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Abstract— The properties of cooperative driving strategies
for planning and controlling Connected and Automated Vehi-
cles (CAVs) at intersections range from some that achieve
highly efficient coordination performance to others whose imple-
mentation is computationally fast. This paper comprehensively
compares the performance of four representative strategies in
terms of travel time, energy consumption, computation time,
and fairness under different conditions, including the geometric
configuration of intersections, asymmetry in traffic arrival rates,
and the relative magnitude of these rates. Our simulation-
based study has led to the following conclusions: 1) The Monte
Carlo Tree Search (MCTS)-based strategy achieves the best
traffic efficiency and has great performance in fuel consumption;
2) MCTS and Dynamic Resequencing (DR) strategies both
perform well in all metrics of interest. If the computation budget
is adequate, the MCTS strategy is recommended; otherwise,
the DR strategy is preferable; 3) An asymmetric intersection
has a noticeable impact on the strategies, whereas the influence
of the arrival rates can be neglected. When the geometric shape
is asymmetrical, the modified First-In-First-Out (FIFO) strategy
significantly outperforms the FIFO strategy and works well when
the traffic demand is moderate, but their performances are
similar in other situations; and 4) Improving traffic efficiency
sometimes comes at the cost of fairness, but the DR and MCTS
strategies can be adjusted to realize a better trade-off between
various performance metrics by appropriately designing their
objective functions.
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I. INTRODUCTION

INTERSECTIONS are the main bottlenecks for urban traf-
fic. As reported in [1], congestion in these areas causes

substantial economic loss to society and significantly increases
the travel time of drivers. Coordination and control problems
at intersections are challenging in terms of safety, traffic
efficiency, and energy consumption [1], [2].
The emergence of Connected and Automated

Vehicles (CAVs) is believed to be a promising way of
improving safety, traffic efficiency as well as reducing energy
consumption. With the aid of vehicle-to-vehicle (V2V) and
vehicle-to-infrastructure (V2I) communication, CAVs can
obtain real-time operational data from neighboring CAVs and
communicate with the infrastructure [3]. These technologies
have made it possible to plan better trajectories for CAVs
through optimal control methods, as well as implement these
trajectories in real time.
In recent years, various cooperative driving strategies have

been proposed to achieve optimal coordination for CAVs
driving through signal-free intersections. The goal of these
strategies is to minimize one or several objectives by schedul-
ing both the crossing order and the control inputs (speed,
acceleration) of all CAVs. Thus, cooperative driving strategies
mainly consist of two parts: 1) a scheduling problem in terms
of crossing sequences and controllable arrival times at conflict
areas; and 2) an optimal control problem in terms of control
inputs. This paper focuses on the first problem and divides the
existing strategies into two kinds from the perspective of cross-
ing sequences, i.e., cooperative driving strategies without rese-
quencing and cooperative driving strategies with resequencing.
Cooperative driving strategies without resequencing mainly

refer to the First-In-First-Out (FIFO) approach where we
directly determine the crossing sequence according to the
order of CAVs entering a control zone (defined as an area
around the intersection within which V2I communication is
possible). Any new arriving vehicle does not influence the
crossing sequence already determined for previous CAVs. For
example, Stone et al. proposed an autonomous intersection
management cooperative driving strategy that divides the inter-
section into grids (resources) and assigns these grids to CAVs
in a FIFO manner [4], [5]. Malikopoulos et al. designed a
decentralized time-then-energy optimal control framework for
CAVs at intersections where they obtained the desired optimal
arrival times of CAVs based on a FIFO crossing sequence and
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derived the energy-optimal analytical solution for controlling
CAVs to arrive at the intersection’s conflict (merging) zone
at these prescribed arrival times [6]. Zhang and Cassandras
further extended the work by including all possible turns
and considering the joint energy-time-optimal solution [7].
In addition, they incorporated safe distance constraints within
the control zone and passenger comfort within the conflict
zone into the trajectory optimization framework. However,
recent studies have shown that the performance of the FIFO
crossing sequence may be far from the optimal solution in at
least some cases [8].
Cooperative driving strategies with resequencing aim to find

a better crossing sequence for CAVs within the control zone.
One of the prevailing ideas is to formulate an optimization
problem whose decision variables are crossing sequences and
control inputs. Specifically, binary variables are introduced to
represent the crossing priority between any two CAVs, which
leads to Mixed-Integer Linear Programming (MILP) problems
[9], [10]. However, MILP problems are NP-hard, i.e., their
computation time increases exponentially with the number of
considered CAVs. Alternatively, it has been shown that the
problem may be treated as a tree search problem where each
tree node represents a special crossing sequence [11]. The
equivalent objective is to find a leaf node that corresponds
to the optimal solution. However, this approach faces sim-
ilar computational disadvantages as MILP-based strategies.
Although techniques such as grouping methods [12] or pruning
[13] have been proposed to reduce the size of the original prob-
lem or to accelerate the search process, it is still hard to obtain
a real-time solution for complicated driving scenarios that
arise, for example, in multi-lane intersections. To overcome the
above shortcomings, there have been several recent studies on
this topic. For example, Xu et al. proposed a Monte Carlo Tree
Search (MCTS)-based strategy where they used the MCTS to
guide the search process and determine as many promising
crossing sequences as possible within a limited computation
budget [8]. By performing comparisons with the results of
exhaustive searching (whenever possible), they demonstrated
that the MCTS strategy can always find a near-optimal solu-
tion, even for complicated multi-lane intersections where the
search space is enormous [8]. Following a very different
approach, Zhang and Cassandras designed a Dynamic Rese-
quencing (DR) scheme to optimize the crossing sequence [14].
Rather than periodically replanning crossing sequences for
all CAVs as in the MCTS approach, the DR strategy keeps
the original crossing sequence unchanged and updates it only
when a new CAV arrives by inserting it into a suitable
position within the original sequence so as maximally improve
performance. Nevertheless, due to the different models and
simulation settings used by different researchers, we still lack
a comprehensive comparative performance evaluation for these
strategies under different driving scenarios.
To analyze the relative advantages and disadvantages of

