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Abstract— A multi-agent coverage problem is consid-
ered with energy-constrained agents, where a charging
station is used to replenish an agent’s energy as it becomes
depleted while performing the coverage task. The objective
of this paper is to compare the coverage performance
between centralized and decentralized approaches. To this
end, a centralized coverage control method is developed to
switch agents between an optimal coverage formation and
an optimal charging formation. We design a controller for
agent trajectories that include dwell times at the optimal
coverage locations and charging times at the charging
station to maximize a coverage metric over a finite time
interval. Our controller guarantees that at any time there
is at most one agent leaving the team for energy repletion.
We also derive a tight bound which allows us to quantify
the gap between the coverage performance of the proposed
strategy and the unknown globally optimal coverage perfor-
mance.

Index Terms— Centralized control, Energy efficiency,
Multi-agent systems, Trajectory optimization

I. INTRODUCTION

Systems consisting of cooperating mobile agents are often
used to perform tasks such as coverage [1]–[5], surveillance
[6], monitoring and sweeping [7]. In coverage tasks, agents
interact with the mission space through their sensing capabili-
ties which are normally dependent upon their physical distance
from an event location. Outside its sensing range, an agent has
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no ability to detect events. The objective is to cooperatively
maximize a measure of coverage over a given mission space
[8] usually defined through the joint detection probability
of random events [9]. Multi-agent coverage problems can
be classified into static [10] and dynamic [1]. The static
coverage problem concerns finding fixed locations for agents
such that a performance metric for the area under coverage is
maximized. Widely used approaches for solving this problem
include Voronoi-partition-based gradient-descent algorithms
[11]–[14] and submodularity-based [15] gradient-descent algo-
rithms [16]. The dynamic coverage problem concerns planning
trajectories for agents to maximize the coverage performance
over time. This problem arises due to agents with limited
sensing range [17], [18] or changing conditions in the mission
space [1].

In most existing coverage problem settings, agents are
assumed to have unlimited on-board energy to perform the
coverage task. However, in practice, battery-powered agents
can only work for a limited time in the field [19]. Developing
distributed algorithms for multi-agent systems with energy
constraints is considered in [20]–[22]. Unlike other multi-agent
energy-aware algorithms in the aforementioned references
whose purpose is to reduce energy cost, we assume that a
charging station is available for agents to replenish their energy
according to some policy. We take into account such energy
constraints thus adding another dimension to the traditional
static and dynamic coverage problems. The objective is to
maximize an overall environment coverage measure by con-
trolling the movement of all agents while also guaranteeing
that no agents run out of energy in the mission space. Along
these lines, closely related to our work is [23], the major
difference being the need to manage contention between agents
when competing for the charging station, whereas in [23] each
agent has a dedicated station for charging.

A decentralized feasible solution to this problem is proposed
in [24] via a hybrid system approach. Due to the decentralized
nature of this algorithm, agents have limited local information.
Therefore, the performance is degraded due to the information
inaccessibility. This raises the question: what would be the
“best” performance when all information is available? This
motivates us to study the coverage problem via a centralized
approach. The objectives of this paper are to find a centralized
solution to multi-agent coverage problems, to quantify its per-
formance gap to the globally optimal coverage performance,
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and to characterize the “price of decentralization” with respect
to the decentralized algorithm proposed in [24]. However,
the decentralized algorithm proposed in [24] assumes that the
energy consumption of sensing is zero. To include the energy
costs of sensing, a modified algorithm is proposed based on
[24], which allows agents turning off their sensing to preserve
energy. To this end, we assume that the environment to be
monitored is completely known. Then, the optimal coverage
(OCV) locations of the agents while none of them needs
recharging can be found through the distributed gradient-
based algorithm [1]. When the battery level of an agent
is low, the agent will head to the charging station. If the
agent still performs the coverage task at the charging station,
the optimal locations for the remaining agents can be found
using the aforementioned approach. The optimal locations for
all agents in this case are referred to as “optimal charging
(OCH) formation”. Therefore, every agent’s behavior is to
switch between the OCV formation and the OCH formation.
However, finding the optimal trajectories of all agents during
transitions between two different formations turns out to be
a challenging task. To reduce the transient time between
switches, a Traveling Salesman Problem (TSP) is solved to
find the shortest total distance if an agent traverses all locations
in both the OCV and OCH formations. The solution from the
TSP dictates the order of locations being visited by any agent.
Next, when the switching times of all agents are synchronized,
that is, all agents leave the OCV formation at the same time
and arrive at the OCH formation at the same time, the objective
becomes minimizing the transient time and the energy cost
during that time. Therefore, the transient time is determined
by the agent which travels the longest distance. The speeds of
other agents can be determined by the transient time and the
travel distance. A performance gap is obtained to characterize
how good the proposed algorithm is when compared with
the globally optimal performance which is generally unknown
and very challenging to determine. Our simulation results
show that the centralized approach improves the coverage
performance compared to the decentralized one in [24].

Compared with the preliminary version of this work in [25],
the contributions of this paper are as follows:
• A modified decentralized coverage algorithm based

on [24] is described in Section III.
• The shortest path problem in Section IV-B is mathemat-

ically formulated and the solution is provided by using
the optimization toolbox in MATLAB.

• Theorem 1 in Section IV-C is established so as to apply
to a general energy depletion model.

• Theorem 2 in Section V derives a bound for the globally
optimal solution and formally shows that the performance
of the proposed algorithm is guaranteed to be within a
certain fraction of the optimal performance.

