u; (1), (1)
where z;(t) denotes the distance to the origin O (O’) along
the main (merging) lane if the vehicle ¢ is located in the main
(merging) lane, v;(t) denotes the velocity, and u;(t) denotes
the control input (acceleration). We consider three objectives
for each CAV subject to four constraints, as detailed next.

Objective 1 (Minimizing travel time): Let ¢? and t™
denote the time that CAV ¢ € S(t) arrives at the origin O
or O and the merging point M, respectively. We wish to
minimize the travel time " — Y for CAV i.

Objective 2 (Minimizing energy consumption): We also
wish to minimize energy consumption for each i € S(t):

min Cy(u;(t))dt, (2)
w; (t) £0
where C;(+) is a strictly increasing function of its argument,
and it usually takes the quadratic form: C;(u;(t)) = uZ(t).

Objective 3 (Maximizing centrifugal comfort): In order
to minimize the centrifugal discomfort (or maximize the
comfort), we wish to minimize the centrifugal acceleration

o
min/ r(zi(t))v2 (t)dt, 3)
ui(t) J40
where k : R — RZ0 is the curvature of the road at position
x;. The curvature k(z;) has a sign, and is determined by
ﬁ, where 7 : R — R is the radius of the road at z;.
Since we just wish to minimize the centrifugal acceleration,
we ignore the sign and set x(z;) > 0 in this paper.
Constraint 1 (Safety constraints): Let 7,, denote the index
of the CAV which physically immediately precedes i in the
CZ (if one is present). We require that the distance z; ;, (t) :=
x;,(t) — x4(t) be constrained by the speed v;(t) of CAV
i € S(t) so that

zi, (1) > @ui(t) + 6, Vt € [t], ], 4)

where ¢ denotes the reaction time (as a rule, ¢ = 1.8 is
used, e.g., [19]). If we define 2;;, to be the distance from
the center of CAV 1 to the center of CAV 4, then J is a
constant determined by the length of these two CAVs (taken
to be a constant over all CAVs for simplicity).

Constraint 2 (Safe merging): There should be enough
safe space at the MP M for a CAV (which eventually
becomes CAV 1, as shown in Fig. 1) to cut in, i.e.,

z21,0(t7") = pui(t1") + 4. &)

Constraint 3 (Vehicle limitations): There are constraints

on the speed and acceleration for each i € S(t):
Vimin < 0i(t) < Vimas, V€ [19,207),

Umin S uz(t) S Umaz, Vt € [to tm]a

1771

(6)

where v; mee > 0 and v; 4,4, > 0 denote the maximum
and minimum speed allowed in the CZ, while u;,;, < 0
and Uy,q; > 0 denote the minimum and maximum control,
respectively.
Constraint 4 (Lateral safety constraint): Finally, there is
a constraint on the centrifugal acceleration to avoid lateral
rollover for each i € S(t):
k(wi(t)v} (t) < =g, Yt e [t 1], 0
(3
where w > 0 denotes the half-width of the vehicle, h; > 0
denotes the height of the center of gravity with respect to
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the ground, and ¢ is the gravity constant. The above lateral
safety constraint is obtained through the Zero Moment Point
(ZMP) [16] method (assuming the road lateral slope is zero)
that balances the CAV considering both gravity and inertia.

Problem Formulation. Our goal is to determine a control
law to achieve objectives 1-3 subject to constraints 1-4 for
each i € S(t) governed by the dynamics (1). We first choose
Ci(u;(t)) = tu?(t) in (2), noting that the OCBF method
allows for more elaborate fuel consumption models, e.g., as
in [20]; we shall limit ourselves to this model in this paper.
Normalizing each objective, and combining objectives 1, 2
and 3 with oy € [0,1],2 € [0,1 — 3], we formulate the
following optimal control problem for each CAV:

2 1,2

K(xz(t))vi (t) +(1_a1 —Oéz) 2 zz(t)