different cooperative driving strategies, we have selected four
representative types of such strategies: the MCTS strategy
[8], the DR strategy [14], the commonly used FIFO strategy,
and a modified FIFO-based strategy. This paper first applies
these strategies to a typical signal-free single-lane intersection

with the same arrival rate at each lane and a symmetric
geometrical shape. Then, we vary the length of different lanes
and associated arrival rates in order to investigate the impact
of asymmetrical intersection geometries and asymmetrical
arrival rates on these strategies, respectively. In addition to
performance metrics such as travel time and energy, we also
compare the computation time of different strategies and the
number of crossing sequences they have considered during
their computation time. Finally, we discuss the drawback often
caused by resequencing, i.e., unfairness across the different
traffic arrival lanes, and introduce a balancing factor to the
DR strategy so as effectively control the trade-off between
fairness and efficiency.
The main contributions of this paper are: 1) to comprehen-

sively evaluate and compare the performance of representative
state-of-the-art cooperative driving strategies; 2) to analyze
the influence of asymmetrical arrival rates and intersection
geometries on these strategies; and 3) to explore the trade-
off between different performance metrics and to propose
improvements to existing strategies based on resequencing.
The paper is organized as follows. Section II formulates

the optimal control problem of controlling CAVs passing
through a signal-free intersection safely. Section III briefly
reviews the four cooperative driving strategies to be compared.
Then, in Section IV we conduct a series of experiments to
compare their performance under different simulation settings.
Section V discusses the trade-off between fairness and effi-
ciency. Finally, Section VI gives concluding remarks.

II. PROBLEM FORMULATION

Figure 1 shows a typical intersection configuration with a
single lane in each direction. The area within the circle is
called the Control Zone, while the shadowed area is called the
Conflict Zone where lateral collisions may happen. The road
segment from the entry of the Control Zone to the entry of
the Conflict Zone is referred to as a control zone segment, and
its length is denoted by Li , i ∈ {1, 2, 3, 4}. The value of Li

is usually associated with the communication range of road-
side infrastructure equipment (often referred to as a road-side
unit). If all Li are equal, then the intersection is symmetrical;
otherwise, it is an asymmetrical intersection. To improve
space utilization, we divide the Conflict Zone into several
subzones. For example, the Conflict Zone in Fig. 1 is divided
into 4 Conflict Subzones, which are labeled Conflict Subzone
1 through Conflict Subzone 4. After this division, CAVs that
pass through different subzones can cross the intersection at
the same time.
When a CAV enters the Control Zone, we assign it a

unique identity i , labeling it as the i th CAV. Then, we use
the sequence Zi to denote the Conflict Subzones that CAV i
will pass through. For example, Zi = {4, 1} in Fig. 1 means
CAV i will pass through Conflict Subzone 4 and then Conflict
Subzone 1 in sequence.
To simplify the problem, we adopt the following assump-

tions:
• Each vehicle instantly shares its complete driving state
(position, velocity, etc.) and intentions with other CAVs
via V2V communication (or V2I then I2V).
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Fig. 1. A typical intersection.

• Similar to [6] and [15], the velocities of CAVs are
constant when passing through the Conflict Zone.

As already mentioned, cooperative driving strategies consist
of two parts. We obtain the optimal crossing sequence and
corresponding arrival time by solving the scheduling problem
in the first part. Then, the arrival time is utilized as the terminal
time for solving an optimal control problem in the second
part, through which a CAV’s inputs are determined. It is
worth noting that some studies combine these two parts into a
single optimization problem [16], but the computation time for
solving such a problem is prohibitively large even when tools
such as model predictive control are employed [17]. Moreover,
it is hard to extend this method to problems with complicated
objective functions and vehicle dynamics. On the other hand,
if the crossing sequence is given in advance, then it is possible
to efficiently design a decentralized optimal control problem
for jointly optimizing the arrival times and control inputs of
each CAV as in [7] and [18]. We regard these methods as
extensions of the basic cooperative coordination problem and
will, therefore, not consider them here.

A. Scheduling Problem in Terms of Arrival Times and
Crossing Sequences

Let ai,z denote the desired arrival time to the Conflict
Subzone z for CAV i , and σi,z is the minimum arrival time to
the Conflict Subzone z when CAV i travels with the maximum
velocity and maximum acceleration. It is clear that σi,z is the
fixed lower bound for ai,z . Let Z1

i be the first element in Zi ,
e.g., Z1

i = 4 when Zi = {4, 1}. Thus, ai,Z1
i
is the arrival time

at the first Conflict Subzone that CAV i will pass through.
We also use Ci,z to include the set of indices of all CAVs that
may collide with CAV i in the Conflict Subzone z. Once i is
known, Z1

i and Ci,z are fully determined.
We introduce binary variables b = [b1,2, b1,3, . . . , bn−1,n]

to represent crossing sequences, where n is the number of
CAVs currently in the Control Zone and not yet at the Conflict
Zone. We use bi, j = 1 to indicate that CAV i is assigned to

cross the Conflict Zone before CAV j for every j ∈ Ci,z ,
z ∈ Zi , such that j may conflict with i ; otherwise, bi, j = 0
indicating that CAV j has higher crossing priority. Therefore,
the vector b always contains elements which allow us to
interpret it as a crossing sequence in the form of a string. For
example, b = [b1,2, b1,3, b2,3] = [1, 1, 0] implies the crossing
sequence is 132. It is also clear that bi, j = 1 − b j,i , so we
omit all b j,i with j ≥ i in the definition of b.
In addition, let a denote the vector of all ai,z . where ai,z is

a continuous variable whose range is between σi,z and ∞. We
can then formulate the following optimization problem:

min
a,b

n∑
i=1

(ai,Z1
i
− σi,Z1

i
) (1a)

s.t. ai,z ≥ σi,z , i = 1, . . . , n, z ∈ Zi (1b)

ai,Z1
i
− ap,Z1

i
≥ �tp, i = 1, . . . , n (1c)

ai,z − a j,z+ M · bi, j ≥�t j , i ∈N, z ∈ Zi , j ∈ Ci,z

(1d)

a j,z − ai,z + M · (1 − bi, j ) ≥ �ti , i ∈ N, z ∈ Zi ,

j ∈ Ci,z (1e)