II. PROBLEM FORMULATION

Consider a bounded mission space S ∈ R2. The value
of a point (x, y) ∈ S in the mission space is characterized
by a reward function R(x, y), where R(x, y) ≥ 0 and∫ ∫
S R(x, y)dxdy < ∞. The value of R(x, y) is mono-

tonically increasing in the importance associated with the

point (x, y). If all points in S are treated indistinguishably,
R (x, y) = σ for any (x, y) ∈ S , where σ > 0 is a constant.
A team of mobile agents labeled by V = {1, 2, . . . , N} is
deployed in the mission space to collect the rewards. Each
agent has an isotropic sensing system with range δi, that is,
an agent located at (xi, yi) is able to collect all rewards of the
points in its sensing range

Ωi (xi, yi) =
{

(x, y) | (x− xi)2
+ (y − yi)2 ≤ δ2

i

}
.

The ability of an agent covering a point (x, y) within its sens-
ing range Ωi (xi, yi) is characterized by the sensing function
pi (x, y, xi, yi) ∈ [0, 1], and it depends on the distance between
the agent location (xi, yi) and the point (x, y). In particular,
it is monotonically decreasing in the distance between (xi, yi)
and (x, y) and if a point (x, y) is out of the sensing range of
agent i, that is, (x, y) /∈ Ωi (xi, yi), then pi (x, y, xi, yi) = 0.
For any given point (x, y) in the sensing range of multiple
agents, the joint sensing capability is given by [1]

P (x, y, s) = 1−
∏N

i=1
[1− pi (x, y, xi, yi)] . (1)

The form of the function pi (x, y, xi, yi) does not affect our
subsequent analysis.

Remark 1: The sensing functions

pi (x, y, xi, yi) = 1− (x− xi)2
+ (y − yi)2

δ2
i

, (2)

and pi (x, y, xi, yi) = αi exp

[
−βi

√
(x− xi)2

+ (y − yi)2

]
where 0 < αi ≤ 1 and βi > 0 are sensing parameters, were
used in [24] and [1], respectively, for all (x, y) ∈ Ωi. For
illustration purposes, Fig. 1 depicts the sensing capabilities
of a single agent (Fig. 1a) and two agents with overlapping
sensing range (Fig. 1b) for the sensing function (2). Here the
sensing range of agents is set to δi = 1 for all is.

Finally, the coverage performance of the mobile agent team
over the area S is defined as

H (s) =

∫ ∫
S
R (x, y)P (x, y, s) dxdy, (3)

where s = (s1, . . . , sN ) ∈ R2N with si = (xi, yi) contains
all agent positions. Note that H (s) is a function mapping
s ∈ R2N into R.

To find the optimal locations of all agents is a static
optimization problem, which has been extensively studied [1],
[11], [16]. Here we are interested in a dynamic coverage
control problem with energy constraints, where each agent
is associated with two state variables: location variable si(t)
and state-of-charge (SOC) variable 0 ≤ qi(t) ≤ 1, which
captures the fraction of available energy (battery level) at time
t. The agents’ sensing and motion activities are all powered
by batteries. The binary variable bi(t) ∈ {0, 1} controls the
sensing of agent i, where bi(t) = 1 and bi(t) = 0 indicate “on”
and “off” of the sensing functionality, respectively. There is a
charging station at (0, 0) for an agent to replenish its energy.
The binary variable Ii(t) ∈ {0, 1} indicates that agent i is
in-charging or not, where Ii(t) = 1 and Ii(t) = 0 means that
the agent is in charging mode and energy depletion mode,
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(a) A single agent at (0,0)

(b) Two agents at (0.5,0) and (-0.5, 0)

Fig. 1: Sensing capability over an area with one and two agents
performing coverage.

respectively. We assume that there is only one outlet in the
charging station. In other words, only one agent can be served
at any time. The agent’s motion is described by the following
kinematic equations:

ẋi(t) = vi(t) cos[θi(t)], ẏi(t) = vi(t) sin[θi(t)] (4)

where vi(t) and θi(t) denoting the instantaneous speed and
heading of agent i at time t, respectively, are two independent
control inputs. The speed vi (t) ∈ [0, v̄], where v̄ is the
maximum speed of an agent.

Assume that all agents are of the same type. The SOC state
satisfies the following dynamical equation:

q̇i(t) =Ii(t)f(qi(t), bi(t))

+ (1− Ii(t))g(qi(t), vi(t), bi(t)) (5)

where f(qi(t), bi(t)) ≥ 0, and g(qi(t), vi(t), bi(t)) ≤ 0.
Moreover, g (qi(t), vi(t), bi(t)) = 0 when vi(t) = 0 and
bi(t) = 0. In other words, an agent is in energy conservation
mode if there is neither motion nor sensing. Let us assume
qi(t
′) = q and bi(t) = 1 for t ∈ [t′, t′ + τ ]. The solutions to

(5) when Ii(t) = 1 for t ∈ [t′, t′+ τ ] can be parameterized as

qi(t
′ + τ) = q + κ(q, τ); (6)

The solutions to (5) when Ii(t) = 0 for t ∈ [t′, t′ + τ ] can be
parameterized as

qi(t
′ + τ) = q − h(q, τ, d), (7)

where d is the travel distance.
Our objective is to maximize the coverage of the mission

space S ∈ R2 over a time interval [0, T ], and at the same time
to keep all agents alive, that is, qi (t) ≥ 0 for all t ∈ [0, T ]. The
case qi (t) = 0 can occur only at the charging station (0, 0).
The problem of multi-agent coverage with energy-constrained
agents (MACECA) can be mathematically formulated as the
following optimization problem:

max
v(t), θ(t), b(t)

