Continual Learning for Grounded Instruction Generation
by Observing Human Following Behavior

Noriyuki Kojima, Alane Suhr, and Yoav Artzi
Department of Computer Science and Cornell Tech, Cornell University

nk654@cornell.edu

Abstract

We study continual learning for natural lan-
guage instruction generation, by observing
human users’ instruction execution. We fo-
cus on a collaborative scenario, where the
system both acts and delegates tasks to hu-
man users using natural language. We com-
pare user execution of generated instruc-
tions to the original system intent as an indi-
cation to the system’s success communicat-
ing its intent. We show how to use this sig-
nal to improve the system’s ability to gener-
ate instructions via contextual bandit learn-
ing. In interaction with real users, our sys-
tem demonstrates dramatic improvements in
its ability to generate language over time.

1 Introduction

Natural language provides an expressive and ac-
cessible avenue to instruct non-expert users. The
ability to generate instructions is critical for sys-
tems that collaborate with users, for example to
delegate tasks. In such scenarios, the system gen-
erates language to communicate to the user a latent
intent. When users are cooperative and proficient
in the language, whether they accomplish the sys-
tem’s intent provides an informative, albeit noisy
signal to the quality of instruction generation.
This implicit signal is fundamentally different
from supervised data, including via active learn-
ing, in that it does not label the system’s intent
with a written instruction, but only provides evi-
dence to the quality of a given instruction in re-
laying this intent. As a natural byproduct of inter-
action with users, it also differs from explicit user
feedback in not requiring user action beyond what
they already do as part of the interaction. Despite
its potential and prevalence, this signal is under-
studied for learning to generate natural language.
In this paper, we study this learning signal.
We formalize continually improving instruction

{suhr,

yoav}@cs.cornell.edu

Learning from User Behavior

Initialization
: Rounds r = 1,2,3,...

< > User Interactions
Supervised | : Dataset D,
Dataset Dy Construction
1
v
] Natural Language| ~~—
S%pe.r V.lsed ] Generation Model Datasets
raining N z~PC|- 50, Dy, ..., D,
GPT-2 : x[_/
Weights Contextual Bandit Training

Figure 1: Diagram of our learning process. We ini-
tialize a generation model using supervised learn-
ing, and continually learn through interaction with
users, by alternating between observing user exe-
cution of generated instructions and training.

generation by observing human users executing
generated instructions. We learn by comparing
instruction execution to the system intent, and
demonstrate how this results in a system that con-
tinually improves its natural language generation
ability through interaction with users. Figure 1 il-
lustrates our learning process.

We design a task-oriented collaborative sce-
nario using the CEREALBAR game environ-
ment (Suhr et al., 2019). In CEREALBAR, two
agents, a leader and a follower, work together to
complete tasks. The leader plans the tasks to com-
plete, and communicates goals to the follower us-
ing natural language. CEREALBAR was originally
introduced for studying follower instruction exe-
cution. We modify it to focus on generation of
leader instructions, which are then executed by hu-
man followers. The collaborative, embodied setup
effectively engages users, and aligns their incen-
tives with executing the system’s instructions to
the best of their abilities.

A major challenge is inferring a learning sig-
nal from observed user behavior. Given the user
execution, we create positive and negative exam-
ples, depending on how the user execution aligns



with the system’s plan and the user’s perceived
correctness of their own execution. For exam-
ple, consider an execution that does not align well
with the system’s plan, but that the user consid-
ers correct given the instruction. Because of the
misalignment, we cannot consider the instruction
as a successful example given the system’s plan.
However, given the user’s perceived correctness,
we can generate a positive example treating the
user’s execution as a plan paired with the instruc-
tion. In contrast to supervised learning with gold-
standard per-token labels (Sutskever et al., 2014),
such utterance-level binary labels form a challeng-
ing signal for learning, because they do not distin-
guish between correct and incorrect tokens.

We do not make the typical distinction between
training and deployment; as human users follow
generated instructions, we continually collect new
data, periodically train using this data, and eval-
uate the system through the interaction itself. We
formalize learning as an off-policy contextual ban-
dit learning problem. We show that positive ex-
amples can be treated in a manner that reduces to
supervised learning, allowing for simple effective
use of the data. However, using negative exam-
ples is more challenging, because simply minimiz-
ing their likelihood gives an unbounded negative
loss. We weigh negative examples using an in-
verse propensity score (IPS; Horvitz and Thomp-
son, 1952; Wang et al., 2017) to address this issue.

We experiment with our approach through in-
teraction with human users, tracking both task
performance and how the generated language
changes. We observe dramatic improvements in
the quality of instructions generated as reflected
in users’ execution: task completion in accor-
dance to the system intent increases from 44.7%
to 79.3%. This is accompanied by significant
language change: the occurrence of erroneous
phrases decreases as desired, but the effective sys-
tem vocabulary gradually shrinks.

Although using user feedback for improving
language generation has been studied, as we dis-
cuss in Section 8, to the best of our knowl-
edge, this study is the first to show effec-
tive instruction generation learning by observ-
ing user execution. Our experiments demon-
strate the effectiveness of our process, but also
illustrate limitations and important directions for
future work. Code and data are available at
https://lil.nlp.cornell.edu/cerealbar/.

2 Technical Overview and Notation

Our goal is to continually improve a natural lan-
guage instruction generation model, by observing
human executions of generated instructions.
Interaction Scenario We focus on a collabora-
tive scenario, where two agents, a leader and a
follower, complete tasks in an environment. The
system is the leader, and the human user is the fol-
lower. The leader plans tasks to accomplish, acts
in the world, and instructs the follower using nat-
ural language. We use a deterministic procedure
for planning and executing leader actions, and fo-
cus on learning the leader instruction generation
model. The human follower acts in the world fol-
lowing the system instructions. We instantiate this
scenario using CEREALBAR (Section 3), a col-
laborative game, where two agents collect sets of
cards together by moving in a 3D environment.
Task A world state s describes the current envi-
ronment; in CEREALBAR, this includes the loca-
tion of landmarks, cards, and both agents. A plan
D is a sequence of poses (p1, . .. ,p|p‘> the system
intends for the human user to take starting from
a start state s;. In CEREALBAR, a plan includes
moving in the environment with the intent of col-
lecting cards; each pose p; is a tuple (h;, w;, a;),
where h; and w; are height and width coordinates,
and «; is a discrete orientation angle. An instruc-
tion z is a sequence of tokens (z1,. .. 7$\i|>' An
instruction execution € is the sequence of poses
P1,s---, p\é\> a user takes executing T, starting
in a start state s;. The generation distribution
P(z | s1,p;0) is parameterized by 6. The goal
of instruction generation is that given a generated
instruction & ~ P(- | s1,p;0), the user execution
e from s; will follow the plan p. The user does not
have access to p, but only to its description Z.
Learning We use an encoder-decoder neural
network model (Section 4), which we continually
improve by observing user behavior. This process
proceeds in rounds. At each round r, we first col-
lect data and then train our model by estimating
the model parameters #,. During data collection
in round r, we sample from our model to generate
instructions, and observe a human user’s execution
of each instruction. An execution of an instruction
T ~ P(- | s1,p;0,) generated for the plan p with
start state s; creates a tuple (s1,p, Z, e, f), where é
is the user execution and f is structured user feed-
back solicited using binary questions (e.g., about
the grammaticality of Z). The learner does not ob-


https://lil.nlp.cornell.edu/cerealbar/

Tg: get the two orange diamonds and the one green plus.
then turn around and grab the three black hearts

Tg: go around the lake and get the 2 green hearts and
the 1 red triangle
[Set made.

New score: 6]

Figure 2: Interaction snapshot in CEREALBAR,
with instructions generated by our model. The cur-
rent instruction is Zg. The leader plan is illustrated
with red arrows in the leader’s view. The user sees
only the follower’s view during execution.

serve the user’s actions executing Z, but only their
poses along the execution. Given these tuples, we
create a dataset D, = {(sgi),f)(i), i(i),y(i))}flzgi"
where (V) € {—1,+1} is a binary label. Depend-
ing on the user execution and feedback, the plan
p is either the original plan 5 used for gener-
ating () or the user execution () of z(V). We
formulate estimating 6,1 as a contextual bandit
learning problem with y as the reward. Section 5
describes the complete learning process.
Evaluation Throughout the system’s lifetime,
we measure how well human users complete tasks,
and also use earth mover’s distance (EMD; Rub-
ner et al., 1998) to quantify the similarity of the
user execution e to the plan p. We characterize
language change over time by tracking vocabulary
size, instruction length, and other statistics.

