
1

The Price of Decentralization: Event-Driven Optimization for

Multi-Agent Persistent Monitoring Tasks
Nan Zhou1, Christos G. Cassandras1,2, Xi Yu3, and Sean B. Andersson1,3

Abstract—In persistent monitoring tasks, the objective is to
control the movements of cooperating agents in order to mini-
mize an uncertainty metric associated with a finite number of
targets. We formulate an optimal control problem and show
that the optimal solution can be reduced to or approximated
by parametric agent trajectory families. The behavior of agents
and targets under optimal control can be described by a
hybrid system. This enables the use of Infinitesimal Perturbation
Analysis (IPA) to obtain an on-line centralized solution through
a gradient-based algorithm. We identify conditions under which
this centralized solution to the parametric optimization problems
can be recovered in a decentralized and event-driven manner. In
the decentralized scheme, each agent optimizes its performance
based on local information, except for one type of non-local event
requiring communication from a non-neighbor agent, giving
rise to a quantifiable “price of decentralization”. Simulation
examples are included to illustrate the effectiveness of this
“almost decentralized” optimization algorithm and compare it
to its fully decentralized counterpart where the aforementioned
non-local event is ignored.

I. INTRODUCTION

A cooperative multi-agent system consists of interacting
agents, each controlling its local state so as to collectively
optimize a common global objective subject to various con-
straints. Such systems have seen significant success in per-
forming a variety of collaborative tasks such as environmental
sensing, sampling, coverage, and surveillance [1]–[3]. Many of
these tasks can be formulated as static optimization problems,
whereby agents are assigned to real-valued locations in a given
space. In contrast, persistent monitoring is a task that involves
dynamic optimization, i.e., the control of agent movement over
time so that agents can cooperatively monitor a dynamically
changing environment that cannot be fully covered by a
stationary team of agents (as in coverage control) [4]–[6].
Unlike sweep coverage [2] and patrolling tasks [7]–[9] where
every point in a mission space is of interest, the problem we
address here focuses on a finite number of data sources or
“targets” (typically larger than the number of agents).

In this setting, the agents interact with targets through their
sensing capabilities which are normally dependent upon their
physical distance from a target. Applications of this setting
include the monitoring of intersections in a transportation
network where agents are vehicles moving along the links of

The work of Cassandras and Zhou is supported in part by NSF under
grants ECCS-1509084, DMS-1664644, and CNS1645681, by AFOSR under
grant FA9550-19-1-0158, by ARPA-Es NEXTCAR program under grant DE-
AR0000796, and by the MathWorks. The work of Andersson and Yu is
supported in part by the NSF through grant ECCS-1509084.

The authors are with 1Division of Systems Engineering, 2Department
of Electrical and Computer Engineering, and 3Department of Mechanical
Engineering, Boston University, Boston, MA, USA. (email:{nanzhou,cgc,
xyu,sanderss}@bu.edu)

this network to collect information at each such intersection;
the sampling of ocean temperature where agents are deployed
to periodically measure the temperature at multiple targeted
locations; and the tracking of bio-molecular evolution where
agents are microscopic beams controlled to observe the behav-
ior of molecules at multiple targets. The underlying problem
we consider falls within the large class of resource allocation
and scheduling problems often viewed as applications of
the Traveling Salesman Problem (TSP) or its extension to
Multiple traveling salesmen (MTSP). Thus, the entire range
of TSP applications overlaps with the persistent monitoring
problem which is in fact much more complicated than the
well-known NP-Hard TSP due to: (i) the presence of multiple
agents, (ii) the need to determine dwell times at each visited
target, (iii) the target dynamics and (iv) the freedom to make
multiple visits to targets. The same reasons also make it
computationally intractable to apply dynamic programming
techniques so as to obtain the optimal controls, even for a
relatively simple problem.

Unlike many multi-agent systems composed solely of a
network of interconnected agents, this agent-target interaction
is modeled through a network whose nodes consist of both
agents and targets. The purpose of the agents in persistent
monitoring is to cooperatively estimate the state of the targets
with maximal accuracy or, equivalently, to minimize a mea-
sure of target state uncertainty. Since agents are mobile, the
overall graph topology in such systems is time-varying, thus
exacerbating the complexity of this class of problems. This
has motivated approaches where, rather than viewing these as
discrete agent-to-target assignment problems [10], [11] (which
are computationally intensive and do not scale well), one treats
them as trajectory design dynamic optimization problems [12],
[13]. The solutions obtained for these problems have thus
far been centralized [1], [9], [12], [14], [15], which renders
them energy-inefficient due to excessive communication, as
well as unreliable, especially in adversarial environments [16].
While distributed algorithms have been derived and applied to
coverage control, formation control, and consensus problems
[17], [18], decentralization in a persistent monitoring setting is
particularly challenging due to the time-varying nature of the
agent-target network and the fact that agents take actions de-
pending on interactions with the environment (targets) which
cannot be easily shared through the agent network.

In this paper, we address the question of whether it is
possible to develop decentralized controllers for multi-agent
dynamic optimization and, in particular, persistent monitoring
problems. More precisely, we view decentralization as a pro-
cess which aims to achieve the same performance as a central
controller by distributing functionality to the agents so that

2

each one acts based on local information or by communicating
with only a set of neighbors.

Our analysis builds on solutions of the one-dimensional
(1D) persistent monitoring problem which were shown [12]
to be parametric, i.e., the underlying optimal control problem
is reduced to one involving parametric optimization. In partic-
ular, the optimal solution is characterized by a finite number of
points where an agent switches direction, along with a dwell
time at each such point. In two-dimensional (2D) spaces, such
parametric representations for optimal agent trajectories have
been shown to no longer hold [9]. Nonetheless, by considering
parametric families of agent trajectories (e.g., ellipses, Lis-
sajous and Fourier curves, or interconnected linear segments)
optimal trajectories within these families can be obtained [9].
Agent-target interactions under the aforementioned parametric
controllers can be described by a hybrid dynamic system. This
enables the use of Infinitesimal Perturbation Analysis (IPA)
[19], [20] to determine on-line optimal parameters through
event-driven gradient descent algorithms. This approach ex-
ploits the event-driven nature of IPA to render it scalable in the
number of events (all of which are explicitly defined in Section
V) in the system and not its state space. Moreover, we will
show that the question of decentralization can be conveniently
reduced to one of event observability, i.e., whether an agent
can observe all the events it requires to evaluate its local IPA
gradient.

The contribution of this paper consists of identifying explicit
conditions under which the centralized solutions to the optimal
persistent monitoring problems (e.g., the ones studied in [9],
[12]) can be recovered without any performance degradation.
We will show that this is possible through “almost decentral-
ized” and entirely event-driven agent controllers. In contrast
to the previous 1D results in [21], this paper formulates the
problem in 2D, extends the IPA gradient-based algorithm, and
proves that conditions of the decentralization solution continue
to hold in 2D. In particular, each agent uses (i) its own local
information (to be precisely defined), (ii) information in the
form of observable events from agents that happen to be its
neighbors at the time such events occur, and (iii) a single
specific event type communicated by a non-neighbor agent
when it occurs. It is the latter that prevents a completely
decentralized control scheme and incurs a “price of decen-
tralization”. As we observe in simulations, ignoring such non-
local events often results in little loss of accuracy. In addition,
we develop such an “almost decentralized” algorithm which,
compared to the centralized solutions, significantly reduces
the information required for each agent in order to solve the
problem while yielding the same performance.