1

T

∫ T

0

H (s (t)) dt (8)

s.t. (4) and (5) (9)
Ii(t) = 1− sgn (‖si(t)‖) , (10)
0 ≤ vi(t) ≤ v̄, 0 ≤ qi(t) ≤ 1 (11)
bi(t) ∈ {0, 1}, i = 1, . . . , N, (12)

0 ≤
∑N

i=1
Ii(t) ≤ 1, (13)

where v(t) = [v1(t), . . . , vN (t)]T , θ(t) = [θ1(t), . . . , θN (t)]T ,
b(t) = [b1(t), . . . , bN (t)]T , ‖si(t)‖ =

√
x2
i (t) + y2

i (t), and
the coverage metric H (s (t)) is defined in (3). The constraints
(10) indicate that an agent is in charging mode whenever it
arrives at the charging station; (13) ensures that only one agent
can be served at the charging station at any time.

III. REVIEW OF THE DECENTRALIZED SOLUTION IN [24]

A decentralized modeling and control approach was pro-
posed in [24] to solve the MACECA problem. Here we modify
the algorithm proposed in [24] in order to consider the sensing
cost which was ignored.

For any agent, we define three different modes: coverage
(Mode 1), to-charging (Mode 2) and in-charging (Mode 3). A
hybrid system is constructed to model the transitions between
different modes of each agent: Mode 1→Mode 2→Mode
3→Mode 1 as shown in Fig. 2, and a transition to a different
mode occurs when the guard conditions labeling each arrow
are satisfied. The details will be given below.

Mode 1
ṡi(t) = fi(s)
q̇i(t) = g(qi(t), vi(t), bi(t))

Mode 2
ṡi(t) = li(t)
q̇i(t) = g(qi(t), vi(t), bi(t))

Mode 3
ṡi(t) = 0
q̇i(t) = f(qi(t), bi(t))

qi(t) ≥ ρi

‖si(t)‖ = 0

qi(t) = h(qi(t), τi(t), ‖si(t)‖)

Fig. 2: A hybrid system model

At Mode 1, vi (t) = v̄ sgn ‖∇iH(s(t))‖, where the gradient
∇iH(s(t)) with respect to si is a column vector defined as

∇iH(s(t)) = [∂H(s(t))/∂xi (t) ∂H(s(t))/∂yi (t)]
T
.
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Detailed expressions of ∇Hi(s(t)) can be found in [1].
To ease notation, fi(s) in Fig. 2 is given by fi(s) =
[vi(t) cos θi(t) vi(t) sin θi(t)]

T , and

θi = arctan

(
∂H(s(t))/∂yi (t)

∂H(s(t))/∂xi (t)

)
.

In other words, agent i travels at the maximum speed when
the gradient is nonzero, and the heading direction follows
the gradient direction of the coverage metric with respect to
agent i’s location. Once the gradient is zero, the instantaneous
velocity of agent i is set to zero. The SOC of the battery
monotonically decreases with rate g(qi(t), vi(t), bi(t)) and
when it drops to a certain value, the agent switches to Mode 2.

A transition from Mode 1 to Mode 2 occurs when the SOC
satisfies the following equality qi(t) = h (qi(t), τ(t), ‖si(t)‖),
where τi(t) = ‖si(t)‖ /v̄. The function h(qi(t), τi(t), ‖si(t)‖)
defined in (7) is the minimum energy requirement for agent i
with the SOC qi(t) to arrive at the charging state from
agent i’s current location si(t) using the maximum speed v̄. At
Mode 2, an agent may need to turn off its sensing and motion
functionalities to conserve energy. This is determined by the
scheduling algorithm used to assign the priority of an agent
to the charging station. The heading direction is constant and
determined by the location of agent i at the time of switching
from Mode 1 to Mode 2, say τ2. Then, li(t) in Fig. 2 is defined
as li(t) = −v̄ [xi (τ2) / ‖si(τ2)‖ yi (τ2) / ‖si(τ2)‖]T .

A transition from Mode 2 to Mode 3 occurs when agent i
arrives at the charging station, that is, ‖si(t)‖ = 0. At Mode 3,
an agent remains at rest at the charging station. Therefore, the
motion dynamics satisfy ẋi (t) = 0, ẏi (t) = 0. While the
agent is in the charging mode, the SOC dynamics are given
by q̇i (t) = f(qi(t), bi(t)).

Finally, a transition from Mode 3 to Mode 1 occurs when
qi (t) = ρi, where ρi ∈ (0, 1] is a controllable threshold
parameter indicating the desired SOC at which the agent may
stop its recharging process. The result in [24] indicates that
fully charging ρi = 1 is the optimal policy.

Since the charging station can only serve one agent at a time,
a scheduling algorithm is needed to resolve conflicts among
agents competing over access to it. Here, we use the First-
Request-First-Serve (FRFS) scheduling policy as an example.
Other scheduling policies are also possible. Suppose that when
agent i sends a charging request at τ ir , the charging station
is not reserved. Then, agent i will use the maximum speed
v̄ to reach the charging station. If another agent j sends a
charging request at τ jr > τ ir , the arrival time of agent j will
be scheduled at max{τ if , τ ja}, where τ if is the time when
agent i finishes charging, and τ ja is the arrival time of agent j
at the charging station using the maximum speed. There are
two different cases: τ if ≤ τ ja and τ if > τ ja . For the former
case, there are no conflicts between agents i and j. This is
because when agent j arrives at the charging station using
the maximum speed, agent i has already left the charging
station. For the latter case, agent j needs to turn off its
sensing and motion functionalities, and resume its sensing and
motion functionalities at τ if −

∥∥sj(τ jr )
∥∥ /v̄. Therefore, agent j

will arrive at the charging station right after agent i finishes

charging. It is straightforward to extend the case of two agents
to the case of multiple competing agents.

