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COORDINATE RINGS AND BIRATIONAL CHARTS

SERGEY FOMIN AND GEORGE LUSZTIG

ABSTRACT. Let G be a semisimple simply connected complex algebraic group.
Let U be the unipotent radical of a Borel subgroup in G. We describe the
coordinate rings of U (resp., G/U, G) in terms of two (resp., four, eight)
birational charts introduced by Lusztig [Total positivity in reductive groups,
Birkh&user Boston, Boston, MA, 1994; Bull. Inst. Math. Sin. (N.S.) 14 (2019),
pp. 403-459] in connection with the study of total positivity.

INTRODUCTION

Let G be a simply connected, almost simple algebraic group over C. Fix a
maximal torus T of G and a pair B', B~ of opposite Borel subgroups containing T,
with unipotent radicals Ut,U~. Let v = dim(U") and r = dim(T). For an
irreducible quasi-affine variety X over C, we denote by O(X) the algebra of regular
functions X — C, and let [O(X)] be the quotient field of O(X).

In this paper, we show (see Theorems 0.3, 4.2 and 5.2) that the algebra O(U™)
(resp., O(G/U™) and O(G)) can be completely described in terms of two (resp.,
four and eight) birational charts C¥ — U™ (resp., C¥ x (C*)" — G/U~ and C" x
(C*)" x C¥ — G) which were introduced in [Lus94],[Lus19] in connection with the
study of total positivity.

Theorem 0.3 provides a proof of a conjecture in [Lusl9, 6.1(a)]. Theorem 4.2
(resp., Theorem 5.2) establishes a weak form of a conjecture in [Lus19, 6.3(a)] (resp.,
[Lus19, 6.2(a)]) in which only two birational charts, instead of four (resp., eight),
were used. The proof of Theorem 0.3 given in Section 3 relies on the results in [BZ97]
and [FZ99] that describe the inverse of the charts for U™ in terms of “generalized
minors.” Theorems 4.2 and 5.2 are proved in Sections 4 and 5, respectively, using
reduction to the case of U™T. In particular, our proof of Theorem 5.2 does not use
the more complete results on generalized minors in [FZ99]. (The latter technique
would have allowed to decrease the number of charts from eight to two, but then
the two charts used would not be canonical, unlike the eight that we consider here.)

In order to state our main result (Theorem 0.3), we will need to introduce some
notation.

Let U;" (i € I) be the simple root subgroups of U+, and let U; (i € I) be the
corresponding root subgroups of U~; here [ is a finite indexing set. We assume
that for any i € I we are given isomorphisms of algebraic groups z; : C = U;" and
y; : C = U, such that (T, B*, B~,z;,y;;i € I) is a pinning for G.
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2 SERGEY FOMIN AND GEORGE LUSZTIG

Definition 0.1. Let I* be the set of all pairs (¢,5) € I x I such that any element
in U; commutes with any element in U;. There is a unique (up to a labeling
convention) partition I = Iy U I; into two disjoint subsets such that Iy x Iy C I*
and I; x I; C I*. Let rg = #(Jp) and r = §(I1) be the cardinalities of Iy and I;.
It is known that h = 2v/r is an integer (the Coxeter number).
For € € Z, we define [¢] € {0,1} by € = [¢] mod 2. With this notation, we have

V=T T Tet1] T+ Teth—1] -

h terms

(If h is even, this follows from rq + 4 = r; if h is odd, we use that ro = r1 =r/2.)
For € € {0,1}, let us fix the ordering of the elements of I.:

I. = {i1,i5,...,i;_}.
We then define the sequence j¢ € I” (a distinguished reduced expression) by

jE = (va]é?m]i)

le] . 1] .[e+1 .

(0.1.1) = (i)l il
Je+2] [ed2 . Jet+h—1] .[e+h—1 et h—
z[l6 ],2[26 ],..., [Ti:ﬂ]7...,z[15 ],2[25 ],...7 Ls[;trh_ﬂ)

(The upper indices are not exponents.) Thus, the first r terms of j° are the
elements of I} in their order, the next r.; ) terms are the elements of I|. ) in
their order, and these patterns keep alternating until we accumulate v entries.

For a sequence of indices i = (i1, 42, ..., in) € I"™ of length n > 0, we define the
map f; : C* — Ut by

(012) fi(al, az, ... ,an) = Tq, ((11)131'2 (CLQ) < Ty, (an)

In particular, one can choose i = j¢ for ¢ € {0,1}, as in (0.1.1) above. The
following fact is well known:

Proposition 0.2. The maps fjo, fjr are birational isomorphisms from C” to U™.

Proposition 0.2 can be deduced from the proof of [Lus94, 2.7] using (1.3.1) below;
it can also be deduced from [BZ97]. See also 3.12(d).

By Proposition 0.2, each map fj- (¢ € {0,1}) induces an isomorphism of fields
fiz - [o(U)] = [o(cv)).

Theorem 0.3. An element ¢ € [O(UT)] belongs to O(UT) if and only if the
rational function fi:(¢) € [O(C")] belongs to O(C”) for e =0 and fore = 1.

The proof of Theorem 0.3 is given in Section 3.