1
maxVUmax 5 Uim

tm

i
min /
u;(t) J 40

subject to (1), (4), (5), (6), (7), the initial and termi-
nal position conditions z;(t?) = 0, z;(t") = L, and
given t9,vY (where v? denotes the initial speed). ujim =
max{uZ ., uZ. }. The weight factor a;; > 0, a2 > 0 can be
adjusted to penalize travel time and comfort relative to the
energy cost. 2
Multiplying (8) by m
2 2
% and 62 . QU
simplified and normalized version of (8):

dt,
(3

|:041 +ao

and letting (31 =

we have a

2(1 o1 — QQ)K/[ndX’Ude ’

min [ [ﬁ1+ﬁzﬁ(xi( DU + Sud)| dt. ©)

ul(t) +0 2 v
III. DECENTRALIZED ONLINE FRAMEWORK

Note that (9) can be locally solved by each CAV ¢ provided
that there is some information sharing with two other CAVs:
CAV i, which physically immediately precedes 7 and is
needed in (4) and CAV i — 1 so that ¢ can determine whether
this CAV is located in the same lane or not. With this
information, CAV ¢ can determine which of two possible
cases applies: (i) i, =i —1, i.e., i, is the CAV immediately
preceding 7 in the FIFO queue (e.g., i = 3,%, = 2 in Fig.
1), and (%) 4, < i — 1, which implies that CAV ¢ — 1 isin a
different lane from ¢ (e.g., ¢ = 4,4, = 1,7 —1 = 3 in Fig. 1).
It is now clear that we can solve problem (9) for any i € S(¢)
in a decentralized way in the sense that CAV 7 needs only its
own local state information and state information from ¢ —1,
as well as from 4, in case (i7). Observe that if i, =i — 1,
then (5) is a redundant constraint; otherwise, we need to
separately consider (4) and (5). Therefore, we will analyze
each of these two cases in what follows.

Assumption 1: The safety constraint (4), state constraints
(6), and lateral safety constraint (7) are not active at t?.

Since CAVs arrive randomly, we can handle violations of
Assumption 1 by foregoing optimality and simply controlling
a CAV that violates Assumption 1 until all constraints
become feasible within the CZ using the CBF method [13].

Under Assumption 1, we will start by analyzing the case
of no active constraints. The analysis of the cases where
one or more constraints become active is similar to [15].

However, the computational time significantly increases with
constrained optimal solutions, which prevents the optimal
control from being implementable in real-world merging
problems. Therefore, in this paper, we use CBFs [21] [22] to
guarantee the satisfaction of all the constraints, and employ
the OCBF framework [13] to optimally track the tractable
unconstrained optimal solutions.

A. Unconstrained Optimal Control

Let X;(t) := (z;(¢),v;(¢)) be the state vector and X;(t) :=
(ANE(t), AY(t)) be the costate vector (for simplicity, in the
sequel we omit explicit time dependence when no ambiguity
arises). The Hamiltonian with the state constraint, control
constraint and safety constraint adjoined is

Hi (X5, Aiy uq) ==u?+Bok(z)v? + A 4+ AWuy,

2 Z
+ i (Ui —Umaz) + (umin —u;)

+ IU/'L( vmaw) + M (Umzn - vz) (10)
+/j‘z( +9001+5 xip)

h
+ pif (k(ws)of — h—g) + B

The Lagrange multipliers u¢, u?, u¢, ud, us, uzf are positive
when the constraints are active and become 0 when the
constraints are strict. Note that when the safety constraint (4)
becomes active, i.e., ui > 0, the expression above involves
x;,(t). When i = 1, the optimal trajectory is obtained
without this term, since (4) is inactive over all [t},¢7].
Thus, once the solution for ¢ = 1 is obtained (based on
the analysis that follows), x7 is a given function of time and
available to ¢ = 2. Based on this information, the optimal
trajectory of ¢ = 2 is obtained. Similarly, all subsequent
optimal trajectories for ¢ > 2 can be recursively obtained
based on z} (t) with i =i — 1.

Since the terminal state constraint ¢; 1 := z;(t]*) —L =0
is not an explicit function of time, the transversality condition
[23] is

Hi(‘){i(t)vAi(t)7ui(t))|t:t;” =0, an
with the costate boundary condition A;(t*) =
[(via 5& 2‘(1) Jt=¢m, where v; 1 denotes a Lagrange multiplier.