N = {1, 2, . . . , n}, (1f)

bi, j ∈ {0, 1}. (1g)

Constraints (1c) capture the safety rear-end constraints
for all CAVs in the same lane, and CAV p is the CAV
physically preceding (ahead of) CAV i . �tp is the safety time
headway between two CAVs and is related to the type and
movement of CAV p. Constraints (1d) and (1e) are safety
lateral constraints for CAVs i and j to ensure that there is
no more than one vehicle in any Conflict Subzone at any
time. M is a sufficiently large number such that if bi, j = 1,
then inequality (1d) must hold (due to the large value of M).
It follows that inequality (1e) takes on the same form as (1c).
Thus, if bi, j = 1, CAV i is prioritized to cross the Conflict
Zone earlier than CAV j .
Remark: Regarding the selection of a value for M, it is

straightforward to derive a finite lower bound for it such that
any value greater than this lower bound may be chosen. In
particular, let amax,z be the arrival time at Conflict Subzone
z when a CAV starts at a Control Zone entry point with
the minimum initial velocity. For simplicity, define �t =
max(�ti ),∀i . Then, for any ai,z we have ai,z = max(ak,z +
�tk, σi,z ) where k is the last CAV passing through Conflict
Subzone z prior to CAV i . Since, σi,z ≤ amax,z , ∀i , we have
ai,z ≤ amax,z + (n − 1)�t when CAV i is the nth CAV in the
crossing sequence. Then, since a j,z > 0, ∀ j , we have

ai,z − a j,z + �t < amax,z + (n − 1)�t + �t < amax,z + N�t

where N is the capacity of the intersection in terms of the
number of CAVs it can accommodate.
By solving the optimization problem (1) to obtain a solution

(a, b), we get the optimal crossing sequence (given by b∗) and
the desired arrival times for all CAVs. Clearly, (1) is a MILP
problem that is NP-hard. The commonly used methods for
solving MILP problems are branch and bound algorithms with
a worst-case running time of O(bd), where b is the branching
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factor and d is the search depth (relevant to the number of
CAVs). Thus the computation time for solving this kind of
problem increases exponentially with the number of CAVs.
To indirectly solve the problem, [6] and [12] pointed out

that we can determine the crossing sequence first and then the
primal problem reduces to a linear programming problem that
can be easily solved. To be more specific, after we specify
the value of b, then (1d) and (1e) become linear constraints
without binary variables and the problem (1) only has one
decision variable a. Moreover, we can design a simple iterative
algorithm (Algorithm 1) to solve the problem (1) given b
and derive the desired arrival times for all CAVs with a time
complexity O(n).

Algorithm 1 Crossing Sequence to Trajectory Interpretation
Input: A possible value of b

Output: The total delay J of the covered vehicles and their

arrival times ai,z
1: Interpret b as a crossing sequence in the form of a string

S.

2: for each i ∈ [1, length(S)] do
3: Let j = S(i), and S(i) is the i th element of S.

4: for each z ∈ Z j do
5: CAV k is the last CAV passing through subzone z prior

to CAV j

6: if CAV k exists then

7: a j,z = max(σ j,z, ak,z + �tk)

8: else

9: a j,z = σ j,z

10: end if

11: end for

12: Adjust a j,z according to the constraint: the velocity of

CAV j in the Conflict Zone is constant.

13: end for
14: J = ∑

j (a j,Z1
j
− σ j,Z1

j
)

Based on this idea, the original problem is transformed
into a problem of finding the optimal crossing sequence for
improving traffic efficiency. In recent years, there have been
many state-of-the-art studies on this topic, which will be
introduced in detail in the next section.

B. Optimal Control Problem in Terms of Control Inputs

After determining the desired arrival times, we need to plan
control inputs for optimally controlling CAVs so that they
arrive at the Conflict Zone at the desired time and at the
same time minimize a specific objective. Aside from traffic
efficiency, energy consumption is a performance metric of
interest. Since the energy consumption rate of CAV i is a
function of its control inputs and monotonically increasing
with the acceleration ui , we formulate the following optimal

control problem solved by each CAV i in a decentralized
fashion:

min
ui (t)

∫ a
i,Z1i

t0i

C(ui (t))dt (2a)

s.t. ẋi (t) = v(t), v̇i (t) = u(t), t ∈ [t0i , ai,Z1
i
] (2b)

xi (t
0
i ) = 0, vi (t

0
i ) = v0i , (2c)

xi (ai,Z1
i
) = L, (2d)

vi (ai,Z1
i
) = v

f
i , (2e)

xp(t) − xi(t) ≥ l + vi (t)hs , t ∈ [t0i , ai,Z1
i
] (2f)

vmin,i ≤ vi (t) ≤ vmax,i , t ∈ [t0i , ai,Z1
i
] (2g)

amin,i ≤ ui (t) ≤ amax,i , t ∈ [t0i , ai,Z1
i
] (2h)

where C(·) is a strictly increasing function of its argument,
e.g., C(ui (t)) = 1

2u
2
i (t). Constraints (2b) consist of the vehicle

dynamics where xi(t) and vi (t) are the position and velocity of
CAV i at time t . Constraints (2c), (2d) and (2e) are boundary
conditions where t0i is the time instant when CAV i enters
the Control Zone, v0i is the initial speed of CAV i , L is
the length of the Control Zone segment, and v

f
i is the final

speed of CAV i . Similar to [6], [8], we assume that the final
speeds of all CAVs are the same and fixed, but this assumption
can be easily relaxed as shown in [7] and will not influence
our analysis on crossing sequences. Constraints (2f) are safety
rear-end constraints where CAV p is the CAV physically ahead
of CAV i , l is the safety distance, and hs is the safety headway.
The form of this constraint is speed-dependent and requires a
larger rear-end distance for CAV i with higher speed. However,
some related work sets hs = 0 and enlarges the value of l
to simplify the calculation. Finally, (2g) and (2h) are physical
limitation constraints where vmin,i and vmax,i are the minimum
and maximum velocity for CAV i , amin,i and amax,i are the
minimum and maximum acceleration for CAV i , respectively.
For simplicity, we assume that vmin,i , vmax,i , amin,i , and amax,i
are the same for all CAVs, and we can handle the situation
where these values are dependent on CAV i in the same
way. Moreover, in our simulation studies (see Section IV),
we will use a more detailed energy model to show that the fuel
consumption can be optimized through the simple surrogate
model (2).
It is still time-consuming to solve problem (2) through

