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Estimating population abundance is central to population ecology. With increasing
concern over declining insect populations, estimating trends in abundance has become
even more urgent. At the same time, there is an emerging interest in quantifying phe-
nological patterns, in part because phenological shifts are one of the most conspicu-
ous signs of climate change. Existing techniques to fit activity curves (and thus both
abundance and phenology) to repeated transect counts of insects (a common form of
dara for these taxa) frequently fail for sparse data, and often require advanced knowl-
edge of statistical computing. These limitations prevent us from understanding both
population trends and phenological shifts, especially in the at-risk species for which
this understanding is most vital. Here we present a method to fit repeated transect
count data with Gaussian curves using linear models and show how robust abundance
and phenological metrics can be obtained using standard regression tools. We then
apply this method to nine years of Baltimore checkerspot data using generalized linear
models (GLMs). This case study illustrates the ability of our method to fit even years
with only a few non-zero survey counts, and identifies a significant negative relation-
ship between population size and growing degree days (GDD) each year. We believe
our new method provides a key tool to unlock previously-unusable data sets, and may
provide a useful middle ground between ad hoc metrics of abundance and phenology,
and custom-coded mechanistic models.

Keywords: activity period, climate change, Euphydryas phaeton, first emergence,
Gaussian curve, general linear model, growing degree days, peak abundance,
phenology, population dynamics

Introduction

Ecologists are observing massively elevated extinction rates (Turvey and Crees 2019),
driven in part by direct anthropogenic activities, climate change and the spread of
invasive species (Pievani 2014). We are also seeing frequent changes in the phenol-
ogy of populations, a ‘globally coherent fingerprint of climate change’ (Parmesan and
Yohe 2003). Both of these patterns are particularly pronounced in insects, for which
there are alarming signs of declining populations for many well-studied taxa (Thomas
2005, Forister et al. 2010, Potts et al. 2010) and more broadly (Hallmann et al. 2017,
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van Klink et al. 2020). However, evidence for global trends
is mixed, with other studies showing no overall trends and in
some cases contradicting previous papers that found declines
(Wagner et al. 2021). This conflicting literature highlights
the limitations of current tools and data sets (Thomas et al.
2019, Didham et al. 2020). One key limitation is often
the lack of data to estimate trends for individual species or
populations as opposed to broad taxonomic groups or guilds
(Wagner et al. 2021), which is especially problematic for rare
or at-risk species.

One of the common forms of sampling for insect popu-
lations is systematic repeated surveys throughout an activity
period, such as ‘Pollard’ transect walks (Pollard 1977), bee
bowls (Stemkovski et al. 2020) or trap nests (Forrest and
Thomson 2010). Historically, the main goal of these surveys
was simply to estimate yearly abundance (Zonneveld 1991,
Pollard and Yates 1993, Schultz and Hammond 2003). More
recently, there has been growing interest in also estimat-
ing phenology from this type of data, starting at least with
Sparks and Yates (1997), but with considerable recent interest
(Fric et al. 2020, Stewart et al. 2020). Estimating abundance
and phenology from repeated count data seems like it should
be casy, yet often remains a challenge. Initial approaches for

estimating abundance involved averaging the counts of surveys
across the activity period (Pollard et al. 1975, Pollard 1977,
Thomas 1983, Pollard and Yates 1993), which has clear limi-
tations (e.g. requires appropriate estimation of activity period,
appropriate sampling within activity period, and if the same
population spreads its activity across a longer period, the aver-
age count will shrink). Initial approaches for estimating phe-
nology often looked at the first day individuals were observed
(Sparks and Yates 1997), but this metric can covary with
population abundance and sampling effort, so can confound
phenological shifts with other changes (Miller-Rushing et al.
2008, van Strien et al. 2008, Inouye et al. 2019).

To improve on these basic approaches, numerous stud-
ies have proposed realistic or highly flexible models (for a
list of examples, Table 1). However, with few exceptions,
these methods were developed or proposed in the context
of repeated measures of flowering plants, where there are
often dozens of time points in a year (Malo 2002, Clark
and Thompson 2011, Austen et al. 2014, Proia et al. 2016).
Perhaps as a consequence of being developed with such rich
data, current methods generally require considerable data
to work. This limitation holds both for the suite of mod-
els developed for flowering plants, the “Zonneveld model’

Table 1. Summary of ad hoc literature review on statistical methods for fitting activity curves to repeated count data, looking to see how
often the proposed methods have actually been used. Note that there were a few non-English publications citing these methods papers
which we were unable to evaluate. In addition to these methods, generalized additive models (GAMs) have been widely used in a variety
of phenological studies and one older method (Zonneveld 1991) is widely used by some insect ecologists. We also did not include custom-
coded (typically Bayesian) approaches that would need substantial recoding of the method to be applied to a new data set.