3 Interaction Scenario

Suhr et al. (2019) describe CEREALBAR in de-
tail. CEREALBAR is a two-player, turn-based
game where a leader and follower collaborate to
collect sets of matching cards. The game objec-
tive is to collect as many valid sets as possible
in a 3D environment. The environment includes
landmarks (e.g., houses, mountains, ponds, etc.)
that the players must move around, and may ob-
scure a player’s view. A valid set consists of
three cards with three distinct colors, shapes, and
counts. Players move onto cards to select or de-
select them. When the selected cards comprise a
valid set, the players earn a point, all cards dis-

appear,! and new cards appear. The two play-
ers must collaborate effectively using natural lan-
guage. The leader observes the entire environ-
ment, plans who should select which cards for the
next set, executes their own part of this plan, and
issues instructions to the follower. The follower
executes leader instructions, only seeing a par-
tial first-person view of the environment. Leader
instructions must make use of the observed spa-
tial environment, including landmarks, for the fol-
lower to be able to execute them given their partial
view. Each interaction includes multiple instruc-
tions. Figure 2 shows the game and example gen-
erated instructions.

CEREALBAR was originally used for learning a
follower instruction execution model from human
demonstrations (Suhr et al., 2019). In contrast,
we learn an instruction generation model for the
leader, with the human user as the follower. The
generated instructions must often specify multiple
tasks to complete (i.e., when the follower is to se-
lect multiple cards), and how to navigate to the
target cards, because the follower has only partial
observability of the environment. This includes
references to landmarks, spatial relations, and de-
scriptions of paths. We focus on language gener-
ation, and use a deterministic planner to generate
the plan, including which cards to select and how
each player should move in their next turn, and ex-
ecute the planned leader actions. The system uses
the model we learn to map the follower’s part of
the plan to a natural language instruction.

We learn through interactions with non-expert
human followers, which CEREALBAR is particu-
larly suited for. The utility-maximizing game ob-
jective to earn a high score by collecting as many
valid sets as possible incentivizes followers to ex-
ecute the generated instructions as accurately as
possible. In addition, CEREALBAR players need
no expert knowledge to participate in the game,
beyond familiarity with the simple game rules.

4 Model

We design a relatively simple encoder-decoder
architecture to model the generation distribution
P(- | s1,p;0), leaving more complex model de-
velopment for future work. The inputs are a start
state s; and a plan p. The model parameters are 6.

'In Suhr et al. (2019), only the selected cards disappear.
We introduced this modification to minimize inter-turn ef-
fects for the follower (i.e., memorize card locations).



I (hyp» wip))) (o, - } |

.,

(hy,...,hy) Duplicate / Pick up one red square ...
Distribut
I x Iﬁl ¢ I Linear / Softmax I
BiLSTM P [I]! 11 [I]I Feedforward
T_‘ ’ ’ Pseudo-Self | x4
AO---0n \ Attention
I] I 000001 e

Il

| JCrop Patches CNN?
/ Rotate ﬁ%%%_’ Per Patch

’

Elatten _—
pli
e N

(P1,---Pjy)

I
Token + Position
Embeddings

[S——;
NP x NP

Pick up oTnc red .. ..

(P1,---,Pjp|) Encoder Decoder

Figure 3: Model illustration. Section 4 describes the model.

Our design considers the environment and plan to
generate relevant, grounded instructions. Figure 3
illustrates the model.

Inputs Similar to Suhr et al. (2019), we repre-
sent the world state s; € {0, 1}7H*W ag a bi-
nary 3D tensor, where P is the number of position
properties, and H and W are the environment’s
height and width. Each of the W x H positions is
represented as a binary properties vector of length
P (e.g., encoding the type of object in the position,
its color, etc.). The system plan p = (py, ... ,p|1—,|)
is a sequence of follower poses along the intended
execution. Each pose p; is a tuple (hj, wj, o) of
height /; and width w; coordinates, and a discrete
orientation angle ;.

Encoder The encoder computes a set of hidden
states, which the decoder attends to during gener-
ation. We use a learned embedding function ¢* to
map each position vector to a dense embedding of
size N* by summing the embeddings of each of
the position’s properties. We combine the embed-
dings into a tensor S € RN *>W “and compute:
S’ = CNN(S), where CNN! is a learned convo-

lution and 8" € RN" *HxW Because the CERE-
ALBAR environment is a grid of hexagons, we use
HExACoNV (Hoogeboom et al., 2018). We en-
code the plan positions into a sequence of vectors
s, ., pi};|> by cropping a N®' x N? x NP-sized
tensors from S’ centered around each (h;, w;) and
rotated by ;. These tensors represent the pose
of the follower and its surroundings during execu-
tion. Each pj-' is encoded to p; = CNNQ(pj/),

while retaining the dimensionality of p;f/.

We concatenate an orientation
ding ¢“(a;) to each p;, and process
[pl; gba(al)], e [P|p|§ gba(aw)} with a bidi-
rectional LSTM to compute hy,... hy. We
construct the set of hidden states P the decoder

embed-

attends to by concatenating each h; with the
NP x NP position vectors encoded in each p;:

P = {[hy:p;[z,y]] [1 <5 < B,
1<z,y< Np} .
where p;[x, y| is a position vector of size N* .

ey

Decoder The decoder computes a probability
distribution over token types conditioned on the
prefix generated so far and the set P, which repre-
sents the environment state and plan. The decoder
uses the first four layers of the GPT-2 Transformer
architecture (Radford et al., 2019), which enables
initializing with GPT-2 weights. We extend it with
pseudo self attention (Ziegler et al., 2019) to con-
dition the generation on the encoder outputs P.
This adds a linear layer that projects the encoder
outputs P into the decoder self-attention space.

Inference We decode instructions from P(- |
s1,p; 0) using temperature sampling with a tem-
perature of 7 (Kreutzer et al., 2018b). This sharp-
ens the sampling distribution, to focus on higher
probability outputs. We do not use beam search.

S Learning

We continually improve our model by observ-
ing users following generated instructions and re-
estimating the model parameters. We initialize the
model parameters #; using an existing language
model and training on a static dataset of instruc-
tions Dy (Section 5.1). We then perform a series
of rounds, each round r includes deploying the
model with human users and training on the col-
lected interactions (Section 5.2). In round r, we
collect interactions between our model parameter-
ized by 6, and human followers, to create a dataset
D, = {(ng)’ p\9, 20, y(i))}yjl‘ of start states ng)’
plans (9, instructions Z(?), and binary labels y(%).
We estimate 6,1 using all data collected so far
Ug=0Dq. Figure 1 illustrates our learning process.



5.1 Initialization

User interaction requires some level of minimal
performance. Pilot experiments showed that a
poorly initialized system is likely to frustrate
users, who in turn provide little learning signal.
Our initialization provides a sufficient level of
grammaticality and plausibility to support user in-
teraction, and thereby further learning.

We initialize the decoder weights with the
first four layers of GPT-2 (Radford et al., 2019).
All other weights, including of the encoder and
pseudo self-attention linear layers, are initialized
randomly We then train with a supervised dataset

= {(s9, 1,20,y )}| o of human plans
(’) starting at start states s( i) and instructions (%),
all with positive labels y( i) = +1. We use lim-
ited data, just sufficient to effectively interact with
users for further learning. We estimate #; by min-
imizing a supervised loss:

L1(61,Dg) =

[Do
1 ()
|D ‘ E log P( (Z)|S() HOR 91)

5.2 Learning from User Behavior

Learning from interacting with human users alter-
nates between generating instructions in interac-
tion with users and training the model.
Interaction with Users Ineachround r, we first
deploy the model with parameters 6, to interact
with human users, with our system as the leader
and the user as the follower. We do not update the
model during this interaction phase.

The game environment is randomly generated
for each interaction. Each game continues until it
concludes, either when the user leaves or the turns
are exhausted. A game often includes collecting
multiple sets of cards, and generating multiple in-
structions. Each instruction is generated for the
current state as the start state sq;2 as both agents
move and change the status of cards, the environ-
ment state changes throughout the game. At state
s1, we generate the plan p using a deterministic
planner that determines (a) which cards should be
selected or de-selected to make the next valid set,
and (b) the shortest paths the leader and follower
should take to visit all target cards. The actions
the planner assigns to the follower form the plan
p. The actions assigned to the leader are exe-
cuted by the leader agent deterministically during

2For simplicity, we do not index the game time step.

Perceived correctness: Did you follow all parts of the
Leader’s command and find everything correct?

Users are instructed to answer yes only if they consider their
execution correct given the instruction, if they perceive that
the instruction describes the relevant cards and objects cor-
rectly, and if the specified actions make sense.

Grammaticality: Was the instruction grammatical and well
written?

Users are shown examples of errors before the game, and
largely interpret this criteria as language correctness inde-
pendent of the world state.