IV. MAIN RESULTS

The decentralized approach in [24] solves the MACECA
problem from an individual agent point of view. Without a
centralized coordination, agents may need to turn off their
sensing, that is, bi(t) = 0, when they compete for the
charging station. However, a centralized approach can solve
this problem from a team point of view. It can ensure that
agents never stop sensing the environment to perform the
coverage task, that is, bi(t) = 1 for any t ≥ 0, relying on
centralized coordination. This shows one aspect of the “price
of decentralization”.

We would ultimately like to maximize the coverage level
in (8) and minimize transient times that occur between the
OCV and OCH formations. This comes down to solving the
following problems:

1) In Section IV-A, find the OCV and OCH locations for
all agents.

2) In Section IV-B, solve a TSP to get an optimal path
connecting all OCV and OCH locations found in Sec-
tion IV-A.

3) In Section IV-C, solve for the optimal speed problem
over transient intervals.

4) In Section IV-D, establish problem schedulability.
5) In Section IV-E, maximize the coverage performance

by optimizing dwell and charging times based on the
optimal speed profile found in Section IV-C and the
schedulability condition found in Section IV-D.

A. Optimal Locations
Let us assume that the environment is known, that is,

R(x, y) is known. The OCV locations can be obtained by
solving the static optimal coverage problem

max
s
H(s),

in which the optimal solution can be determined by using
the standard gradient algorithm [1]. Let us denote the OCV
locations of N agents as Φ = (φ1, . . . , φN ) in the mission
space S .

By assuming that an agent also performs the coverage
task while resting at the charging station because we set
bi(t) = 1 for all t ≥ 0, we can calculate the OCH locations
of the remaining N − 1 agents by constraining one agent at
point (0, 0). The OCH locations can be found by solving the
following optimization problem

max
s
H(s) (14)

s.t. s1 = (0, 0), (15)

where s1 are constrained to the origin. Again, the OCH
locations can be found using the gradient method proposed
in [1]. Let Ψ = (ψ1, . . . , ψN−1, ψN ) be the OCH locations
with ψ1 = (0, 0). When all agents have enough energy, the
optimal choice is to occupy all locations at Φ. When an agent
is at the charging station, the optimal choice for all other
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agents is at the locations specified by Ψ. Whenever an agent
leaves or re-joins the team, the agents switch between Φ and
Ψ. The reader can refer to Fig. 3 for an example with N = 3.

A reasonable question to ask is whether switching between
the OCV and OCH formations is preferable compared to any
policy which prevents such a switch because of the extra
cost of agent motion involved. It is hard to answer this
question a priori since it depends on many factors, such as
the transient time, the SOC dynamics, the sensing capability
function, the reward function, etc. A posteriori evaluation of
the switching policy can be done after operating the system
for some time and observing its performance. Here we adopt
the switching policy and note that its performance is ensured
by the performance gap established in Section V. Roughly
speaking, the switching policy is preferable when the charging
process is slow and the resulting coverage performance of the
OCH formation H(Ψ) is significantly better than any policy
which prevents switching.

B. Shortest Path

Recall that the scheduling algorithm is used in the de-
centralized approach in [24] to solve the conflicts among
agents competing for the charging station. Here, we take a
conflict-free scheduling approach by letting agents take turns
to visit the charging station, which shows another benefit of
centralized coordination, that is, the price of decentralization.
We define a cycle as all agents returning to their original
OCV locations after 2N switches between the OCV and OCH
formations, and each agent visiting the charging station exactly
once. To minimize the total travel distance of all agents is
equivalent to solve 2N coupled balanced assignment problems
with the constraint that all agents visit the charging station
exactly once during 2N switches. A naive solution is to check
all possibilities, and calculate the cost of each one. The time
complexity of this solution is O

(
(N − 1)!NN !N+1

)
. Given

this computational complexity, a complete globally optimal
solution is intractable. Instead, to bypass this complexity, we
limit ourselves to a subset which conforms to a TSP. In this
way, the time complexity is reduced to O

(
N !2

)
. Even though

the TSP solution may not be optimal, note that we are able to
quantify the overall performance gap in Section V. The TSP
solution corresponds to the case of two fixed and bijection
mappings between the OCV and OCH formations. Thus, we
can use a bipartite graph to model such constraints. The
definitions of bipartite graphs and complete bipartite graphs
can be found in [26]. As the agents switch between the
formations, we need to minimize the total traveled distance
during transient times. Let the bipartite graph K2

N = (V , E)
denote the underlying topology, where the vertex set V can
be partitioned into two sets: V1 = Φ and V2 = Ψ such that
V1 ∪ V2 = V , V1 ∩ V2 = ∅ and |V1| = |V2| = N . Every edge
in V has one end in V1 and the other end in V2 and vertices
in the same set are not adjacent. The reader can refer to Fig. 3
for the sets V1 and V2. In addition, K2

N is complete, that is,
every two vertices from different sets are adjacent. The weight
of every edge is the distance between the two vertices. Let us
use dsjsi to denote the distance from location si to location sj .