The Euler-Lagrange equations become

. 0H; k() o FOR(T;) o
N = — — Gyt 2 2. (12
5 0z, i — B2 oz, U Mgy, Ui (12)
and
. OH,;
o= ¢
' 811,‘
= A — pf + i = op§ = 2Bak(@i)v; — 20l w(@i)vr,
(13)
and the necessary condition for optimality is
O0H;
=ui+ Al —pul=0. (14)
aui

Since the curvature (z;) of the road usually depends on
the specific road configuration and it prevents the derivation
of an explicit solution, we replace r(x;) by the average (or
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possibly maximum) curvature & > 0 of the road in the CZ.
In the case of no active constraints throughout an optimal
trajectory, we also have p¢ = p? = u§ = pd = pé =
,u{ = 0. Applying (14), the optimal control input is given by
u; + A} = 0. and the Euler-Lagrange equation (13) yields
AV = —\¥ — 2B5kv;. In the case of no active constraints
throughout an optimal trajectory, (12) implies A7 (t) = a,,
where a; is an integration constant. Combining the last two
equations, we have u; = a 4+ 282Kv;.
Combining dynamics (1) with the above, we have
U; = a + 2B2kv;. (15)
We can solve this differential equation and get the explicit
solution for the speed as

vl (t) = bieV2PaRt 4 o o= V202Rt i ~
252/‘6

(16)

where b;, ¢; are integration constants.
Consequently, we obtain the following optimal solution
for the unconstrained problem:

W (t) = /2Baki(bieVPP2Rt — e~ VIPRRL)

i a7
i () =

1 = ~ a;
bi V262 kt —¢ —V/2B2kt _ 7Zt d1
o R i

where d; is also an integration constant. In addition, we
have the initial conditions x;(t?) = 0,v;(t}) = v? and
the terminal condition z;(t7*) = L. The costate boundary
conditions and (14) offer us u;(t!) = —AY(t7*) = 0 and
Ai(t7) = (a;,0), therefore, the transversality condition (11)
gives us an additional relationship:

B1 + Bakvd (tT) 4 a;vi (t™) = 0. (19)

Then, for each ¢ € S(t), we need to solve the following five
nonlinear algebraic equations to get a;, b;, ¢;, d; and ¢7":

biew/2,82f$'t? +Cie—\/2/32m? g 0

1 it Ay - 2
_ (bieV2PRE — e VERALY) — L) 4 d; =0,
VTR o
1 A pm s 4m a
bie VIR — i VARIT) — St ds = L
257 e cie ) ot |

54

2Bafi(bieV 2RI — ciem VAR =
. o m a;
B + Bak(bjeV PRt g7 VPR T )2

262k
+ ai(bie\/Qﬂz’%t:n + Cie—\/Qﬁzfit? _ a; ) —
2Bk

(20)

Note that when 82 — 0 (i.e., ag — 0), the optimal
control (17) degenerates to the case without any comfort
consideration. In other words, the optimal control (17) is in
linear form as in [15]: limg, o u;(t) = fat + fp, where
fa = 2B2k(b; +¢i), fr = V/2B2k(b; — ¢;) following a Taylor
series expansion.

The equations in (20) are usually hard to solve as there
are too many exponential terms (it usually takes about one
second using solve in Matlab to solve them). This motivates
us to use a computationally efficient solution approach as
shown in the next subsection.

B. Explicit Solution for Integration Constants

In this section, we show how to determine an explicit
solution for the integration constants of the optimal control
(17) which significantly reduces the computational complex-
ity. By Lemma 2 in [15], we have ¢ — t{ = e = t? if
v) = v),i € S(t),j € S(t) if By = 0. This is also true if
B2 > 0 as the total travel time clearly does not depend on
the arrival time t? of a CAV i € S(t). Moreover, observe
that vY shows up only in the first of the five equations in
(20). Therefore, given /31, B2, we can get the solution for ¢}"
for some fixed v € [Vmin, Umaz] by solving (20) off line
with t? = 0. We can then construct a look-up table over a
finite number of v? values constrained by v{ € [Vnin, Vimaz]
and use a simple linear interpolation for any possible v?
value actually observed. However, since v? is continuous and
this approach may induce non-negligible errors, we choose
instead to use regression (e.g., with polynomial or Gaussian
kernels) to obtain the solution of ¢ for all v{ € [Vynin, Vimaz]
in the form:

" =t + R(vy), 1)

where R : R — R denotes the regression model. Thus, we
can immediately obtain ¢]* on line from (21) for any CAV
arriving at time t9 with speed v{.

Since the last equation of (20) is used to determine ¢
which is already evaluated as discussed above, it remains to
use the first four equations to determine a;, b;, c¢;, d;, which
are all in linear form. Therefore, we can get

! oVIBRAL  —VIBRL -1
a; 282k 09
t0 oV/2B2Rt) o~ V/2B27t) 1 i
bi — | T 2B V2B2k T V2B 0
c; e eVEBRGT o —\/2BaRt] 1 L’
d: 2B2k V2B2k V282 0
g 0 e\/ZﬁQ/%t?" _67\/252f€t;n 0
(22)

The above equation is then the explicit solution for the
four integration constants of (17), and it is much more
computationally efficient than solving (20). The above matrix
is invertible if there exists a solution in (20).

