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Abstract— We address the problem of optimally controlling
Connected and Automated Vehicles (CAVs) arriving from four
multi-lane roads at a signal-free intersection where they conflict
in terms of safely crossing (including turns) with no collision.
The objective is to jointly minimize the travel time and energy
consumption of each CAV while ensuring safety. This problem
was solved in prior work for single-lane roads. A direct extension
to multiple lanes on each road is limited by the computa-
tional complexity required to obtain an explicit optimal control
solution. Instead, we propose a general framework that first
converts a multi-lane intersection problem into a decentralized
optimal control problem for each CAV with less conservative
safety constraints than prior work. We then employ a method
combining optimal control and control barrier functions, which
has been shown to efficiently track tractable unconstrained
optimal CAV trajectories while also guaranteeing the satisfaction
of all constraints. Simulation examples are included to show
the effectiveness of the proposed framework under symmetric
and asymmetric intersection geometries and different CAV
sequencing policies.

Index Terms— Connected and automated vehicles (CAVs),
optimal control, control barrier function (CBF).
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I. INTRODUCTION

INTERSECTIONS are the main bottlenecks for urban traf-
fic. As reported in [1], congestion in these areas causes US

commuters to spend 6.9 billion hours more on the road and
to purchase an extra 3.1 billion gallons of fuel, resulting in
a substantial economic loss to society. The coordination and
control problems at intersections are challenging in terms of
safety, traffic efficiency, and energy consumption [1], [2].
The emergence of Connected and Automated Vehi-

cles (CAVs) provides a promising way for better planning
and controlling trajectories to reduce congestion and ulti-
mately improve safety as well as efficiency. Enabled by
vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communication, CAVs can exchange real-time operational data
with vehicles in their vicinity and communicate with the
infrastructure [3]. Based on these technologies, researchers
have made significant progress in the optimal control of CAVs
at intersections. One of the prevailing ideas is to formulate
an optimization problem whose decision variables are both
crossing sequences and control inputs (e.g., desired velocity
and desired acceleration). Hult et al. [4] formulated the traffic
coordination problem at a three-way intersection as an optimal
control problem where it is required that the trajectories
of any two vehicles do not intersect in order to guarantee
safety. However, it is not explicitly explained how to realize
these safety constraints. Some recent studies show that we
can realize safety constraints by introducing binary variables
to represent crossing sequences, leading to the formulation
of Mixed-Integer Linear Programming (MILP) problems [5].
Though some techniques, such as the grouping scheme [6],
have been proposed to accelerate the computation process, it is
still difficult to extend this method to multi-lane intersections
with a large number of vehicles which may also change
lanes along the way. In terms of optimizing control inputs,
Model Predictive Control (MPC) is effective for problems
with simple (usually linear or linearized) vehicle dynamics and
constraints. However, when the vehicle dynamics are highly
nonlinear and complex, the problem becomes a non-linear
MPC whose computation time is still prohibitive for practical
applications [7].
Another idea is to decompose the whole optimization

problem into two separate problems, i.e., first determining
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the crossing sequence and then solving for CAV control
inputs according to this sequence [8]. The most straight-
forward crossing sequence mechanism follows the First-In-
First-Out (FIFO) rule. For example, Dresner and Stone [9]
proposed an autonomous intersection management cooper-
ative driving strategy which divides the intersection into
grids (resources) and assigns these grids to CAVs in a FIFO
manner. In [10] and [11], a decentralized optimal control
framework is designed for CAVs to jointly minimize energy
and time by deriving the desired CAV arrival times at an inter-
section based on the FIFO crossing sequence. However, some
recent studies have shown that the performance of the FIFO
mechanism can lead to poor performance in some cases [12].
Thus, several studies have been conducted to search for better
crossing sequences. For example, Guler et. al. proposed to
search all possible combinations of crossing sequences to
find the optimal one [13]. However, this number increases
exponentially with the number of vehicles. To reduce the
computational time, Li et. al. used a Genetic Algorithm (GA)
to make decisions on the crossing sequence [14]. In [15], a
Dynamic Resequencing (DR) scheme is designed to adjust the
crossing sequence whenever a new CAV enters the intersection
control zone and showed that this scheme is computationally
efficient and improves traffic efficiency. Xu et al. [16] pro-
posed a Monte Carlo Tree Search (MCTS)-based cooperative
strategy to find a promising crossing sequence for all CAVs
and demonstrated that this strategy may determine a good
enough sequence even for complicated multi-lane intersections
where the search space is enormous. It is worth noting that
both of the above studies and our paper consider a 100%
CAV environment. Such an environment does not usually need
traffic lights, so that related work describes it as “signal-
free” or “unsignalized”. However, [17] defines unsignalized
intersections as those where at least one of the movements is
controlled by a STOP or a YIELD sign. Thus, we refer to
the scenarios considered here as signal-free intersections to
avoid ambiguity. This paper will not discuss the optimization
of crossing sequences or trajectories in mixed traffic envi-
ronments consisting of both CAVs and conventional vehicles.
Interested readers are referred to [18], [19].
After determining the crossing sequence, some studies [15],

[16] use the analytical solutions proposed in [10] and [11]
to solve for the optimal control inputs. Although [20] has
extended this solution to consider speed-dependent rear-end
safety constraints, the resulting computational cost signifi-
cantly increases. Chalaki and Malikopoulos have also pro-
posed a two-layer framework that considers lane-changing
in the optimal control of CAVs crossing adjacent multi-lane
intersections [21]. However, it is difficult to generalize optimal
control methods for complex and nonlinear vehicle dynamics
without incurring computational costs which make its real-
time applicability prohibitive.
To address the above limitations, we propose an approach

which combines the use of Control Barrier Functions (CBFs)
with the conventional optimal control method to bridge the
gap between optimal control solutions (which represent a
lower bound for the optimal achievable cost) and controllers
which can provably guarantee on-line safe execution [22].

The key idea is to design CAV trajectories which optimally
track analytically tractable solutions of the basic intersection-
crossing optimization problem while also provably guarantee-
ing that all safety constraints are satisfied. Through CBFs,
we can map continuously differentiable state constraints into
new control-based constraints. Due to the forward invariance
of the associated safe set [23]–[25], a control input that
satisfies these new constraints is also guaranteed to satisfy the
original state constraints. This property makes the CBF method
effective even when the vehicle dynamics and constraints
become complicated and include noise.
Along these lines, the main contribution of this paper is

a novel decentralized optimal control framework combining
the optimal control and CBF methods for a multi-lane signal-
free intersection. Specifically, we first formulate the multi-lane
intersection problem as an optimal control problem whose
objective is to jointly minimize the traffic delay and energy
consumption while guaranteeing that all CAVs safely cross
a four-way intersection that includes left and right turns.
Unlike prior work, we replace roadway segments referred to
as “merging zones (MZs)” or “conflict zones” by Merging
Points (MPs) which are much less conservative while still
guaranteeing collision avoidance. When we state that one
method is more conservative than another, we mean that
vehicles controlled by this method pass through the intersec-
tion with larger headways. Allowing lane-changing behavior,
we design a strategy to determine the desirable locations
of lane-changing MPs for all CAVs. Then, we develop a
search algorithm to determine rear-end safety constraints and
lateral safety constraints that every CAV has to meet. Once
these constraints are specified for any CAV, we design an
Optimal Control and Barrier Function (OCBF) controller for
solving the problem efficiently, as verified through multiple
simulation experiments. Our framework can accommodate a
variety of resequencing methods for finding a near-optimal
crossing sequence, including the aforementioned DR and
MCTS schemes, leading to improved performance compared
to the FIFO rule, especially when the intersection is geomet-
rically asymmetrical.
The paper is organized as follows. Section II formulates

the multi-lane intersection problem as an optimal control
problem with safety constraints applied to a sequence of MPs.
Section III introduces our search algorithm for determining all
safety constraints pertaining to a given CAV, and Section IV
presents our joint OCBF controller. Section V validates the
effectiveness of the proposed method through simulation
experiments. Finally, Section VI gives concluding remarks.

II. PROBLEM FORMULATION

Figure 1 shows a typical intersection with multiple lanes.
The area within the outer red circle is called the Control
Zone (CZ), and the length of each CZ segment is L1 which
is initially assumed to be the same for all entry points to
the intersection; extensions to asymmetrical intersections are
straightforward and discussed in Section V.E. The significance
of the CZ is that it allows all vehicles to share information
and be automatically controlled while in it, as long as all
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Fig. 1. The multi-lane intersection problem. Collisions may happen at the MPs (red dots shown in above figure).