interior point methods or commercial software, e.g., CPLEX.
However, due to its simple vehicle dynamics and constraints,
we can derive analytical solutions for this problem [6], [7]
and quickly obtain the optimal control inputs. It is worth
noting that even if the vehicle dynamics and constraints
become complicated, we can invoke the Control Barrier Func-
tion (CBF) methodology to solve the corresponding optimal
control problem efficiently as a sequence of quadratic prob-
lems over discretized time instants in [t0i , ai,Z1

i
]. Interested

readers are referred to [18]. For each CAV, we need to solve
problem (2) once. As already mentioned, this is done in a
decentralized way: each CAV solves (2a)-(2h) to determine its
own control inputs and the average computation time is smaller
than 1 ms.
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III. COOPERATIVE DRIVING STRATEGIES

In this section, we briefly review four cooperative driving
strategies used to determine the crossing sequence.

A. FIFO Strategy and Modified FIFO Strategy

In the FIFO strategy, the crossing sequence follows the
FIFO principle. The CAV that enters the Control Zone earlier
has a higher crossing priority when a potential conflict with
another CAV arises. It is easy to implement this strategy:
we only need to add a new incoming CAV at the end of the
original crossing sequence and at the same time remove all
CAVs that have crossed the Conflict Zone from the crossing
sequence.
However, [14] found that this strategy may lead to poor

scheduling and possible congestion when the shape of the
Control Zone is asymmetrical. We propose a simple idea to
overcome this problem, i.e., assign a higher crossing priority
to a CAV that is closer to the Conflict Zone. In other words,
all CAVs in the Control Zone calculate their distance to
the Conflict Zone, and the crossing sequence is derived by
sorting CAVs in ascending order in terms of this distance.
We call this new strategy the “modified FIFO strategy” and
implement it in a time-driven way, i.e., the crossing sequence
is periodically updated.
The FIFO strategy and modified FIFO strategy only consider

one possible crossing sequence according to their correspond-
ing defining rule. It is easy to see that their time complexities
are O(n) and O(nlog(n)), respectively, where n is the number
of CAVs in the Control Zone. The FIFO strategy is event-
driven, since it is only invoked whenever a CAV enters the
Control Zone or leaves the Conflict Zone so as to update the
crossing sequence. The modified FIFO strategy is time-driven,
since the crossing order is periodically updated based on the
current distance of CAVs from the Conflict Zone; in particular,
the crossing sequence is updated every T seconds.

B. Dynamic Resequencing (DR) Strategy

An improvement over strategies based on a single possible
crossing sequence is to evaluate several feasible crossing
sequences whenever a new CAV enters the Control Zone and
to select the optimal one. This is referred to as Dynamic
Resequencing. This strategy maintains the relative order of the
remaining CAVs and finds an appropriate position in which the
new CAV can be inserted so as to optimize a given objective
function J . The DR process is shown in Algorithm 2.
Observe that the DR strategy is implemented in an event-
driven way with Algorithm 2 invoked only when the trig-
gering event (a new CAV entering the Control Zone) occurs.
Since the time complexity of computing the objective value

of one crossing sequence is O(n) (see step 4 in Algorithm 2),
the worst time complexity of DR strategy is O(n2). However,
the expected computational complexity is actually O(Mn)
where M is the number of lanes. A proof and analysis of
the DR strategy and its complexity can be found in [14].

C. Monte Carlo Tree Search (MCTS) Strategy

As mentioned above, the DR strategy keeps the origi-
nal crossing order of CAVs unchanged and determines an

Algorithm 2 DR-Based Cooperative Driving Strategy
Input: The original crossing sequence S and the information

of all CAVs

Output: A new crossing sequence Snew

1: Find the preceding vehicle of the new vehicle and its

position k in S
2: for each i = length(S): −1: k do

3: Insert the new vehicle into the position i + 1 of S and

obtain a feasible crossing sequence S f .

4: Compute the corresponding objective value J f for S f

5: if J f < Jopt imal then

6: Jopt imal = J f

7: Snew = S f

8: end if

9: end for
10: return Snew

appropriate insertion position for any new arriving CAV.
In contrast, the MCTS-based strategy aims to find the glob-
ally optimal crossing sequence among all feasible crossing
sequences at every time instant. Clearly, for a real-time imple-
mentation it is difficult to enumerate all feasible solutions
within a limited computation time, especially when the number
of CAVs is large. Thus, this strategy combines a MCTS with
some heuristic rules for guiding the search process so as to
traverse as many promising crossing sequences as possible.

Algorithm 3 outlines the idea of the MCTS-based strategy;
interested readers are referred to [8], [20], [21]. Similar to the
modified FIFO strategy, the MCTS is also time-driven with
the crossing sequence updated every T seconds.
If there is no computation time limit imposed, the time

complexity of the MCTS strategy is exponential O(2n), which
is highly undesirable. Nevertheless, the maximum computation
time we set can ensure that the search process is finished
within an acceptable time dictated by the specific scenario,
e.g., 100 ms. As validated in [8], the MCTS combined with
heuristic rules can always lead to a near-optimal or the optimal
crossing sequence even when the search is limited to a very
small subset of the search space.

IV. SIMULATION RESULTS

In this section, we conduct a series of simulations to com-
pare the performance of the four different strategies outlined in
Section III. We assume that vehicle arrivals occur according to
Poisson processes (four different ones and one for each entry
point) and vary the rate parameters of these Poisson processes
to test the performance of the strategies under different traffic
demands. In addition, we vary the values of the Control
Zone segment lengths to investigate the impact of intersection
asymmetries on these strategies.
To accurately describe the arrival of CAVs, we adopt the

point-queue model in our simulations [22]. The model assumes
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Algorithm 3 MCTS-Based Cooperative Driving Strategy
Input: The information of all CAVs

Output: A crossing sequence Sbest

1: Initialize a root node.