Figure 4: The binary questions displayed to the
user at the end of instruction execution.

its turn. The model is used to sample an instruc-
tion z ~ P(- | s1,D; 0,), which is displayed to the
user. The human user has no access to p, the set of
target cards, or the game state s;. They only ob-
serve the instruction and what is ahead (Figure 2).

During their turn, the user executes Z to the best
of their ability, and indicates when done. If the
user determines that the instruction cannot be fol-
lowed, they can terminate the execution, which is
treated just like marking the instruction as com-
plete. The user execution € is the entire sequence
of poses they take while following the instruction.

When the user concludes or terminates an in-
struction z, we show them a top-down view of
the entire environment with their execution path
highlighted. They do not see the original system
plan. We ask the user two binary feedback ques-
tions about the perceived correctness of their exe-
cution and grammaticality (Figure 4).

We create a tuple (s1,p,Z,€, f) for each ex-
ecution €, where sj is the start state of the en-
vironment, p is the plan generated in that state,
Z ~ P(-| s1,p;0) is the sampled instruction, and
f is the set of responses to the feedback questions.
Once the user submits the answers to the feedback
questions, the next instruction is generated.

Dataset Construction We use all interactions in
round r to construct dataset D,., which is made of
tuples (s1,p,Z,y), where p is a plan and y is a
binary label. Given a tuple (s1,p, T, €, f), we use
three heuristics to add examples to D,.:

1. If any feedback answer in f is negative, the
instruction does not reflect the user’s execu-
tion or not well written (i.e., ungrammatical).
We add a negative example to D, with the
system plan p: (s1,p,Z, —1).

2. If both feedback answers are positive, the
user considers their execution € accurate and
the instruction well formed. This does not



necessarily indicate the execution follows the
system plan, but that we can treat the execu-
tion as a plan. We add a positive example
with the execution as the plan: (s, €, z,+1).

3. If both answers are positive and the execution
e follows the plan p,’ the instruction commu-
nicates the plan well. We add a positive ex-
ample with the system plan: (s1,p, Z, +1).
Overall, we add examples to D, using both the
original system plan and the user execution. The
heuristics utilize the observational learning signal
as much as possible while avoiding examples not
beneficial for learning. For example, we do not
add negative examples using the user execution,
because these are less likely to be useful for learn-
ing. Although such executions can form negative
examples if the user answered negatively to the
correctness question, they tend to be relatively ar-
bitrary, and it is unlikely the model conditioned on
them will assign significant probability to the gen-
erated instruction, which is the behavior negative
examples come to suppress.

Parameter Estimation We estimate the model
parameters for the next round 6,4, using all avail-
able data D = U;_yD,. We re-train our model,
starting with GPT-2 parameters (Section 5.1).*
We formulate learning as an offline contex-
tual bandit problem, treating the sentence labels
y as rewards. Learning from the positive ex-
amples in D forms a straightforward supervised
learning problem, albeit one where the data is
generated from system interaction. A key chal-
lenge is using the negative examples. Treating
them like supervised examples requires optimiz-
ing the probability of their instructions to zero.
Because limp(.y_0log P(-) = —oo, this leads
to an unbounded negative loss that quickly dom-
inates the objective. This in contrast to posi-
tive examples, for which the loss is bounded by
zero. This issue is not present in existing work us-
ing offline contextual bandits to improve machine
translation (Lawrence et al., 2017; Kreutzer et al.,
2018b), where rewards are always non-negative.

3For instructions that target cards, we require getting the
card selection right, and ignore the follower position. For in-
structions that require waiting (e.g., hold still), we require the
position to remain the same, but allow orientation deviation.

“Pilot studies showed re-training to be more stable than
fine-tuning given new data, and we conduct the majority of
our experiments with this method. However, we also observe
that our process is overall robust to the initially observed in-
stabilities of fine-tuning (Section 7).

We address this issue by adding an inverse
propensity score (IPS; Horvitz and Thompson,
1952; Wang et al., 2017) coefficient to negative ex-
amples in a policy gradient objective. The gradient
for estimating parameters 6,1 is:

VL(Oq41,D) =
|D|

1 i i = (i i) (i 3

52y Viog P |50, p0:0,11)

i=1 N
where, given an example (s, p(), z(?) () ac-
quired in round ¢ with parameters 0, Eg) is:
1 y=+1
P | s p);0) L@

P | 5@ p0:6,) ¥ .
As the probability of 'a neghtive example (i.e.,

y = —1) decreases, so does its impact on the loss.
While IPS is commonly used in bandit learning to
de-bias the loss estimate (Lawrence et al., 2017),
our motivation is different, and we do not add it
to positive examples. Because of the large combi-
natorial space, sentence probabilities are generally
small. The IPS coefficient of a positive example
can become very large as its probability increases
during learning. Instead, we use a supervised-like
term, which is known to behave well.’

o) =

6 Experimental Setup

Initialization Data We create the supervised
initialization dataset Dy by sampling 360 interac-
tions from the original CEREALBAR data (Suhr
et al., 2019), which was collected in a wizard-
of-oz (WOZ; Kelley, 1984) setup via human-
human games. We select this number through pi-
lot studies and qualitative analysis to minimize the
amount of initialization data, while still maintain-
ing sufficient model performance for early inter-
actions to facilitate learning. Our goal is to use as
little data as possible to study the target scenario
where investment in supervised data is minimal,
and most learning is left to interaction with users.
This data includes 7,147 examples. We use the hu-
man demonstrations in the original data as plans.

Evaluation Similar to Zhao et al. (2021), we ob-
serve that automated metrics, such as Bleu (Pa-
pineni et al., 2002) or BERTScore (Zhang et al.,
2020), computed over a static held-out validation
set are unreliable for evaluating instruction gener-
ation. Instead, we focus on task-completion mea-

5An alternative, and important direction for future study
is to add IPS to all examples, but clip it at a certain maximal
value, similar to clipping in PPO (Schulman et al., 2017).



sures via human execution. We measure task com-
pletion by considering the user execution as com-
pleting the intended task if the user visits all card
locations included in the system plan; or, if the
plan includes no target cards, the user stays in the
starting position. We quantify the similarity of the
user execution to the path in the system plan by
computing earth mover’s distance (EMD; Rubner
etal., 1998)° between the two (Blukis et al., 2019).
We also track the user answers to the feedback
questions (Figure 4). We average each measure
over the number of instructions in each round.
Language Analysis We quantitatively analyze
how generated instructions change throughout
training. For each round, we report mean in-
struction length, vocabulary size, and three mea-
sures of syntactic complexity using dependency
trees (Xu and Reitter, 2016): (a) maximum depth:
the longest path from root to a leaf; (b) maximum
width: the maximum out-degree of any word in
the tree; and (c) average branching factor: the av-
erage out-degree of non-leaf words. We normalize
the three measures by instruction length. We qual-
itatively analyze errors in generated instructions,
by comparatively analyzing 100 randomly sam-
pled examples where the user failed to complete
the intended task from the first and final rounds.
Interaction Setup Except initialization, learn-
ing and evaluation are done through live interac-
tion with users on Amazon MTurk. All workers
passed a tutorial and a qualification quiz. We pay
$0.15 per interaction, with a bonus of $0.10 per
instruction to workers that follow our guidelines.
Implementation Details Similar to perfor-
mance evaluation, automated measures are
unreliable for model selection. Instead, for both
initialization and in each round, we train for
N = 400 epochs, and take the final model. We
find NV via qualitative analysis of the initial model.
We use an ensemble of four models. We uni-
formly sample one of the four models to sample
each instruction, and take its probability to use in
IPS for negative examples. We use a sampling
temperature 7 = (.5, and AdamW (Loshchilov
and Hutter, 2018) for learning.

7 Results and Analysis

We conduct a long-term experiment with 14
rounds using our approach, and separate seven-
round experiments to compare system variants. In

SWe use POT (Flamary et al., 2021) to compute EMD.

both experiments, we collect roughly 100 inter-
actions for each system per round. In the seven-
round experiments, we deploy methods simultane-
ously to ensure that our observations are not sen-
sitive to changes in user behavior, for example be-
cause of adaptation and increased expertise. We
do not inform workers about the model they are in-
teracting with. We train each system only on data
collected by the same method in previous rounds.

7.1 Long-term Study

We experiment with our approach for 14 rounds.
We collect a total of 27,031 instructions from
1,445 interactions, with 103.2 interactions per
round on average. The total cost is $2,895. Fig-
ure 5 shows both performance measures and lan-
guage trends. For task measures and user feed-
back, we also break down performance according
to the number of target cards in the system plan
to evaluate performance changes for plans which
may be more difficult to describe (e.g., because
they require specifying more cards).’