Finding the shortest transitional distance is equivalent to
finding the shortest path in the graph K2

N . Define cij = 1
if there is a link from location si to location sj ; otherwise
cij = 0. Then, the TSP can be written as the following integer
linear programming problem:

min
cij

∑
si∈V1

∑
sj∈V2

cijd
sj
si +

∑
sj∈V2

∑
si∈V1

cjid
si
sj

s.t. cij ∈ {0, 1}, cji ∈ {0, 1}, si ∈ V1, sj ∈ V2∑
si∈V1

cij = 1, sj ∈ V2 (16)∑
sj∈V2

cji = 1, si ∈ V1 (17)

∑
si∈W1

∑
sj∈W2

cij ≤ |W1|+ |W2| − 1, (18)

∑
sj∈W2

∑
si∈W1

cji ≤ |W1|+ |W2| − 1, (19)

∀W1 ( V1,W2 ( V2.

Here cij and cji are binary variables. The equality constraints
(16) and (17) enforce that for every location si ∈ V1 or
sj ∈ V2, there is only one path departing from it. The
inequality constraints (18) and (19) ensure that there are
no subtours. The TSP is an NP-hard problem in combina-
torial optimization. We use the binary integer programming
intlinprog solver with round-diving heuristics in the
MATLAB optimization toolbox for the above optimization
problem. We note that there are several other solvers for such
binary integer programming problems, such as IBM CPLEX
Optimizer, Gurobi Optimizer, LPSolve in Maple, just to
name a few.

C. Optimal Speed
Here we will derive the most energy efficient speed profile

parameterized by the travel time and distance of a transitional
segment of an agent trajectory determined in the previous
section. Therefore, we assume that the travel time τ , the
starting location s and final location s̄ are given. Then, the
following optimization problem is formulated:

min
vi(t), θi(t)

∫ t0+τ

t0

−q̇i(t)dt (20)

s.t. (4) and (5) (21)
0 ≤ vi(t) ≤ v̄ (22)
si (t0) = s, si (t0 + τ) = s̄, qi (t0) = q, (23)

where q is the initial SOC of agent i. Let us assume that
the optimal speed problem is feasible, that is, ‖s − s̄‖ ≤ τ v̄.
When the detailed form of (5) is given, a numerical solution
of the above optimization problem can be calculated. In the
following, we show a case where the analytical solution is
available for a particular class of energy depletion models in
which the function g in (5) is independent of the SOC qi.

Theorem 1: Assume that the energy depletion model in (5)
satisfies

∂g(qi, vi, 1)

∂qi
= 0. (24)
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Then, the optimal solutions to the above optimization problem
are v∗(t) = ‖s̄− s‖/τ and θ∗(t) = s̄− s for t ∈ [t0, t0 + τ),
where s̄− s is the heading from s to s̄.

Proof: The Hamiltonian function and Lagrangian func-
tion are defined as

H(si, vi, θi, qi, t) = − q̇i + λxvi cos(θi) + λyvi sin(θi)

+ λqg(qi, vi, 1),

and

L(si, vi, θi, qi, t) =H(si, vi, θi, qi, t)− η1vi + η2(vi − v̄),

where η1 ≥ 0, η2 ≥ 0, and −η1vi + η2(vi − v̄) = 0. We
have the co-state equations: −λ̇x = ∂L/∂xi = 0, and −λ̇y =
∂L/∂yi = 0.

Therefore, we know that λx and λy are two constants. From
the stationarity condition, we have

∂L
∂θi

= −λxvi sin θi + λyvi cos θi = 0.

Then, we know that θi is also a constant determined by the
initial and final positions. Let λx = λθ cos θi and λy =
λθ sin θi with a constant λθ. Thus, the Hamiltonian function
becomes

H(si, vi, θi, qi, t) = (λq − 1)g(qi, vi, 1) + λθvi.

Then, we have −λ̇q = ∂H/∂qi = (λq − 1)∂g(qi, vi, 1)/∂qi.
Based on the condition (24), we know that λq is a constant.
Since qi(t0 + τ) is not fixed, it is required that λq = 0. Since
H is not an explicit function of time t, we have Ḣ = 0. Then,
taking the time derivative of H yields

Ḣ = − ∂g
∂vi

v̇i + λθv̇i =

(
λθ −

∂g

∂vi

)
v̇i, (25)

which leads to v̇i(t) = 0. Therefore, vi is a constant deter-
mined by the distance between the initial and final positions
and the travel time τ .

The energy cost can be determined once a detailed energy
depletion model is given. Consider the energy depletion model
g(qi(t), vi(t), 1) = −αvi(t)−β used in [25], where α > 0 and
β > 0 are two constants. These two terms can be regarded as
the motion and sensing energy costs, respectively. In this case,
the energy cost of traveling a distance d in time τ is αd+βτ .
Therefore, to reduce the transient time, it is always optimal
for agents who travel the longest distance during the transient
times to use the maximum speed when the energy consumption
model is a linear function of the speed. For the alternative
energy depletion model g(qi(t), vi(t), 1) = −αv2

i (t)− β used
in [24], the least energy cost of traveling a distance of d in
time τ is αd2/τ + βτ. From the energy efficient point of
view, the optimal traveling time is d

√
α/β with v∗ =

√
β/α

if v̄ ≥
√
β/α. If v̄ <

√
β/α, the maximum speed is optimal.