vehicles in the CZ are assumed to be CAVs. Red dots show
all MPs where potential collisions may occur. We assume
that the motion trajectory of each CAV in the intersection
is determined upon its entrance to the CZ (see grey lines in
Fig. 1). Based on these trajectories, all MPs in the intersection
are fixed and can be easily determined. However, unlike most
prior similar studies, we also allow possible lane-changing
behaviors in the CZ, which adds generality to our method.
In order to avoid potential collisions with newly arriving
vehicles and to conform with the driving rules that vehicles
are prohibited from changing lanes when they are very close
to the intersection, these lane changes are only allowed in a
“lane-changing zone”, i.e., an area between the two blue lines
shown in Fig. 1. We use dotted lines to differentiate these
zones from the rest of the area where solid lines are shown.
The distance from the entry of the CZ to the lane-changing
zone is L2 and the length of the lane-changing zone is L3.
Since we initially consider a symmetrical intersection, L2 and
L3 are the same for all lanes. However, it is easy to extend
our method to asymmetrical intersections and set different
parameters for each lane, as shown in Section V.E. Due to
lane-changing, apart from the fixed MPs in the intersection,
some “floating” MPs may also appear in lane-changing zones
which are not fixed in space. Thus, there are two kinds of
MPs: (i) the fixed MPs in the intersection and (ii) the floating
MPs in the lane-changing zones.
We label the lanes from l1 to l8 in a counterclockwise

direction with corresponding origins O1 to O8. The rightmost
lanes in each direction only allow turning right or going

straight, while the leftmost lanes only allow turning left
or going straight. However, all CAVs have three possible
movements: going straight, turning left, and turning right.
Thus, some CAVs must change their lanes so as to execute
a movement, e.g., left-turning CAV 2 in l2 in Fig. 1. Due to
such lane-changing behavior, a new MP M2,1 is generated
since a conflict of CAV 2 with a CAV in l1 may arise.
Similarly, possible MPs may also appear in other lanes when
vehicles perform lane-changing maneuvers, as the red dots
(Mi,2, Mi,3, · · · , and Mi,8) indicate in Fig. 1. Moreover, it is
worth noting that if a CAV needs to change lanes, then it has
to travel an additional (lateral) distance; we assume that this
extra distance is a constant l > 0. In what follows, we consider
an intersection that has two lanes in each direction, which,
in our view, represents one of the most common intersection
configurations worldwide, and observe that this model is easy
to generalize to intersections with more than two lanes.
The intersection has a coordinator (typically a Road Side

Unit (RSU)) whose function is to maintain the crossing
sequence and all individual CAV information. The most
common crossing sequence is based on the FIFO queue formed
by all CAVs using their arrival time at the CZ, regardless of the
lane each CAV belongs to. The FIFO queue is fair and simple
to implement, however, its performance can occasionally be
poor. Thus, various cooperative driving strategies have been
proposed to generate a more promising crossing sequence,
as in [15], [16], [26]. Our approach for controlling CAVs
does not depend on the specific crossing sequence selected.
Therefore, we first use the FIFO queue so as to enable accurate
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comparisons with related work which also uses this scheme
and then generalize it to include other resequencing methods
which adjust the crossing sequence whenever there is a new
arriving vehicle, e.g., the DR method in [15]. This allows
CAVs to overtake other CAVs in the CZ from different roads,
which better captures actual intersection traffic behaviors.
So far, we have introduced several new elements to prior

intersection models, including: (i) replacing MZs with MPs
which are less conservative since they reduce the spacing
between CAVs; (ii) allowing lane-changing; (iii) allowing rese-
quencing to improve the intersection throughput. In subsequent
sections, the following additional features will be introduced:
(iv) we use an extended coordinator table to identify pairs of
conflicting CAVs at MPs, necessary to enforce safe merging
constraints; (v) we provide safety guarantees through the use
of CBFs; (vi) we allow noise and more complicated vehicle
dynamics through the use of the OCBF controller. Specifically,
the details of the solution framework is provided in Sections III
(addressing (i)-(iv) above) and IV (addressing (v)-(vi) above).

A. Optimization Problem

We begin by reviewing the same basic model as in previous
work [11], which will allow us to make accurate comparisons.
When a CAV enters the CZ, the coordinator will assign
it a unique index. Let S(t) be the set of FIFO-ordered
CAV indices and N(t) be the cardinality of S(t). Based on
S(t), the coordinator stores and maintains an information
table, as shown in Fig. 1. For example, the current lane of
CAV 2 changes from l2 to l1 after it completes a lane-changing
maneuver. In addition, after CAV 0 passes the intersection, its
index will be dropped from the table and the indices of all
other CAVs decrease by one. This table enables each CAV to
quickly identify other CAVs that have potential collisions with
it and to optimize its trajectory to maximize some specific
objectives. The search algorithm for identifying conflicting
vehicles will be introduced in detail in the next section.
The vehicle dynamics for CAV i take the form[

ẋi (t)
v̇i (t)

]
=

[
vi (t) + wi,1(t)
ui (t) + wi,2(t)

]
, (1)

where xi (t) is the distance to its origin along the lane that
CAV i is located in when it enters the CZ, vi (t) denotes the
velocity, and ui (t) denotes the control input (acceleration).
Moreover, to compensate for possible measurement noise and
modeling inaccuracy, we use wi,1(t) and wi,2(t) to denote two
random processes defined in an appropriate probability space.
Based on the notation established above, we can now view

trajectory planning of vehicles as an optimization problem
where we consider two objectives for each CAV subject to
three constraints, including the rear-end safety constraint with
the preceding vehicle in the same lane, the lateral safety
constraints with vehicles in the other lanes, and the vehicle
physical constraints, as detailed next.
Objective 1 (Minimize Travel Time): Let t0i and tmi denote

the time that CAV i arrives at the origin and the time
that it enters the intersection, respectively. To improve traffic
efficiency, we wish to minimize the travel time tmi − t0i for
CAV i .

Objective 2 (Minimize Energy Consumption): Apart from
traffic efficiency, another objective is energy efficiency. Ignor-
ing any noise terms in (1) for the time being, since the energy
consumption rate is a monotonic function of the acceleration
control input, an energy consumption function we use is
defined as

Ji =
∫ tmi

t0i

C(ui(t))dt, (2)

where C(·) is a strictly increasing function of its argument.
Constraint 1 (Rear-End Safety Constraint): Let i p denote

the index of the CAV which physically immediately precedes
i in the CZ (if one is present). To avoid rear-end collisions,
we require that the spacing zi,i p (t) ≡ xip (t) − xi(t) be
constrained by:

zi,i p (t) ≥ ϕvi (t) + δ, ∀t ∈ [t0i , tmi ], (3)

where δ is the minimum safety distance, and ϕ denotes the
reaction time (as a rule, ϕ = 1.8s is suggested, e.g., [27]).
If we define zi,i p to be the distance from the center of CAV i
to the center of CAV i p, then δ is a constant determined by
the length of these two CAVs (thus, δ is generally dependent
on CAVs i and i p but taken to be a constant over all CAVs
in the sequel, only for simplicity). Note that i p may change
when a lane change event or an overtaking event (discussed
in Section III.B) occurs.
Constraint 2 (Lateral Safety Constraint): Let tki denote the

time that CAV i arrives at the MP Mk , k ∈ {1, 2, . . . , 32}.
CAV i may collide with other vehicles that travel through the
same MP. For all MPs, including the floating MPs Mi,l due to
lane-changing, there must be enough safe space when CAV i
is passing through, that is,

zi, j (t
k
i ) ≥ ϕvi (t

k
i ) + δ, (4)

where j �= i is a CAV that may collide with i (note that j may
not exist and that there may also be multiple CAVs indexed
by j for which this constraint applies at different tki ). The
determination of j is challenging, and will be addressed in the
following section. Compared with related work that requires
no more than one CAV within a conflict (or merging) zone at
any time, we use (4) to replace this conservative constraint.
Instead of such a fixed zone, the space defining collision
avoidance around each MP now depends on the CAV’s speed
(and possibly size if we allow δ to be CAV-dependent), hence
it is much more flexible.
Constraint 3 (Vehicle Physical Limitations): Due to the

physical limitations on motors and actuators, there are physical
constraints on the velocity and control inputs for each CAV i :

vmin ≤ vi (t) ≤ vmax, ∀t ∈ [t0i , tmi ],
ui,min ≤ ui (t) ≤ ui,max, ∀t ∈ [t0i , tmi ], (5)

where vmax > 0 and vmin ≥ 0 denote the maximum and
minimum velocity allowed in the CZ, while ui,min < 0 and
ui,max > 0 denote the minimum and maximum control input
for each CAV i , respectively. We assume that all vehicles
are homogeneous passenger cars and their minimum and
maximum control inputs are the same. Thus, in what follows,
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we use umin and umax instead of ui,min and ui,max; this is done
only for simplicity and does not limit our analysis.
Similar to prior work, we use a quadratic function for

C(ui (t)) in (2) thus minimizing energy consumption by mini-
mizing the control input effort 1

2u
2
i (t) [10], [28]. By normaliz-

ing travel time and 1
2u

2
i (t), and using α ∈ [0, 1), we construct

a convex combination as follows:

min
ui (t),tmi

∫ tmi

t0i

(
α + (1 − α) 12u

2
i (t)

1
2 max{u2max, u

2
min}

)
dt . (6)

If α = 1, problem (6) is equivalent to a minimum travel time
problem; if α = 0, it becomes a minimum energy consumption
problem.

By defining β ≡ αmax{u2max,u
2
min}

2(1−α) (assuming α < 1) and

multiplying (6) by the constant β
α , we have:

min
ui (t),tmi

β(tmi − t0i ) +
∫ tmi

t0i

1

2
u2i (t)dt, (7)

where β ≥ 0 is a weight factor that can be adjusted through
α ∈ [0, 1) to penalize travel time relative to the energy cost.
Then, the optimization problem can be stated as:
Problem 1: For each CAV i governed by dynamics (1)

ignoring noise terms, determine a control law such that (7)
is minimized subject to (1), (3), (4), (5), given t0i and the
initial and final conditions xi (t0i ) = 0, vi (t0i ), xi (tmi ).

III. MULTI-LANE INTERSECTION

PROBLEM SOLUTION

The solution of Problem 1 can be obtained as described
in [20] where a single MP is involved in a two-road single-
lane merging configuration where the value of j in (4 ) is
immediately known. The difficulty here is that there may be
more than one CAV j defining lateral safety constraints for any
i ∈ S(t) and determining the value(s) of j is challenging since
there are eight lanes and three possible movements at inter-
sections as shown in Fig. 1. Obviously, this can become even
harder as more lanes are added or asymmetrical intersections
are considered. Therefore, we propose a general MP-based
approach which involves two steps. The first step addresses the
following two issues: (i) a strategy for determining “floating”
MPs due to CAVs possibly changing lanes within the CZ, and
(i i) a strategy for determining all lateral safety constraints,
hence the values of j in (4). Once these issues are addressed
in the remainder of this section, Problem 1 is well-defined.
The second step consists of solving Problem 1 and developing
the proposed OCBF controller in the next section. The overall
process is outlined in Algorithm 1 which is implemented in
time-driven manner by replanning the control inputs of all
CAVs every T seconds.