Our learning method significantly improves the
system performance across all measures. Task
completion rate improves from 44.7% at round
one to 79.3% at round 14, while EMD decreases
from 1.73 to 0.88, showing increasing similarity
between the execution and the plan. The user per-
ception of the system also improves: the positive
response rate for the perceived correctness ques-
tion improves from 47.9% to 78.6%, and for gram-
maticality from 88.9% to 99.2%. The overall col-
laborative system performance improves as well;
the game score increases from 4.5 to 10.4. The
number of positive examples per round gradually
increases, as the system improves and the interac-
tions become longer. In contrast, the number of
negative examples decreases over time.

We observe that the initial model struggles to
describe plans containing more target cards, with
a particularly low task completion rate of 1.6%
for 3-card plans in the first round. This is poten-
tially because only 0.7% of human follower exe-
cutions in Dy demonstrate picking up three cards,
while the planner generates 3-card plans 7.9% of
the time. While initial improvement is slow for 3-
card instructions, it picks up around round eight,
and reaches 32.9% task completion rate.
Language Analysis We observe a consistent
trend of decreasing sentence length and vocabu-

70-card plans target no cards (e.g., hold still).



—e— Overall —5— 0O-card’

—&— l-card —e— 2-card —*— 3-card
10 -
L
S
v 8+
5
£
s
O gl
4 | | | | |
11 —~—  Vocabulary
= —3— Sentence length
% ..
310} {200 =
B )
Q <
s 137
: 2
=
3 9
-1 100
-11.02 2
%
2
-1 gﬂ
o
Q
10.98 2
Max depth §
—H—  Max width -10.96 &,
—A— Branching factor w

= 3
.2
2 2
o Q —
g =
Q 3]
] 10
£
07
.= 100
o< g8
2% £
L g 290
58 53
=5 2
24 2 280
£ 5 g =
5 1.5k |- 3 k|
e oy
e :
% 1k %
) )
o 2500 |
£ 2
£ 500 )
- : :
U " L oo
2 4 6 8 10 12 14
Round

E [ S
2 4 6 8 10 12 14
Round

Figure 5: The system’s lifetime statistics from the long-term experiment (14 rounds). The system im-
proves on task completion (1), EMD (), positive response rate for the two feedback questions (1), and
game score (1). Section 7.1 discusses these results in detail.

lary size. Overall, these trends accompany reduc-
tion in over generation of erroneous phrases that
are not grounded well in the environment. We
also qualitatively observe that the systems grad-
ually generates slightly more underspecified in-
structions, for example by dropping mentions of
landmarks crucial for navigating to a target card.
This may explain the slight decrease in 1-card task
completion rate in later rounds (Figure 5), because
the planner usually has the follower travel fur-
ther for 1-card instructions, which requires rely-
ing more on landmarks. A potential explanation
to the decrease in vocabulary size is the ever in-
creasing presence of system-generated sentences
in training, which reinforces the system’s word
choices. Alternatively, our learning signal may
not account for the need for more descriptive lan-
guage. For example, humans may compensate
with exploration for omitted descriptions, which is
not distinguished by how we convert the observed
behavior to a learning signal. These trends outline
important directions for future work.

We observe a small increase in syntactic com-
plexity over the system’s lifetime with regard to
the branching factor, which shows significant in-

crease (p < 0.00001).8 We also see a slight de-
crease in maximum tree depth (p < 0.0001), and
no significant change in max width.

Error Analysis We analyze errors in the gener-
ated instructions at the first and final rounds. For
each round, we randomly sample 100 instructions
that the user did not execute according to the plan
or answered negatively to a feedback question. Ta-
ble 1 shows error types and example instructions.
Overall, the frequency of erroneous instructions
decreases from 68.5% of instructions in the first
round, to 26.8% in the final round. From the
first to final round, we observe noticeable decrease
in errors related to grounding of cards and land-
marks. The overall frequency of errors related to
incorrect directions and incorrect actions or condi-
tions also decreases, and implausible instructions
diminish close to zero percent. However, there is
an overall increase in underspecified instructions.
This aligns with the decrease in the vocabulary
size and landmark use we discuss above.
Confounding Factors We identify two mecha-
nisms unrelated to our approach that could explain
the observed performance changes. We deploy

8We use t-test (o« = 0.01) comparing rounds 1 and 14.



Error Type r=1 r =14 Example
Incorrect, missing, or extra cards 75 39 turn left and go to the yellow star triangles
Irrelevant landmarks 13 1 Head toward the wirdmit house. grab 2 red and triangle
Incorrect direction 30 35 grab the black heart to yowrteft in front of you.
Incorrect actions or conditions 28 14 After-the-two-red-triangtes, get the 3 red triangles.
Underspecification 8 26 turn right and go straight toward red trees collect two
orange triangle.

Implausible instructions 11 1 Turn left and get the two pink  hearts
Proportion of erroneous instructions 68.5% 26.8%

Table 1: The types of errors observed in erroneous instructions generated during the first (r = 1) and

final (r = 14) rounds of deployment. We show error counts from the 100 randomly-sampled erroneous
instructions. Examples illustrate error categories; red strikethrough shows erroneous segments, and blue
fragments show possible corrections. Instructions that fit into multiple categories are double counted.

Model » Overall 0-card’ 1-card 2-card 3-card
01 1 448 84.1 64.9 9.6 1.7
01 14 45.1 84.5 62.1 9.3 0.8
01 14 49.6 76.6 63.8 24.8 7.4
014 14 79.4 99.6 819 721 33.0

Table 2: The effect of confounding factors on task
completion rate (%). The initial model 6, is eval-
uated both in the first (r = 1) and final (r = 14)
rounds, showing no effect of user adaptation. In
the final round, we also evaluate €, which is
trained on the same data as 6; but using more gra-
dient updates. We also show results for the final-
round model 614.

two additional systems alongside our system dur-
ing the final round. For each interaction, one of
the three systems is randomly chosen. We do not
inform the workers of the identity of the model
for each interaction. First, we deploy the system
following initialization during the final round to
study if performance might be explained by user
improvement over time. Second, because we train
with a fixed number of epochs, later rounds have
many more gradient updates, which may allow for
better parameter estimation, even with the same
amount of data. We train a system on the initial-
ization dataset Dy for the same number of gradient
updates as when training the final full system.

Table 2 shows these confounding factors do not
explain the observed gains. We find minimal dif-
ferences between evaluating the initial model (1)
at the beginning and end of deployment, show-
ing no significant effect from user improvement.
Training the initial system longer (#}) shows a
slight overall improvement, but negligent com-
pared to final system (614).

7.2 System Variants Study

We vary different design decisions, and experi-
ment for seven interaction rounds.” We experi-
ment with four system variants: (a) FULL: our full
approach described in Section 5; (b) POS-ONLY:
use only examples with positive labels y = +1;
(c) TC-ONLY: ignore the feedback questions, in-
stead if the user completes the task according to
our task success measure we add positive exam-
ples with both the system plan and user execution,
otherwise we add a negative example using the
system plan; (d) NO-ENSEMBLE: train and deploy
a single model each round, starting from an initial
model randomly sampled from these we use for
FULL; and (e) FINE-TUNING: train model param-
eters 0,1 on D, for N epochs, starting from 6,.,
avoiding overfitting with rehearsal (Rebuffi et al.,
2017; Hawkins et al., 2020a). In rehearsal, in each
batch, half the examples are sampled randomly
from the previous datasets Dy,...,D,_1. Except
the variations specified, the systems are identical.
We do not deploy a system ablating IPS, because
we observe that training with negative examples
without IPS results in a largely unusable system.
We collect a total of 63,189 instructions across
all systems, with 3173 interactions. Each round
includes 453.2 interactions on average. The total
cost is $7,165. All systems are used concurrently
in each round, including re-deploying FULL again
starting from initialization. Figure 6 shows the re-
sults. Despite some differences between the sys-
tem variants, our method is largely robust to vari-

This study is similar to ablation analysis, but aims to
study different learning design decisions. Full-fledged repet-
itive ablations to identify the ideal system design are partic-
ularly challenging in this work, both because of experiment
costs and the complex dynamics of interacting with users.



—e— FuLL —&—P0S-ONLY —4— TC-ONLY
—6— NO-ENSEMBLE —%— FINE-TUNING

BN
=)

at
o

Task Completion Rate (%)
Positive Perceived Cor-
rectness Feedback (%)

o
S

250

200

Sentence Length
Vocabulary

150

Round

Figure 6: Comparison of system variants.

ations in learning design decisions.

All systems achieve comparable improvements
in task completion rate, except for POS-ONLY,
which slightly underperforms. We observe faster
decrease in the vocabulary size and instruction
length for POS-ONLY, which does not use nega-
tive examples. This is possibly because the loss
from negative examples encourages a more uni-
form generation distribution, potentially slowing
down the overall trends of making the generation
distribution more peaky. TC-ONLY, which ig-
nores the answers to user feedback questions when
constructing the dataset, shows fewer positive re-
sponses to the perceived correctness feedback, al-
though task completion remains comparable.