D. Schedulability
Schedulability in this case means that when an agent

switches to “to-charge” mode, no other agents will switch
to this mode until the agent returns and the OCV formation
is attained. We will find a condition to guarantee that this

holds at all times. We assume that the behavior of all agents
is synchronized, that is, they start and finish the process of
switching from Φ to Ψ at the same time, and vice versa
(i.e., from Ψ to Φ). The intuition behind this assumption is
that the coverage performance depends on the agents’ relative
distances. Then, the problem reduces to finding four critical
times: (1) the charging time τc at the charging station, (2) the
dwell time τd of agents on the OCV locations, (3) the transient
time τN−1

t from the OCV locations to the OCH locations, and
(4) the transient time τNt from the OCH locations to the OCV
locations. Note that the dwell time of agents on the OCH
locations is exactly equal to the charging time at the charging
station.

Without loss of generality, let us label the optimal path
of the TSP solution to visit all OCV and OCH locations as:
0 → 1 → 2 → 3 → · · · 2N − 1 → 0, where the nodes with
odd numbers belong to the OCV locations, the nodes with
even numbers belong to the OCH locations, and node 0 is the
charging station. Define di+1 (mod 2N)

i as the distance between
node i and node i + 1 (mod 2N) for i = 0, 1, . . . , 2N − 1,
where mod is the modulo operation. The idea is to reduce the
transient time using the maximum speed, which is determined
by the agent traveling the longest distance, that is,

τNt =
d̄N

v̄
, τN−1

t =
d̄N−1

v̄
, (26)

where

d̄N = max
i=0,1,...,N−1

d2i+1
2i , d̄N−1 = max

i=1,...,N
d

2i(mod 2N)
2i−1 .

Let us define µ−i and µ+
i as the energy when agents arrive

at node i and leave node i, respectively, and index each cycle
by an integer k. Assume that each cycle starts with 0, and
the initial SOC at cycle k is µ−0 (k). Clearly, we must have
µ−0 (k) ≥ 0 to make the problem schedulable. Let us proceed
forward. After the charging time τc, the SOC increases to

µ+
0 (k) = µ−0 (k) + κ(µ−0 (k), τc), (27)

where κ is defined in (6) with the initial condition µ−0 (k).
Then, the agent leaving the charging station will be in the
energy depletion mode until the next cycle k + 1. The SOC
decreases to µ−1 (k) = µ+

0 (k) − h(µ+
0 (k), τNt , d

1
0) when this

agent arrives at location 1; the SOC decreases to

µ+
1 (k) = µ−1 (k)− h(µ−1 (k), τd, 0),

when the agent leaves location 1, where h is defined in (7),
and the third argument of h is 0 because the agent does not
move during this time. In general, the SOCs before and after
location 2i+ 1 are

µ−2i+1(k) = µ+
2i(k)− h

(
µ+

2i(k), τNt , d
2i+1
2i

)
,

µ+
2i+1(k) = µ−2i+1(k)− h

(
µ−2i+1(k), τd, 0

)
(28)

for 0 ≤ i ≤ N − 1 and the SOCs before and after location 2i
are

µ−2i(k) = µ+
2i−1(k)− h(µ+

2i−1(k), τN−1
t , d2i

2i−1)

µ+
2i(k) = µ−2i(k)− h

(
µ−2i(k), τc, 0

)
(29)

for 1 ≤ i ≤ N − 1.
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If this process is repeated recursively until the next cycle
k + 1, the initial SOC of the k + 1 cycle is

µ−0 (k + 1) = µ+
2N−1(k)− h

(
µ+

2N−1, τ
N−1
t , d0

2N−1

)
.

Using all the above equations, the relationship between µ−0 (k+
1) and µ−0 (k) can be established and can be written in the form

µ−0 (k + 1) = F
(
µ−0 (k), v̄, τd, τc, d

1
0, d

2
1, . . . , d

0
2N−1

)
where F is a function of d1

0, d2
1, . . . , d

0
2N−1, µ−0 (k), v̄, τd, and

τc. To make the problem schedulable, the condition

µ−0 (k + 1) ≥ µ−0 (k) ≥ 0

for k = 0, 1, . . . , must be satisfied.
To find the minimum SOC in the worst case where there are

no agents dwelling at the OCV locations, we set τd = 0. Given
d
i+1(mod 2N)
i for i = 0, 1, . . . , 2N−1, τNt , τN−1

t , and τd = 0,
to find the minimum initial SOC, the following optimization
problem can be solved

min
τc

µ (30)

s.t. µ ≥ F(µ, v̄, 0, τc, d
1
0, d

2
1, . . . , d

0
2N−1). (31)

This optimization problem aims to find a minimum charging
time so that the SOC of an agent does not decrease after
one cycle. Only if a solution to (30) and (31) exists we can
further maximize the dwell time τd. Once the minimum µ is
obtained, we can calculate the minimum SOC requirements
for all locations.

E. Optimal Dwell Time and Charging Time

Once the problem in (30) and (31) is determined to be fea-
sible, the remaining task is to maximize the average coverage
performance. Since the agent trajectories are fixed during tran-
sition, the average coverage performance can be determined.
The average coverage performance from OCV to OCH, and
from OCH to OCV, is denoted by JΦΨ and JΨΦ, respectively.
Thus, we maximize the average coverage performance during
a total cycle defined as τT = τc + τd + τNt + τN−1

t (which
provides maximum coverage):

max
τc,τd

τd
τT
H(Φ) +

τc
τT
H(Ψ) +

τN−1
t

τT
JΦΨ +

τNt
τT

JΨΦ (32)

s.t. µ+ κ(µ, τc) ≤ 1 (33)

F
(
µ, v̄, τd, τc, d

1
0, d

2
1, . . . , d

0
2N−1

)
≤ µ. (34)

The first constraint requires an agent to leave the charging
station once its battery is fully charged. The second constraint
ensures that the charging time and the dwell time must satisfy
the schedulability constraint.