The instances of Theorem 0.3 for G of types Ay and As have been verified in
[Lus19, Section 6.1]. In the rest of this section, we work out the latter case in detail.
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Example 0.4. Let G = SL4(C), with T, B*, and B~ its subgroups of diagonal,
upper-triangular, and low-triangular matrices, respectively. Then

1w wiz uws
0 1 U23 U224
0 0 1 sy Urg, U13, U14, U3, U4, Uzs € C p
0 O 0 1

O(U™") = Cluiz, w13, U4, uogz, tos, usa),

Ut =< u

r =3,
I:{172’3}’
1 a 0 O 10 0 0 10 0 0
01 0 0 01 a O 01 00
n@=1y o 1 ol ®2@=|g ¢ 1 o WA=y g 1 4|
00 01 0 0 0 1 0 0 0 1
v =0,
h=4.
We set Iy = {2} and I = {1,3}. Then ro =1, 71 =2, and
i =1(2,1,3,2,1,3),
i't=1(1,3,2,1,3,2),
1 0 0 0] [L az O O 10 0 0
Foo! ) = 01 ai O[]0 1 0 O 010 0
jolan, @2,43,04,45,96) =19 o 1 0|0 0 1 0 00 1 ag
00 0 1]]0 0 0 1 0 0 0 1
(1 as+as as0y A20406
|0 1 a1+ a4 aijaz+ aijag + aqgap
(0.4.1) - 0 0 1 a3+a6
0 0 0
[1 5 0 0]1L 0 0 O 10 0 0
|01 0 0|0 1 0 O 0 1 b O
fjl(b17b23b3ab4ab5vb6)_ 0 0 1 0 0 0 1 b2 0 0 1 0
0 0 0 1]]0 0 0 1 00 0 1
1 b1 +bs b1bs + bibg + bgbg  bibsbs
o1 bs + bs bsbs
(0.4.2) =10 0 1 by + b
0 0 0 1

Proposition 0.2 asserts that each of the 6 parameters a1, as, as, a4, as, ag (resp.,
b1, ba, b3, by, bs, bg) can be expressed as a rational function in the 6 matrix entries
u;; (1 <4< j <4) of the unipotent upper-triangular matrix

U= (Uij) = fio(alaa27a37a47a57a6>
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(resp., fji(b1,b2,b3,b4,b5,b6)). For example,

U13U24 — UI4U23 U13U34 — Ul4 U13U34 — U14
GG =—-->—-",0g=—— , 3= — |
(O 4 3) U13U34 — U14 U23U34 — U24 Uu13
U13(U23U34 - U24) U13U34 — U14 U14
a4: ,a5:U12_—,a6:—.
U13U34 — U14 U23U34 — U224 U3

(For explicit formulas for matrices of arbitrary size, see [BFZ96, Theorem 1.4].)
Any rational function

¢(u) = d(urg, ur3, u1a, uas, uzs, uzs) € [O(UT)]

can be rewritten in terms of the parameters a; (resp., b;), by substituting the
appropriate expressions for the u;; from (0.4.1)—(0.4.2):

o(u) = ¢laz + as, asaq, asasag, a1 + aq, aras + ajag + asag, as + ag)
= ¢(b1 + by, b1b3 + b1bg + babg, b1bsbs, b3 + bg, bsbs, by + b5).

Theorem 0.3 asserts that ¢ is a polynomial in the variables u;; if and only if both
functions in the parameters a; (resp., b;) appearing in (0.4.4) are polynomial.
Theorem 0.3 can also be restated entirely in terms of the parameters a; and b;.
As observed in [Lus94] (in a more general setting of an arbitrary pair of reduced
expressions), the birational map relating the v-tuples (a;) and (b;) to each other
can be obtained as a composition of simple birational transformations associated
to individual braid moves. In our example, calculations based on those rules yield
the following formulas expressing aq, as, a3, aq, as, ag in terms of by, bo, bs, by, bs, bg:

~ bababsbg R R PQ bobsbs _ bubsbs

R 7a2—@7a3:ﬁ,a4:?,05— 0 6 P

(0.4.4)

(045) al

where
P = b1b3 + b1bg + babs ,

(0.4.6) Q = babz + babs + bsbe ,
R = b1babs + b1babg + b1bsbg + bobibg + babsbg.

Theorem 0.3 (in this example) says that a polynomial ®(a1, as, as, as, as, ag) lies in
the subring

Clag + a5, azaq, asasag, a1 + aq, a1as + a1ag + agag, as + ag] C Clay, as, . . ., ag)

(cf. (0.4.1)) if and only if substituting (0.4.5)—(0.4.6) into ®(ay,as,as, a4, as, ag)
produces a polynomial (rather that merely a rational function) in by, ba, ..., bg.
(An alternative criterion would be to substitute (0.4.3) into ® (a1, as, as, aq, as, ag)
and verify that the result lies in Cluq, us, ..., ugl.)

1. PRELIMINARIES ON THE WEYL GROUP AND WEIGHTS

1.1. Let ¢ : G — G be the unique automorphism of G such that ¢(z;(a)) = y;(a),
t(yi(a)) = x;(a) for i € I,a € C and «(t) =t for t € T. We have 1% = 1.