We observe that using a single (NoO-
ENSEMBLE) model rather than an ensemble
leads to limited difference in overall performance.
However, because of the challenge of identify-
ing a good automated metric to stop training,
the performance of models following training
varies significantly. This can lead to deploying
a bad model, which provides users with a poor
experience. Using an ensemble of models incurs
higher computational cost, but makes such a
worst-case scenario less likely. For example, in
our long-term experiment, the maximum task
completion performance gap we observe between
the best and worst models in each round is 13%.

Finally, we observe that fine-tuning (FINE-
TUNING) works as well as our re-training ap-
proach (FULL), potentially with a more stable vo-

cabulary size. This is in contrast to our initial ex-
periments, which showed it is harder to get consis-
tent improvements through fine-tuning. While the
fine-tuning process is harder to design because it
requires to choose the fine-tuning procedure (e.g.,
rehearsal (Robins, 1995) or KL regularization (Yu
et al.,, 2013)) and carefully optimize additional
hyperparameters, it can work just as well as re-
training. Because fine-tuning is faster to train be-
tween rounds, it may be preferable in future work.

7.3 Comparison to Supervised Learning

We also separately study the learning trends of
our method compared to training on equivalent
amount of supervised WOZ data. Supervised data
is fundamentally different from our bandit data,
for two main reasons: (a) it is significantly costlier
because it requires a dedicated instruction-writing
effort, whereas our data arises naturally from the
system interaction with users during deployment;
and (b) it provides per-token labels, whereas our
data includes only utterance-level binary labels.
For the supervised system, after each round, we
expand the dataset by randomly drawing an equiv-
alent amount of additional data from the com-
plete dataset of Suhr et al. (2019), which includes
19,112 examples from 960 interactions.!® This
dataset allows for seven rounds. We concurrently
deploy a no-ensemble variant of our continual
learning system. We collect a total of 22,216 in-
structions across both systems, with 1,166 interac-
tions. This experiment’s total cost is $2,230.
Figure 7 shows our continual learning system
consistently outperforms this supervised alterna-
tive in overall task completion rate. There are two
potential explanations to this gap. First, the data
our approach uses is made of examples the system
is likely to generate, potentially providing a more
effective learning signal. Second, there is a dif-
ference between the plans of human leaders and
our planner. Our training is better suited to adapt
to how the complete system is designed, whereas
training on human-annotated data is bound to suf-
fer from a distribution shift. However, the con-
tinual learning system did not consistently outper-
form the supervised alternative on 2-card and 3-
card instructions, especially at early rounds. This
is likely because the continual learning system
generates few positive examples for more com-

Interactions with the supervised system are not used for
learning, but only for evaluation.



Continual - - - Supervised

®Overall T0-card’” 4 1-card ©O2-card x 3-card

—

o

o
T

-3
ot
T

[\
t
T

Task Completion Rate (%)
o
=)
T

o
T

Figure 7: Comparison to supervised learning. The
continual learning system is competitive in task
completion rates with systems trained on equiv-
alent amount of supervised data.

plex system plans (i.e., 2-card or 3-card) at ear-
lier rounds. At later rounds, as the system im-
proves, we observe more positive examples for
such plans, creating an accelerating effect of im-
provement, which is best observed in our long-
term experiment (Figure 5).

8 Related Work

Learning for instruction generation has been stud-
ied using supervised methods, with examples
of task specifications (i.e., contexts) paired with
human-written instructions (e.g., Daniele et al.,
2016; Narayan-Chen et al., 2019), including to im-
prove instruction following (Fried et al., 2018; Tan
et al., 2019). We focus on continually learning
by observing users executing generated instruc-
tions. This reduces annotation needs, and del-
egates much of the learning to interaction with
users during system deployment. Language gener-
ation in context was also studied in scenarios that
are not explicitly instructional, but aim to elicit
specific behavior, such as negotiation games (e.g.,
Lewis et al., 2017) and referring expression gener-
ation (e.g., Dale and Reiter, 1995).

Gatt and Krahmer (2017) survey existing work
on language generation, including using rule-
based methods. Similar to our approach, some
rule-based methods were evaluated with human
followers in situated environments using task suc-
cess (e.g., Koller et al., 2010; Janarthanam and
Lemon, 2011). Such methods are accurate and re-
liable, but are limited to pre-specified rules and re-
main static following development. Our focus is
on studying the potential for learning by observing
human behavior. The two approaches can be com-

bined, for example by using rule-based methods to
generate initialization data for our approach.

Bandit learning has been studied with simu-
lated user ratings for machine translation (Nguyen
et al., 2017; Lawrence et al., 2017; Kreutzer et al.,
2017) and semantic parsing (Lawrence and Rie-
zler, 2018). We learn from real users, similar to re-
cent studies in machine translation (Kreutzer et al.,
2018a,b). In general, such learning assumes users
can judge the system output, for example via pro-
ficiency in the language they wish to translate to.
Our learning signal does not require such exper-
tise, and is available naturally from the interaction.

Explicit human feedback has also been incorpo-
rated into reinforcement learning methods (Knox
and Stone, 2009; Pilarski et al., 2011; Daniel
et al., 2015; Mathewson and Pilarski, 2016; War-
nell et al., 2018; MacGlashan et al., 2017; Aru-
mugam et al., 2019), including in the context of
dialogue system learning (Liu et al., 2018). Jaques
et al. (2020) study forming a reward from implicit
feedback for non-task-oriented dialogue language
generation, by training multiple models to de-
tect linguistic signals, such as sentiment and lexi-
cal overlap, that correlate with explicit user feed-
back. Learning from users has also been studied
by asking users to rank system outputs (e.g., Wil-
son et al., 2012; Christiano et al., 2017), including
for instruction following (Wang et al., 2016) and
summarization (Stiennon et al., 2020). Unlike our
approach, such ranking requires knowing the true
system intent, and is not part of the system’s nor-
mal operation (i.e., instructing users in our case).

Incorporating human users into learning is re-
lated to active learning (Settles, 2009), where a
policy selects examples for an oracle to label dur-
ing learning. Unlike common active learning sce-
narios we do not select examples from a static un-
derlying distribution (i.e., a training set) for an-
notation, but generate examples with the learned
model. This is similar to query synthesis ac-
tive learning (Angluin, 1988), where examples are
generated for annotation, rather than being se-
lected from a set of unannotated examples. A
more significant difference is that active learning
methods solicit model output annotations by pre-
senting an oracle with model inputs. In contrast,
our approach exposes users to model outputs (i.e.,
generated instructions). It does not solicit written
instructions, as would be expected if requesting
labels. We also do not show model inputs (i.e.,



plans) to users. Finally, our model interacts with
users during system operation, while completing
its task. It does not require oracle annotators.

Language learning from behavioral signals has
been studied in the cognitive science and psychol-
ogy literature.!! Krauss and Weinheimer (1966)
study two types of feedback in human studies:
concurrent linguistic feedback and behavioral in-
tent confirmation, and show how both influence
linguistic adaptation in an interaction over time.
Studies of reference games reproduced the effect
of confirmation feedback, showing that successful
intent communication reinforces convention for-
mation in the form of shorter references (Clark and
Wilkes-Gibbs, 1986; Hawkins et al., 2020b). Our
learning signal is a type of confirmation feedback.
However, our interaction procures and makes use
of more complex learning signals than a simple bi-
nary intent communication success, by using the
path the listener takes in response to the generated
instruction as an alternative intent when construct-
ing data for learning (Section 5.2).!2

9 Discussion

We propose a methodology to continually improve
an instruction generation model by observing hu-
man users executing natural language instructions,
and demonstrate its efficacy within a collaborative
instruction following scenario. Our study shows
that observation of user behavior is an informa-
tive signal for generating language to relay instruc-
tional intent. To the best of our knowledge, this
type of learning signal has not been studied before.
This learning setting facilitates continual learn-
ing through interaction with users, and is partic-
ularly compelling for interactions with collabora-
tive agents, including robots and software agents.
Such agents are likely to operate in constantly
changing environments (e.g., robots in homes),
where continual learning is necessary to adjust to
changes. Our continual learning approach also
provides systems the flexibility to co-adapt to hu-
man users, who are likely to change preferences
and behaviors in response to system behavior.
Our experiments demonstrate the learning pro-
cess is robust to various learning and process de-
sign choices. However, they also show it is accom-

'This review is not comprehensive, and only aims to high-
light the relation to problems studied in related disciplines.