Method Publication System Description Used in
Generalized Clark and plants This 5-parameter function is an extension of ~ Yule and Bronstein 2018
epsilon-skew- Thompson the Gaussian model, flexible enough to (plants), Weis et al. 2014
Gaussian 2011 capture skew and kurtosis. (plants).
distribution
Gaussian mixture Proia etal. 2016 plants This method assumes that observations come 0
models from a mixture of different Gaussian
distributions (in the simple case, this might
be a bimodal distribution).
Principle coordinate  Austen et al. 2014  plants This method is an ordination approach, 0
analysis (PCoA) analogous to principal component analysis
and can identify variation in schedule
shape (ie phenology) between data sets or
subsets.

Weibull distribution  Pearse et al. 2017 plants The Weibull distribution is defined by two Taylor 2019 (methods-testing
parameters, and can capture skew and paper), Belitz et al. 2020
kurtosis. R package phest (builds on this, but distinct

method, see below).

Survival modeling Elmendorf et al. plants Elemdorf et al. use hierarchical survival 0

2019 models, which are appropriate for
presence/absence of phenological state.
Weibull- Belitz et al. 2020  flowers, This extends the use of the Weibull 0
parameterized monarchs distribution (Pearse et al. 2017) to fit most
percentile metric percentiles of an activity curve. R package
phenesse.
Exponential sine Malo 2002 flowers The exponential sine function has five Forrest and Thomson 2010 (used

equation

kurtosis.

parameters (but implementation may
require an additional two parameters per
year — see text), and can capture skew and

to estimate flower data on
missing dates for two plant
species); Herrerias-Diego et al.
2006 (using a simplified
function that is symmetrical)
(plants)
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— a mechanistic phenology curve commonly used to analyze
insect counts (Zonneveld 1991, INCA 2002, Haddad et al.
2008) —, and more generic approaches like generalized addi-
tive models (GAMs) (Rothery and Roy 2001, Hodgson et al.
2011, Newson et al. 2016, Stemkovski et al. 2020).

Ecologists sometimes address the limitations of current ana-
lytical techniques by working only with abundant species, or
years for which there are many non-zero survey counts. For
example, in a recent analysis of Ohio butterfly populations
using GAMs, Wepprich et al. (2019) limited their analysis to
cases where they had 10 or more surveys in a year. When fit-
ting Spanish butterfly populations with Gaussian curves using
a Bayesian model, Stewart et al. (2020) use only species that
were present in at least half of their surveys, with at least 35
individuals observed per year. In their analysis of UK butter-
fly populations using GAMs, Hodgson et al. (2011) generally
excluded sites where a species was observed in less than half the
surveys. In simulations of data for the rare St. Francis’ satyr but-
terfly, Haddad et al. (2008) found that when survey frequency
dropped to three times per week, the Zonneveld model (imple-
mented using INCA 2002) failed more than 30% of the time.

While ecologists can gain valuable information by fitting
elegant models to rich data sets, having only tools that require
rich data may entirely prevent the analysis of rare species or
years of low abundance, both of which are likely to lead to infre-
quent non-zero survey counts. Ignoring rare species in turn
can bias our understanding of global trends (Didham et al.
2020), and ignoring years of low abundance limits our ability
to infer population dynamics or carry out population viabil-
ity analysis (Gerber and Demaster 1999, Morris et al. 2002).
To make matters worse, even with considerable data, there
is no guarantee that existing methods can be solved numeri-
cally. For example, the Zonneveld model, which has become
something of a standard for Pollard-walk style time series, can
run into issues of confounded parameters; it is difficult to cell
if you have a few long-lived butterflies or many short-lived
ones, leading the Zonneveld model to fail (Gross et al. 2007,
Supporting information). Similarly, Malo (2002) presented
an elegant phenological model based on the exponential sine
function, but found that their numerical solvers failed to find
reasonable solutions. They thus had to modify the five-param-
eter model to include two additional parameters per year —
defining the beginning and ending of the activity peaks for
each year — which have to be determined ad hoc by users for
each year of data. In some other cases, Bayesian methods are
recommended when data are sparse compared to model com-
plexity. However, custom-coded Bayesian analyses can fail in
ways that are not obvious to non-experts (Lele and Dennis
2009, Seaman et al. 2012). As a simple example, a prior prob-
ability that is uninformative on a log scale is informative on a
non-log scale (Bolker 2008, his Fig. 4.4).

A final challenge with current analytical methods is that
many require substantial knowledge of computational statis-
tics to implement successfully. There are certainly statistical
ecologists with the skill and experience to write custom-coded
hierarchical Bayesian models and ensure that the result-
ing estimates are sensible (Lindén and Mintyniemi 2011,

Chapman et al. 2015), but they are the minority of ecolo-
gists. Of the statistical methods we encountered in writing this
paper, only two (the Zonneveld model and GAMs) have seen
much use. Not coincidentally, these are the two methods with
easy-to-use program implementations (INCA (INCA 2002)
and the mgev package in R (Wood 2017), respectively). In
contrast, another seven methods published in the last 20 years
have only been used in subsequent ecology publications a
combined total of six times (Table 1), and only one of those
was applied to insect data (Belitz et al. 2020, itself proposing a
new method). To date, the majority of the apparent surplus of
analytical tools for repeated count data are not actually being
used to study insect abundance or phenology.