Let Y = Hom(C*,T) and X = Hom(T,C*). We write the operation in each of
these groups as addition. Let (,) : Y x X — Z be the obvious perfect pairing.
For i € I, let a; € X be the simple root corresponding to U; and let «; be the
corresponding simple coroot. Let Xt = {\ € X | (a;,\) > 0Vi € I}. Fori € I,
the fundamental weight w; € X is defined by the condition (o, w;) = d;; for j € I.
We have w; € X7,
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For i € I, we denote by P; the (parabolic) subgroup of G generated by BT
together with ;c;_g;, U; -

1.2. For i € I define s; : Y — Y by x — x — {x, a;)a;. Let W be the subgroup of
Aut()) generated by {s;;i € I'}. This is a Coxeter group with the simple reflections
{si | i € I} and with the length function that we denote by w — |w|. Let wy € W
be the unique element such that |wg| = v, the maximal possible length. Now W
acts on X by the rule (x,w()\)) = (w=(x),A) for x € Y,\ € X. Fori € I, let
Ww; be the W-orbit of the weight w; in X and let W;_g;; be the subgroup of W
generated by {s;;j € I — {i}}. This is exactly the stabilizer of w; with respect to
the W-action on X

Let NT be the normalizer of T in G. Now NT/T acts in an obvious way on ).
This gives an embedding of NT/T — Aut()) that identifies NT'/T with W.

For i € I, set $; = z;(1)y;(=1)x;(1) € NT and §; = y;(1)x;(—1)y:(1) € NT.
We extend this to define representatives w € NT and w € NT for all w € W by
requiring that for any w, w’, w” € W satisfying w” = ww’ and |w”| = |w|+|w'|, we
have w” = ww' and @ = W'

For € € {0,1}, we set

zezﬂsieW.

iel.

(Here the factors commute, so the order does not matter.)
Lemma 1.3 (see [Boub9, Chapter V, §6, Ex. 2]). We have
(1.3.1) |l | plethmtl) = el et Rl =y

It follows that, if I' C I, I" C Ijeyiq1), W' = [Liep 8, w" =11,cp0 54, then

(1.3.2) lwzlE T 2 ! | = w| 4 |25 4 2B 2 ),
provided either (a) 1€ {0, 1, ..., h—2} or (b)) w=1andl {0, 1, ..., h—1},
or (c)w =1andle{0,1, ..., h—1}.

1.4. We denote
(1.4.1) Y' ={w; |i€l},
(1.4.2) Y" = {wow; | i € T}.

If vy €Y', then (oj,v) > 0forall j € I. If y € Y”, then (a;,) <0 for all j € I.

1.5. Fix € € {0,1}. Recall that j° = (5§, 75, ..., j5) was defined in (0.1.1). For
ke{l,2,..., v}, weset

’yz = Sjﬁ e sii+1siiwji’

77; = Sje .- sii+zsji+1wji'

In order to represent v and 7 more explicitly, we will need to introduce some
additional notation. For I € {1, 2, ..., h —2} and i € Ijcyp_g, let
’Ulsz’ _ Z[s+h—1]z[s+h—2] . z[a“'h_l"'l]siwi.

s
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Let Xf U XS --- U XS be the partition of {1, 2, ..., v} given by

Xf = {1,2,. .. ,T[E]},

X5 = {7‘[5] +Lrg+2,.. g+ 7‘[5+1]},

X = {rie) + e F L7 F ey F 2,007+ Te] F Te2] )
Since s;sj» = sjs; for j,j" in the same I. and sjwj = wj/ if j # j’, we see that

Ve :u,ﬁjz if 1e{1,2,...,h =2}, ke A , C{r+1,r4+2,...,v},
i :u,ﬁjz if 1e{1,2,...,h—2}, ke X Cc{1,2,,...,v—h}

NeY if keX;_UXs={v—h+1lv—h+2,...,v}

NEEY” if ke XFUXS ={1,2,... 1}
For k, k" in {1, 2, ..., v} such that (j§, ji,) ¢ I* (see Definition 0.1), we set

727k/ = Sjﬁ e sz+18jzwjzl.
From the definitions we see that under these assumptions,
(a) Vi s is either equal to one of the elements v;,, or lies in Y.
Lemma 1.6. Let v = vj; wheree € {0,1}, 7 € Ijeypyp, L€ {1, 2, ..., h —2}.
(a) If j € Ijeyny, then (ay,7) > 0.
(b) There exists j € Ijcqpq1) such that (oy,v) <O0.
Proof. Let us prove (a). We have
(aj, ) = (si2lETh=t1 | plerh=1 0 0.

To show that this is nonnegative, it suffices to prove that
(c) sizleth=tF1 | le+h=1y s a positive coroot.
We have

|Si2[a+h_l+l] L. Z[a-‘rh—l]' _ |87,| + |z[8+h—l+l]| N ‘z[a-i-h—l]'.
(Usei € Ij.1j_; and (1.3.2) which holds since /-1 < h—1.) Therefore, to prove (c),
it is enough to show that

|sizlEth=iH L Z[€+hfllsj‘ = |s;| 4 |2ETh=HH) o ple R |s;]-

The latter follows from (1.3.2) since [ — 1 < h — 2. This proves (a).

Now suppose that (b) does not hold. Then by (a), we have (a;,y) > 0 for
every j € I. Therefore v € X*. Since v € Ww;, we have v = w;. Hence

ZlEth=1l. . pleth=l+1]g, ig in the stabilizer of wy, i.e., in Wj_ ;. This contradicts
|Zleth=ll L pleth=ltllg ) — pleth=1l) g et )
which holds by (1.3.2). O

Lemma 1.7. Let e € {0,1}, i € Jjeqpy, 1 €{1, 2, ..., h—2}. Let w € W be the
unique element of minimal length in {w1 € W | wiw; = v, }.

(a) If j € Ijcyp), then [sjw| > |w].