The paper is organized as follows. Section II formulates
persistent monitoring as an optimal control problem. Section
III presents a Hamiltonian analysis which characterizes the
optimal solution in terms of specifying a trajectory for each
agent. Section IV introduces the limited information model
needed for decentralization and Section V describes event-
driven IPA gradient estimation. In Section VI we present our
main results regarding the “price of decentralization” along
with a decentralized event-driven algorithm using IPA gradient
descent. Section VII provides simulation examples to illustrate

the proposed decentralization scheme. Section VIII concludes
the paper.

II. PROBLEM FORMULATION

We begin by generalizing the 1D persistent monitoring
problem formulation in [12] to a 2D setting.

Agent dynamics. We consider a team of N agents (indexed
by j) operating in a 2D mission space Ω ⊆ R2. The position
of an agent is denoted by sj(t) and follows the dynamics:

ṡj(t) = uj(t)

[
cos γj(t)
sin γj(t)

]
(1)

where uj(t) is the speed and γj(t) the direction. Without loss
of generality, the control input is scaled and bounded such
that ‖uj(t)‖ ≤ 1 and γj(t) ∈ [0, π). The initial state sj(0) of
every agent, j = 1, . . . , N , is assumed given and we do not
constrain the final state as long as the agent performance is
optimized.

Agent sensing model. In the persistent monitoring setting,
an agent senses the environment and detects events in its
vicinity. This detection/sensing ability is modeled by a func-
tion pj(x, sj(t)) that measures the probability that an event
at location x ∈ Ω is detected by agent j. We assume that
pj(x, sj) = 1 if x = sj , and that pj(x, sj(t)) is monotonically
non-increasing in the Euclidean distance ‖x − sj(t)‖, thus
capturing the reduced effectiveness of a sensor over its range.
We consider this range to be finite and denoted by rj . Although
our analysis is not affected by the precise sensing model
pj (x, sj(t)), we will limit ourselves for simplicity to a linear
decay model as follows:

pj(x, sj(t)) = max

{
0, 1− ‖x− sj(t)‖

rj

}
(2)

Since we are interested in how an agent j senses a target i
located at xi, we set pj(xi, sj(t)) ≡ pij(sj(t)). For N agents
sensing cooperatively, assuming detection independence, the
joint probability that target i is sensed by at least one agent
is captured by

Pi (s(t)) = 1−
N∏
j=1

(1− pij(sj(t))) (3)

where we set s(t) = [s1 (t) , . . . , sN (t)]>.

Fig. 1: A queueing model interpretation for P1.

3

Target model. We consider a finite set of targets at fixed
locations xi ∈ Ω, i = 1, . . . ,M . We associate with each target
i a state Ri(t). Since agents interact with targets, this state is
affected by the agent states s(t). Its dynamics have the form:

Ṙi(t) =

{
0 if Ri(t) = 0 and Ai ≤ BiPi (s(t))

Ai −BiPi (s(t)) otherwise
(4)

with a given initial condition Ri(0), i = 1, . . . ,M and
Bi > Ai > 0 to ensure a strict decrease in Ri(t) when
Pi(s(t)) = 1. The target value grows linearly when there
is no agent within its vicinity and decays in proportion to
the agent’s detection probability. In this case, Ri(t) measures
the uncertainty state of target i and the only other available
information about it is its location xi ∈ Ω. This model
has an intuitive queueing system interpretation as shown in
Fig. 1, i.e., Ri(t) is the time-varying “content” of a queue
(representing the uncertainty about the knowledge of the
target), with inflow rate Ai and agent-dependent outflow rate
BiPi (s(t)). This model applies, for example, to data centers
where Ri(t) captures the accumulated information requests to
be processed, or, in traffic networks where different locations
(e.g., intersections) need to be persistently monitored.

Under the model (4), our goal is to control the move-
ment of agents through u (t) = [u1 (t) , . . . , uN (t)]

> and
γ (t) = [γ1 (t) , . . . , γN (t)]

> so that the cumulative average
uncertainty over all targets i = 1, . . . ,M is minimized over a
finite time horizon T . The associated optimal control problem
is stated as follows:

P1 : min
u(t),γ(t)

J =
1

T

∫ T

0

M∑
i=1

Ri(t)dt (5)

subject to the agent dynamics (1), target uncertainty dynamics
(4), and the sensing model (2) and (3).

III. PROPERTIES OF THE OPTIMAL CONTROL SOLUTION

The 1D version of P1 was explicitly studied in [12]. Here,
we extend the Hamiltonian analysis to the 2D version. Define
the state vector x(t) = [R1(t), . . . , RM (t), sx1(t), sy1(t), . . . ,
sxN (t), syN (t)] and associated costate vector λ = [λ1(t), . . . ,
λM (t), λxs1(t), λys1(t), . . . , λxsN (t), λysN (t)]. Due to the discon-
tinuity in the dynamics of Ri(t) in (4), the optimal state
trajectory may contain a boundary arc over which Ri(t) = 0
for some i; otherwise, the state evolves in an interior arc. Using
(1) and (4), the Hamiltonian is

H(x,λ,u, γ) =
M∑
i=1

Ri(t) +
M∑
i=1

λi(t)Ṙi(t)

+
N∑
j=1

uj(t)
(
λxsj (t) cos γj(t) + λysj (t) sin γj(t)

) (6)

and a straightforward application of the Pontryagin Minimum
Principle implies that

‖u∗j (t)‖ =

{
1 if λxsj (t) cos γj(t) + λysj (t) sin γj(t) 6= 0

0 otherwise
(7)

Thus, each agent moves with maximum speed or dwells in
singular arcs that may exist. The detailed analysis is similar
to the one presented in [9], [12] and is, therefore, omitted here.

A complete solution of the optimal control problem P1 in-
volves solving a computationally intensive Two Point Bound-
ary Value Problem (TPBVP) which is generally intractable
and requires global information of all agents and targets.
However, based on the fact that ‖u∗j (t)‖ ∈ {1, 0}, it is clear
that the optimal solution can be reduced to determining (i)
the agent’s heading γ∗j (t) and (ii) possible dwell times when
the agent switches its control from ‖u∗j (t)‖ = 1 to 0. This
motivates us to explore solutions constrained to parameterized
trajectory families. In fact, in the 1D case studied in [12]
the optimal solution is indeed parametric. In the 2D case,
we consider trajectory families which may be parameterized
according to desirable properties and then seek to optimize
the trajectories within such families. Such desirable properties
include periodicity (so that every target is guaranteed to
be visited within the given time interval upper bound) and
smoothness (in applications where the agents are subject to
specific motion constraints). Therefore, each agent trajectory
sj(θj , t, sj,0) may be constrained to a specific parametric form
characterized by a vector θj ∈ Rp for a trajectory family
fully specified by p parameters (e.g., elliptical trajectories
where p = 5 which are considered in Section VII-B). Thus,
in general, we denote by J(θ) the parametric form of the
objective function, so that P1 becomes

min
θ

J(θ) =
1

T

∫ T

0

M∑
i=1

Ri(t;θ) dt (8)

where θ is a parameter vector that fully characterizes the agent
trajectory family of interest (e.g., the parameters that describe
a family of ellipses or Fourier curves).