A. Determination of Lane-Changing MPs

When a new CAV i ∈ S(t) arrives at the origins
O2, O4, O6, O8 (or O1, O3, O5, O7) and must turn left (or
right), it has to change lanes before getting close to the
intersection. Therefore, CAV i must determine the location
of the variable (floating) MP Mi,k , k ∈ {1, 2, · · · , 8}.

Algorithm 1 MP-Based Algorithm for Multi-Lane Intersection
Problems
1: Initialize an empty queue table S(t).
2: for every T seconds do
3: if a new vehicle enters the CZ then
4: Determine a passing order for all CAVs according to

the FIFO rule or other resequencing methods, e.g., the
DR scheme.

5: Plan an unconstrained optimal control trajectory for the
new CAV.

6: if the new CAV needs to change lanes then
7: Use the lane-changing MP determination strategy

(Section III.A) to determine the lane-changing loca-
tion and time for the new CAV

8: end if
9: Add the information of the new CAV into S(t).
10: end if
11: for each CAV in S(t) do
12: Use the lateral safety constraint determination strategy

(Section III.B) to determine which constraints it needs
to meet.

13: Use the OCBF controller (Section IV) to obtain control
inputs for it.

14: if this CAV has left the intersection then
15: Remove the information of this CAV from S(t).
16: end if
17: end for
18: end for

There are three important observations to make:
(i) The unconstrained optimal control for such i is inde-

pendent of the location of Mi,k , k ∈ {1, 2, · · · , 8} since we
have assumed that lane-changing will only induce a fixed extra
length l regardless of where it occurs.

(i i) The optimal control solution under the lateral safety
constraint is better (i.e., lower cost in (7)) than one which
includes an active rear-end safety constrained arc in its optimal
trajectory. This is because the former applies only to a single
time instant tki whereas the latter requires the constraint (3)
to be satisfied over all t ∈ [t0i , tki ]. It follows that any MP
Mi,k should be as close as possible to the intersection (i.e.,
Li,k should be as large as possible, and its maximum value
is L2 + L3), since the lateral safety constraint after Mi,k will
become a rear-end safety constraint with respect to some j
in the adjacent lane. For instance, suppose that CAV 10 in
Fig. 1 is a right-turn vehicle. After changing lanes to the
destination lane l6, it will be constrained by the rear-end safety
constraint with its preceding vehicle (e.g., CAV 9), which will
influence its optimal trajectory. Thus, to reduce the impact
time, CAV 10 should change lanes as late as possible.

(i i i) In addition, CAV i may also be constrained by its
physically preceding CAV i p (if one exists) in the same lane
as i . In this case, CAV i needs to consider both the rear-end
safety constraint with i p and the lateral safety constraint with
some j �= i . Thus, the solution is more constrained (hence,
more sub-optimal) if i stays in the current lane after the rear-
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end safety constraint due to i p becomes active. We conclude
that in this case CAV i should change its lane to the left (right)
lane as late as possible, i.e., just as the rear-end safety
constraint with i p first becomes active, i.e., Li,k is determined
by

Li,k = x∗
i (t

a
i ) (8)

where x∗
i (t) denotes the unconstrained optimal trajectory of

CAV i (as determined in Sec. IV), and tai ≥ t0i is the time
instant when the rear-end safety constraint between i and i p
first becomes active; if this constraint never becomes active,
then Li,k = L2 + L3. The value of tai is determined from (3)
by

x∗
i p (t

a
i ) − x∗

i (t
a
i ) = ϕv∗

i (t
a
i ) + δ, (9)

where x∗
i p

(t) is the unconstrained optimal position of CAV i p
and v∗

i (t) is the unconstrained optimal speed of CAV i .
If, however, CAV i p’s optimal trajectory itself happened to
include a constrained arc, then (9) is only an upper bound
of tai .
In summary, it follows from (i)− (i i i) above that if CAV i

never encounters a point in its current lane where its rear-
end safety constraint becomes active, we set Li,k = L2 + L3,
otherwise, Li,k is determined through (8)-(9).
We note that the distances from the origins O1, . . . , O8 to

MPs are not all the same, and the CAVs that make a lane
change will induce an extra l distance. Therefore, we need
to perform a coordinate transformation for those CAVs that
are in different lanes and will meet at the same MP Mk ,
k ∈ {1, . . . , 32}. In other words, when i ∈ S(t) obtains
information for j ∈ S(t) from the FIFO queue table to account
for the lateral safety constraint at an MP Mk , the position
information x j (t) is transformed into x ′

j (t) through

x ′
j (t)

:=




[c]rclx j (t) + Li,k − L j,k + l, if only i changes lane

x j (t) + Li,k − L j,k − l, if only j changes lane,

x j (t) + Li,k − L j,k, otherwise.

(10)

where Li,k and L j,k denote the distances of the MPs Mk

from the origins of CAVs i and j , respectively. Note that the
coordinate transformation (10) only applies to CAV i obtaining
information on j from S(t), and does not involve any action
by the coordinator.

B. Determination of Lateral Safety Constraints

We begin with the observation (by simple inspection of
Fig. 1) that CAVs can be classified into two categories,
depending on the lane that a CAV arrives at, as follows:
1) The CAVs arriving at lanes l1, l3, l5, l7 will pass

• two MPs if they choose to turn right (including the
floating MP Mi,k , k ∈ {2, 4, 6, 8});

• four MPs it they turn left;
• five MPs if they go straight.

2) The CAVs arriving at lanes l2, l4, l6, l8 will pass
• only one MP if they choose to turn right;

Fig. 2. The extended coordinator queue table.

• five MPs if they turn left (including the floating MP
Mi,k , k ∈ {1, 3, 5, 7}) or if they go straight.

Clearly, the maximum number of MPs a CAV may pass
is 5. Since all such MPs are determined upon arrival at the
CZ, we augment the queue table in Fig. 1 by adding the
original lane and the MP information for each CAV as shown
in Fig. 2 for a snapshot of Fig. 1. The current and original
lanes are shown in the third and fourth column, respectively.
The original lane is fixed, while the current lane may vary
dynamically: in Algorithm 1, the state of all CAVs in the
queue is updated if any of them has changed lanes. The
remaining five columns show all MPs a CAV will pass through
in order. For example, left-turning CAV 2 in Fig. 1 passes
through five MPs M2,1, M22, M20, M17, and M13 sequentially,
where we label the 1st MP as M2,1 and so forth.
When a new CAV enters the CZ, it first determines whether

it will change lanes (as described in Section III.A) and
identifies all MPs that it must pass. At this point, it looks
at the extended queue table S(t) (an example is shown in
Fig. 2) which already contains all prior CAV states and
MP information. First, from the current lane column, CAV i
can determine its current physically immediately preceding
CAV i p if one exists. Next, since the passing priority has
been determined by the sequencing method selected (FIFO
or otherwise), CAVs need to yield to other CAVs that rank
higher in the queue S(t). In addition, for any MP that CAV i
will pass through, it only needs to yield to the closest CAV that
has higher priority than it, and this priority is determined by
the order of S(t). For instance, CAVs 3, 4, and 5 will all pass
through M20, as shown in Fig. 2. For the MP M20, CAV 5 only
needs to meet the lateral safety constraint with CAV 4, while
the constraint with CAV 3 will be automatically met since
CAV 4 yields to CAV 3. Similarly, we can find indices of
CAVs for other MPs crossed by CAV 5. Since CAV 5 passes
through five MPs, we define an index set �5 for CAV 5 which
has at most 5 elements. In this example, CAV 5 only conflicts
with CAV 0 at M29 besides M20, so that �5 = {0, 4}.
Therefore, it remains to use the information in S(t) in a

systematic way so as to determine all the indices of those
CAVs that CAV i needs to yield to; these define each
index j in (4) constituting all lateral safety constraints that
CAV i needs to satisfy. This is accomplished by a search
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Algorithm 2 Search Algorithm for Conflict CAVs
Require: The extended coordinator queue table S(t), CAV i
Ensure: The index of conflict CAVs for CAV i
1: Initialize an empty index set �i .
2: Initialize a set �i including all MPs CAV i will pass

through
3: Find the position k of CAV i in the S(t).
4: for j = k − 1 : −1 : 1 do
5: if the j th CAV in S(t) passes at least one MP in �i

then
6: Add the index of this CAV into the set �i .
7: Remove the same MPs from �i .
8: end if
9: if �i is empty then
10: break;
11: end if
12: end for
13: return �i

algorithm (Algorithm 2) based on the following process.
CAV i compares its original lane and MP information to that
of every CAV in the table starting with the last row of itself
and moving up. The process terminates the first time that any
one of the following three conditions is satisfied at some row
j < i :
1) All MP information of CAV i matches row j and �i is

empty.
2) Every MP for CAV i has been matched to some row j .
3) All prior rows j < i have been looked up.
These three conditions are examined in order:
Condition (1): If this is satisfied, there are no conflicting

MPs for CAV i and this implies that CAV i p is the physically
immediately preceding CAV all the way through the CZ. Thus,
CAV i only has to satisfy the safety constraint (3) with respect
to i p, i.e., it just follows CAV i p . For example, i = 4 and
i p = 3 in Fig. 1 (and Fig. 2).