(b) There exists j € Ijoqpq1) such that |s;w| < |w].
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Proof. Assume that j € I satisfies |s;w| < |w|. Then [w™'s;| < Jw™!|, and using
[BZ97, Proposition 2.6] we see that (a;,vf;) < 0. Now using Lemma 1.6(a), we
deduce that j ¢ Ij.ys, proving (a). Now suppose (b) does not hold. Then by (a),
|sjw| > |wl for all j € I. Hence w = 1 and vj; = w; so that (ay,v5 ;) > 0 for all
j € I. This contradicts Lemma 1.6(b). O

1.8. Let ¢ € {0,1}. Denote

(1.8.1) Y= {of; i€ fepnnyl € {1,2,...,h — 2}}.

We are going to show that

(a) all the weights in Y© are distinct.

To prove this, suppose that Vi = Vp where i € Ijeyp—y), ' € Ijep—y, and [,

"e{l,2,..., h—2}. Then Ww; = Ww; and therefore w; = w;» and so i =7'.
Suppose that [ # I’. Without loss of generality, we may assume that [ > I’.

Setting e =1 —1' > 1 we get:

pleth=ldel leth—lte—1]  leth—l+1]g ) — g.0;.

Hence
(b) Sz,Z[z-:+h—l—i-e]Z[s—‘,—h—l+e—1] o Z[E+h_l+l]si c WI—{i}-
From (1.3.2) we see that

|8,L‘Z[E+h_l+e]Z[E+h_l+e_1] o Z[E+h_l+1]8i|

:|S7;Z[E+h_l+e]‘ + |Z[5+h—l+e—1]| 4ot |Z[E+h—l+1]‘ + |3i‘

which contradicts (b). Hence [ =1’ and (a) is proved.
We note that

h—2 h
(1.8.2) ﬁ(Ys) = Z T[e+h—l] = ZT[E-i-h—l] - T[a—i—l] - T[E] =V -—-r.
=1 =1

Lemma 1.9. With the notation introduced in (1.4.1), (1.4.2), (1.8.1), we have
YenNY' =g and YeNY” = (assuming G is not of type Ay ).

Proof. If v € Y¢, then (aj,~) < 0 for some j by Lemma 1.6(b); thus v ¢ Y/ by 1.4.

Assume that vf; = wow; for some l € {1,2, ..., h—=2},i € I|.1py, j € I. Then
w; and w; are in the same W-orbit. Hence i = j and we have

Z[£+h—1]z[£+h—2] L Z[8+h_l+1]5iwi

:Z[5+h—1]z[5+h—2] o Z[s+h—l+1]z[s+h—l] . Z[E]wi )

This implies that s;zlEtP=1. .. 2w, = w;, 1e., s;zEHP—1 ... 2] Ties is in the stabi-
lizer of w;, that is, in Wj_y;3. So any reduced expression of it does not contain s;.
If [ > 2, this contradicts

|25 Al = (] 4 2R 2B

since h — [+ 1+ 1 < h. Therefore [ = 1 and moreover any reduced expression of
s;wg does not contain s;. But this cannot happen if G is of type other than A;.
Indeed, for some ¢ € {0, 1},

Sleth—1] leth—2] | leth—i+1] le+h—1] . [e]
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gives a reduced expression of wg such that s; appears in the first group zEth=11 If
s; does not appear in any other group, then there are only two factors and h = 2.
But h > 2 in any type other than A;. O

2. AN IRREDUCIBILITY PROPERTY
In this section, we prove the following result.

Proposition 2.1. Let w,w'€W. The set UT N (B~ BT ™1) is empty if w' £ w;
it is smooth and irreducible, of dimension v — |w'|, if W' < w.

2.2. For y e W, let
UFf={ueUt g lugeU},
U ={ucU" g luge U™}
The multiplication map U} x UTY = U™ is an isomorphism of varieties.

2.3. For € G and a subgroup C of G, we shall write *C instead of zCx~'. For
w € W, we shall write “C instead of “C.
We denote by B the variety of Borel subgroups in G. For B’, B” € B, there is
a unique w € W such that for some 2/,z"” in G we have B’ =% BT,B" =* BT,
2’72 € BTB™T; we then write w = pos(B’, B").
For z,2' € W, we denote
R.. ={B€B|pos(B~,B) =2, pos(B,B") =2z wg}.
It is known [KL79] that R, ./ is nonempty if and only if z < z’. We show:
Proposition 2.4. If z < 2’ then R, ./ is smooth, irreducible of dimension |z'|—|z|.
Proof. We shall adapt an argument in [Lus98, 1.4] by replacing R by C. The set
R...={B€B|pos(B~,B) =2 pos(B,"°*B~) = wp}.

is an open nonempty subset in {B | pos(B~, B) =2’} = Cl*'l. Hence it is smooth
irreducible of dimension |z’|. Clearly, the map (B,u) — “B is an isomorphism
R, x(U~Nw2U~) SR, ... Now the claim follows since U~ NWo#{~ = ckl. O

2.5. A result related to Proposition 2.4 holds for the analogue of R .+ over a finite
field Fy. By [KL79], the number of Fg-rational points in this analogue is given by
the polynomial R, ./ in loc.cit. evaluated at g. By the inductive formula in loc.cit.,
the latter is monic of degree |2'| — |z|.