Under such parameterizations, the agent and target dynam-
ics in (1) and (4) define a hybrid system. Letting τk(θ) denote
the occurrence time of the k-th event that switches the agent
or target dynamics in this hybrid system operating under a
parameter θ, we can rewrite (8) as

min
θ

J(θ) =
1

T

K∑
k=0

∫ τk+1(θ)

τk(θ)

M∑
i=1

Ri(t;θ) dt (9)

where K denotes the total number of events. This problem
can be solved using standard gradient-based algorithms which
rely on the gradient ∇J(θ). The hybrid nature of this system
allows us to use Infinitesimal Perturbation Analysis (IPA) [19]
to determine the gradient online in an event-driven fashion.
Then we can optimize the objective function by selecting an
initial parameter setting θ0 and iteratively adjusting its value
through a gradient-based algorithm, as further described in
Section VI.

Thus far, solutions to such persistent monitoring problems
have been developed in a purely centralized manner, e.g., [12].
The rest of this paper explores the possibility for decentralizing
such solutions, i.e., limiting each agent to information that is
only locally available while maintaining the same performance
as a centralized controller. If that is not always possible, our
goal is to determine conditions under which it is and quantify

4

the “price of decentralization” in the sense of performance
degradation that results from decentralized solutions to prob-
lem (9).

IV. LIMITED INFORMATION MODEL FOR
DECENTRALIZATION

In order to properly define a decentralized persistent moni-
toring problem, we first review the limited information model
introduced in [21]. In our model, an agent is capable of
observing information within its sensing range, specifically
the target state Ri(t) when ‖xi − sj(t)‖ ≤ rj . We restrict
the observations to rj , since pij(sj(t)) = 0 outside this range
as in (2). Moreover, each agent can communicate with a set
of “neighboring” agents to acquire information such as their
positions, speeds, and the states of targets which are within
these neighbors’ sensing ranges. In contrast to traditional
multi-agent systems modeled exclusively through a network
of agents, the persistent monitoring network includes both
agents and targets. Accordingly, we revisit the concept of
“neighborhood” and account for the fact that neighborhoods
are time-varying.

Fig. 2: Agent-target network. Red triangles are targets and blue
squares are agents. Blue lines indicate the connections of neighboring
agents of an agent and red lines indicate the connections of neigh-
boring targets of an agent.

Agents have two types of neighbors: nearby agents and
nearby targets.

Definition 1. The agent neighborhood of agent j is the set
Aj(t) = {k : ‖sk(t)− sj(t)‖ ≤ rc, k 6= j, k = 1, . . . , N}.

This is a conventional definition of neighbors in multi-agent
systems, where rc is a communication range, but we point out
that it is time-dependent since agents are generally moving.
As an example, in Fig. 2, A1 = {A2, A3, A5}.

Definition 2. The target neighborhood of agent j is the set
Tj(t) = {i : ‖xi − sj(t)‖ ≤ rj , i = 1, . . . ,M}.

This includes all targets which are within agent j’s sensing
range. In the example of Fig. 2, T3 = {T1, T2, T3}. Assuming
the agents are homogeneous with a common sensing range r,
we require that rc ≥ 2r in order to establish communication
among agents that are sensing the same target. On the other
hand, the neighborhood of a target consists only of nearby
agents (we do not explicitly model any possible connectivity
among targets).

Definition 3. The agent neighborhood of target i is the set
Bi(t) = {j : ‖sj(t)− xi‖ ≤ rj , j = 1, . . . , N}.

This set captures all the neighbor agents of target i. In the
example of Fig. 2, B2 = {A1, A2, A3}.

We further define

Nij(t) = Bi(t) \ {j} (10)

to indicate the “collaborators” of agent j in sensing target i.
Note that Nij(t) = {k : k ∈ Aj(t) and k ∈ Bi(t)}, thus
capturing a neighbor of agent j and target i at the same time.

Using (10), the joint sensing probability in (3) can be
rewritten as:

Pi (s(t)) = 1− (1− pij(sj(t)))
∏

k∈Nij(t)

(1− pik(sk(t))) (11)

In our decentralization model, any agent j is allowed to
communicate with its neighboring agents in Aj(t). Therefore,
the local information of an agent is the union of the observa-
tions of agent j and the observations of agents k ∈ Aj(t). In
Sec. V, we will provide a precise definition of “information”
in terms of observable events such as “agent stops” or “target
switches dynamics”.

Returning to problem (9), if its solution is to be obtained
through gradient-based methods, then a decentralized approach
relies on the ability of an agent j to determine ∇jJ(θ), the
jth component of ∇J(θ), based only on the local information
available to it. As we will see next, the fact that the evaluation
of ∇jJ(θ) is entirely event-driven implies that this issue
reduces to the question of event observability: if every agent
j can observe all events required to evaluate ∇jJ(θ), then
decentralization is possible.

In order to carry out such an event observability analysis, in
the next section we will review the IPA event-driven gradient
approach, define all required events, and hence determine
explicit conditions under which ∇jJ(θ) can be determined
based only on those events local to agent j.

V. INFINITESIMAL PERTURBATION ANALYSIS

As mentioned in Sec. III, the parametric trajectories are
selected from a family {sj(θj , t, sj,0), j = 1, . . . , N} where
agents are subject to dynamics (1) and targets to dynamics (4).
IPA presented in [19] specifies how changes of the parameter
θ influence each agent state sj(θj , t, sj,0) and target state
Ri(t;θ), as well as event times τk(θ), k = 1, 2, . . . ,K , and,
ultimately the objective function (9).

It is shown in [19] that in a hybrid system with dynam-
ics ẋ = fk(x, θ, t), k = 0, 1, . . ., the trajectory of the
state’s partial derivative with respect to θ over an interval
[τk(θ), τk+1(θ)) can be written as

d

dt
x′(t) =

∂fk(t)

∂x
x′(t) +

∂fk(t)

∂θ
(12)

for t ∈ [τk, τk+1) with boundary condition:

x′(τ+
k) = x′(τ−k) + [fk−1(τ−k)− fk(τ+

k)]τ ′k (13)

for k = 1, ...,K . We use the Jacobian matrix notation:
x′(t) ≡ ∂x(θ,t)

∂θ and τ ′k ≡
∂τk(θ)
∂θ , for all state and event time

5

derivatives. For convenience, we set τ0 = 0 and τK+1 = T . In
order to complete the evaluation of x′(τ+

k) in (13), we need to
determine τ ′k. If the event at τk is exogenous (i.e., independent
of θ), τ ′k = 0. However, if the event is endogenous, there exists
a continuously differentiable function gk : Rn ×Θ→ R such
that τk = min{t > τk−1 : gk (x (θ, t) , θ) = 0} and, as
shown in [19],

τ ′k = −[
∂gk
∂x

fk(τ−k)]−1(
∂gk
∂θ

+
∂gk
∂x

x′(τ−k)) (14)

as long as ∂gk
∂x fk(τ−k) 6= 0.

We now apply the IPA scheme to our setting in (9), and
note that the gradient for each agent j denoted by ∇jJ(θ) =

[∂J(θ,w)
∂θj

]> is

∇jJ(θ) =
1

T

M∑
i=1

K∑
k=0

∫ τk+1(θ)

τk(θ)

∇jRi(t;θ) dt (15)

IPA gradient of ∇jRi(t;θ). We begin by deriving the
gradient within any inter-event interval [τk, τk+1) over which
the dynamics of both agent j and target i remain unchanged.
The form of this gradient will facilitate the definition of
all events at which (13)-(14) will be applied. For notational
simplicity, we will henceforth write Ri(t) instead of Ri(t;θ).