Condition (2): If this holds, then CAV i has to satisfy several
lateral safety constraints with one or more CAV j ∈ �i . More-
over, it also has to satisfy the rear-end safety constraint (3)
with CAV i p, where i p is determined by the first matched row
in the current lane column of Fig. 2. For example, i = 10,
j = 0, 1, 4, 5, and 6 in Fig. 1 (and Fig. 2).
Condition (3): There are two cases. First, if the index set

�i is empty, then CAV i does not have to satisfy any lateral
safety constraint; for example, i = 7 in Fig. 1 (and Fig. 2).
Otherwise, it needs to yield to all CAVs in �i ; for example,
i = 2, j = 0 in Fig. 1 (and Fig. 2).

We observe that Algorithm 2 can be implemented for
all CAVs in an event-driven way (since S(t) needs to be
updated only when an event that changes its state occurs).
The triggering events are: (i) a CAV entering the CZ, (i i) a
CAV departing the CZ, (i i i) a CAV completing a lane change
at a floating MP, and (iv) a CAV overtaking event (a lane
change event at a fixed MP). This last event may occur when
a CAV merges into another lane at an MP through which it
leaves the CZ. In particular, consider three CAVs i, j , and
k such that k > j > i , and CAV j merges into the same

lane as i and k. Then, CAV k looks at the first row above it
where there is a CAV with the same lane; that’s now CAV j .
However, i is physically ahead of k. Thus, we need to re-
order the queue according to the incremental position order,
so that a CAV following i (CAV k) can properly identify
its physically preceding CAV. For example, consider i = 7,
j = 8, and k = 9 in Fig. 1, and suppose that CAV 7 turns
right, CAV 8 turns right, and CAV 9 goes straight. Their
order in S(t) is 7, 8, 9. CAV 8 can overtake CAV 7, and
its current lane will become l6 when it passes all MPs. Since
CAV 7 and CAV 9 also are in l6, CAV 9 will mistake CAV
8 as its new preceding CAV after the current lane of CAV
8 is updated. However, in reality CAV 7 is still the preceding
CAV of CAV 9, hence CAV 9 may accidentally collide with
CAV 7. To avoid this problem, we need to re-order the queue
according to the position information when this event occurs,
i.e., making CAV 8 have higher priority than CAV 7 in the
queue. Alternatively, this problem may be resolved by simply
neglecting CAVs that have passed all MPs when searching for
the correct identity of the CAV that precedes i .

IV. JOINT OPTIMAL AND CONTROL BARRIER

FUNCTION CONTROLLER

Once a newly arriving CAV i ∈ S(t) has determined all
the lateral safety constraints (4) it has to satisfy, it can solve
problem (7) subject to these constraints along with the rear-end
safety constraint (3) and the state limitations (5). Obtaining
a solution to this constrained optimal control problem is
computationally intensive, as shown in the single-lane merging
problem [20], and this complexity is obviously higher for our
multi-lane intersection problem since there are more lateral
safety constraints. Therefore, in this section, we proceed in two
steps: (i) We solve the unconstrained version (only includes
initial and final conditions, and terminal time is free) of
problem (7); this can be done with minimal computational
effort, and (i i) We optimally track the unconstrained problem
solution while using CBFs to account for all constraints and
guarantee that they are never violated (as well as Control
Lyapunov Functions (CLFs) to better track the unconstrained
optimal states). Since this controller ui (t) for CAV i combines
an optimal control solution with CBFs, we refer to it as the
OCBF control. Note that each CAV can solve Problem 1 in a
decentralized way.

A. Unconstrained Decentralized Optimal Control Solution

As mentioned above, we use the CAV trajectory obtained
from the unconstrained optimal solution Problem 1 as a
reference trajectory and deal with all constraints through our
OCBF controller. When all state and safety constraints are
inactive, we can obtain an analytical solution of Problem 1
which, as shown in [15], provides optimal control, speed, and
position trajectories given by

u∗
i (t) = ai t + bi (11)

v∗
i (t) = 1

2
ai t

2 + bi t + ci (12)

x∗
i (t) = 1

6
ai t

3 + 1

2
bi t

2 + ci t + di (13)
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where ai , bi , ci and di are integration constants that can be
solved along with tmi by the following five algebraic equations
(details given in [15]):

1

2
ai · (t0i )2 + bi t

0
i + ci = v0i ,

1

6
ai · (t0i )3 + 1

2
bi · (t0i )2 + ci t

0
i + di = 0,

1

6
ai · (tmi )3 + 1

2
bi · (tmi )2 + ci t

m
i + di = Lk,

ai t
m
i + bi = 0,

β − 1

2
b2i + aici = 0. (14)

where the third equation is the terminal condition for the total
distance traveled on a lane. This solution is computationally
very efficient to obtain. We then use this unconstrained optimal
control solution as a reference to be tracked by a controller
which uses CBFs to account for all the constraints (3), (4),
and (5) and guarantee they are not violated. We review next
how to use CBFs to map all these constraints from the state
xi (t) to the control input ui (t).

B. OCBF Controller

The OCBF controller aims to track the unconstrained
optimal control solution (11)-(13) while satisfying all con-
straints (3), (4) and (5). To accomplish this, first let xi (t) ≡
(xi (t), vi (t)). Referring to the vehicle dynamics (1), let
f (xi (t)) = [xi(t), 0]T and g(xi (t)) = [0, 1]T . Each of the
constraints in (3), (4) and (5) can be expressed as bk(xi (t)) ≥
0, k ∈ {1, · · · , n} where n is the number of constraints
and each bk(xi (t)) is a CBF. For example, b1(xi (t)) =
zi,i p (t) − ϕvi (t) − δ for the rear-end safety constraint (3).
In the CBF approach, each of the continuously differentiable
state constraints bk(xi (t)) ≥ 0 is mapped onto another
constraint on the control input such that the satisfaction of
this new constraint implies the satisfaction of the original
constraint bk(xi (t)) ≥ 0. The forward invariance property of
this method [24], [25] ensures that a control input that satisfies
the new constraint is guaranteed to also satisfy the original one.
In particular, each of these new constraints takes the form

L f bk(xi (t)) + Lgbk(xi (t))ui (t) + γ (bk(xi (t))) ≥ 0, (15)

where L f and Lg denote the Lie derivatives of bk(xi (t))
along f and g (defined above from the vehicle dynamics)
respectively and γ (·) denotes a class of K functions [29]
(typically, linear or quadratic functions). As an alternative,
a CLF [24] V (xi (t)), instead of bk(xi (t)), can also be used
to track (stabilize) the optimal speed trajectory (13) through a
CLF constraint of the form

L f V (xi (t)) + LgV (xi (t))ui (t) + εV (xi (t)) ≤ ei (t), (16)

where ε > 0 and ei (t) is a relaxation variable that makes this
constraint soft. As is usually the case, we select V (xi (t)) =
(vi (t) − vre f (t))2 where vre f (t) is the reference speed to
be tracked (specified below). Therefore, the OCBF controller

solves the following problem:
min

ui (t),ei (t)
Ji (ui (t), ei (t))

=
∫ tmi

t0i

(
βe2i (t)+

1

2
(ui (t)−ure f (t))

2
)
dt, (17)

subject to the vehicle dynamics (1), the CBF constraints
(15) and the CLF constraint (16). The obvious selection for
speed and acceleration reference signals is vre f (t) = v∗

i (t),
ure f (t) = u∗

i (t) with v∗
i (t), u∗

i (t) given by (13) and (11)

respectively. In [30], ure f (t) = x∗
i (t)
xi (t)

u∗
i (t) is used to provide

the benefit of feedback obtained by observing the actual
CAV trajectory xi (t) and automatically reducing the tracking
position error; we use only ure f (t) = u∗

i (t) in the sequel for
simplicity.
The CBF conversions from the original constraints to the

form (15) are straightforward. For example, using a linear
function γ (·) in (15), we can directly map Constraint 1 onto
the following constraint in terms of control inputs:

vi p (t)−vi (t)︸ ︷︷ ︸
L f b(xi (t))

+ −ϕ︸︷︷︸
Lgb(xi (t))

ui (t)+zi,i p (t)−ϕvi (t)−δ ≥ 0. (18)

However, there are some points that deserve some further
clarification as follows.
Constraint 2 (Lateral Safety Constraint): The lateral safety

constraints in (4) are specified only at time instants tki .
However, to use CBFs as in (15), they have to be converted
to continuously differentiable forms. Thus, we use the same
technique as in [31] to convert (4) into:

zi, j (t) ≥ 
(xi (t))vi (t) + δ, i ∈ S(t), t ∈ [t0i , tki ], (19)

where j ∈ �i is determined through the lateral safety
constraint determination strategy (Algorithm 2). Recall that
CAV j depends on some MP Mk and we may have several
j ∈ �i since CAV i may conflict with several CAVs j at
different MPs. The selection of function 
 : R → R is flexible
as long as it is a strictly increasing function that satisfies

(xi (t0i )) = 0 and 
(xi (tki )) = ϕ where tki is the arrival time
at MP Mk corresponding to the constraint and xi (tki ) is the
location of MP Mk . Thus, we see that at t = tki all constraints
in (19) match the safe-merging constraints (4), and that at
t = t0i we have zi,i p (t

0
i ) = δ. Since the selection of 
(·) is

flexible, for simplicity, we define it to have the linear form

(xi (t)) = ϕ

xi (t ki )
xi (t) which we can immediately see satisfies

the properties above.
Improving the Feasibility of Constraints 1 and 2: In order

to ensure that a feasible solution always exists for these
constraints, we need to take the braking distance into con-
sideration. CAV i should stop within a minimal safe distance
when its speed vi (t) approaches the speed v j (t) for any j
such that CAV j is the preceding vehicle of CAV i or any
vehicles that may laterally collide with CAV i . Thus, we use
the following more strict constraint when vi (t) ≥ v j (t):

zi, j (t) ≥ ϕ
(
xi (t)+ 1

2

v2i (t)−v2j (t)

umin

)
v j (t)

L
+ 1

2

(v j (t)−vi (t))2

umin
+ δ,

(20)

A detailed analysis of this constraint is given in [31].
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Observing that Constraint 3 (vehicle limitations) can be
directly converted using the standard CBF method, we are now
in a position where all constraints are mapped onto constraints
expressed in terms of control inputs. We refer to the resulting
ui (t) in (17) as the OCBF control. The solution to (17) is
obtained by discretizing the time interval [t0i , tmi ] with time
steps of length � and solving (17) over [t0i + k�, t0i + (k +
1)�], k = 0, 1, . . ., with ui (t), ei (t) as decision variables held
constant over each such interval (see also [31]). Consequently,
each such problem is a Quadratic Program (QP) since we have
a quadratic cost and a number of linear constraints on the
decision variables at the beginning of each time interval. The
solution of each such problem gives an optimal control u∗

i (t
0
i +

k�), k = 0, 1, . . ., allowing us to update (1) in the kth time
interval. This process is repeated until CAV i leaves the CZ.