Proof of Proposition 2.1. Setting B = *B*, we can reformulate Proposition 2.4 as
the statement that

{xBT € G/B" | pos(B~,*B") = 2/,pos(*BT,BT) = 2 1wy}

= (UtwezBT) N (B~ (wez' ~')YB™))/B*

= (U} (woz)) N (B~ (w2’ ~')YBT)

woz
is smooth, irreducible of dimension |2'| — |z| if z < 2/, and is empty if z £ 2’
Replacing here wgz, woz’ by w,w’ we deduce that (U} w)N(B~w'B™) is smooth,
irreducible of dimension |w| — |w'| if w’ < w, and is empty if w’ £ w.
Using 2.2, we see that the map

(Ufi)N (B~ BT) x U™ — (UTw) N (B~ w' B™)
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given by (v, u”) — vw'u"w with v’ € U} such that v € B~ Bt and v’ € U™
is an isomorphism of varieties. Since U™ = C¥~I*! we conclude that (Utw) N
(B~ BT) is smooth, irreducible of dimension v — |w'| if w’ < w, and is empty if
w’ £ w. This completes the proof of Proposition 2.1. O

3. PROOF OF THEOREM 0.3

When G is of type A1, we have j° = j' and the theorem is trivial. For the rest

of this section, we assume that G is not of type A;.
3.1. Fixi € I. Let

Vi={f€0(G) | f(utg) = wi(t)f(9) Vu e U, t € T, g € G}.
The group G acts on V; by g1 : f — g1 f where (¢1.f)(9) = f(gg1). There is a unique
f € Vi such that f(gu) = f(g) for all g € G,u € UT and such that f(1) = 1. We
denote it by A. (Note that A depends on the choice of i.)

We show that A($;) = 0. Setting g. = y;(—c)a;(c™1)x;(c) for ¢ € C*, we see that
lim. 00 ge = &; in G. We have A(g.) =w;(ai(c™1))=c71, s0 A(&)=lim, oo c 1=
0. It follows that A vanishes on U~ $; BT, hence also on the closure
(a) Z=U-§Bt= Uw;sing_ﬂ.)B-i_ = UweW,WI_”} U-wBT =G - (U_PZ)

The function A is preserved (up to a nonzero scalar) by the action of P; on V;.
Hence A takes only nonzero values on the open subset U~ P; of GG, implying that
(b) Z={g€G:A(g) =0}.

Definition 3.2. Let ¢ € I and v € Ww;. Following [BZ97], we set A, = WA,
where w € W is such that ww; = . This does not depend on the choice of w. In
particular, A, = A.

Let AT be the restriction of A, to Ut. For u € UT, we have AT (u) = A(uw),
with w as above. (Note that A,Jyr is not identically zero on U*t. Otherwise we would
have A(U~B%p) = 0; but U~ BT is dense in G; hence A = 0, a contradiction.)

We will also use the notation
(3.2.1) Z,={uecU" | Af(u) =0}

Lemma 3.3. Letiel, we W, and v = ww;. Then:
() 2, = Uyew—w,_, (U N (U-§BT01);
(b) if s; £ w then Z, is empty;
(c) if s; < w, then Z, is the closure of UT N (U~ $;BYw™!) (a smooth irreducible
variety of dimension v —1).
Proof. Using 3.1(a),(b), we get
Z,={ueUT; A(ud) = 0}

={ueUT;wi € Z}

={ue Ut | u € UyeWw -w,_ (s UidyBJr},
and (a) follows. (We used that Btw~! = BTw~1.)

By Proposition 2.1, UT N (U~ ;BT ') is smooth irreducible of dimension v — 1
provided that s; < w and is empty if s; € w. Moreover if y satisfies s; < y, then
the same Proposition shows that U+ N (U~yB+w™1) is either empty or irreducible

of dimension v — |y| < v — 2. Since, by Krull’s theorem, Z, is either empty or of
pure dimension v — 1, the statements (b) and (c) follow. O
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Lemma 3.4. Lete € {0,1}, vy € Y°. Then:

(a) 2 (see (3.2.1)) is an irreducible variety of dimension v — 1;
(b) for any j € Ijcypn) and any c € C we have Z,x;(c) C 2Z,;
(c) there exists j € Ijoypy1] such that for some c € C we have Z,x;(c) ¢ Z,.

Proof of (a). We write v = ww; with i € I,w € W. By Lemma 1.9, we have v ¢ Y’
hence w ¢ W;_r;y so that s; < w. Now (a) follows from Lemma 3.3(c). O

Proof of (b). We write v = ww; where ¢ € I and w € W is the unique element of
minimal length in {w; € W | wyw; = v}. Using Lemma 3.3(c), we see that it is
enough to show that for j, ¢ as in (b) we have

(Ut N U BT ))zj(c) cUT N (U yBTw™)
for any y € W — W;_g;3. This follows from @~ 'z;(c) € Ut~ which in turn
follows from |s;w| > |w| (see Lemma 1.7(a)) or equivalently [w™ts;| > |w™!|. O

Proof of (c). Suppose that (c) does not hold. Using (b), we see that for any j € T
and any ¢ € C we have Z,z;(c) C Z,. Since the elements x;(c) for various j,c
generate the group U™, it follows that Z,U" C Z,. Since Z, # &, we conclude
that Z, = U™T. This contradicts Lemma 3.3(b),(c). O

Lemma 3.5. Let v € Y? and o/ € Y'. Then every irreducible component of
Z,N0 2y has dimension < v — 2.