V. PERFORMANCE BOUND

In this section, we characterize the performance gap be-
tween the proposed solution and the optimal solution to the
problem (8)-(13) even though the optimal solution still remains
unknown.

Theorem 2: The coverage performance of the proposed
solution is guaranteed to be within

τdH(Φ) + τcH(Ψ) + τN−1
t JΦΨ + τNt JΨΦ

τTH(Φ)
(35)

of the optimal performance J∗.
Proof: The performance (8) can be upper bounded by

the performance corresponding to the OCV locations, that is,

1

T

∫ T

0

H(s(t))dt ≤ J∗ ≤ 1

T

∫ T

0

H(Φ)dt = H(Φ)

since H(Φ) is the best possible performance.
Let us use J to denote the coverage performance of our

proposed algorithm. Then the following inequalities hold:

J ≤ J∗ ≤ H(Φ).

From the above inequalities, we can obtain

J

H(Φ)
≤ J

J∗
(36)

Let us assume that there exists an integer k such that T = kτT .
The performance of our proposed algorithm is

J =
1

T

∫ T

0

H (s (t)) dt =
1

kτT

k−1∑
i=0

∫ iτT +τT

iτT

H (s (t)) dt.

Each cycle can be partitioned into four parts: τc, τd, τNt , and
τN−1
t . The performance of our proposed algorithm in each

cycle can be written as
iτT +τT∫
iτT

H (s (t)) dt = τdH(Φ)+τcH(Ψ)+τN−1
t JΦΨ+τNt JΨΦ.

Therefore, we can obtain the fractional performance gap based
on the inequality in (36).

The fractional performance gap in (36) can be written in
the form of

τdH(Φ) + a

τdH(Φ) + b
(37)

where 0 < a < b. From (37), it makes sense to maximize
the dwell time during a cycle since the larger τd leads to the
larger value of (36).

VI. SIMULATION EXAMPLES
Let us consider a 600 × 500 rectangular mission space,

where R(x, y) = 1, i.e., all points in the mission space are
equally important. All agents have the same sensing function
(2) with a sensing range δi = 220 for all is. Let us assume
that the charging dynamics in (5) have the form f(qi(t), 1) =
c − β, and the energy depletion dynamics in (5) have the
form g(qi(t), vi(t), 1) = −αvi(t) − β, where α, β and c are
three constants. For a properly defined problem, the following
constraint should be satisfied c ≥ N(αv̄ + β), where v̄ is
the maximum allowable speed of all agents. By treating the
charging station as a server, the charging rate is c if it is
occupied at all times, and the worst case energy depletion rate
over N agents is N(αv̄ + β). Thus, this condition provides
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a well-posed condition of preventing any agent from running
out of energy in the mission space.

In the following, we will discuss the coverage performance
of a multi-agent team with three agents. The coverage perfor-
mance in terms of the number of agents ranging from 3 up to
10 will be summarized as well.

A. Three Agents

Let us consider a small network with 3 agents. By using the
gradient approach [1], the OCV locations of all three agents
are found to be φ1 = (186.7, 119.3), φ2 = (160.3, 371.1), and
φ3 = (451.4, 290.4) shown in blue in Fig. 3, and the OCH
locations are ψ1 = (0, 0), ψ2 = (169.3, 320.2) and ψ3 =
(430.6, 185.0) shown in red in Fig. 3, where x and y represent
the coordinates in the mission space. The charging station is
located at ψ1. By solving the TSP, the shortest path is ψ1 →
φ2 → ψ2 → φ3 → ψ3 → φ1 → ψ1. The total traveling
distance is 1321.4.
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Fig. 3: The shortest path for the TSP

Let us solve the schedulability problem (30)-(31) first. Note
that ψ1 is defined as the charging station in Section IV-D.
The SOC when an agent arrives at the charging station is µ−0 .
The distances are dψ1

φ1
= 221.5612, dφ2

ψ1
= 252.5939, dψ2

φ2
=

107.4328, dφ3

ψ2
= 283.9381, dψ3

φ3
= 51.6432, dφ1

ψ3
= 404.2416.

When the energy depletion model is linear in vi, it is optimal
to choose the shortest transient time. The lower bounds of
transient times τ2

t and τ3
t are determined by the distances and

maximum speed. Therefore, we can choose

τ3
t =

max{dφ2

ψ1
, dφ3

ψ2
, dφ1

ψ3
}

v̄
=

404.2416

v̄

τ2
t =

max{dψ1

φ1
, dψ2

φ2
, dψ3

φ3
}

v̄
=

221.5612

v̄
.