Observing that the first term in (12) vanishes since fk(t) =

Ṙi(t) is not an explicit function of Ri(t), we get d
dt
∂Ri(t)
∂θj

=
∂Ṙi(t)
∂θj

. Then, in view of (4), we have for all t ∈ [τk, τk+1):

∂Ri(t)

∂θj
=
∂Ri(τ

+
k)

∂θj
−

{
0 if Ri(t) = 0, Ai ≤ BiPi(s(t))
Bi
∫ t
τk

∂Pi(s(τ))
∂θj

dτ otherwise
(16)

The integrand in (16) is obtained from (3):

∂Pi(s(τ))

∂θj
=
∂pij(sj(τ))

∂θj

∏
g 6=j

[1− pig (sg(τ))] (17)

The first term on the right-hand-side of (17) can be obtained
from

∂pij (sj(τ))

∂θj
=


∂pij (sj(τ))

∂dij

∂dij
∂sj

∂sj
∂θj

if dij(t) ≤ rj

0 if dij(t) > rj

(18)

where dij(t) is the distance between target i and agent j:

dij(t) =
√

(sxj (t)− xxi)2 + (syj (t)− xyi)2 (19)

When dij(t) ≤ rj , we have

∂pij (sj(τ))

∂θj
=
∂pij (sj(τ))

∂dij

1

dij

((
sxj − xxi

) ∂sxj
∂θj

+
(
syj − x

y
i

) ∂syj
∂θj

) (20)

Note that the term ∂pij(τ)
∂θj

in (17) depends exclusively on
information local to agent j as seen in (18).

As for the product term in (17), it captures the contributions
from all agents other than j in monitoring target i. Using
Nij(t) defined in (10), it can be restricted to this set, since for

any agent n 6∈ Nij(t), we have pin(sn(t)) = 0. For notational
simplicity, we define this term as

Gij(t) ≡
∏

n∈Nij(t)

[1− pin (sn(t))] (21)

which can be interpreted as a “collaboration factor” involving
all agents in Nij(t). Clearly, this is affected by any agent
leaving or joining the neighbor set Nij(t), which motivates
the definition of an associated event, as detailed below.

Using (21) in (16), we obtain the derivative ∂Ri(t)
∂θj

, i =

1, . . . ,M , over any inter-event interval [τk, τk+1):

∂Ri(t)

∂θj
=
∂Ri(τ

+
k)

∂θj
−


0 if Ri(t) = 0, Ai ≤ BiPi(s(t))
Bi
∫ t
τk

∂pij(sj(τ))
∂sj

∂sj(τ)
∂θj

Gij(τ) dτ

otherwise
(22)

Hybrid system event definition. We are now in a position
to define as “events” all switches which can result in changes
in the derivatives in (22). These switches may occur as follows:
(i) Type I events: Ri(t) switches from a positive value to 0
or vice versa.
(ii) Type II events: some pin(sn(t)) switches from a positive
value to 0 or vice versa; this is equivalent to a change in sign
of (din(t) − rn) in (2) from non-positive to positive or vice
versa. Such events can have two effects. First, if n ∈ Nij(t), it
affects the set Nij(t) because of the addition or removal of an
agent from this neighbor set in (21), hence affecting Gij(τ)
in (22). Second, if n = j, recalling (18), this event affects
∂pij(sj(τ))

∂dij
through (2), hence also ∂pij(sj(τ))

∂θj
in (22).

(iii) Type III events: Any agent switches its control and causes
a discontinuity in uj(t). Such events affect ∂sj

∂θj
in (22).

These three event types are summarized in Table I. Observe
that only event types I and III directly affect the dynamics of
the corresponding target or agent. Type II events do not change
the system dynamics but still may affect the derivative values
in (22). In what follows, we consider each of the event types
and its effect on the IPA derivatives (22) through (13)-(14).

Type I events: switches in target state Ri(t). Referring to
(4), when Ri(t) either reaches zero (which can only happen
if Ai < BiPi(s(t)) based on (4)) or leaves zero, the IPA
derivative switches between the two branches in (22). To
eliminate the pathological case where Ri(t) hits zero and
leaves immediately, we make the following assumption to
ensure that Ri(t) = 0 for a finite amount of time.

Assumption 1. If Ri(t−0) > 0 and Ri(t0) = 0 at t0 ∈ (0, T),
there exists an ε > 0 such that Ri(t) = 0 for t ∈ [t0, t0 + ε).

TABLE I: Event Definition

Name Description Type
ρ0i Ri(t) hits 0 I
ρ+i Ri(t) leaves 0 I
π0
ij pij(sj(t)) hits 0 II
π+
ij pij(sj(t)) leaves 0 II
νj uj(t) encounters a discontinuous switch III

Note: events in the table include all i = 1, . . . ,M and j = 1, . . . , N

6

We denote the event when Ri(t) reaches zero by ρ0
i and

the event when it leaves 0 as ρ+
i for all i = 1, . . . ,M

(see Table I). When such events occur, the dynamics of
sj(t) in (1) remain unchanged, so it follows from (13) that
∇jsj(τ−k) = ∇jsj(τ+

k). However, the target dynamics switch
between Ṙi = Ai − BiPi(s(t)) and Ṙi = 0 and cause
discontinuities in ∇jRi(t) as follows.

Event ρ0
i : This is an endogenous event because its occur-

rence depends on the parameter θ which dictates switches
in s(t). We first evaluate τ ′k from (14) with gk(Ri(t), t) =
Ri(t) = 0 to get

τ ′k = −
∇jRi(τ−k)

Ai −BiPi(s(τ−k))
for all j (23)

and then apply (13) to obtain

∇jRi(τ+
k) = ∇jRi(τ−k) +

[
Ai −BiPi(s(τ−k))− 0

]
τ ′k (24)

Combining (23) and (24), we get

∇jRi(τ+
k) = 0 if event ρ0

i occurs at τk (25)

Event ρ+
i : This event causes a transition from Ṙi(t) = 0,

t < τk to Ṙi(t) = Ai − BiPi(s(t)) > 0, t ≥ τk. It is easy
to see that the dynamics in both (1) and (4) are continuous
when this happens and since Ai − BiPi(s(τk)) = 0 we have
Ṙi(τ

−
k) = Ṙi(τ

+
k) = 0. It follows from (13) that ∇jRi(τ+

k) =
∇jRi(τ−k). Moreover, since Ri(t) = 0, Ṙi(t) = 0, t < τk,
we have ∇jRi(τ−k) = 0 and we get

∇jRi(τ+
k) = 0 if event ρ+

i occurs at τk (26)

Remark 1: Combining (25) and (26) with (22), we conclude
that a ρ0

i event occurring at t = τk resets the value of ∇jRi(t)
to ∇jRi(t) = 0 for all j = 1, . . . , N regardless of the value
∇jRi(τ−k) and the state of the agents. Moreover, Ri(t) = 0
and ∇jRi(t) = 0 for t > τk until the next ρ+

i event occurs.
Type II events: switches in agent sensing function

pij(sj(t)). These events trigger a switch in pij(sj(t)) from
some positive value to 0 or vice versa. We denote the former
event as π0

ij and the latter as π+
ij . The dynamics in both (1) and

(4) remain unchanged when this happens (due to the continuity
of the sensing function pij (sj(t))) and it follows from (13)
that ∇jRi(τ+

k) = ∇jRi(τ−k) and ∇jsj(τ+
k) = ∇jsj(τ−k).