Proof. By Lemma 3.4(c) with ¢ = 0, there exist j € Ij544) and ¢ € C such that
Zyx;(c) ¢ Z,. By Lemma 3.4(b) with ¢ = 1, we have Z,x;(c) C 2. Therefore
Z, # Z,. Since Z,, Z, are irreducible of dimension v — 1, the lemma follows. [

3.6. Consider the partition
(3.6.1) Ut = || U"(2)
zeW
where
Ut(z)=UtNB 2B~
is smooth and irreducible of dimension |z| (cf. Proposition 2.1 with (w, w") replaced
by (wo, zwp)). Furthermore, the closure of U™ (z) in U is equal to | |,..., U (2).
It follows that U™ (wp) is open dense in UT. For z € W, we set
U (2)=U NBT:iB" =(U"(2))
(see 1.1 for the definition of ¢). Then
U= |]U (2
zeW
and U~ (wp) is open dense in U~
Let
A: U+(w0) :—) U+(U)0)
be the composition
Ut (wp) = {B € B|pos(BT,B) =pos(B,B™) =wy} — U (wo) = U™ (wp)

where the first isomorphism is u — “B~, the second isomorphism is the inverse of
u' +— “ BT, and the third isomorphism is the restriction of ¢.
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We will show that A is an involution. For u € Ut, we have “B~ = “(Aw) g+,
Replacing u by A(u) we obtain AW B~ = (A’ (W) B+ Applying ¢, we obtain

(AW B+ = AW B~ je, “B~ =A*(WB~ Hence u = A%(u) and A% = 1.

3.7. Let € € {0,1}. We denote
_ + 1 At + _
Vo={ueU" | A% (u) #0,&72(11) #0,k={1,2,...,v}}.
This set is open in U™ . It is also nonempty, since each of Aj}i , Ar% is not identically
zero on UT. We denote
VE={ueUT(wp) | Alu) € V} = UT (w) N A™H(V*).

This set is open in UT. It is also nonempty, as it is the intersection of two open
nonempty subsets of UT. We shall need the following result from [BZ97], [FZ99].

Lemma 3.8. The map fi- : C¥ — U restricts to an isomorphism (C*)¥ = V<.
3.9. Using the results in 1.5, we see that
(3.9.1) Vi ={ue Ut (wo) | AT (Au) #0 forally e YUY UY"}.

If v = w; with i € I, then AT is the function u — A, (u) = Ay, (1) =1 (a constant
function). If v = wow; with i € I, then AT (u) # 0 for any u € U™ (wp). (Indeed,
writing v = u/1ob’ with v’ € U=, b € B~, so that uig = w'tu; witht € T,u; € U™,
we have AT (u) = A, (utb) = Ay, (u'tur) = w;(t) # 0.) It follows that Y and Y
can be eliminated from (3.9.1), and we conclude that

(3.9.2) Vi ={ueU*(wo) | AT (Au) # 0 for all y € Y=},
Lemma 3.10. dim(U™* (wy) — (WV2UV})) <v —2.
Proof. From (3.9.2), we obtain
Utwo) —(V2uvh) = | AU (w)NZ,nZy).
(y)EYOxY!

It remains to use that dim(Z, N Z,) < v —2 for (v,7') € Y° x Y! (see Lemma
3.5). O

Lemma 3.11. Let i = (i1, i2, ..., i) € I™ be a reduced expression, that is, the
element w = s;, ...s;, € W has length n. Let

"fi: (CHY" = UT

be the restriction of the map fi in (0.1.2). Then 'f; is an isomorphism of (C*)™
onto an open subset 'U;" of U (w).

Proof. Induction on n. For n = 0, the result is obvious. Assume that n > 1. Let
i = (i1, 92, ..., inp_1) € [" P and let w’ = s;, ...s;,_,. The map

Ut(w') x C* — Ut (w)
(', c) = u'z;, (c)

is an isomorphism of U™ (w’) x C* onto an open subset of U™ (w). It restricts to an
isomorphism of 'U;7 x C* onto an open subset 'U;" of Ut (w). O
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3.12. Let ¢ € {0,1} and let i € I|.1p,11). Define k € X% (in the notation of 1.5) by
Jr = 1. Let C¥ (resp. 'CY) be the subset of C” consisting of all (a1, as, ..., a,) such
that a; € C* for | # k whereas aj, € C (resp. aj = 0). By restricting fj : C¥ — U™
to C¥ (resp. 'CY), we obtain maps fj; : C¥ — U" and 'fj-,; : 'CY - U™.
It follows from Lemma 3.11 that
(a) ' fje.i is an isomorphism of ‘C¥ onto an open subset /Ujf;i of UT (wps;).
We next prove that
(b) fie.i is an isomorphism of CY onto an open subset th;i of Ut (wo) UUT (wps;)
containing ‘UL,
Proof. The map U™ (wps;) x C — U™, (v/,c) = u'z; (c), is an isomorphism of
U (wgs;) x C onto an open subset of U (wg) U U™ (wgs;). It restricts to an iso-
morphism of 'th;i x C onto an open subset Uj;l of Ut (wo) UUT (wos;)- O
The following is a special case of Lemma 3.11:
(c) ' f;= is an isomorphism of (C*)” onto an open subset ’UJ}L of U™ (wp).
From (c), we deduce that
(d) fj is a birational isomorphism from C” to U*.
Lemma 3.13. Let U be the open subset of UT defined by
(3.13.1) U=1v°'uviu U Ut
e€{0,1},i€ 14 nt1)
Then dim(U*T —U) <v —2.
Proof. Using the partition (3.6.1), it is enough to show that
(3.13.2) dim(UT(z)N (Ut -U)) <v -2
for any z € W.
Case 1. z = wy. We have
Ut (wo) N (UT —U) C U (wy) — (VOUVL).