C. The Influence of Noise and Complicated Vehicle Dynamics

Aside from the potentially long computation time, other
limitations of the OC controller include: (i) It only plans
the optimal trajectory once. However, the trajectory may
violate safety constraints due to noise in the vehicle dynamics
and control accuracy; (i i) The OC analytical solution is
limited to simple vehicle dynamics as in (1) and becomes
difficult to obtain when more complicated vehicle dynamics
are considered to better match realistic operating conditions.
For instance, in practice, we usually need to control the input
driving force of an engine instead of directly controlling
acceleration. Compared with the OC method, our OCBF
approach can effectively deal with the above problems with
only slight modifications as described next.
First, due to the presence of noise, constraints may be

temporarily violated, which prevents the CBF method from
satisfying the forward invariance property. Thus, when a
constraint is violated at time t1, i.e., bk(xi (t1)) < 0, we add a
threshold to the original constraint as follows:

L f bk(xi (t)) + Lgbk(xi (t))ui (t) ≥ ck(t), (21)

where ck(t) ≥ 0 is a large enough value so that bk(xi (t))
is strictly increasing even if the system is under the worst
possible noise case. Since it is hard to directly determine the
value of ck(t), we add it to the objective function and have

min
ui (t),ei(t),ck(t)

∫ tmi

t0i

(
βe2i (t)+

1

2
(ui (t)−ure f (t))

2 − ηck(t)

)
dt,

(22)

where η is a weight parameter. If there are multiple constraints
that are violated at one time, we rewrite them all as (21)
and add all thresholds into the optimization objective. Starting
from t1, we use the constraint (21) and objective function (22)
to replace the original CBF constraint and objective function,
and bk(xi (t)) will be positive again in finite time since it is
increasing. When bk(xi (t)) becomes positive again, we revert
to the original CBF constraint.
Next, considering vehicle dynamics, there are numerous

models which achieve greater accuracy than the simple
model (1) depending on the situation of interest. As an

example, we consider the following frequently used nonlinear
model:[

ẋi (t)
v̇i (t)

]
=


 vi (t)

− 1

mi
Fr (vi (t))


 +


 0

1

mi


 ui (t), (23)

where mi denotes the vehicle mass and Fr (vi (t)) is the
resistance force that is normally expressed as

Fr (vi (t)) = α0sgn(vi (t)) + α1vi (t) + α2v
2
i (t), (24)

where α0 > 0, α1 > 0, and α2 > 0 are parameters determined
empirically, and sgn(·) is the signum function. It is clear
that due to the nonlinearity in these vehicle dynamics, it is
unrealistic to expect an analytical solution for it. However,
in our proposed OCBF method, we only need to derive
the Lie derivative along these new dynamics and solve the
corresponding QP based on these new CBF constraints. For
instance, it is easy to see that for these new dynamics, the
CBF constraint (18) becomes

vi p (t) − vi (t) + ϕFr (vi (t))

mi︸ ︷︷ ︸
L f b(xi (t))

+ − ϕ

mi︸ ︷︷ ︸
Lgb(xi (t))

ui (t)

+ zi,i p (t) − ϕvi (t) − δ ≥ 0. (25)

Thus, our method can be easily extended to more compli-
cated vehicle dynamics dictated by any application of interest.

V. SIMULATION RESULTS

To validate the effectiveness of the proposed OCBF method,
we compare it to a state-of-the-art method in [11] where
CAVs calculate the fastest arrival time to the conflict zone
first when they enter the CZ and then derive an energy-time-
optimal trajectory. This uses the same objective function (7)
as our method. The main differences are: 1) it considers
the merging (conflict) zone as a whole and imposes the
conservative requirement that any two vehicles that have
potential conflict cannot be in the conflict zone at the same
time; 2) when it plans an energy-time-optimal trajectory for
a new incoming vehicle, it takes all safety constraints into
account, which makes it time-consuming; 3) the rear-end
safety constraints used in [11] only depend on distance, i.e.,
ϕ = 0 and δ > 0 in (3). Thus, in order to carry out a fair
comparison with this method, we adopt the same form of rear-
end safety constraints, that is,

zi,i p (t) ≥ δ, ∀t ∈ [t0i , tmi ]. (26)

A complication caused by this choice is that after using the
standard CBF method (simply substituting ϕ = 0 into (18)),
the control input should satisfy

vi p (t) − vi (t)︸ ︷︷ ︸
L f b(xi (t))

+ 0︸︷︷︸
Lgb(xi (t))

ui (t) + zi,i p (t) − δ ≥ 0, (27)

which violates the condition Lgb(xi (t)) �= 0. This is because
we cannot obtain a relationship involving the control input
ui (t) from the first-order derivative of the constraint (26). This
problem was overcome in [25] by using a high order CBF

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on May 29,2022 at 20:44:41 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

(HOCBF) of relative degree 2 for system (1). In particular,
letting bk(xi (t)) = zi,i p (t) − δ and considering all class K
functions to be linear functions, we define

ψ1(xi (t)) = ḃ(xi (t)) + pb(xi (t),

ψ2(xi (t)) = ψ̇1(xi (t)) + pψ1(xi (t)). (28)

where p is a (tunable) penalty coefficient. Combining the
vehicle dynamics (1) with (28), any control input should
satisfy

0︸︷︷︸
L2

f b(xi (t))

+ −1︸︷︷︸
LgL f b(xi (t))

ui (t) +2pḃ(xi (t)) + p2b(xi (t)) ≥ 0.

(29)

Thus, in the following simulation experiments, we set ϕ for
Constraint 1 and Constraint 2 to be ϕ = 0 and ϕ = 1.8s,
respectively.
Our simulation experiments are organized as follows. First,

in Section V.A we consider an intersection with a single
lane in each direction which only allows a CAV to go
straight. Our purpose here is to show that using MPs instead
of an entire arbitrarily defined conflict zone can effectively
reduce the conservatism of the latter. Then, in Section V.B,
we allow turns so as to analyze the influence of different
behaviors (going straight, turning left, and turning right) on
the performance of the methods compared. Next, Section V.C
is intended to validate the effectiveness of our OCBF method
for intersections with two lanes and include possible lane-
changing behaviors. Section V.D shows simulations that
quantify how our proposed method outperforms the signal-
based method in all metrics. In Section V.E, we extend our
method to combine it with the DR method and show that
the performance of the OCBF+DR method is better than the
OCBF+FIFO method for asymmetrical intersections. Finally,
Section V.F demonstrates that our method can effectively deal
with complicated vehicle dynamics and noise.
The baseline for our simulation results uses SUMO,

a microscopic traffic simulation software package. In SUMO
simulations, we set most models and their parameters at their
default values. For example, the car-following model used is
the default Krauss car-following model, and its parameters are
also set at their default values. Interested readers can refer
to [32] for more details. Then, we use our OCBF controller and
the controller proposed in [11] to control CAVs for intersection
scenarios with the same vehicle arrival patterns as SUMO. The
parameter settings (see Fig. 1) are as follows: L1 = 300m,
L2 = 50m, L3 = 200m, l = 0.9378m, w = 3.5m, r = 4m,
δ = 10m, vmax = 15m/s, vmin = 0m/s, umax = 3m/s2, and
umin = −3m/s2.
The energy model we use in the objective function is

an approximate one. The 1
2u

2 metric treats acceleration and
deceleration the same and does not account for speed as
contributing to energy consumption. This metric is viewed
as a simple surrogate function for energy or simply as a
measure of how much the solution deviates from the ideal
constant-speed trajectory. In contrast, the following energy
model [33] captures fuel consumption in detail and provides

TABLE I

THE COMPARISON RESULTS FOR A SINGLE-LANE
INTERSECTION DISALLOWING TURNS

another measure of performance:
Fi =

∫ ai

0
fV ,i (t)dt,

fV ,i (t) = fcruise,i (t) + faccel,i (t),

fcruise,i (t) = b0 + b1vi (t) + b2v
2
i (t) + b3v

3
i (t),

faccel,i (t) = u(t)(c0 + c1vi (t) + c2v
2
i (t)), (30)

where fcruise,i (t) denotes the fuel consumed per second when
CAV i drives at a steady velocity vi (t), and faccel,i (t) is
the additional fuel consumed due to the presence of positive
acceleration. If u(t) ≤ 0, then faccel,i (t) will be 0 since, in this
case, the engine is rotated by the kinetic energy of the CAV.
b0, b1, b2, b3, c0, c1, and c2 are seven model parameters; here
we use the same parameters as in [33], which are obtained
through curve-fitting for data from a typical vehicle.