Type III events: switches in agent control uj(t) ∈
{−1, 0, 1}. We denote these events by νj . Referring to (1),
they cause a discontinuous switch in the optimal control values
‖uj(t)‖ ∈ {0, 1} from one to the other. This in turn may
cause discontinuities in ∇jsj(t) at t = τk which affects (20)
and hence (22). The precise expressions for these derivatives
depend on the the specific parameterization {sj(θj , t, sj,0),
j = 1, . . . , N}. We will provide in Section VII-A these expres-
sions for the 1D case where this parameterization coincides
with optimal solutions. For the 2D case, we will provide in
Section VII-B the analysis corresponding to the family of
elliptical agent trajectories.

Remark 2: Observe that ∇jsj(t) is independent of the
states of other agents k 6= j for which ∇ksj(t) = 0.
This follows from the fact that agents can fully control their
movement independent of other agents, and ∇jsj(t) only
depends on parameter and control values known to agent j.

Remark 3: It is clear from the analysis thus far, that the
IPA-based gradient is event-driven, since all gradient updates
occur exclusively at events times τk(θ), k = 1, 2, . . . ,K . Thus,
this approach scales linearly with the number of events as
opposed to methods like dynamic programming which would
scale exponentially with the number of agents and targets.

VI. DECENTRALIZED EVENT-DRIVEN OPTIMIZATION

The set of all events defined in the previous section and
summarized in Table I is denoted by E . Furthermore, we define
the set of all type I and II events as the target event set ET
(these events pertain to targets) and the set of all type III events
as the agent event set EA (these events pertain to agents). The
subset of EA that contains only events related to agent j is
denoted by EAj . Similarly, the subset of ET that contains only
events related to target i is denoted by ETi . We then have:

Definition 4. The local event set of any agent j is the union
of agent events EAj and target events ETi for all i ∈ Tj(t):

Ej(t) = EAj
⋃

i∈Tj(t)

ETi (27)

Thus, Ej(t) consists of events directly observable by agent
j, either because they are entirely under its control or because
they are related to targets which are within its sensing range.
In contrast, the global event set for agent j includes all
non-neighboring target events in ETi for all i 6∈ Tj and non-
neighboring agent events EAk , for all k 6∈ Aj . Based on the
limited information model of Section IV, we define the local
information set of agent j, denoted by Ij(t), as follows:

Definition 5. The local information set of any agent j is the
union of its local event set and those of its neighbors in Nij(t)
for all i ∈ Tj(t):

Ij(t) = Ej(t)
⋃

k∈Nij(t),i∈Tj(t)

Ek(t). (28)

This set includes all local information necessary for agent
j to evaluate the IPA gradient ∇jRi(t) for i ∈ Tj(t). Observe
that agent j does not need to communicate with all its
neighbors in Aj(t), but only a subset which includes those
neighbors who are sharing the same target(s) as j at time t.

Our main decentralization result is presented in Theorem 1
where we show that each agent can evaluate the gradient of the
objective function in (9) with respect to its own controllable
parameters θj based on its local information set (28) and
only one non-local event. We begin with the following lemma
which asserts that the gradient ∇jRi(t) takes a simple form
as long as i /∈ Tj(t), i.e., while target i cannot be sensed by
agent j.

Lemma 1. Let t ∈ [t1, t2] such that i 6∈ Tj(t). Then,
1) If Ri(t) > 0 for all t ∈ [t1, t2], then

∇jRi(t) = ∇jRi(t+1) (29)

2) If there exists an event ρ0
i at τ ∈ (t1, t2), then

∇jRi(t) =

{
∇jRi(t+1) t ∈ [t1, τ)

0 t ∈ [τ, t2]
(30)

7

Proof: By the definition of Tj(t), when i 6∈ Tj(t) we have
‖sj(t) − xi‖ > rj and ∂pij(sj(t))

∂sj
= 0 for all t ∈ [t1, t2]. If

Ri(t) > 0 for all t ∈ [t1, t2], it follows directly from (22) that
∇jRi(t) = ∇jRi(t+1). Otherwise, there exists an event ρ0

i at
time τ ∈ (t1, t2) which results in Ri(τ) = 0. The previous
argument applies to (t1, τ) giving ∇jRi(t) = ∇jRi(t+1) for
t ∈ [t1, τ). According to (25), event ρ0

i resets the gradient to
∇jRi(τ) = 0. Subsequently, over [τ, t2], regardless of which
of the cases in (22) applies, it holds that ∇jRi(t) = 0. �

Corollary 1. ∇jRi(t) is independent of events ρ+
i for i 6∈

Tj(t).

Proof: Note that the ρ+
i event can only occur after a ρ0

i

event. The proof is self-evident following Lemma 1. We
have ∇jRi(t) = 0 for t > τ until target i joins the target
neighborhood of agent j. Therefore, any non-local ρ+

i event
that may occur cannot affect ∇jRi(t). �

Lemma 1 and its Corollary imply that agent j does not need
any knowledge of non-neighboring target events except for ρ0

i

with i 6∈ Tj(t) in order to evaluate its gradient.
We can further establish that the gradient ∇jJ(θ) along the

agent trajectory is affected by only local events in Ij(t) and
a small subset of global events.

Lemma 2. A sufficient event set to evaluate ∇jJ(θ) is Ij(t)∪
{ρ0
i : i 6∈ Tj(t)}.

Proof: Let τk be any event time when Tj(τk) is altered,
i.e., a new target is added to the target neighborhood of agent
j or one is removed from it. From Lemma 1, if i 6∈ Tj(t),
then either ∇jRi(t) = ∇jRi(τk) and remains constant at this
value or ∇jRi(t) = 0, depending on whether an event ρ0

i

takes place. It follows from (15) that the objective function
gradient can be rewritten as

∇jJ(θ) =
1

T

K∑
k=0

M∑
i=1

∫ τk+1

τk

∇jRi(t) dt

=
1

T

K∑
k=0

(∑
i6∈Tj(τ+

k)

∇jRi(τk)(τk+1 − τk)+
∑

i∈Tj(τ+
k)

∫ τk+1

τk

∇jRi(t) dt
)

(31)

The value of ∇jRi(τk) in the first term of (31) depends on
{ρ0
i : i 6∈ Tj(t)} which is a subset of events non-local to

agent j. The second term of (31) depends only on the local
information set events Ij(t) since target i ∈ Tj(t) is local to
agent j. Therefore, Ij(t) is a sufficient event set to evaluate
∇jJ(θ). �

Remark 4: Although an event ρ0
i for i 6∈ Tj(t) is non-local

to agent j, it must be observed by at least one agent k 6= j
such that i ∈ Tk(t). This is because ρ0

i can only take place at
some time τk if one or more agents in its neighborhood cause
a transition from Ri(τ

−
k) > 0 to Ri(τk) = 0 in (4). Therefore,

such events can be communicated to agent j through the agent
network, possibly with some delay. The implication of Lemma
2 is an “almost decentralized” algorithm in which each agent
optimizes its trajectory through the gradient ∇jJ(θ) using
only agent local information; the only exception is occasional

target uncertainty depletion events {ρ0
i : i 6∈ Tj(t)} transmitted

to it from other agents.
Returning to the parametric optimization problem (8), a

centralized gradient descent algorithm is

θl+1 = θl − αl∇jJ
(
θl
)

(32)

where l = 0, 1, . . . is the iteration index and αl is a diminishing
step-size sequence satisfying

∑∞
l=0 α

l = ∞, liml→∞ αl = 0.
A decentralized version of (32) by each agent is

θl+1
j = θlj − αl∇j Ĵ(θl) (33)

where ∇j Ĵ(·) is the estimates gradient of agent j based on
the limited information provided in Lemma 2.