Therefore

dim (U™ (wo) N (U —U)) < dim(U ™ (wp) — (VOUVH)) <v -2
(see Lemma 3.10), and (3.13.2) follows.
Case 2. z = wos; with 7 € I. Define ¢ € {0,1} by i € . 11). Then

U+(w0$i) n (U+ — U) C U+(w08i) N (U+ — UJJQ)Z) C U+(w0$i) — /U:jt;i .

The last difference has dimension < v —2 (as desired) since U™ (wys;) is irreducible
of dimension v — 1 and ’ U;l is a nonempty open subset of U™ (wgs;).
Case 3. z is not of the form wq or wys;. Then |z| < v—2. Therefore dim(U*(z)) <
v — 2 which implies (3.13.2). O

3.14. Proof of Theorem 0.3. The “only if” part of Theorem 0.3 is obvious. Let
us prove the “if” statement. Consider ¢ € [O(U")] such that f(¢) € [O(CY)]
belongs to O(C”) for € = 0 and for € = 1. From our assumption we see that ¢|y- is
regular for ¢ € {0,1} (see Lemma 3.8) and that ¢[;+ is regular for € € {0,1} and
i € Ijeypy1) (see 3.12(b)). Hence ¢ is regular on u. YlUsing this and Lemma 3.13,
we conclude that ¢ is regular on U'. Theorem 0.3 is proved. ([l
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4. THE STUDY OF O(G/U™)
4.1. For i = (41, 42, ..., iy) € I, we define the maps
fir :CVxT = G/U~
fi :C"xT —-G/U~
by
fir(ar,a9,...,a,,t) =z, (a1)z,(a2) ...z, (a,) LU,
fi—(a1,a9,...,au,t) = yi, (@1)yi, (a2) . . . ys, (@) two U™

Of particular interest to us are the cases where i = j°, for € € {0,1}, as in (0.1.1).
Proposition 0.2 implies that both fj-.; and fje._ are birational isomorphisms from
C” x T to G/U~. Consequently the maps Jiz.4 and fjt _ are well-defined isomor-

phisms [O(G/U7)] = [O(CY x T)].
Theorem 4.2. An element ¢ € [O(G/U)] belongs to O(G/U™) if and only if

each of the four rational functions [, (), [ji. (®), f55._(¢), fii,_(¢) €[O(C”xT)]
belongs to O(CY x T).

The proof of Theorem 4.2 will rely on the following statement.

Lemma 4.3. We have

(4.3.1) dim(G/U™ — (UTTU~ WU TioU™)/U™)) < dim(G/U™) — 2.

Proof. The inequality (4.3.1) is equivalent to
dim(G/B~ — (U*B~ U (U~ wB~)/B~)) < dim(G/B~) — 2,

which is equivalent to the inequality

dim(B — ({B € B | pos(B, BY) = wo} U{B € B;pos(B,B~) = wp}) < dim B — 2

and thus to the statement that, for any z € W — {1} and 2’ € W — {wg}, we have
dim({B € B | pos(B~,B) = 2/, pos(B,B") =z twp}) < v — 2.

The last claim follows from Proposition 2.4 since |2/| — |z| < v — 2. O

4.4. Proof of Theorem 4.2. The “only if” statement in the theorem is obvious.
Let us prove the “if” statement. Thus, let ¢ € [O(G/U™)] be such that the four
conditions in the theorem are satisfied. We need to show that ¢ € O(G/U™).

Suppose G is of type A;. Then ¢ is regular on (UTTU~ U U™ TwipU™)/U™.
Hence by (4.3.1), it is regular on G/U~, and we are done.

In the rest of the proof, we assume that G is of type other than A;.

We first show that ¢ regular on the open subset UTTU~ /U~ of G/U~. With
the notation as in 3.7 and 3.12, we see as in the proof in 3.14 that ¢ is regular on
each of the following open subsets of UTTU ™~ /U™:

e VCTU~ /U™, for e € {0,1};

o UL, TU~ /U, for e € {0,1} and i € [[cp 41

Hence ¢ is regular on the union of these subsets, i.e., on UTU~ /U~ (hereUd C U+
is as in (3.13.1)). By Lemma 3.13, we have

dim((UTTU~ —UTU™)JU™) < v+ 7 —2 = dim(G/U~) — 2.
Since ¢ is regular on UTU~ /U™, it follows that ¢ is regular on UTTU~ /U ™.
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We next show that ¢ is regular on the open subset U~TwoU~ /U~ of G/U.

We denote Vi~ = (V) C U™ (cf. 3.7) and Uy, = o(Ust,)) C U™ (cf. 3.12).

As in the proof in 3.14 (with U™ replaced by U™), we see that ¢ is regular on
each of the following open subsets of U~ TwoU~ /U :

o Ve TuinU~ /U, for e € {0,1};
. UJ.;Z.TU'JOU_/U_, for e € {0,1} and i € Ijopqq)-

Hence ¢ is regular on the union of these subsets, i.e., on U~ TwoU~ /U~ where
U™ =) CU". By Lemma 3.13 (with U~ instead of U™T), we have

dim((U~TioU~ — U TaigU™)/U™) < v+ 1 — 2 = dim(G/U~) —
Since ¢ is regular on U~ TwoU~ /U™, it follows that ¢ is regular on U~ TwoU~ /U~ .