C. Constrained Optimal Control

When one or more constraints in the merging problem
becomes active, we can use the interior point analysis [23]
to find the complete constrained optimal control solution,
similar to the comfort-free case shown in [15]. However,
the solution can become complicated when two or more
constraints become active in an optimal trajectory, which
makes the solution time-consuming to obtain, hence possibly
prohibitive for real-time implementation. It is for this reason
that we resort to the CBF method to guarantee the satisfaction
of all constraints while sacrificing some performance if some
constraints become active. This method can be implemented
on line for merging problems as detailed in [13].

D. Joint Optimal Control and Barrier Function (OCBF)

In this section, we briefly review the OCBF approach
in [13] as it applies to our problem. The OCBF controller
aims to track the OC solution (17)-(18) while satisfying all

2680



constraints (4), (6) and (5). Each of the constraints in (4), (6),
(7) and (5) can be enforced by a CBF. In the CBF approach,
each of the continuously differentiable state constraints is
mapped onto another constraint on the control input such that
the satisfaction of this new constraint implies the satisfaction
of the original constraint [21], [22]. In addition, a Control
Lyapunov Function (CLF) [21] can also be used to track

(stabilize) the optimal speed trajectory (16)
Therefore, the OCBF controller solves the following:

nghgau@xaa»—ly(ﬂéu»+§wxw—umﬂwf)du
(23)

subject to the CBF constraints that enforce (4), (6), (7) and
(5), and the CLF constraint for tracking, where 5 > 0
and e;(t) is a relaxation variable in the CLF constraint.
The obvious selection for acceleration reference signal is
Ures(t) = u(t) given by (17). However, we can improve the
tracking process using  (¢) from (18) and selecting instead:
Upef(t) = i ((E)) uf(t). Alternative choices of u,.s(t) are also
possible as shown in [14], [13].

We refer to the resulting control u;(¢) in (23) as the OCBF
control. The solution to (23) is obtained by discretizing the
time [tY,#™] with time steps of length A and solving (23)
over [t + kA 0+ (k+1)A], k= 0,1,..., with u;(t), e;(¢)
as decision variables held constant over each such interval.
Consequently, each such problem is a QP since we have
a quadratic cost and a number of linear constraints on the
decision variables at the beginning of each interval. The
solution of each such problem gives u}(t) + kA), k =
0,1,..., allowing us to update (1) in the k" time interval.
This process is repeated until CAV ¢ leaves the CZ.

E. Dynamic Resequencing

The FIFO assumption imposed on the curved-road merg-
ing problem can potentially decrease CAV performance as
the main and merging roads may have different curvatures.
This non-symmetric structure generally benefits from non-
FIFO CAV ordering as observed in [18]. In order to relax
the FIFO assumption, the Optimal Dynamic Resequencing
(ODR) approach in [18] includes a step before a new CAV
arrives at one of the origins where the CAV obtains the
constrained optimal solution and uses the joint objective
function to determine the passing order at the MP. This
approach is computationally expensive and, as already seen,
the constrained optimal solutions are harder to be found in
the curved-road merging problem.

In order to improve the computational efficiency of this
process, we will relax the requirement for optimal rese-
quencing by considering only the travel time under the
unconstrained optimal control (17) as the objective used
to determine the passing order. Since this resequencing
may not be the optimal policy, we refer to it as Dynamic
Resequencing (DR). Specifically, if the MP arrival time ¢
under the unconstrained optimal control (17) of a new arrival
CAV i € S(t) satisfies

=t > o+ (24)

vE(m)’

for some j € S(t) such that i, < j < (i.e., j is located at
the other lane from ¢), then the new arrival CAV i overtakes
CAV j under vj(¢;") which is the unconstrained optimal
speed of j from (16) at time ¢i*. If such j is found in (24),
its safe merging constraint will change after resequencing.
We need to deal with the possible infeasibility problem of
the QP, and this will be further studied.

IV. SIMULATION EXAMPLES

We have used the Vissim microscopic multi-model traffic
flow simulation tool as a baseline to compare with the opti-
mal control approach we have developed. The car following
model in Vissim is based on [24] and simulates human
psycho-physiological driving behavior.