Theorem 1. Any centralized solution defined in (8) through
(32) can be recovered by (33) in which each agent j optimizes
its trajectory given the following:

1) Initial parameters θ0
j ;

2) The local information set Ij(t);
3) The subset of the global information set {ρ0

i , i 6∈ Tj(t)}.

Proof: The proof is immediate from Lemma 2. ∇jJ (θ) =
∇j Ĵ (θ) can be shown given conditions 2 and 3. Condition 1
provides initial parameters for each agent trajectory in order
to execute (32) and (33). �

Note that Theorem 1 involves only a small subset of global
events. As seen in our simulation results in the next section,
ignoring such non-local events will affect the cooperation
among agents and increase the final cost. Thus, it can be
interpreted as the “price of decentralization” caused by the
requirement to limit agent actions to only local information. It
is important to point out that the method of Theorem 1 relies
on the gradient ∇jRi(t) for i 6∈ Tj(t) and not on Ri(t). In
fact, there is no attempt by agent j to reconstruct or estimate
the states of targets i 6∈ Tj(t); the only information from such
targets is provided through the occasional ρ0

i events.

VII. SIMULATION RESULTS

A. Decentralized optimization in 1D spaces

Referring to [12], in 1D spaces the optimal control structure
is fully characterized by u∗j (t) ∈ {1, 0,−1}. It follows that
we can parameterize an optimal trajectory so as to determine
(i) control switching points in [0, L] ⊆ R, where an agent
switches its control from ±1 to ∓1 or possibly 0 and (ii) cor-
responding non-negative dwell times so that the cost in (5) is
minimized. In other words, the optimal trajectory of each agent
j is characterized by two parameter vectors: switching points
θj = [θj1, θj2...θjΓ] and dwell times wj = [wj1, wj2...wjΓ′]
where Γ and Γ′ are finite and can be computed by the given
time horizon T .

Simulation example. Three homogeneous agents are al-
located to persistently monitor seven targets in a 1D mission
space for T = 300 seconds. The targets are located at xi = 5i
for i = 1, . . . , 7, as shown by dotted lines in Fig. 3. The
uncertainty dynamics in (4) are defined by the parameters
Ai = 1, Bi = 5, with initial values Ri(0) = 1 for i = 1, . . . , 7.
Each agent has a sensing range of r = 3 and is initialized with
sj(0) = 0.5(j − 1), uj(0) = 1, θ0

1 = [5, 10, 15, 10, 5, . . .],

8

θ0
2 = [15, 20, 25, 20, 15, . . .], θ0

3 = [25, 30, 35, 30, 25, . . .], and
w0
j = [0.5, 0.5, 0.5, . . .] for all j = 1, 2, 3. The time step in the

simulation is 0.05 seconds and the step-size used for the gradi-
ent descent in (33) is 1/n where n is the iteration index. Note
that the finite size of this time step ensures that Assumption 1
always holds. Results of the “almost decentralized” method in
Theorem 1 are shown in Fig. 3. The plot depicts the optimal
trajectories of the three agents determined after 200 iterations
of (33). All three agents are moving through periodic cycles
dwelling for a short time at each target before moving to the
next. The final cost is J∗ = 37.38. The exact same results
(not shown here) as in Fig. 3 were also obtained through the
centralized scheme (32) where all information is available to
every agent. This confirms the effectiveness of the method in
Theorem 1.

As pointed out earlier, the method of Theorem 1 does not
involve any knowledge by agent j of the states of targets i 6∈
Tj(t). This is illustrated in Fig. 4 which shows (in blue) the
fraction of time that agent 1 has any information on the state
of target 3 because it happens that 3 ∈ T1(t). The rest of the
time (shown in red) agent 1 is unable to accurately estimate the
state of this target, but such information is unnecessary. The
agent only needs a small subset of its non-local information,
as illustrated by the green dots in Fig. 4.

Fig. 3: “Almost decentralized” optimization using Theorem 1. Op-
timal agent trajectories with final cost J? = 37.38.

Fig. 4: Red curve: R3(t), the state of target 3. Blue segments:
R3(t) known to agent 1 when its trajectory includes target 3 in its
neighborhood. Green dots: instants when agent 1 receives non-local
events ρ03.

Using the same environment as above and with agents
starting with the same initial trajectories, we eliminate the
non-local information (condition 3 in Theorem 1) so that each

agent calculates its own IPA-based gradient using only local
information in the set Ij(t). Figure 5 shows the results after
200 iterations of (33). Note that without non-local information,
each agent tends to spend more time dwelling on the local
targets instead of better coordinating with the other agents.
Therefore, the final cost after convergence increases from
37.38 to 41.66 (thus, the “price of decentralization” here
is 4.28). Even though the gradient estimate for agent j is
no longer accurate without the ρ0

i event information when
i 6∈ Tj(t), the cost still decreases and converges to a value
near the optimal, illustrating the robustness of the IPA-based
gradient descent method.

Fig. 5: Fully decentralized optimization without any non-local
information. Agent trajectories after decentralized optimization with
final cost J? = 41.66.

B. Decentralized optimization in 2D spaces

Motivated by the attractive properties of smooth and pe-
riodic trajectories, we choose the family of elliptical agent
trajectories where the agent j trajectory is specified by the
parameter set

Θj = [Xj , Yj , aj , bj , ϕj]

such that an agent’s position sj(t) = [sxj (t), syj (t)]> follows
the general parametric form of an ellipse:

sxj (t) = Xj + aj cos ρj(t) cosϕj − bj sin ρj(t) sinϕj

syj (t) = Yj + aj cos ρj(t) sinϕj + bj sin ρj(t) cosϕj
(34)

where [Xj , Yj] is the center of the ellipse, aj , bj are its major
and minor axis respectively, ϕj ∈ [0, π) is the orientation
(the angle between the x axis and the major ellipse axis), and
ρj ∈ [0, 2π) is the eccentric anomaly of the ellipse (the phase
indicates the position of the agent moving along the ellipse).

The Hamiltonian analysis in Section III shows agents should
move with constant maximal speed 1 on the ellipse, hence,(
ṡxj
)2

+
(
ṡyj
)2

= 1. The eccentric anomaly then satisfies

ρ̇j(t) =
(
a2
j sin2 ρj(t) + b2j cos2 ρj(t)

)−1/2 (35)

with a given initial phase position ρj(0).