2: while the computation budget is not reached do

3: Selection: starting at the root node, select the most urgent

expandable node based on the UCB1 policy [19].

4: Expansion: randomly select one unvisited child node of

the most urgent expandable node to be a new node that

is added to the tree.

5: Simulation: run several rollout simulations to determine a

complete crossing sequence based on the partial crossing

sequence represented by the current new node to evaluate

the potential of the new node. Some heuristic rules are

utilized to help us quickly capture the real potential of

a node during simulation. If the objective value of the

crossing sequence obtained from simulation is better than

the currently optimal value, record it in Sbest .

6: Backpropagation: the simulation result is backpropagated

through the selected nodes to update the scores of all its

parent nodes.

7: end while
8: return Sbest

vehicles travel in the free-flow state until they get to the
boundary of the intersection we study. To be more concrete,
each lane is associated with an independent point-queue. Then,
for each lane, we generate the same random number of CAVs
generated from a Poisson distribution and let them enter into
the point-queue. If the preceding CAV allows adequate space
for the first CAV in the point-queue, then this CAV will
dequeue and enter the intersection Control Zone. Otherwise,
it will stay in the virtual point-queue. In this manner, the
actual arrival process of CAVs at each entry point preserves
the feasibility constraints (2f) at time t0i . Thus, the point-queue
model has the same effect as the feasibility enforcement zone
mechanism described in [23].
In the following comparison, if a strategy is implemented

in a time-driven way, we update the crossing sequence every
2 seconds. For each scenario, we simulate a 20-minute traffic
process to decrease the influence of random factors. The
maximum computation budget for the MCTS strategy is set
as 100 ms, i.e., the outcome of Algorithm 3 is used after
its execution time reaches this value, unless it has already
terminated.
Our performance comparison over the four different strate-

gies is based on three indicators, travel time (delay), energy
consumption, and fuel consumption.

1) The travel time (delay) of CAV i is defined as

di = ai − σi , (3)

where ai is the arrival time at the Conflict Zone for CAV
i , and σi is the minimum arrival time at the Conflict

Zone when CAV i travels at its maximum velocity and
acceleration.

2) The energy consumption of CAV i is defined as

Ei =
∫ ai

t0i

u2i (t)dt, (4)

where ui (t) is the control input of vehicle i at time t .
In actuality, Ei above is only an approximation of a vehi-
cle’s energy consumption, since such consumption also
depends on speed, and deceleration does not normally
contribute to it. However, [24] and [25] pointed out that
we can minimize transient engine operation and directly
obtain benefits in fuel consumption and emissions by
minimizing the L2-norm of the control input. For real-
time calculation, we use it as the objective function in
problem (2). Besides, we also use a more detailed energy
model from [26] to show the actual fuel consumption.

3) The fuel consumption of CAV i from [26] is defined as

Fi =
∫ ai

t0i

fV ,i (t)dt, (5a)

fV ,i (t) = fcruise,i (t) + faccel,i (t), (5b)

fcruise,i (t) = b0 + b1vi (t) + b2v
2
i (t) + b3v

3
i (t), (5c)

faccel,i (t) = u(t)(c0 + c1vi (t) + c2v
2
i (t)), (5d)

where fcruise,i (t) denotes the fuel consumed per second
when CAV i drives at a steady velocity vi (t), and
faccel,i (t) is the additional fuel consumed due to the
presence of positive acceleration. If u(t) ≤ 0, faccel,i (t)
will be 0 since the engine is rotated by the kinetic energy
of the CAV in this case. The unit of fuel consumption is
in milliliters (mL). b0, b1, b2, b3, c0, c1, and c2 are seven
model parameters, and here we use the same parameters
as in [26], which are obtained through curve-fitting for
data from a typical vehicle. Specifically, their values are
b0 = 0.1569 mL/s, b1 = 2.450 × 10−2 mL/m, b2 =
−7.415 × 10−4 mL · s/m2, b3 = 5.975 × 10−5 mL ·
s2/m3, c0 = 0.07224 mL ·s/m, c1 = 9.681×10−2 mL ·
s2/m2, and c2 = 1.075 × 10−3 mL · s3/m3. To dis-
tinguish these two energy models, we call the result of
1
2u

2(t) “energy consumption” and the result of the above
model “fuel consumption” in the following experiments.
The experiment results demonstrate that our objective
is a simple surrogate function for energy, but the fuel
consumption can be optimized by minimizing it.

A. Comparison Results for Intersection With Same Arrival
Rates and Symmetrical Geometry

In this experiment, we set the lengths of all Control Zone
segments to be 250 m and the arrival rates at the entry of all
lanes at the same value. Then, we vary the arrival rates from
90 veh/h/ lane to 420 veh/h/ lane to test the performance
of the four cooperative driving strategies under different traffic
demands. The results are shown in Table I.
It is clear that the MCTS strategy realizes the best traffic

efficiency since the average delay is the smallest under all
traffic demands, while the DR strategy is the best in terms of
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TABLE I