2In more recent reference games (Hawkins et al., 2020b),
unlike in Krauss and Weinheimer (1966), the choice of a bad
referent can be seen as related to our use of listener execution.

panied by a reduction of language complexity, in-
cluding reducing the effective vocabulary and sen-
tence length. While much of the decrease in the ef-
fective vocabulary size throughout the system life-
time relates to generating fewer erroneous phrases,
it also reduces the language diversity and descrip-
tiveness. Our experiments show that this trend can
be slowed down by using negative examples, and
appears to be less pronounced when using fine-
tuning. The combination of this decrease with the
preference for shorter instructions makes it diffi-
cult for the system to describe longer, complex
trajectories. Qualitatively, we observe this open
problem is responsible for a significant portion of
the remaining errors. An important direction for
future work is experimenting with directly encour-
aging more diverse language. This can be com-
bined with approaches that allow for introducing
new word types, which is unlikely in our approach,
even though it uses sub-word tokenization. A po-
tential direction in this vein is combining active
learning to solicit human-written oracle instruc-
tions for plans the system fails to communicate.

Our work highlights several other directions for
future work. There is a strong need for a reli-
able automated metric to evaluate instruction gen-
eration. In absence of such a metric, we use a
simple, but likely sub-optimal stopping criteria for
learning. Beyond the learning signal we explored
in our experiments, there are additional potential
cues available during interaction. For example, us-
ing continuous-valued similarity between system
intent and user execution, modeling follower qual-
ity to discount the learning signal from interac-
tions with bad followers, or weighing the feedback
questions differently for more nuanced reward.

Finally, the decrease in utterance length and
vocabulary size mirrors similar trends observed
in studies of human communication (Clark and
Wilkes-Gibbs, 1986; Hawkins et al., 2020b). This
illustrates the potential of continual learning sys-
tems to reflect the dynamics of language change
human participants expect in natural language in-
teractions. Observations of human learning also
indicate the potential of integrating our approach
with conversational self-repair (Clark, 2020) and
partner reformulation (Clark, 2018), both impor-
tant components of child language acquisition that
likely provide better credit assignment for learning
compared to our binary bandit signal.



Acknowledgments

This research was supported by ARO W911NF-
21-1-0106, a Google Focused Award, the Masason
Foundation, a Facebook Fellowship, and NSF un-
der grants No. 1750499 and DGE-1650441. We
thank Jonathan Chang, Sasha Rush, the Cornell
NLP Group, Robert Hawkins, Dipendra Misra,
and John Langford for discussion and comments;
Suyi Diao for Unity development; Anna Effen-
berger for code to compute syntax complexity; Ge
Gao, Koji Shiono, and Takayuki Kojima for feed-
back on our interaction platform; and the crowd-
sourcing workers for participating in our data col-
lection. Finally, we thank the action editor and the
anonymous reviewers for detailed comments.

References

D. Angluin. 1988. Queries and concept learning.
Machine Learning, 2:319-342.

Dilip Arumugam, Jun Ki Lee, Sophie Saskin, and
Michael L. Littman. 2019. Deep reinforcement
learning from policy-dependent human feed-
back. CoRR, abs/1902.04257.

Valts Blukis, Eyvind Niklasson, Ross A. Knepper,
and Yoav Artzi. 2019. Learning to map natu-
ral language instructions to physical quadcopter
control using simulated flight. In Proceedings
of the Conference on Robot Learning, pages
1415-1438.

Paul Christiano, Jan Leike, Tom B. Brown, Miljan
Martic, Shane Legg, and Dario Amodei. 2017.
Deep reinforcement learning from human pref-
erences. In Proceedings of the Advances in
Neural Information Processing Systems. Curran
Associates, Inc.

Eve V. Clark. 2018. Conversation and language
acquisition: A pragmatic approach. Language
Learning and Development, 14:170-185.

Eve V. Clark. 2020. Conversational repair and the
acquisition of language. Discourse Processes,
57:441 — 459.

Herbert H Clark and Deanna Wilkes-Gibbs. 1986.
Referring as a collaborative process. Cognition,
22(1):1-39.

Robert Dale and Ehud Reiter. 1995. Com-
putational interpretations of the gricean max-
ims in the generation of referring expressions.
Cognitive Science, 19:233-263.

Christian Daniel, Oliver Kroemer, M. Viering,
Jan Metz, and Jan Peters. 2015. Active re-
ward learning with a novel acquisition function.
Autonomous Robots, 39:389-405.

Andrea F Daniele, Mohit Bansal, and Matthew R
Walter. 2016. Natural language generation in
the context of providing indoor route instruc-
tions. In Proceedings of the Robotics: Science
and Systems Workshop on Model Learning for
Human-Robot Communication.

Rémi Flamary, Nicolas Courty, Alexandre Gram-
fort, Mokhtar Z. Alaya, Aurélie Boisbunon,
Stanislas Chambon, Laetitia Chapel, Adrien
Corenflos, Kilian Fatras, Nemo Fournier, Léo
Gautheron, Nathalie T.H. Gayraud, Hicham Ja-
nati, Alain Rakotomamonjy, Ievgen Redko, An-
toine Rolet, Antony Schutz, Vivien Seguy, Dan-
ica J. Sutherland, Romain Tavenard, Alexander
Tong, and Titouan Vayer. 2021. Pot: Python
optimal transport. Journal of Machine Learning
Research, 22(78):1-8.

Daniel Fried, Jacob Andreas, and Dan Klein.
2018. Unified pragmatic models for generat-
ing and following instructions. In Proceedings
of the Conference of the North American
Chapter of the Association for Computational
Linguistics: Human Language Technologies,
pages 1951-1963.

Albert Gatt and Emiel Krahmer. 2017. Survey of
the state of the art in natural language gener-
ation: Core tasks, applications and evaluation.
Journal Artificial Intelligence Research, 61:65—
170.

Robert Hawkins, Minae Kwon, Dorsa Sadigh,
and Noah Goodman. 2020a. Continual
adaptation for efficient machine communica-
tion. In Proceedings of the Conference
on Computational Natural Language Learning,
pages 408-419. Association for Computational
Linguistics.

Robert D. Hawkins, Michael C. Frank, and
Noah D. Goodman. 2020b.  Characterizing
the dynamics of learning in repeated reference
games. Cognitive science, 44(6):e12845.



http://machinelearning202.pbworks.com/f/AngluinQueriesConceptLearningfulltext.pdf
https://arxiv.org/pdf/1902.04257.pdf
https://arxiv.org/pdf/1902.04257.pdf
https://arxiv.org/pdf/1902.04257.pdf
http://proceedings.mlr.press/v100/blukis20a/blukis20a.pdf
http://proceedings.mlr.press/v100/blukis20a/blukis20a.pdf
http://proceedings.mlr.press/v100/blukis20a/blukis20a.pdf
https://proceedings.neurips.cc/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://www.tandfonline.com/doi/abs/10.1080/15475441.2017.1340843?journalCode=hlld20
https://www.tandfonline.com/doi/abs/10.1080/15475441.2017.1340843?journalCode=hlld20
https://web.stanford.edu/class/cs379c/class_messages_listing/curriculum/Annotated_Readings/ClarkDISCOURSE-PROCESSES-20_Unannotated.pdf
https://web.stanford.edu/class/cs379c/class_messages_listing/curriculum/Annotated_Readings/ClarkDISCOURSE-PROCESSES-20_Unannotated.pdf
https://www.sciencedirect.com/science/article/abs/pii/0010027786900107
https://www.sciencedirect.com/science/article/abs/pii/0364021395900187
https://www.sciencedirect.com/science/article/abs/pii/0364021395900187
https://www.sciencedirect.com/science/article/abs/pii/0364021395900187
https://link.springer.com/article/10.1007%2Fs10514-015-9454-z
https://link.springer.com/article/10.1007%2Fs10514-015-9454-z
https://ttic.edu/ripl/publications/daniele16.pdf
https://ttic.edu/ripl/publications/daniele16.pdf
https://ttic.edu/ripl/publications/daniele16.pdf
http://jmlr.org/papers/v22/20-451.html
http://jmlr.org/papers/v22/20-451.html
https://doi.org/10.18653/v1/N18-1177
https://doi.org/10.18653/v1/N18-1177
https://dl.acm.org/doi/abs/10.5555/3241691.3241693
https://dl.acm.org/doi/abs/10.5555/3241691.3241693
https://dl.acm.org/doi/abs/10.5555/3241691.3241693
https://www.aclweb.org/anthology/2020.conll-1.33.pdf
https://www.aclweb.org/anthology/2020.conll-1.33.pdf
https://www.aclweb.org/anthology/2020.conll-1.33.pdf
https://doi.org/https://doi.org/10.1111/cogs.12845
https://doi.org/https://doi.org/10.1111/cogs.12845
https://doi.org/https://doi.org/10.1111/cogs.12845

Emiel Hoogeboom, Jorn WT Peters, Taco S Co-
hen, and Max Welling. 2018. Hexaconv. In
Proceedings of the International Conference on
Learning Representations.