9

The IPA-based gradient follows the analysis in Sec. V, in
particular (22) in between events. Given the parametric form
of ellipses, the calculation of ∂sj(t)

∂Θj
is as follows:

∂sxj
∂Xj

= 1,
∂syj
∂Xj

= 0,
∂sxj
∂Yj

= 0,
∂syj
∂Yj

= 1,

∂sxj
∂aj

= cos ρj(t) cosϕj ,
∂syj
∂aj

= cos ρj(t) sinϕj ,

∂sxj
∂bj

= − sin ρj(t) sinϕj ,
∂syj
∂bj

= sin ρj(t) cosϕj ,

∂sxj
∂ϕj

= −aj cos ρj(t) sinϕj − bj sin ρj(t) cosϕj ,

∂syj
∂ϕj

= aj cos ρj(t) cosϕj − bj sin ρj(t) sinϕj

(36)

and ρj(t) can be calculated through a forward integration of
(35). In some cases, we may have uj(t) = 0 for some t
depending on the parametric description selected (e.g., agent
j stops at specified points on the trajectory for some dwell
time to be optimally determined). We have

ρ̇j(t) =

{(
a2
j sin2 ρj(t) + b2j cos2 ρj(t)

)−1/2
if ‖uj(t)‖ = 1

0 if ‖uj(t)‖ = 0
(37)

Simulation example. Two homogeneous agents are allo-
cated to persistently monitor eight targets in a 2D mission
space for T = 150 seconds. Targets are located at [5, 5], [10, 5],
[15, 5], [5, 10], [10, 10], [15, 10], [5, 15], [10, 15], [15, 15]. The
target uncertainty dynamics in (4) are defined by the param-
eters Ai = 1.5, Bi = 10, with initial values Ri(0) = 1 for
i = 1, . . . , 8. Each agent has a sensing range of r = 5 and is
initialized with parameters θ0

1 = [5.00, 5.00, 6.50, 5.00, 0, 0],
θ0

2 = [15.00, 15.00, 6.50, 5.00, 1.57, 0]. The time step is 0.05
seconds and the step-size used for the gradient descent in (33)
is 1/n where n is the iteration index. For simplicity, we set all
dwell times to zero for all agents. The “almost decentralized”
method in Theorem 1 gives the results shown in Fig. 6. The
top plots show the initial trajectories of the two agents and
the optimal trajectories determined after 300 iterations of (33).
The bottom plot shows the overall cost J(θ) as a function of
iteration number. The final cost is J∗ = 85.59. The exact
same results (not shown here) as in Fig. 6 were also obtained
through the centralized scheme (32) where all information is
available to both agents.

Next we eliminate the non-local information (condition 3
in Theorem 1). Figure 8 shows the results after 300 iterations
of (33). Without non-local information, agents tend to cover
more targets instead of better coordinating with the other
agents. Therefore, the final cost after convergence increases
from 85.59 to 92.56 (the “price of decentralization” here is
6.97). Even though the gradient estimate for agent j is no
longer as accurate as the centralized case without the ρ0

i events
when i 6∈ Tj(t), the cost decreases and once again converges
to a local optimal.

The running times of the almost-decentralized result are 0.4
seconds per iteration for both the 1D and the 2D cases on a
MacBook Pro 2016 2.9 GHz Dual-Core Intel Core i5 using

Fig. 6: “Almost decentralized” optimization using Theorem 1. Top
left plot: initial agent trajectories: agent 1 in red and agent 2 in green.
Top right plot: optimal elliptical trajectories. Bottom plot: cost as a
function of number of iterations with J? = 85.59.

Fig. 7: The state of target R2(t) at (10, 5). Blue segments: R2(t)

known to agent 1 when target 2 is in its neighborhood. Green dots:
instants when agent 1 receives non-local events ρ02.

MATLAB. The computational complexity does not increase
dramatically from 1D to 2D as the underlying IPA-based
gradient calculation scales in the number of events and not
the state space. Comparing the results in Fig. 6 and Fig. 8,
we can see that the (non-local) target depletion events ρ0

i

for i = 1, . . . ,M have a more significant effect towards
agent performance compared to 1D cases. Moreover, the result
obtained using Theorem 1 does not involve any knowledge by
agent j of the states of targets i 6∈ Tj(t) as shown in Fig. 7.
The blue segments show the time that agent 1 has information
on the state of target 2 because it happens that 2 ∈ T1(t).
The rest of the time (shown in red) agent 1 is unable to
accurately estimate the state of this target, but such information
is unnecessary. As illustrated by the green dots, the agent only
needs a small subset of its non-local information.

Finally, laboratory-based implementations with proof-of-
concept experiments of our persistent monitoring algorithms
can be found in [22], [23].

10

Fig. 8: Fully decentralized optimization without any non-local infor-
mation. Top left plot: initial agent trajectories. Top right plot: optimal
elliptical trajectories. Bottom plot: cost as a function of number of
iterations with J? = 92.56.

VIII. CONCLUSIONS AND FUTURE WORK

We have shown that an optimal centralized solution of the
persistent monitoring problem can be recovered by an event-
driven “almost decentralized” algorithm which significantly
reduces communication costs while yielding the same perfor-
mance. In particular, we have shown that the ability to decen-
tralize the solution is reduced to one of event observability,
i.e., whether an agent can observe all events it requires to
evaluate its local objective function event-driven IPA gradient.
In addition, this analysis allows us to quantify the “price of de-
centralization” by explicitly measuring the loss in performance
when some of the events required for this evaluation are not
locally available. Our analysis of IPA gradient applies to any
2D-trajectories as long as these trajectories have a parametric
form and the number of parameters is finite. Ongoing research
is to adopt this decentralized parameterization framework to
different objective functions (e.g., the covariance of target
values) and to improve the algorithm developed by handling
communication delays.

REFERENCES

[1] N. E. Leonard, D. A. Paley, R. E. Davis, D. M. Fratantoni, F. Lekien,
and F. Zhang, “Coordinated control of an underwater glider fleet in an
adaptive ocean sampling field experiment in monterey bay,” Journal of
Field Robotics, vol. 27, no. 6, pp. 718–740, 2010.

[2] H. Choset, “Coverage for robotics–a survey of recent results,” Annals
of mathematics and artificial intelligence, vol. 31, no. 1-4, pp. 113–126,
2001.

[3] N. Michael, E. Stump, and K. Mohta, “Persistent surveillance with a
team of mavs,” in Proc. IEEE/RSJ Intl. Conf. Intelligent Robots Systems,
2011, pp. 2708–2714.

[4] S. L. Smith, M. Schwager, and D. Rus, “Persistent monitoring of
changing environments using a robot with limited range sensing,” in
Proc. IEEE Intl. Conf. on Robotics and Automation, 2011, pp. 5448–
5455.

[5] J. Yu, S. Karaman, and D. Rus, “Persistent monitoring of events with
stochastic arrivals at multiple stations,” IEEE Trans. on Robotics, vol. 31,
no. 3, pp. 521–535, 2015.

[6] S. K. K. Hari, S. Rathinam, S. Darbha, K. Kalyanam, S. G. Manyam,
and D. Casbeer, “The generalized persistent monitoring problem,” in
Proc. of American Control Conference, 2019, pp. 2783–2788.

[7] V. A. Huynh, J. J. Enright, and E. Frazzoli, “Persistent patrol with
limited-range on-board sensors,” in Proc. IEEE Conf. on Decision and
Control, 2010, pp. 7661–7668.

[8] S. L. Smith, M. Schwager, and D. Rus, “Persistent Robotic Tasks:
Monitoring and Sweeping in Changing Environments,” IEEE Trans. on
Robotics, vol. 28, no. 2, pp. 410–426, 2012.

[9] X. Lin and C. G. Cassandras, “An optimal control approach to the multi-
agent persistent monitoring problem in two-dimensional spaces,” IEEE
Trans. on Autom. Contr., vol. 60, no. 6, pp. 1659–1664, 2015.

[10] E. Stump and N. Michael, “Multi-robot persistent surveillance planning
as a vehicle routing problem,” in Proc. IEEE Conf. on Automation
Science and Engineering, 2011, pp. 569–575.