A. MPs Versus Conflict Zone

In this experiment, we only allow CAVs to go straight in
order to investigate the relative performance of the MP-based
method (our OCBF controller) and the merging (conflict)
zone-based method (OC controller) [11]. We set the arrival
rates at all lanes to be the same, i.e., 270veh/h/ lane. The
comparison results are shown in Table I.
It is clear that both controllers significantly outperform

the results obtained from the SUMO car-following controller.
The OC controller is energy-optimal since it has considered
all safety constraints for each CAV upon its arrival at the
CZ. Subsequently, CAVs strictly follow the planned trajectory
assuming the absence of noise. However, our OCBF controller
only uses an unconstrained reference trajectory and employs
CBFs to account for the fact that this reference trajectory may
violate the safety constraints: for each CAV, this controller
continuously updates its control inputs according to the latest
states of other CAVs. As a result, its energy consumption
is larger than that of the OC controller, although still small
and much lower than the one evaluated under the SUMO car-
following controller.
In terms of travel time, we find that the travel time of

the OCBF controller is better than that of the OC controller.
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TABLE II

THE INFLUENCE OF TURNS ON DIFFERENT CONTROLLERS

This is because the safety requirements in the OC controller
are too strict because CAV i must wait until a CAV j �= i that
conflicts with it leaves the conflict zone. Instead, the OCBF
controller using MPs allows us to relax a merging constraint
and still ensure safety by requiring that only one CAV can
arrive at the same MP ϕ a short time after the other vehicle
leaves. Since our method reduces conservatism, it shows
significant improvement in travel time when compared with
the OC controller in [11].
In addition, we can adjust the parameter β to emphasize the

relative importance of one objective (energy or time) relative to
the other. If we are more concerned about energy consumption,
we can use a smaller value of β; otherwise, a larger β value
emphasizes travel time reduction. Thus, when β is relatively
large, the average objective under the OCBF controller is better
than that of the OC controller since it is more efficient with
respect to travel time.
Another interesting observation is that even though the

relationship between the accurate fuel consumption model and
the estimated energy is complicated, we see that a larger
estimated energy consumption usually corresponds to larger
fuel consumption. Thus, it is reasonable to optimize energy
consumption through a simple model, e.g., 1

2u
2, which also

significantly reduces the computational complexity caused by
the accurate energy model.

B. The Influence of Turns

In this experiment, we allow turns at the intersection
assuming that the intention (i.e., going straight, turning left,
and turning right) of a CAV when it enters the CZ is known.
We have conducted four groups of simulations as shown in
Table II. In the first group, all CAVs choose their behavior
with the same probability, i.e., 1

3 going straight, 1
3 turning left,

and 1
3 turning right. In the second group, 80% of CAVs turn

left while 10% CAVs go straight and 10% CAVs turn right.
In the third group, 80% CAVs turn right while 10% CAVs go
straight and 10% CAVs turn left. In the fourth group, 80%
CAVs go straight while 10% CAVs turn left and 10% CAVs
turn right. We set β = 1 in all results shown in Table II.
First, we can draw the same conclusion as in Table I

that the OC controller is energy-optimal and the OCBF

TABLE III

COMPARISON RESULTS FOR A TWO-LANE INTERSECTION

controller achieves the lowest travel time since it reduces
conservatism. Next, we also observe that when we increase
the ratio of left-turning vehicles, the average travel times
under all controllers increase; when we increase the ratio of
right-turning vehicles, the average travel times all decrease.
This demonstrates that the left-turning behavior usually has
the largest impact on traffic coordination since left-turning
CAVs cross the conflict zone diagonally and are more likely
to conflict with other CAVs. In addition, it is worth noting
that going straight produces the largest travel time since this
involves the largest number of MPs. However, when we use
the OCBF controller, the travel times under all situations are
similar, which shows that this controller can utilize the space
resources of the conflict zone and handle the influence of turns
more effectively.

C. Comparison Results for More Complicated Intersections

In this experiment, we consider more complicated intersec-
tions with two lanes in each direction as shown in Fig. 1.
The left lane in each direction only allows going straight and
turning left, while the right lane only allows going straight
and turning right. We set the arrival rate at all lanes to be the
same, i.e., 180veh/h/ lane and disallow lane-changing. Each
new incoming CAV chooses its behavior from the allowable
behaviors with the same probability, e.g., the CAV arriving
at the entry of the left lane can go straight or turn left with
probability 0.5. The comparison results are shown in Table III.
The results here are similar to those in the single-lane

intersections. Although the number of MPs increases with
the number of lanes, our method can still effectively ensure
safety and reduce travel time. It is worth noting that the
values of safety time headway for the OC controller are
difficult to determine. The OC controller requires that no
CAV can enter the conflict zone until the conflict CAV
leaves it. However, the time spent for passing through the
conflict zone differs from vehicle to vehicle. If we choose
a larger value, then this significantly increases travel time and
amplifies conservatism. In contrast, if we choose a smaller
value, the potential of collision increases. Therefore, the MP-
based method is significantly better since it not only ensures
safety but also reduces conservatism.
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TABLE IV

THE INFLUENCE OF LANE-CHANGING BEHAVIOUR
ON THE PROPOSED METHOD

In what follows, we briefly discuss the computation time
involved in our OCBF method. The method is driven by solv-
ing a QP problem using the latest information from all CAVs
over each control period. The average computation time for
solving such a QP is 3.5ms (Intel(R) Core(TM) i7-6700 CPU),
which is suitable for real-time implementation. In contrast, the
OC-based controller plans a trajectory for each vehicle when it
enters the control zone, and the average computation time for
such a plan is about 1s (Intel(R) Core(TM) i7-6700 CPU).
Furthermore, when multiple constraints become active, the
computation time ranges from 3s to 30s (Intel(R) Core(TM)
i7-8700 CPU) [20]. Thus, the OCBF method is more suitable
for complicated vehicle dynamics and constraints since its
computation time is not affected by these factors.
Next, we consider the impact of lane-changing on our OCBF

method. For the same two-lane intersection, we allow lane-
changing and CAVs can choose any movement (going straight,
turning left and right). Since the left lane only allows going
straight and turning left, the right-turning CAV in this lane
must change its lane. The situation is similar for the left-
turning CAV in the right lane. To make a better comparison
with the scenario without lane-changing, we use the same
arrival data (including the times all CAVs enter the CZ and
initial velocities) as the last experiment and only change the
lane that the turning CAV arrives at. For example, the left-
turning CAVs must arrive at the left lane in the last experiment,
but, in this experiment, the lane they enter can be random. The
results are shown in Table IV.
We can see that the lane-changing behavior slightly

increases all performance measures compared with the results
in scenarios disallowing lane-changing. This is expected since
a new (floating) MP is added and more control is required
to ensure safety. Nevertheless, the changes are minor, fully
demonstrating the effectiveness of our method in handling lane
changing. Although we have assumed that lane changing only
induces a fixed length, we can extend our OCBF method to
more complicated lane-changing trajectories, e.g., trajectories
fitted by polynomial functions. Note that in the SUMO
simulation, it is assumed that a vehicle can jump directly from
one lane to another. However, our method still outperforms it

TABLE V

THE INFLUENCE OF ASYMMETRICAL AND HEAVY TRAFFIC FLOWS

in all metrics, further supporting the advantages of the OCBF
controller.
Next, we explore the effect of asymmetrical arrival rates

through two scenarios, in order to confirm that our OCBF
method is effective even when traffic flows are heavy. In the
first scenario, we set the arrival rates in Lanes 1, 2 to be three
times as large as Lanes 3-8; while in the second scenario, the
arrival rates in Lanes 1, 2, 5, 6 are three times as large as the
remaining lanes. The comparison results are shown in Table V.
We can see in the SUMO simulation that traffic flows in

lanes with high arrival rates are highly congested with CAVs
forming long queues in these lanes. All metrics obtained
from SUMO significantly increase compared with the results
obtained from medium traffic shown in Table III. However,
since the coordination performance under our OCBF controller
is much better than SUMO, all metrics remain at low levels,
indicating the effectiveness of the OCBF approach in con-
gested situations.

D. Comparison Results for an Actuated Signal-Based Method

To further demonstrate that our method can achieve more
efficient use of road resources, we carry out a comparison
with a baseline scenario under the control of adaptive four-
phase traffic lights using SUMO. In this baseline scenario,
an intersection has two lanes in each direction as shown in
Fig. 1. It is also worth noting that SUMO employs a gap-
based actuated traffic control method whose main idea is to
prolong a traffic phase when detecting a continuous stream of
traffic. In this experiment, all model parameters used are set
at their default values. Then, to investigate the influence of
different traffic volumes, we vary the arrival rates to generate
different traffic demands. The comparison results are shown
in Fig. 3.
The simulation results show that when the traffic volume is

low, the actuated traffic control method tends to shorten each
phase’s duration to reduce the waiting time of vehicles before
the stop line. However, we can still observe the undesirable
phenomenon that a vehicle is waiting for a green light in order
to pass, while the intersection is empty. In contrast, when
the traffic volume is high, the actuated traffic control method
makes each phase’s duration as long as possible to avoid
interrupting the traffic flow in that direction. However, vehicles
need to wait for an excessive amount of time before the stop
line in this situation. Compared with the signal-based method,
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Fig. 3. Comparison results between the OCBF method and the actuated
signal-based method.

our optimized signal-free-based method is significantly better
in all metrics. Although its performance deteriorates when
traffic congestion builds up, the changes in metric values
are relatively small. Based on the SUMO simulations, the
maximum traffic volume the intersection can support under
the signal-based method is approximately 3000veh/h (or
375veh/h/ lane). When we continue to increase the arrival
rates, almost all roads are jammed so that new vehicles cannot
enter the control zone. Thus, the throughput values when
arrival rates are 360veh/h/ lane and 720veh/h/ lane do not
differ much. Conversely, traffic flows in all directions are still
smooth under the control of the proposed method when the
arrival rate is 360veh/h/ lane, hence effectively increasing the
intersection throughput.