Daniel G Horvitz and Donovan J Thompson.
1952. A generalization of sampling without re-
placement from a finite universe. Journal of the
American Statistical Association, 47(260):663—
685.

Srini Janarthanam and Oliver Lemon. 2011. The
GRUVE challenge: Generating routes un-
der uncertainty in virtual environments. In
Proceedings of the European Workshop on
Natural Language Generation, pages 208-211.
Association for Computational Linguistics.

Natasha Jaques, Judy Hanwen Shen, Asma Ghan-
deharioun, Craig Ferguson, Agata Lapedriza,
Noah Jones, Shixiang Gu, and Rosalind Picard.
2020. Human-centric dialog training via offline
reinforcement learning. In Proceedings of the
Conference on Empirical Methods in Natural
Language Processing, pages 3985-4003. Asso-
ciation for Computational Linguistics.

John F Kelley. 1984. An iterative design method-
ology for user-friendly natural language office
information applications. ACM Transactions
on Information Systems, 2(1):26—41.

W. Bradley Knox and Peter Stone. 2009. Interac-
tively shaping agents via human reinforcement:
the TAMER framework. In Proceedings of
the fifth international conference on Knowledge

capture, pages 9-16.

Alexander Koller, Kristina Striegnitz, Andrew
Gargett, Donna Byron, Justine Cassell, Robert
Dale, Johanna Moore, and Jon Oberlander.
2010. Report on the second NLG challenge on
generating instructions in virtual environments
(GIVE-2). In Proceedings of International
Natural Language Generation Conference. As-
sociation for Computational Linguistics.

Robert M. Krauss and Sidney Weinheimer. 1966.
Concurrent feedback, confirmation, and the en-
coding of referents in verbal communication.
Journal of personality and social psychology, 4
3:343-6.

Julia Kreutzer, Shahram Khadivi, Evgeny Ma-
tusov, and Stefan Riezler. 2018a. Can neural

machine translation be improved with user feed-
back? In Proceedings of the Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, pages 92-105. Association for
Computational Linguistics.

Julia Kreutzer, Artem Sokolov, and Stefan Riezler.

2017. Bandit structured prediction for neural
sequence-to-sequence learning. In Proceedings
of the Annual Meeting of the Association for
Computational Linguistics, pages 1503—-1513.
Association for Computational Linguistics.

Julia Kreutzer, Joshua Uyheng, and Stefan Rie-

zler. 2018b. Reliability and learnability of hu-
man bandit feedback for sequence-to-sequence
reinforcement learning.  In Proceedings of
the Annual Meeting of the Association for
Computational Linguistics, pages 1777-1788.
Association for Computational Linguistics.

Carolin Lawrence and Stefan Riezler. 2018. Im-

proving a neural semantic parser by coun-
terfactual learning from human bandit feed-
back. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics,
pages 1820-1830. Association for Computa-
tional Linguistics.

Carolin Lawrence, Artem Sokolov, and Stefan

Riezler. 2017. Counterfactual learning from
bandit feedback under deterministic logging

A case study in statistical machine trans-
lation.  In Proceedings of the Conference
on Empirical Methods in Natural Language
Processing, pages 2566-2576. Association for
Computational Linguistics.

Mike Lewis, Denis Yarats, Yann Dauphin, Devi

Parikh, and Dhruv Batra. 2017. Deal or no
deal? End-to-end learning of negotiation di-
alogues. In Proceedings of the Conference
on Empirical Methods in Natural Language
Processing, pages 2443-2453. Association for
Computational Linguistics.

Bing Liu, Gokhan Tiir, Dilek Hakkani-Tiir,

Pararth Shah, and Larry Heck. 2018. Dialogue
learning with human teaching and feedback in
end-to-end trainable task-oriented dialogue sys-
tems. In Proceedings of the Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language



https://openreview.net/pdf?id=r1vuQG-CW
https://amstat.tandfonline.com/doi/abs/10.1080/01621459.1952.10483446#.YIqqUBT0lhE
https://amstat.tandfonline.com/doi/abs/10.1080/01621459.1952.10483446#.YIqqUBT0lhE
https://www.aclweb.org/anthology/W11-2830
https://www.aclweb.org/anthology/W11-2830
https://www.aclweb.org/anthology/W11-2830
https://www.aclweb.org/anthology/2020.emnlp-main.327
https://www.aclweb.org/anthology/2020.emnlp-main.327
https://dl.acm.org/doi/pdf/10.1145/357417.357420?casa_token=obM-z55lfNQAAAAA:L_MJNuLAOIKvjXRCW5N_tEnLQEktOp0EmVSEfEJDx_iPNLLTJ7wDQB6xi4yJ0uVt9qgl-eiQHg-Ffuc
https://dl.acm.org/doi/pdf/10.1145/357417.357420?casa_token=obM-z55lfNQAAAAA:L_MJNuLAOIKvjXRCW5N_tEnLQEktOp0EmVSEfEJDx_iPNLLTJ7wDQB6xi4yJ0uVt9qgl-eiQHg-Ffuc
https://dl.acm.org/doi/pdf/10.1145/357417.357420?casa_token=obM-z55lfNQAAAAA:L_MJNuLAOIKvjXRCW5N_tEnLQEktOp0EmVSEfEJDx_iPNLLTJ7wDQB6xi4yJ0uVt9qgl-eiQHg-Ffuc
https://dl.acm.org/doi/pdf/10.1145/1597735.1597738
https://dl.acm.org/doi/pdf/10.1145/1597735.1597738
https://dl.acm.org/doi/pdf/10.1145/1597735.1597738
https://www.aclweb.org/anthology/W10-4233
https://www.aclweb.org/anthology/W10-4233
https://www.aclweb.org/anthology/W10-4233
https://psycnet.apa.org/record/1966-12283-001
https://psycnet.apa.org/record/1966-12283-001
https://www.aclweb.org/anthology/N18-3012
https://www.aclweb.org/anthology/N18-3012
https://www.aclweb.org/anthology/N18-3012
https://www.aclweb.org/anthology/P17-1138
https://www.aclweb.org/anthology/P17-1138
https://www.aclweb.org/anthology/P18-1165
https://www.aclweb.org/anthology/P18-1165
https://www.aclweb.org/anthology/P18-1165
https://www.aclweb.org/anthology/P18-1169
https://www.aclweb.org/anthology/P18-1169
https://www.aclweb.org/anthology/P18-1169
https://www.aclweb.org/anthology/P18-1169
https://www.aclweb.org/anthology/D17-1272
https://www.aclweb.org/anthology/D17-1272
https://www.aclweb.org/anthology/D17-1272
https://www.aclweb.org/anthology/D17-1272
https://doi.org/10.18653/v1/D17-1259
https://doi.org/10.18653/v1/D17-1259
https://doi.org/10.18653/v1/D17-1259
https://doi.org/10.18653/v1/N18-1187
https://doi.org/10.18653/v1/N18-1187
https://doi.org/10.18653/v1/N18-1187
https://doi.org/10.18653/v1/N18-1187

Technologies, pages 2060-2069. Association
for Computational Linguistics.

Ilya Loshchilov and Frank Hutter. 2018. De-
coupled weight decay regularization. In
Proceedings of the International Conference on
Learning Representations.

James MacGlashan, Mark K. Ho, Robert Tyler
Loftin, Bei Peng, David L. Roberts, Matthew E.
Taylor, and Michael L. Littman. 2017. Inter-
active learning from policy-dependent human
feedback. In Proceedings of the International
Conference on Machine Learning.

K. Mathewson and P. Pilarski. 2016. Simultane-
ous control and human feedback in the train-
ing of a robotic agent with actor-critic reinforce-
ment learning. arXiv, abs/1606.06979.

Anjali Narayan-Chen, Prashant Jayannavar, and
Julia Hockenmaier. 2019. Collaborative di-
alogue in Minecraft. In Proceedings of
the Annual Meeting of the Association for
Computational Linguistics, pages 5405-5415.
Association for Computational Linguistics.

Khanh Nguyen, Hal Daumé III, and Jordan Boyd-
Graber. 2017.  Reinforcement learning for
bandit neural machine translation with simu-
lated human feedback. In Proceedings of the
Conference on Empirical Methods in Natural
Language Processing, pages 1464—1474. Asso-
ciation for Computational Linguistics.

Kishore Papineni, Salim Roukos, Todd Ward,
and Wei-Jing Zhu. 2002. Bleu: a method
for automatic evaluation of machine transla-
tion. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics,
pages 311-318. Association for Computational
Linguistics.