After charging for τc, the SOC increases to µ−0 + τc(c − β).
Then, the agent heads to φ2, and its SOC decreases to µ−0 +
τc(c − β) − αdφ2

ψ1
− βτ3

t , where the third term and the last
term correspond to the energy cost of motion and sensing,
respectively. To solve the schedulability problem, we set the

dwell time at the OCV locations as zero. After one cycle, when
an agent returns to the charging station, its SOC becomes

µ−0 + τcc− 1321.4α− 3βτ3
t − 3βτ2

t − 3βτc.

and we require:

µ−0 + τcc− 1321.4α− 3βτ3
t − 3βτ2

t − 3βτc ≥ µ−0 .
Therefore, in this case it is possible that µ−0 = 0, and the

minimum charging time is

τc =
1321.4α+ 3β(τ3

t + τ2
t )

c− 3β

Based on µ−6 = 0, τc, τ2
t , and τ3

t , we are able to calculate the
minimum SOC for all 3 OCV locations as shown at the end
of Section IV-D.

If an agent stays at the charging station more than the min-
imum τc, then the dwell time τd will not be zero. Therefore,
we need to solve the optimization problem (32)-(34):

max
τc,τd

τdH(Φ) + τcH(Ψ) + τN−1
t JΦΨ + τNt JΨΦ

τc + τd + τ3
t + τ2

t

subject to

τc ≤
1

c− β

τc ≥
1321.4α+ 3β(τ3

t + τ2
t + τd)

c− 3β

To solve the above optimization problem, the optimal solution
occurs when the second inequality becomes an equality. Then,
we can write the relationship between τc and τd as τc = a+
bτd. If we substitute τc by a+ bτd, we know that the larger τd
leads to better performance. Therefore, the optimal solution
for the above problem is to let the agent be fully charged, that
is, τc = 1/(c− β) and

τd =
1− 1321.4α

3β
− 2

3(c− β)
− τ3

t − τ2
t

Table I shows the average and minimum coverage perfor-
mance of both centralized and decentralized approaches for
different numbers of agents with different parameters α, β, c.
The maximum velocity of all cases is v̄ = 50 except v̄ = 100
when N = 6.

The coverage performance of the above centralized algo-
rithm and the decentralized approach for N = 3is depicted and
compared in Fig. 4. The cycles are clearly visualized in the fig-
ure, where the top and the bottom horizontal lines correspond
to the time when agents are in the OCV formation, and in the
OCH formation, respectively. The coverage performance of
the decentralized approach is computed using the approach in
Section III, which is a modification of the algorithm proposed
in [24]. In the decentralized approach, agents may compete
for the charging station. When this case occurs, agents with
lower priority have to turn off their sensing capability as
indicated in the bottom horizontal line of the decentralized
approach in Fig. 4. The coverage performance is significantly
compromised. The performance lower bound of the centralized
approach is determined by the OCH formation. The results
show that both the average and the worst performance is
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TABLE I: Performance Comparison Between Centralized and
Decentralized Approaches in terms of Average Performance
(AP) and Minimum Performance (MP)

N (α, β, c) Cen. Dec. Imp.

3 (0.0005, 0.0005, 0.010)
AP 179632 166917 7.62%
MP 161600 92010 75.63%

4 (0.0005, 0.0005, 0.015)
AP 221840 205085 8.17%
MP 204400 154100 32.64%

5 (0.0005, 0.0005, 0.020)
AP 247721 236649 4.49%
MP 240400 138100 74.08%

6 (0.0005, 0.0005, 0.025)
AP 262874 253278 3.78%
MP 255000 189700 31.78%

7 (0.0005, 0.0005, 0.030)
AP 274219 270320 1.44%
MP 273500 233600 17.08%

8 (0.0004, 0.0001, 0.05)
AP 284016 263400 7.83%
MP 271052 223270 21.40%

9 (0.0004, 0.0001, 0.05)
AP 287418 271300 5.94%
MP 284280 224758 26.48%

10 (0.0004, 0.0001, 0.05)
AP 292028 277929 4.83%
MP 289477 252056 14.85%

0 100 200 300 400 500 600 700 800 900 1000
Time

0.5

1

1.5

2

C
ov

er
ag

e 
Pe

rfo
rm

an
ce

105 Coverage Performance (3 agents)

Centralized
Decentralized

Fig. 4: Performance of Centralized and Decentralized Ap-
proaches

significantly improved by the centralized approach. Based
on the result in Theorem 2, the proposed solution is within
93.75% of the globally optimal solution.

When the number of agents increases, the centralized
approach keeps a minimum coverage performance above
255, 000 for N = 6. The coverage performance over time
for the centralized approach and decentralized approach is
depicted and compared in Fig. 5. However, the performance
is critically compromised for the decentralized approach when
more agents compete for the charging stations, as shown in
Fig. 5. Based on the result in Theorem 2, the proposed solution
is within 97.60% of the globally optimal solution. Videos of

0 100 200 300 400 500 600 700 800 900 1000
Time

1.5

2

2.5

3

C
ov

er
ag

e 
Pe

rfo
rm

an
ce

105 Coverage Performance (6 agents)

Centralized
Decentralized

Fig. 5: Performance of Centralized and Decentralized Ap-
proaches

the decentralized and centralized coverage algorithms for N =
7 can be found at https://www.youtube.com/watch?
v=alc9Ndgtygw and https://www.youtube.com/
watch?v=xGgHoItwDnY, respectively.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we propose a centralized near-optimal solution
to the multi-agent coverage problem with energy constrained
agents. The performance between the centralized approach
and decentralized approach is compared and it is shown that
the centralized approach in general produces better average
coverage performance than the decentralized approach. In
addition, the performance gap between the proposed algorithm
and the globally optimal solution becomes very small as
the number of agents increases. Natural directions for future
research include the consideration of collision avoidance and
the effect of communication costs when agents must exchange
information.
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