THE COMPARISON RESULTS OF DIFFERENT STRATEGIES FOR THE SYMMETRICAL INTERSECTION

energy consumption. This reveals a natural trade-off between
traffic efficiency and energy consumption. Improving traffic
efficiency requires re-planning the crossing sequence and
changing the states of CAVs, but this always comes at the cost
of additional energy consumption because such re-planning
involves frequent acceleration adjustments.
However, when we turn to the fuel consumption calculated

from the detailed model, we draw the following two con-
clusions: 1) the strategy with a much larger average energy
consumption will always have a larger fuel consumption than
others; 2) when the energy consumption of one strategy is
slightly larger than another one, it is hard to say which one
is more fuel-intensive since the simplified model ignores the
influence of speed while the speed plays an important role in
the detailed model. Overall, our results support the approach
of optimizing fuel consumption through the simple surrogate
model which has the advantage of being computationally much
more efficient.
As for the FIFO strategy, one would expect that its energy

consumption should be the least since it keeps the order
unchanged and CAVs travel according to the control inputs
planned when they enter the Control Zone. However, due to the
poor coordination performance of the FIFO strategy, especially
when the arrival rate is high, there are always many more
CAVs in the Control Zone at relatively slow speeds. As a
result, CAVs usually need to more frequently decelerate and
accelerate compared to other strategies whose coordination
performance is better, which leads to much higher energy

consumption than the MCTS and DR strategies when running
a long simulation.
To validate this intuitive conclusion, Fig. 2 shows par-

tial CAV trajectories on one lane sampled from the FIFO
and DR strategy, respectively. During periods [180, 230]s
and [320, 360]s, we can see visible stop-and-go activities
in Fig. 2(a). Due to the safety constraints concerning the arrival
time, some CAV slightly decelerates to meet the initial con-
straints. However, the braking action is continuously amplified
and spreads backward. Thus, CAVs brake successively and
then accelerate again, which causes a significant added energy
consumption. In contrast, the DR strategy allows CAVs to
drive more smoothly by adjusting crossing sequences. This
demonstrates how improving traffic efficiency by adjusting
crossing sequences sometimes indirectly lowers energy con-
sumption by reducing stop-and-go activities, especially when
there is a significant gap in traffic efficiency between the two
strategies.
The performance of the modified FIFO strategy and that of

the FIFO strategy are approximately the same for this kind of
intersection scenario under all arrival rates. Although when the
arrival rate is high the orders generated by the two strategies
may be a little different, the results are still similar.

B. Comparison Results for a Geometrically Asymmetrical
Intersection

To explore the influence of the geometry of the intersection
on the different strategies, we set the length of one lane to
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Fig. 2. Partial vehicle trajectories sampled from different strategies.

be 150 m while keeping the lengths of the remaining lanes
at 250 m. At the same time, we vary the arrival rate from
90 veh/h/ lane to 420 veh/h/ lane to test the performance
of the four cooperative driving strategies under different traffic
demands. The results are shown in Table II. Compared to the
results shown in Table. I, we can draw two conclusions.
On one hand, the most significant difference is that the

modified FIFO strategy shows a much better performance
relative to the FIFO strategy. Despite the simplicity of the
idea to assign CAVs closer to the Conflict Zone a higher
priority - instead of giving CAVs that enter the Control Zone
earlier a higher priority, we obtain a significant improvement
in performance when the intersection is asymmetrical. How-
ever, the performance of the modified FIFO strategy is still
unsatisfactory when the arrival rate is high.
On the other hand, the MCTS strategy is the best in terms

of traffic efficiency, which is consistent with the findings of
the previous experiment. However, our results also show that
sometimes both the energy consumption and fuel consumption
of the MCTS strategy are superior to that of the DR strategy,
e.g., when the arrival rate is 270 veh/h/ lane. We use a snip-
pet (the results of CAVs whose identity is from 120 to 145 as

Fig. 3. An example when the MCTS strategy outperforms the DR strategy
in all performance metrics.

shown in Fig. 3) from the simulation to explain why this
happens.
As we can see from Fig. 3, the crossing sequences generated

by the MCTS strategy and the DR strategy for CAV 120 to
CAV 130 are the same since their performance is the same.
However, they generate different crossing sequences for CAVs
131 through 137, as shown in the red box in Fig. 3(a).
Since our primary goal is to decrease the average delay,
the MCTS strategy makes a large adjustment to the original
crossing sequence by forcing several CAVs ahead of CAV
137 to decelerate so as to allow CAV 137 to pass through the
Conflict Zone earlier, hence realizing a small improvement
in traffic efficiency. This improvement comes at the cost of
higher energy consumption, as can be seen in Fig. 3(b), where
the average energy consumption of CAVs under the MCTS
strategy is higher than that under the DR strategy. What is
interesting to observe is that since the MCTS strategy allows
CAV 137 to cross first, the new coming CAVs in the same
lane (CAVs 140 and 141) have more ample road space and can
access the Conflict Zone with a higher velocity. In contrast,
in the DR strategy, these two CAVs are blocked by CAV
137, which results in both the traffic efficiency and energy
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TABLE II

THE COMPARISON RESULTS OF DIFFERENT STRATEGIES FOR THE GEOMETRICALLY ASYMMETRICAL INTERSECTION

TABLE III

THE COMPARISON RESULTS FOR THE INTERSECTIONWITH DIFFERENT ARRIVAL RATES

consumption of the MCTS strategy outperforming that of the
DR strategy, as shown in the green boxes in Fig. 3. Of course,
this is a consequence of these two CAVs randomly happening
to appear. Nonetheless, this example highlights the fact that

improving traffic efficiency sometimes indirectly decreases
energy consumption.
We have also analyzed the situation where the lengths

of lanes in the east-to-west (EW) direction are shorter than
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Fig. 4. Comparison results of different strategies for the geometrically
asymmetrical intersection when the lanes in the EW direction are shorter
than that in the NS direction.

those in the north-to-south (NS) direction. Specifically, for
the intersection shown in Fig. 1, the lengths of Lane 1 and
Lane 3 are 150 m while the lengths of Lane 2 and Lane 4 are
250 m. The comparison results are shown in Fig. 4, and we
can draw similar conclusions as in the above situations.

C. Comparison Results for Intersection With Different
Arrival Rates

In this experiment, we consider a geometrically symmetrical
intersection with different arrival rates to investigate the influ-
ence of arrival rate asymmetry on different cooperative driving
strategies. We denote the arrival rates at the entry points of
Lane 1 to Lane 4 as λ1, λ2, λ3, and λ4, respectively. The results
are shown in Table III where we can see that they are similar
to those in Table I, leading to conclusions similar to those
drawn from the first experiment. The results also suggest that
the asymmetrical arrival rates do not have a noticeable impact
on the four strategies, and that the modified FIFO strategy only
outperforms the FIFO strategy in geometrically asymmetrical
intersections.