P. M. Pilarski, M. R. Dawson, T. Degris, F. Fahimi,
J. P. Carey, and R. S. Sutton. 2011. Online hu-
man training of a myoelectric prosthesis con-
troller via actor-critic reinforcement learning.
In Proceedings of the International Conference
on Rehabilitation Robotics, pages 1-7.

Alec Radford, Jeffrey Wu, Rewon Child, David
Luan, Dario Amodei, and Ilya Sutskever. 2019.
Language models are unsupervised multitask
learners.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov,
Georg Sperl, and Christoph H Lampert. 2017.
icarl: Incremental classifier and representation
learning. In Proceedings of the Conference
on Computer Vision and Pattern Recognition,
pages 2001-2010. IEEE.

Anthony Robins. 1995. Catastrophic forgetting,
rehearsal and pseudorehearsal. = Connection
Science, 7(2):123-146.

Yossi Rubner, Carlo Tomasi, and Leonidas J
Guibas. 1998. A metric for distributions with
applications to image databases. In Proceedings
of the International Conference on Computer
Vision. IEEE.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Prox-
imal policy optimization algorithms. arXiv,
abs/1707.06347.

Burr Settles. 2009. Active learning literature sur-
vey.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel
Ziegler, Ryan Lowe, Chelsea Voss, Alec Rad-
ford, Dario Amodei, and Paul F Christiano.
2020. Learning to summarize with human feed-
back. In Proceedings of the Advances in Neural
Information Processing Systems, pages 3008—
3021. Curran Associates, Inc.

Alane Suhr, Claudia Yan, Jack Schluger, Stan-
ley Yu, Hadi Khader, Marwa Mouallem, Iris
Zhang, and Yoav Artzi. 2019. Executing
instructions in situated collaborative interac-
tions. In Proceedings of the Conference
on Empirical Methods in Natural Language
Processing, pages 2119-2130. Association for
Computational Linguistics.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le.
2014. Sequence to sequence learning with neu-
ral networks. In Proceedings of the Advances in
Neural Information Processing Systems, pages
3008-3021. Curran Associates, Inc.

Hao Tan, Licheng Yu, and Mohit Bansal. 2019.
Learning to navigate unseen environments:
Back translation with environmental dropout.
In Proceedings of the Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language



https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
http://proceedings.mlr.press/v70/macglashan17a/macglashan17a.pdf
http://proceedings.mlr.press/v70/macglashan17a/macglashan17a.pdf
http://proceedings.mlr.press/v70/macglashan17a/macglashan17a.pdf
http://arxiv.org/abs/1606.06979
http://arxiv.org/abs/1606.06979
http://arxiv.org/abs/1606.06979
http://arxiv.org/abs/1606.06979
https://www.aclweb.org/anthology/P19-1537
https://www.aclweb.org/anthology/P19-1537
https://doi.org/10.18653/v1/D17-1153
https://doi.org/10.18653/v1/D17-1153
https://doi.org/10.18653/v1/D17-1153
https://www.aclweb.org/anthology/P02-1040.pdf
https://www.aclweb.org/anthology/P02-1040.pdf
https://www.aclweb.org/anthology/P02-1040.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5975338&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5975338&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5975338&tag=1
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Rebuffi_iCaRL_Incremental_Classifier_CVPR_2017_paper.pdf
https://openaccess.thecvf.com/content_cvpr_2017/papers/Rebuffi_iCaRL_Incremental_Classifier_CVPR_2017_paper.pdf
https://www.tandfonline.com/doi/pdf/10.1080/09540099550039318?casa_token=lq-YiLV0oC8AAAAA:nnhfpJWUABR6HPWARxMxk4AUFZuH4OISjcpgXPlKUAV1aVJl7NRXLQbXrTzbTzJ5jXDdrU13KCsVvcM
https://www.tandfonline.com/doi/pdf/10.1080/09540099550039318?casa_token=lq-YiLV0oC8AAAAA:nnhfpJWUABR6HPWARxMxk4AUFZuH4OISjcpgXPlKUAV1aVJl7NRXLQbXrTzbTzJ5jXDdrU13KCsVvcM
https://ieeexplore.ieee.org/abstract/document/710701
https://ieeexplore.ieee.org/abstract/document/710701
https://arxiv.org/pdf/1707.06347.pdf
https://arxiv.org/pdf/1707.06347.pdf
http://burrsettles.com/pub/settles.activelearning.pdf
http://burrsettles.com/pub/settles.activelearning.pdf
https://proceedings.neurips.cc/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1f89885d556929e98d3ef9b86448f951-Paper.pdf
https://doi.org/10.18653/v1/D19-1218
https://doi.org/10.18653/v1/D19-1218
https://doi.org/10.18653/v1/D19-1218
https://papers.nips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://papers.nips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://www.aclweb.org/anthology/N19-1268
https://www.aclweb.org/anthology/N19-1268

Technologies, pages 2610-2621. Association
for Computational Linguistics.

Sida I. Wang, Percy Liang, and Christopher D.
Manning. 2016. Learning language games
through interaction. In Proceedings of
the Annual Meeting of the Association for
Computational Linguistics, pages 2368-2378.
Association for Computational Linguistics.

Yu-Xiang Wang, Alekh Agarwal, and Miroslav
Dudik. 2017.  Optimal and adaptive off-
policy evaluation in contextual bandits. In
Proceedings of International Conference on
Machine Learning, pages 3589-3597. Proceed-
ings of Machine Learning Research.

Garrett Warnell, Nicholas R Waytowich, Vernon
Lawhern, and Peter Stone. 2018. Deep tamer:
Interactive agent shaping in high-dimensional
state spaces. In Proceedings of the AAAI
Conference on Artificial Intelligence.

Aaron Wilson, Alan Fern, and Prasad Tade-
palli. 2012. A bayesian approach for pol-
icy learning from trajectory preference queries.
In Proceedings of the Advances in Neural
Information Processing Systems. Curran Asso-
ciates, Inc.

Yang Xu and David Reitter. 2016.  Conver-
gence of syntactic complexity in conversa-
tion. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics,
pages 443-448. Association for Computational
Linguistics.

Dong Yu, Kaisheng Yao, Hang Su, Gang Li, and
Frank Seide. 2013. Kl-divergence regularized
deep neural network adaptation for improved
large vocabulary speech recognition. In 2013
IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 7893—
7897. IEEE.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kil-
ian Q. Weinberger, and Yoav Artzi. 2020.
BERTScore: Evaluating text generation with
BERT. In Proceedings of the International
Conference on Learning Representations.

Ming Zhao, Peter Anderson, Vihan Jain, Su Wang,
Alex Ku, Jason Baldridge, and Eugene Ie.
2021. On the evaluation of vision-and-language

navigation instructions. In Proceedings of
the European Chapter of the Association for
Computational Linguistics, pages 1302-1316.
Association for Computational Linguistics.

Zachary M Ziegler, Luke Melas-Kyriazi, Sebas-
tian Gehrmann, and Alexander M Rush. 2019.
Encoder-agnostic adaptation for conditional
language generation. arXiv, abs/1908.06938.



https://doi.org/10.18653/v1/P16-1224
https://doi.org/10.18653/v1/P16-1224
http://proceedings.mlr.press/v70/wang17a.html
http://proceedings.mlr.press/v70/wang17a.html
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16200/15852
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16200/15852
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16200/15852
https://proceedings.neurips.cc/paper/2012/file/16c222aa19898e5058938167c8ab6c57-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/16c222aa19898e5058938167c8ab6c57-Paper.pdf
https://www.aclweb.org/anthology/P16-2072
https://www.aclweb.org/anthology/P16-2072
https://www.aclweb.org/anthology/P16-2072
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6639201&casa_token=MJhbu3oonIkAAAAA:07RwvWkCgxXk2dcYnw4IfN3d0GYMUO1YMN6Y4oPkjO_-tScFG82_VgQ_fce8oRB4vF0fYVcm_sA&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6639201&casa_token=MJhbu3oonIkAAAAA:07RwvWkCgxXk2dcYnw4IfN3d0GYMUO1YMN6Y4oPkjO_-tScFG82_VgQ_fce8oRB4vF0fYVcm_sA&tag=1
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=6639201&casa_token=MJhbu3oonIkAAAAA:07RwvWkCgxXk2dcYnw4IfN3d0GYMUO1YMN6Y4oPkjO_-tScFG82_VgQ_fce8oRB4vF0fYVcm_sA&tag=1
https://openreview.net/pdf?id=SkeHuCVFDr
https://openreview.net/pdf?id=SkeHuCVFDr
https://www.aclweb.org/anthology/2021.eacl-main.111.pdf
https://www.aclweb.org/anthology/2021.eacl-main.111.pdf
http://arxiv.org/abs/1908.06938
http://arxiv.org/abs/1908.06938