[11] N. Rezazadeh and S. S. Kia, “A sub-modular receding horizon approach
to persistent monitoring for a group of mobile agents over an urban area,”
IFAC-PapersOnLine, vol. 52, no. 20, pp. 217–222, 2019.

[12] N. Zhou, X. Yu, S. B. Andersson, and C. G. Cassandras, “Optimal event-
driven multiagent persistent monitoring of a finite set of data sources,”
IEEE Trans. on Autom. Control, vol. 63, no. 12, pp. 4204–4217, 2018.

[13] X. Lan and M. Schwager, “Planning periodic persistent monitoring
trajectories for sensing robots in gaussian random fields,” in Proc. IEEE
Intl. Conf. on Robotics and Automation, 2013, pp. 2415–2420.

[14] K. Leahy, D. Zhou, C.-I. Vasile, K. Oikonomopoulos, M. Schwager, and
C. Belta, “Provably correct persistent surveillance for unmanned aerial
vehicles subject to charging constraints,” in Experimental Robotics.
Springer, 2016, pp. 605–619.

[15] C. Song, L. Liu, G. Feng, and S. Xu, “Optimal control for multi-agent
persistent monitoring,” Automatica, vol. 50, no. 6, pp. 1663–1668, 2014.

[16] M. Zhong and C. G. Cassandras, “Asynchronous distributed optimization
with event-driven communication,” IEEE Trans. on Autom. Control,
vol. 55, no. 12, pp. 2735–2750, 2010.

[17] W. Ren and N. Sorensen, “Distributed coordination architecture for
multi-robot formation control,” Robotics and Autonomous Systems,
vol. 56, no. 4, pp. 324–333, 2008.

[18] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and coop-
eration in networked multi-agent systems,” Proceedings of the IEEE,
vol. 95, no. 1, pp. 215–233, 2007.

[19] C. G. Cassandras, Y. Wardi, C. G. Panayiotou, and C. Yao, “Perturbation
analysis and optimization of stochastic hybrid systems,” European
Journal of Control, vol. 16, no. 6, pp. 642–661, 2010.

[20] Y. Wardi, R. Adams, and B. Melamed, “A unified approach to infinites-
imal perturbation analysis in stochastic flow models: the single-stage
case,” IEEE Trans. on Autom. Contr., vol. 55, no. 1, pp. 89–103, 2010.

[21] N. Zhou, C. G. Cassandras, X. Yu, and S. B. Andersson, “Decentralized
event-driven algorithms for multi-agent persistent monitoring tasks,” in
Proc. IEEE Conference on Decision and Control, 2017, pp. 4064–4069.

[22] “https://www.bu.edu/codes/research/1246-2/persistent-monitoring/.”
[23] “https://www.bu.edu/codes/2019/05/07/smart-transportation-in-future-

cities/.”

Nan Zhou received the B.S. degree in control engi-
neering from Zhejiang University, Hangzhou, China,
in 2011, the M.S. degree in control engineering from
University of Chinese Academy of Sciences, Bei-
jing, China, in 2014, and the Ph.D. degree in systems
engineering from Boston University, Boston, MA,
USA, in 2019. He is currently a senior software
engineer at MathWorks Inc., Natick, MA, USA. His
research interests include control and optimization
of multi-agent systems with applications in robotics
and smart transportation.

https://www.bu.edu/codes/research/1246-2/persistent-monitoring/
https://www.bu.edu/codes/2019/05/07/smart-transportation-in-future-cities/
https://www.bu.edu/codes/2019/05/07/smart-transportation-in-future-cities/

11

Christos G. Cassandras (F’96) received the B.S.
degree in engineering and applied science from Yale
University, New Haven, CT, USA, in 1977, the
M.S.E.E. degree in electrical engineering from Stan-
ford University, Stanford, CA, USA, in 1978, and
the M.S. and Ph.D. degrees in applied mathematics
from Harvard University, Cambridge, MA, USA,
in 1979 and 1982, respectively. He was with ITP
Boston, Inc., Cambridge, from 1982 to 1984, where
he was involved in the design of automated man-
ufacturing systems. From 1984 to 1996, he was a

faculty member with the Department of Electrical and Computer Engineering,
University of Massachusetts Amherst, Amherst, MA, USA. He is currently
a Distinguished Professor of Engineering with Boston University, Brookline,
MA, USA, the Head of the Division of Systems Engineering, and a Professor
of Electrical and Computer Engineering. He serves on several editorial boards
and has been a Guest Editor for various journals. He specializes in the areas
of discrete event and hybrid systems, cooperative control, stochastic opti-
mization, and computer simulation, with applications to computer and sensor
networks, manufacturing systems, and transportation systems. He has authored
over 450 refereed papers in these areas, and six books. Dr. Cassandras is
a Fellow of the International Federation of Automatic Control (IFAC). He
was a recipient of several awards, including the 2011 IEEE Control Systems
Technology Award, the 2006 Distinguished Member Award of the IEEE
Control Systems Society, the 1999 Harold Chestnut Prize (IFAC Best Control
Engineering Textbook), a 2011 prize, and a 2014 prize for the IBM/IEEE
Smarter Planet Challenge competition, the 2014 Engineering Distinguished
Scholar Award at Boston University, several honorary professorships, a 1991
Lilly Fellowship, and a 2012 Kern Fellowship. He was the Editor-in-Chief
of the IEEE TRANSACTIONS ON AUTOMATIC CONTROL from 1998 to
2009. He was the President of the IEEE Control Systems Society in 2012.
He is also a member of Phi Beta Kappa and Tau Beta Pi.

Xi Yu received the B.S. degree and the Dipl.-
Ing. degree both in Mechanical Engineering from
Karlsruhe Institute of Technology, Karlsruhe, Ger-
many, in 2010 and 2011, and the Ph.D. degree
in Mechanical Engineering from Boston University,
Boston, MA, USA, in 2018. She is currently a post-
doc researcher with the department of Mechanical
Engineering and Applied Mechanics at University of
Pennsylvania, Philadelphia, PA, USA. Her research
interests include control and coordination of multi-
robot systems, especially for long term and large

scale monitoring tasks. She is a member of the IEEE Control Systems Society.

Sean B. Andersson received the B.S. degree in
engineering and applied physics from Cornell Uni-
versity, Ithaca, NY, USA, in 1994, the M.S. degree
in mechanical engineering from Stanford University,
Stanford, CA, USA, in 1995, and the Ph.D. degree
in electrical and computer engineering from the
University of Maryland, College Park, MD, USA, in
2003. He has worked at AlliedSignal Aerospace and
Aerovironment, Inc. and is currently a Professor of
mechanical engineering and of systems engineering
with Boston University, Boston, MA, USA. His

research interests include systems and control theory with applications in
scanning probe microscopy, dynamics in molecular systems, and robotics.
He received an NSF CAREER award in 2009, is a senior member of the
IEEE, and was an associate editor for the IEEE Transactions on Automatic
Control (2014-2018) and for the SIAM Journal on Control and Optimization
(2013-2018).

	Introduction
	Problem Formulation
	Properties of the Optimal Control Solution
	Limited Information Model for Decentralization
	Infinitesimal Perturbation Analysis
	Decentralized Event-Driven Optimization
	Simulation results
	Decentralized optimization in 1D spaces
	Decentralized optimization in 2D spaces

	Conclusions and Future Work
	References
	Biographies
	Nan Zhou
	Christos G. Cassandras
	Xi Yu
	Sean B. Andersson