E. The Inclusion of the DR Method

Thus far in our experiments, the FIFO-based queue is used
to determine the passing priority when potential conflicts
occur. This experiment combines the OCBF controller with a
typical resequencing policy, in particular the DR method [15].
When a new CAV enters the CZ, the DR policy inserts it into
the optimal position of the original crossing sequence. Note
that when combining the OC method with a resequencing
policy an update of the arrival times and trajectories of
CAVs is required whenever we adjust the original crossing
sequence. However, in the OCBF method, CAV i only needs
to update the indices of the CAVs with which it conflicts
according to the new DR-based queue and follow the original
unconstrained optimal trajectory without replanning. In the
following experiments, we set β = 5 and vary the length
of some lanes to generate different scenarios. The comparison
results are shown in Table VI.
The DR method helps decrease travel times and achieves

a better average objective value at the expense of energy
consumption, since CAVs need to take more accelera-
tion/deceleration actions to adjust their crossing order. The
benefits of the DR method relative to the FIFO policy are
more evident in asymmetrical intersections. This is because
the FIFO rule may require a CAV that enters the CZ later but

TABLE VI

THE EFFECT OF THE DR METHOD ON THE OCBF METHOD

TABLE VII

THE INFLUENCE OF THE NONLINEAR VEHICLE

DYNAMICS ON THE OCBF METHOD

is much closer to the intersection to yield to a CAV that is
further away from the intersection. For example, in the above
Scenario 3, a CAV enters the CZ from lane 5 that is 100m away
from the intersection. It is unreasonable to force it to yield
to a CAV entering earlier but located 250m away from the
intersection. Our resequencing method can effectively avoid
such situations by adjusting crossing sequences in an event-
driven way. Note that the OCBF+DR method outperforms the
OCBF+FIFO method in all metrics in Scenario 3, since nearly
all CAVs arriving at lanes 5 and 6 need to decelerate and even
stop due to the FIFO rule, indicating that the DR method is
more effective when an intersection geometric configuration is
asymmetrical. This finding is consistent with the conclusion
given in [34] which provides detailed and comprehensive
comparisons for different resequencing methods.

F. The Influence of Nonlinear Vehicle Dynamics and Noise

We first consider the nonlinear vehicle dynamics in (23)
and reformulate all CBF constraints according to the new
dynamics. For the symmetrical intersection with two lanes
in each direction, we vary β from 0.1 to 2 and use the
OCBF+FIFO method to coordinate the movements of CAVs.
The results are shown in Table VII.
It is clear that the results conform to the results for the

double integrator vehicle dynamics (1). When β increases,
we are more concerned about the travel time, thus travel
time decreases while the energy and fuel consumption rise.
Note that though the nonlinear vehicle dynamics are more
complicated than the double integrator vehicle dynamics, the
only necessary modification is to derive the CBF constraints
based on the new dynamics. The computation times for these
two different dynamics are nearly the same.
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TABLE VIII

THE INFLUENCE OF NOISE ON THE OCBF METHOD

Next, we have considered both noise and nonlinear dynam-
ics. Due to the measurement errors of sensors and imperfect
actuators, there exists random noise in position, velocity, and
control inputs. To analyze the influence of noise to the OCBF
method, we consider uniformly distributed noise processes
(wi,p(t) for the position of CAV i , wi,v (t) for the velocity,
and wi,u (t) for the control inputs) for this simulation. We set
β = 0.1 and use the OCBF+FIFO method for all experiments.
The results are shown in Table VIII.
The results show that the measurement errors of posi-

tions and velocities significantly increase energy consumption.
This is because noise causes CAVs to misjudge their states
necessitating additional control actions. For example, suppose
CAV i is following CAV j and their actual distance is 10m
at some time point, but, due to noise, CAV i may misjudge
this distance to be 8m, therefore decelerating to enlarge their
relative spacing. Then, at the next time point, it may accelerate
to keep a desired inter-vehicle space. These frequent accel-
eration/deceleration maneuvers cause a considerable waste of
energy. As uncertainty increases, more control effort is needed
to ensure the safety of CAVs when the number of noise sources
increases and the noise magnitudes goes up. Note that CAVs
may even collide with other CAVs when we continuously
increase the magnitude of noise. However, when noise is
limited, our method can effectively handle it and does not
add any computational burden.

VI. CONCLUSION

This paper presents a decentralized optimal control method
for controlling CAVs passing through a multi-lane intersection
safely while jointly minimizing the travel time and energy
consumption of each CAV. First, CAVs derive a desired ref-
erence trajectory generated by unconstrained optimal control.
Then, we design a search algorithm for a CAV to identify
all conflicting CAVs defining lateral safety constraints that
it needs to satisfy. An OCBF controller is then used which
optimally tracks the desired reference trajectory while guar-
anteeing all safety constraints and physical vehicle limitation
through appropriate CBFs. Extensive simulation experiments
we have conducted show that the proposed method can handle
complex objective functions, nonlinear vehicle dynamics, and
the presence of noise, and that it is still effective under

the influence of lane-changing behaviors, heavy traffic flows,
and asymmetrical intersections. Our ongoing work includes
extensions of decentralized CAV control to traffic networks
and to ensuring the feasibility of the QPs in challenging
environments where this may not always be the case. Finally,
when the CAV trajectories involve curves, we plan to include
more complicated lateral dynamics that better model vehicle
behavior in such cases, as recently shown in [35].

REFERENCES

[1] J. Rios-Torres and A. A. Malikopoulos, “A survey on the coordination
of connected and automated vehicles at intersections and merging at
highway on-ramps,” IEEE Trans. Intell. Transp. Syst., vol. 18, no. 5,
pp. 1066–1077, May 2017.

[2] L. Chen and C. Englund, “Cooperative intersection management: A sur-
vey,” IEEE Trans. Intell. Transp. Syst., vol. 17, no. 2, pp. 570–586,
Feb. 2016.

[3] L. Li, D. Wen, and D. Y. Yao, “A survey of traffic control with vehicular
communications,” IEEE Trans. Intell. Transp. Syst., vol. 15, no. 1,
pp. 425–432, Feb. 2014.

[4] R. Hult, G. R. Campos, E. Steinmetz, L. Hammarstrand, P. Falcone,
and H. Wymeersch, “Coordination of cooperative autonomous vehicles:
Toward safer and more efficient road transportation,” IEEE Signal
Process. Mag., vol. 33, no. 6, pp. 74–84, Nov. 2016.

[5] S. A. Fayazi and A. Vahidi, “Mixed-integer linear programming for
optimal scheduling of autonomous vehicle intersection crossing,” IEEE
Trans. Intell. Veh., vol. 3, no. 3, pp. 287–299, Sep. 2018.

[6] H. Xu, S. Feng, Y. Zhang, and L. Li, “A grouping-based cooperative
driving strategy for CAVs merging problems,” IEEE Trans. Veh. Tech-
nol., vol. 68, no. 6, pp. 6125–6136, Jun. 2019.

[7] X. Qian, J. Gregoire, A. de La Fortelle, and F. Moutarde, “Decentral-
ized model predictive control for smooth coordination of automated
vehicles at intersection,” in Proc. Eur. Control Conf. (ECC), Jul. 2015,
pp. 3452–3458.

[8] H. Xu, Y. Zhang, C. G. Cassandras, L. Li, and S. Feng, “A bi-level
cooperative driving strategy allowing lane changes,” Transp. Res. C,
Emerg. Technol., vol. 120, Nov. 2020, Art. no. 102773.

[9] K. Dresner and P. Stone, “A multiagent approach to autonomous
intersection management,” J. Artif. Intell. Res., vol. 31, pp. 591–656,
Mar. 2008.

[10] A. A. Malikopoulos, C. G. Cassandras, and Y. Zhang, “A decentralized
energy-optimal control framework for connected automated vehicles at
signal-free intersections,” Automatica, vol. 93, pp. 244–256, Jul. 2018.

[11] Y. Zhang and C. G. Cassandras, “Decentralized optimal control of
connected automated vehicles at signal-free intersections including
comfort-constrained turns and safety guarantees,” Automatica, vol. 109,
pp. 1–9, Nov. 2019.

[12] Y. Meng, L. Li, F.-Y. Wang, K. Li, and Z. Li, “Analysis of cooperative
driving strategies for nonsignalized intersections,” IEEE Trans. Veh.
Technol., vol. 67, no. 4, pp. 2900–2911, Apr. 2018.

[13] S. I. Guler, M. Menendez, and L. Meier, “Using connected vehicle
technology to improve the efficiency of intersections,” Transp. Res.
C, Emerg. Technol., vol. 46, pp. 121–131, Sep. 2014.

[14] Z. Li, M. Pourmehrab, L. Elefteriadou, and S. Ranka, “Intersection
control optimization for automated vehicles using genetic algorithm,”
J. Transp. Eng., A, Syst., vol. 144, no. 12, Dec. 2018, Art. no. 04018074.

[15] Y. Zhang and C. G. Cassandras, “A decentralized optimal control
framework for connected automated vehicles at urban intersections with
dynamic resequencing,” in Proc. IEEE Conf. Decis. Control (CDC),
Dec. 2018, pp. 217–222.