D. Comparison Results in Terms of Computation Time

The computation time is vital for cooperative driving strate-
gies to be applied in practice. In this experiment, we study

Fig. 5. Comparison results of computation time and crossing sequences.

the computation time every strategy requires to analyze the
computation time and the number of crossing sequences they
have considered during that time. The results are shown
in Fig. 5.
As shown in Fig. 5(a), the computation time increases with

the number of vehicles. The FIFO strategy runs the fastest with
a computation time of less than 0.3 ms even when there are
as many as 35 CAVs in the Control Zone. The computation
time of the modified FIFO strategy is only slightly higher. The
performance of the DR strategy as a function of CAV numbers
is similar, and its computation time is smaller than 4 ms.
In contrast, the computation time of the MCTS strategy
increases exponentially with the number of vehicles until it
reaches its assigned maximum computation budget (which
was set to 100 ms in this study, which we believe to be
small enough for real-time applications). Although we can
shorten or prolong the maximum computation time, 100 ms is
a value that we have found to strike a good trade-off between
performance and computation.
It is of course no wonder that we can consider more

crossing sequences with more computation time. As mentioned
before, the FIFO strategy and the modified FIFO strategy
only consider a single feasible crossing sequence, so their
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TABLE IV

THE COMPARISON RESULTS OF DIFFERENT SAFETY REAR-END CONSTRAINTS

computation time performance is similar. The number of cross-
ing sequences that the DR strategy considers always converges
to 4 when there are enough vehicles in the Control Zone,
a fact consistent with the proof given in [14] that the expected
number of crossing sequences the DR strategy considers is
equal to the number of lanes (which is 4 in our study).
For the MCTS strategy, the number of considered crossing
sequences increases exponentially with the number of vehicles
at first, since the number of feasible crossing sequences
increases exponentially, and there is adequate computation
time. Then, when the number of CAVs is larger than 10, the
computation time is fixed at 100 ms, but the computation
time for evaluating a crossing sequence increases with the
number of vehicles as the blue and red lines show in Fig. 5(a).
Thus, the number of considered crossing sequences starts to
decrease. However, we can still search hundreds of feasible
crossing sequences even when there is a large number of CAVs
in the Control Zone; this ensures the ability of finding a good
enough crossing sequence in practice within an acceptable
computation time.

E. The Analysis on the Safety Rear-End Constraints

In the above experiments, we set hs = 0 in (2f), so the
safety constraints are purely relying on the safety distance l.
This was made to provide a fair comparison with related
work and make the simulation settings similar to other papers.
In this experiment, we set hs = 1 to relax this constraint to
be speed-dependent and analyze the influence on coordination
performance and safety. We should also point out that this
assumption was relaxed in a recent paper [27]. We set the
arrival rates at the entries of all lanes as 450 veh/h/ lane.
The comparison results of different safety rear-end constraints
are shown in Table IV.
The maximum speed is 10 m/s, so the minimum safety

distances in two types of safety constraints are roughly the
same (equal to 15 m). Thus, we can see that the results in all
metrics are similar.
Then, to further discuss the influence on safety, we use

the commonly used safety indicator Time-To-Collision
(TTC) [28]:

T TCi (t) =
⎧⎨
⎩

xp(t) − xi (t) − Lv
p

vi (t) − v p(t)
, if vi (t) > v p(t)

∞, otherwise
(6)

TABLE V

THE PERCENTAGE OF TTC VALUES LOCATED IN SOME INTERVALS

where xi (t) and vi (t) denote the position and speed of CAV
i , respectively; xp(t) and v p(t) denote the position and speed
of the preceding vehicle of CAV i , respectively; and Lv

p is the
vehicle length of the preceding vehicle.
We record the TTC values of all CAVs at each time point

for the above experiment and calculate the percentage of TTC
values smaller than 1, 5, and 10 s. The statistical results are
shown in Table V.
Since all CAVs know their preceding CAVs according to

the crossing sequence, they only need to follow them with a
steady velocity and a suitable distance. The difference between
vi (t) and v p(t) is small, so T TCi (t) is usually a large value.
We can see that, in this case, no TTC value is smaller than 5 s,
indicating that safety is guaranteed. After we vary arrival rates
and test many other cases, we find that nearly no TTC value
lies in the interval [0, 1], and no collision ever happens. Thus,
our safety constraints can ensure the safety of CAVs.

V. THE TRADE-OFF BETWEEN FAIRNESS AND EFFICIENCY

In this section, we explore the question regarding why
resequencing still provides benefits in heavy traffic. One might
expect that in situations where the intersection is congested,
there would be little or no flexibility for improving perfor-
mance. After analyzing a large number of simulations in our
study, we believe that there are mainly two reasons for this
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Fig. 6. Distribution of CAV travel times under two different cooperative
strategies.

phenomenon. The first one is the subzone division of the
Conflict Zone, and the second is that the traffic efficiency is
often improved at the cost of causing unfairness in extreme
traffic situations.
Referring to Fig. 1, suppose that CAV 1 in Lane 1 goes

straight, CAV 2 in Lane 2 turns left, and CAV 3 in Lane 3 goes
straight, and their distances to the Conflict Zone are similar.
Then, it is easy to prove that crossing sequence 132 is better
than 123 since CAV 1 and CAV 3 can pass through the
intersection at the same time. Thus, even when traffic is
congested, we can still improve traffic efficiency by pairing
non-conflicting CAVs through resequencing.
When the total arrival rate at all lanes λ = ∑n