Thus ¢ is regular on the open subset (UTTU™) U (U TwioU™"))/U~ of G/U™.
Using this and Lemma 4.3, we conclude that ¢ is regular on G/U~, as desired. O

5. THE STUDY OF O(G)

5.1. For i = (i1, ia, ..., %,) € [ and i’ = (¢, @5, ..., i,,) € I, we define the maps
fige 1 CVxTxC” — G,
firig :C"xTxC" =G

fiiix(ar,a2,...,a,,t,01,b2,...,b))

=z, (a1)Ti, (a2) - .. @4, (a0) tYir (b1)Yiy (b2) - - - vy (b)),
fiisg(ar,az,. .. a0, t,b1,ba,...,by)

= i, (a1)yi, (a2) . ..y, (ay) t 1 zy (b1)ziy (b2) ... wir (by).

ThUS, fi,i/;I = Lfi,i/;:b

Let j¢, for € € {0,1}, be as in (0.1.1). From Proposition 0.2 one can deduce that
for each of the four possible pairs (g,&’) € {0,1} x {0,1}, both maps fj. ;.. and
[ie 3o+ are birational isomorphisms from C” x T' x C” to G. Tt follows that both

f; o and fJ"; o A€ well defined isomorphisms [O(G)] = [O(CY x T x C¥)].

Theorem 5.2. An element ¢ € [O(G)] belongs to O(G) if and only if for each of
the four possible pairs (,€’) € {0,1} x {0, 1}, both rational functions

Fo o s (0), fo o 1 (6) €0(C X T x C¥)]
belong to O(C¥ x T x CV).
The proof of Theorem 5.2 will rely on the following statement.
Lemma 5.3. dim(G — (UTTU")U (U-TUY))) < dim(G) — 2.
Proof. Using the Bruhat decomposition, we obtain:
G- ((UTTU YU (U TU)) = (G- (BTU )N (G- (B"U"))
U Brev )n( U B WU
weW—{1} w'eW—{1}

= U  Brau)nB 't
w,w’ in W—{1}
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It is therefore enough to show that for any w # 1 and w’ # 1, we have
(5.3.1) dim((B*wU ™) N (B~ w'UY)) < dim(G) — 2.

This is clear if either BT#wU ™~ or B~w'U* has dimension < dim(G) — 2. Thus
we can assume that dim(BtwU ™) = dim(B~w'U™") = dim(G) — 1 or equivalently
|w| = |w’| = 1. Then both BtwU~ and B~w'U* (closures in G) are irreducible of
dimension dim(G) — 1. If B¥wU~ # B~w'U+, then

dim(BTiU- NB-w/UT) < dim(G) — 2,

implying (5.3.1). Thus we may assume that BtwU~ = B~w'U+. By our assump-
tion, w = s; for some i € I. For any ¢ € C we have y;(c)B~w/'UT C B~uw'U™*
hence y;(¢)B~w'U+ C B~w'U*. Using our assumption, we also deduce that
yi(c)B+$,U~ C BT5,U~ for any ¢ € C. We have BY$,U~ = BT (s;wo) Uty *.
For ¢ € C*, we have

yi(c)BY4,U~ C BT4;BT B (s;wo)U iyt € BYigBti, ' = BTU~

and this is disjoint from BT$,U~. (We have used that |s;(s;wo)| = |si| + |siwo].)
This contradicts the inclusion y;(¢)B+$;,U~ C Bt$,U~. O

5.4. Proof of Theorem 5.2. The “only if” statement in Theorem 5.2 is obvious. Let
us prove the “if” statement. Consider ¢ € [O(G)] such that the eight conditions in
Theorem 5.2 are satisfied. We need to show that ¢ € O(G).

Suppose that G is of type A;. Then ¢ is regular on UTTU~ UU-TU™T. Hence
by Lemma 5.3, it is regular on G, and we are done.

In the rest of the proof, we assume that G is of type other than A;.

We will first show that ¢ is a regular function on the open set UTTU ™.

From our assumptions we see—as in the proof in 3.14—that (using the same

notation as 4.4) ¢ is regular on each of the following open subsets of UTTU ~:
VjTVf/_, for e,e’ € {0,1};

* ViTU;. ;, for e € {0,1} and @ € Ijeqpqy);

UL, TV =, for e,e’ € {0,1} and i € iy pay;

Uvjt;iTUvj:/;i,, for E,&I S {0, 1}, 1€ I[€+h+1], and i’ € I[€’+h+1]-

Hence ¢ is regular on the union of these subsets, i.e., on UTU™ (where Y C U™ is
given by (3.13.1) and U~ = +(U) C U~). We have

UtTTU —UTU™ = (Ut —U)TU YU UT(U™ —U7)).
By Lemma 3.13, we have
dim((UT —U)TU™) <v—2+71+v=dim(G) -2
and similarly
dimUT (U~ —U7)) < dim(G) — 2.
It follows that
dim(UTTU™ —UTU™) < dim(G) — 2.
Since ¢ is regular on UTU ™, we conclude that ¢ is regular on UTTU~. An entirely
similar argument shows that ¢ is regular on U~TU™. Tt follows that ¢ is regular
on the open subset (UTTU ™) U (U-TU') of G. Together with Lemma 5.3, this
implies that ¢ is regular on G. (Il
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