We choose a merging scenario of highway I-90 (known
as the Massachusetts Turnpike), in the Boston area in the
USA, as shown in Fig. 2. All CAVs start to communicate
with a coordinator (at the merging point) in the resequenc-
ing/connection zone as shown in the figure.

~

/\

resequencing/connection zone o
) origin

Micozzi Managerr

G . _../ = .
a s
) .
o origin  control zone

main lane

merging point .
.
. - .
. merging lane

L=l

Il 10ad)
~otts Tumnpike (To
Massachuse

Fig. 2. A merging scenario of the I-90 Masschussets Turnpike, USA.

The parameters of the map are as follows: L = 200m,

k= ﬁ,vmnax = 20m/s in the main lane, and & =
%,vimm = 15m/s in the merging lane. A = 0.1s,p =
1.85,0 = 0m, vmin = 0M/S, Umaz = —Umin = 0.49,9 =

9.81m/s%. We set different cost weights for the main and
merging roads, i.e., we set a3 = 0.3, a2 = 0.1 in the main
lane, and a; = 0.3,a2 = 0.4 in the merging lane. The
simulation under optimal control is conducted in MATLAB
by using the same arrival process input and initial conditions
as in Vissim. The CAVs enter the CZ under a Poisson arrival
process with an initial speed in the range 6.5—12.5m/s at the
origins. The MATLAB computation time for the proposed
framework is very efficient, i.e., less than 0.01s for each
QP of the OCBF controller (23) (Intel(R) Core(TM) i7-8700
CPU @ 3.2GHzx2).

The simulation results of optimal control under two traffic
densities compared to that in Vissim are summarized in Table
I. Since we choose different o, ay for the main and merging
lanes, we list the metrics separately in Table I.

When the traffic rates in the main and merging lanes are
equal at 500 CAVs/h, the overall objective function of CAVs
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TABLE I
OBJECTIVE FUNCTION COMPARISON

Rate(CAVs/h) Main:500, Merg.:500 Main:500, Merg.:800

Method Vissim [ OCBF [ DR Vissim [OCBF | DR
Main time (s) | 22.27 | 13.35 | 12.49 2243 | 15.57 | 13.30
Main comfort 9.07 15.75 | 16.71 9.03 13.46 | 15.72
Main %uf(t) 1.21 10.93 | 10.42 1.23 12.86 | 14.35
Main ob;. 92.76 | 7242 | 69.22 93.37 | 81.43 | 75.63
Merg. time (s) | 26.71 | 1592 | 15.94 39.02 | 16.40 | 16.32
Merg. comfort | 35.89 | 50.77 | 50.73 30.61 | 49.50 | 49.75
Merg. %uf (t) | 13.78 0.05 1.13 13.29 1.79 3.20
Merg. obj. 301.3 | 2384 | 239.6 606.6 | 241.0 | 2423

in the main road improves about 22% with the OCBF method
(using FIFO) compared with Vissim, and it further improves
about 4% with the OCBF method when DR is included. Note
that the energy consumption in the main lane is 10 times
worse for the OCBF method relative to Vissim, while the
energy consumption in the merging lane is 10 times better
for the OCBF method. This is due to the fact that the CAVs
in the main lane have a higher speed limit than the ones in
the merging lane. Therefore, a CAV ¢ in the main lane may
use a large energy consumption in order to satisfy the safe
merging constraint at the MP when it has to coordinate with
a CAV ¢ — 1 whose speed is low in the merging lane. We
have similar results when the arrival rate increases to 800
CAVs/h in the merging lane.

When traffic arrival rate increases to 1000 CAVs/h for both
the main and merging lanes, the human driven vehicles of the
merging lane will cause heavy traffic congestion in Vissim,
while the OCBF method can successfully manage the traffic
without any congestion (see videos').

V. CONCLUSIONS

We have derived a decentralized optimal control frame-
work for the curved road traffic merging problem that jointly
minimizes the travel time and energy consumption, as well
as the centrifugal discomfort of each CAV and guarantees
that a speed-dependent safety constraint and a lateral rollover
avoidance constraint are always satisfied. Ongoing research
is extending the proposed framework to multi-lane cases,
using better energy models and CAV dynamics, and most
importantly, exploring the feasibility guarantee of the pro-
posed framework under tight control bounds.
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