[16] H. Xu, Y. Zhang, L. Li, and W. Li, “Cooperative driving at unsignalized
intersections using tree search,” IEEE Trans. Intell. Transp. Syst., vol. 21,
no. 11, pp. 4563–4571, Nov. 2020.

[17] L. Elefteriadou, An Introduction to Traffic Flow Theory, vol. 84.
New York, NY, USA: Springer, 2014.

[18] M. Pourmehrab, L. Elefteriadou, S. Ranka, and M. Martin-Gasulla,
“Optimizing signalized intersections performance under conventional
and automated vehicles traffic,” IEEE Trans. Intell. Transp. Syst., vol. 21,
no. 7, pp. 2864–2873, Jul. 2020.

[19] M. Pourmehrab, P. Emami, M. Martin-Gasulla, J. Wilson,
L. Elefteriadou, and S. Ranka, “Signalized intersection performance
with automated and conventional vehicles: A comparative study,”
J. Transp. Eng., A, Syst., vol. 146, no. 9, Sep. 2020, Art. no. 04020089.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on May 29,2022 at 20:44:41 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

XU et al.: GENERAL FRAMEWORK FOR DECENTRALIZED SAFE OPTIMAL CONTROL OF CAVs 15

[20] W. Xiao and C. G. Cassandras, “Decentralized optimal merging control
for connected and automated vehicles with safety constraint guarantees,”
Automatica, vol. 123, Jan. 2021, Art. no. 109333.

[21] B. Chalaki and A. A. Malikopoulos, “Optimal control of connected
and automated vehicles at multiple adjacent intersections,” 2020,
arXiv:2008.02379.

[22] W. Xiao, C. G. Cassandras, and C. A. Belta, “Bridging the gap
between optimal trajectory planning and safety-critical control with
applications to autonomous vehicles,” Automatica, vol. 129, Jul. 2021,
Art. no. 109592.

[23] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function
based quadratic programs with application to adaptive cruise control,”
in Proc. 53rd IEEE Conf. Decis. Control, Dec. 2014, pp. 6271–6278.

[24] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath,
and P. Tabuada, “Control barrier functions: Theory and applications,”
in Proc. 18th Eur. Control Conf. (ECC), Jun. 2019, pp. 3420–3431.

[25] W. Xiao and C. Belta, “Control barrier functions for systems with high
relative degree,” in Proc. IEEE 58th Conf. Decis. Control (CDC), Nice,
France, Dec. 2019, pp. 474–479.

[26] W. Xiao and C. G. Cassandras, “Decentralized optimal merging control
for connected and automated vehicles with optimal dynamic resequenc-
ing,” in Proc. Amer. Control Conf. (ACC), Jul. 2020, pp. 4090–4095.

[27] K. Vogel, “A comparison of headway and time to collision as safety
indicators,” Accident Anal. Prevention, vol. 35, no. 3, pp. 427–433,
May 2003.

[28] A. A. Malikopoulos, “Stochastic optimal control for series hybrid elec-
tric vehicles,” in Proc. Amer. Control Conf., Jun. 2013, pp. 1189–1194.

[29] H. K. Khalil and J. W. Grizzle, Nonlinear Systems, vol. 3.
Upper Saddle River, NJ, USA: Prentice-Hall, 2002.

[30] W. Xiao, C. G. Cassandras, and C. Belta, “Decentralized merging control
in traffic networks with noisy vehicle dynamics: A joint optimal control
and barrier function approach,” in Proc. IEEE Intell. Transp. Syst. Conf.
(ITSC), Oct. 2019, pp. 3162–3167.

[31] W. Xiao, C. Belta, and C. G. Cassandras, “Decentralized merging
control in traffic networks: A control barrier function approach,” in Proc.
10th ACM/IEEE Int. Conf. Cyber-Phys. Syst., Montreal, QC, Canada,
Apr. 2019, pp. 270–279.

[32] P. A. Lopez et al., “Microscopic traffic simulation using SUMO,”
in Proc. 21st Int. Conf. Intell. Transp. Syst. (ITSC), Nov. 2018,
pp. 2575–2582.

[33] M. A. S. Kamal, M. Mukai, J. Murata, and T. Kawabe, “Model predictive
control of vehicles on urban roads for improved fuel economy,” IEEE
Trans. Control Syst. Technol., vol. 21, no. 3, pp. 831–841, Apr. 2012.

[34] H. Xu, C. G. Cassandras, L. Li, and Y. Zhang, “Comparison of
cooperative driving strategies for CAVs at signal-free intersections,”
IEEE Trans. Intell. Transp. Syst., early access, Apr. 16, 2021, doi:
10.1109/TITS.2021.3071456.

[35] W. Xiao and C. G. Cassandras, “Decentralized optimal merging control
for connected and automated vehicles on curved roads,” in Proc. 60th
IEEE Conf. Decis. Control (CDC), Dec. 2021, pp. 2677–2682.

Huile Xu received the B.S. degree from Chongqing
University, China, in 2016, and the Ph.D. degree
from Tsinghua University, China, in 2021. He was a
Visiting Ph.D. Student with the Division of Systems
Engineering, Boston University, USA, and the Cen-
ter for Information and Systems Engineering, Boston
University, from 2019 to 2020. He is currently
a Post-Doctoral Researcher with the Institute of
Automation, Chinese Academy of Sciences, China.
His research interests include cooperative driving,
intelligent vehicles, and optimal control.

Wei Xiao (Member, IEEE) received the B.Sc.
degree from the University of Science and Tech-
nology Beijing, China, in 2013, and the M.Sc.
degree from the Chinese Academy of Sciences
(Institute of Automation), China, in 2016. He is
currently pursuing the Ph.D. degree in systems
engineering with Boston University, Brookline, MA,
USA. His research interests include control the-
ory, formal methods, and machine learning, with
particular emphasis on robotics and traffic control.
He received the Outstanding Student Paper Award

at the 2020 IEEE Conference on Decision and Control.

Christos G. Cassandras (Life Fellow, IEEE)
received the degrees from Yale University,
Stanford University, and Harvard University.
From 1982 to 1984, he was with ITP Boston,
Inc., where he worked on the design of automated
manufacturing systems. From 1984 to 1996,
he was a Faculty Member at the Department of
Electrical and Computer Engineering, University
of Massachusetts at Amherst. He is currently a
Distinguished Professor of engineering at Boston
University. He is also the Head of the Division of

Systems Engineering, a Professor of electrical and computer engineering,
and the Co-Founder of the Center for Information and Systems Engineering
(CISE), Boston University. He specializes in the areas of discrete event
and hybrid systems, cooperative control, stochastic optimization, and
computer simulation, with applications to computer and sensor networks,
manufacturing systems, and transportation systems. He has published over
450 refereed articles in these areas, and six books. In addition to his
academic activities, he worked extensively with industrial organizations on
various systems integration projects and the development of decision support
software. He has most recently collaborated with The MathWorks, Inc., in the
development of the discrete event and hybrid system simulator SimEvents.
He is a member of Phi Beta Kappa and Tau Beta Pi. He is a fellow of the
IFAC. He was a recipient of several awards, including the 2011 IEEE Control
Systems Technology Award, the Distinguished Member Award of the IEEE
Control Systems Society (2006), the 1999 Harold Chestnut Prize (IFAC Best
Control Engineering Textbook) for Discrete Event Systems: Modeling and
Performance Analysis, the 2011 Prize and the 2014 Prize for the IBM/IEEE
Smarter Planet Challenge Competition, the 2014 Engineering Distinguished
Scholar Award at Boston University, several honorary professorships,
the 1991 Lilly Fellowship, and the 2012 Kern Fellowship. He has guest-
edited several technical journal issues and also serves on several journal
editorial boards, including the Editor of Automatica. From 1998 to 2009,
he was the Editor-in-Chief of the IEEE TRANSACTIONS ON AUTOMATIC

CONTROL. He has also served as an Editor for Technical Notes and
Correspondence and an Associate Editor. He was the 2012 President of
the IEEE Control Systems Society (CSS). He has also served as the Vice
President for Publications and on the Board of Governors for the CSS, as well
as on several IEEE committees, and has chaired several conferences. He has
been a Plenary/Keynote Speaker at numerous international conferences,
including the 2017 IFAC World Congress, the American Control Conference
in 2001, and the IEEE Conference on Decision and Control in 2002 and
2016. He has also been an IEEE Distinguished Lecturer.

Yi Zhang (Member, IEEE) received the B.S. and
M.S. degrees from Tsinghua University, China, in
1986 and 1988, respectively, and the Ph.D. degree
from the University of Strathclyde, U.K., in 1995.
He is currently a Professor of control science
and engineering with Tsinghua University, with
his current research interests focusing on intelli-
gent transportation systems. His research interests
include intelligent vehicle-infrastructure cooperative
systems, analysis of urban transportation systems,
urban road network management, traffic data fusion

and dissemination, and urban traffic control and management. His research
fields also cover the advanced control theory and applications, advanced
detection and measurement, and systems engineering.

Li Li (Fellow, IEEE) is currently an Associate Pro-
fessor with the Department of Automation, Tsinghua
University, Beijing, China, where he is involved in
the fields of complex and networked systems, intel-
ligent control and sensing, intelligent transportation
systems, and intelligent vehicles. He has published
over 90 SCI indexed international journal articles
and over 70 international conference papers as a
first/corresponding author. He serves as an Associate
Editor for the IEEE TRANSACTIONS ON INTELLI-
GENT TRANSPORTATION SYSTEMS, a member of

the Editorial Advisory Board for Transportation Research Part C: Emerging
Technologies, and a member of the Editorial Board for Transport Reviews.

Authorized licensed use limited to: BOSTON UNIVERSITY. Downloaded on May 29,2022 at 20:44:41 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TITS.2021.3071456