i=1 λi is very
close to or larger than the maximum arrival rate λmax that the
intersection can handle (i.e., its traffic capacity), no control
strategy can alleviate congestion effectively. However, we find
that strategies with and without resequencing behave differ-
ently in this extreme situation. Suppose that the arrival rates at
all lanes are the same, i.e., λ1 = λ2 = λ3 = λ4 and the queue
lengths of all lanes are the same, i.e., q1 = q2 = q3 = q4.
Then, due to the same arrival rate, CAVs roughly arrive at
all lanes evenly, which leads to CAVs in each lane passing
through the Conflict Zone in turn under the strategies without
resequencing, e.g., the FIFO strategy. However, strategies with
resequencing try to insert a new arriving CAV into a front
position which provides better performance. Sometimes, due
to pairings and the randomness of the traffic process, CAVs
in one lane may leave faster than other lanes. Then, a new
arriving CAV at this lane has a much higher probability of
finding a CAV to pair with and a better position in the current
crossing sequence. The congestion in this lane may gradually
dissipate while the congestion in other lanes builds up. Thus,
we conclude that strategies with resequencing tend to block
one or several lanes and allow CAVs in the remaining lanes
to pair up with non-conflicting CAVs near the Conflict Zone
and pass through the intersection quickly. Since this kind of
strategy can increase the number of vehicle pairs, it improves
traffic efficiency.
We use an experiment to validate this idea where we set

the total arrival rate of this intersection to a very large value
(λ = 2 veh/s and λi = 0.5 veh/s, i = {1, 2, 3, 4}), much
larger than the maximum arrival rate. We also set the safety

time-headway for right-turn and going straight as 1.5s and
for left-turn as 2.5 s. For simplicity, the following analysis
assumes the safety time-headway for all actions is 1.5 s (the
service time of the intersection is 1.5 s). Then, in the ideal
situation, we can have two CAVs passing through the Conflict
Zone at the same time to maximize the utilization of the road
resources (that is, the intersection can serve two vehicles at
one time); clearly, the actual efficiency is lower than this.
Then, in this ideal situation, the minimum headway (service
time) is 1.5/2 = 0.75 s. The maximum arrival rates should
be 1/0.75 = 4/3 veh/s. If the arrival rate is larger than this
value, the number of vehicles will be larger than the capacity
of the intersection leading to traffic congestion. In this case,
the travel times of CAVs under the FIFO strategy and the DR
strategy are shown in Fig. 6.
It is clear that the travel times of CAVs under the FIFO

strategy have a much lower variance than those under the
DR strategy. In particular, the mean travel time and stan-
dard deviation under the DR strategy are 39.06s and 6.65s,
respectively, while under the FIFO strategy they are 42.27s
and 3.41s. This example shows that traffic efficiency (lower
mean travel time) may come at the cost of bigger standard
deviation and creates a natural trade-off problem. To give a
better quantitative analysis, we first define an “unfairness”
metric ρ as the standard deviation of the arrival times,

ρ =
√√√√ 1

N

N∑
i=1

(ai − μ)2, (7)

μ = 1

N

N∑
i=1

ai , (8)

where N is the number of all CAVs, ai is the arrival time at
the Conflict Zone for CAV i , and μ is the average travel time
of all CAVs. A larger ρ means more significant unfairness.

We point out, however, that this problem typically arises at
high traffic rates, since resequencing is beneficial to all CAVs
when the arrival rate is not too high; at high traffic rates,
however, resequencing can only improve the overall traffic
efficiency by sacrificing the performance of some CAVs due
to the limited road resources to be allocated.
A simple method of balancing performance when the DR

strategy is used is based on introducing a balancing factor α.
In particular, we only adjust the crossing sequence when the
following condition is satisfied:

Jnew < Jbest − αJnew, (9)

where Jnew is the objective value of the new crossing sequence
and Jbest is the currently optimal objective value. In other
words, there is an incentive to update the crossing sequence
only when the performance of the new crossing sequence is
much better than the original one. We vary the value of α from
0 to 3% to show the trade-off between efficiency and fairness
in Fig. 7.
Looking at Fig. 7, it is clear that when we increase the

value of α we improve fairness (lower travel time standard
deviation) by decreasing efficiency, i.e., a larger α implies
greater emphasis on fairness. We observe that there may be a
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Fig. 7. Trade-off between efficiency and fairness under different balancing
factors α.

Pareto optimal point (the point with α = 0.5% in Fig. 7) that
achieves a balance between the two criteria: a perturbation to
its left results in significant efficiency relative to fairness, with
the situation reversed for perturbations to its right. This paves
the way for future research in this interesting direction.
Along similar lines, for the MCTS strategy we can also

make some modifications to consider fairness in the search
process. In the original MCTS strategy, we use the following
UCB1 policy to determine the most urgent expandable node:

argmax
i

Qi + C

√
ln n

ni
, (10)

where Qi is the score of child node i and Qi ∈ [0, 1].
Moreover, n is the number of times the current node has
been visited, ni is the number of times child node i has been
visited, and C is a weight parameter. The child node with
the largest total score is selected. The objective is to prevent
significant change in order with a resulting small benefit.
Thus, we propose to add a penalty term Pi to the original
UCB1 policy defined as

Pi = βDi , (11)

where Di is an integer indicating how many orders are
different between the new crossing sequence and a refer-
ence crossing sequence, e.g., the currently optimal crossing
sequence or the desired crossing sequence, and β is a nega-
tive weight for penalizing the difference. Then, the modified
UCB1 policy is

argmax
i

Qi + Pi + C

√
ln n

ni
. (12)

Using this policy, the MCTS only explores significantly dif-
ferent crossing sequences when it finds that such crossing
sequences can bring a much improved traffic efficiency. Note
that we can also consider energy or other metrics in the
objective or modify the heuristic rules involved according to
the desired performance priorities.

VI. CONCLUSION AND FUTURE RESEARCH

This paper compares the performance of some state-of-
the-art cooperative driving strategies under various influenc-
ing factors, including symmetrical intersections, asymmetrical
intersections, and asymmetrical arrival rates. Our main

conclusion is that the MCTS and DR strategies both perform
well in all scenarios and are recommended for use in practice.
However, we have also pointed out that efficiency sometimes
comes at the cost of fairness to a certain subset of CAVs.
Through some modifications to these strategies, we have
shown how to control the trade-off between fairness and
efficiency.
Although we have only considered an intersection with a

single lane in each direction, the conclusions of this study
can be extended to other driving scenarios, e.g., highway on-
ramps and intersections with multiple lanes. There are many
problems deserve to be studied deeply, e.g., how to accelerate
the search process of the MCTS strategy further, how to choose
a proper reference crossing sequence, and so on. Due to space
limitations, we will omit here and leave it for the future.
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