Taken together, it is clear that ecologists lack an accessible,
robust statistical tool for quantifying population abundance
and phenology for species, years or sites with sparse data.
In this paper, we propose an approach to fit such data with
Gaussian curves using generalized linear models (GLMs). To
illustrate this method, we first outline the algebra behind the
procedure, then demonstrate its application to a 9-year time
series of monitoring from a population of Baltimore check-
erspot butterflies Euphydryas phaeton in Massachusetts. In
the supplements we offer a detailed explanation of how to
implement this approach in the programming language R
(<www.r-project.org>), and provide simple code to act as a
template. The simplicity of Gaussian curves (defined by only
three parameters) means that our proposed method can be
applied to almost all data — we find that even three days of
non-zero counts is sufficient to fit an activity curve (admit-
tedly one with wide confidence intervals). The familiarity of
linear regression and Gaussian curves (and our example code)
make this approach accessible to any ecologist who can run a
linear regression in R.

Gaussian curve as a linear model

The basis of our method is that a Gaussian curve has the form

—(x-)’

f(x)=ae 20 (1)

When 4 is chosen to make Eq. 1 integrate to 1, this is the
normal or Gaussian distribution. Since everything in Eq. 1
is a constant except for x, if we multiply it out and define f,
B,> B, appropriately in terms of the other constants (see the
Supporting information for the algebra), we can rewrite the
Gaussian curve as

f (x) — gﬁo +Bra+Pox’ )

Here we can see that the terms in the exponent are a qua-
dratic equation. This means that if we take the natural log of
both sides, we are left with a familiar linear model with both
a linear and a quadratic term:
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ln()’):BO +Brx + Pox’ 3)

(Note that to produce an appropriate Guassian curve, 3, must
be positive and B, must be negative; otherwise this equation
produces a monotonic or convex curve). Despite our special
use for it, Eq. 3 is an ordinary linear model of a quadratic
equation, and can be fit with standard tools for linear models.
In the context of phenology, the most straightforward analy-
sis would use empirical estimates of abundance or activity
(e.g. transect counts of butterflies or flowers) for dependent
variable y, which is distributed following a Gaussian curve
in relation to some measure of time (e.g. day of year) for the
independent variable x (Fig. 1a—i).

Fitting a linear model of In(y) versus x provides esti-
mates and confidence intervals for f,, B, and B,. By

reversing the algebra between Eq. 1 and 2, we can recover
the parameters of the Gaussian curve (mean p, variance
6?), as well as metrics determined by the Gaussian curve
(e.g. area under the curve) that may be useful in interpret-
ing the fitted activity curves (Supporting information).
First, p, the estimated day of peak activity and mean day
of activity (these are the same since the Gaussian curve
is symmetrical) can be calculated from the slopes of the
linear and quadratic terms:

n=-b 4

2,

The standard deviation of the Gaussian curve, 6, is a function
of the slope of the quadratic term:
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Figure 1. Gaussian model fitted to Baltimore checkerspot butterfly data. Points show raw data, blue lines show best-ficting Gaussian curve,
dashed gray lines show + 1 standard error. For comparability, day of month for axis labels in this and other figures is based on a 365 day
year (excludes leap days). Note the different scales on the y-axes.
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In the case study below, we refer to 2 X 1.285 X & as the activ-
ity period. This corresponds to the range of dates between the
0.1 and the 0.9 quantiles, and so this measures the duration
of time when the middle 80% of observations are estimated
to occur (Jonzén et al. 2006, Michielini et al. 2020).

The area under the Gaussian curve, NV, is a population
abundance index:

_| -2 ex —Blz
N—[J 2[32] P[Bo 4[32} (6)

We use the term ‘abundance index because, for constant
sampling effort, survival, and detection probability, NV will be
proportional to the number of active individuals (Gross et al.
2007). However, it is actually a measure of estimated observed
activity-days (Dennis et al. 2015, Wepprich et al. 2019).

We note that here we have focused on a few phenologi-
cal metrics, including the days of 0.1, 0.5 (e.g. day of peak)
and 0.9 quantile. However, because our proposed approach
fits a Gaussian curve, from estimated p and o it is trivial to
calculate any characteristics of a Gaussian curve, including
(a) any arbitrary quantiles (e.g. the 0.05 and 0.95 quan-
tiles used in Stemkovski et al. 2020), (b) the height of the
curve (e.g. maximum number of flowers, Miller-Rushing
and Inouye 2009) or (c) the ‘observable flight season’ (days
when the curve exceeds 1, a metric reflecting the period of
likely human detection that parallels first and last observation
dates) (Bonoan et al. 2021).

Standard errors of derived parameters such as p, 62 or NV can
be estimated using the delta method (Williams et al. 2002),
or by parametric bootstrapping (Dennis 1996). Code for
these analyses is given in the Supporting information (tuto-
rial as html, analysis as html, data and Rmarkdown sources).
All code was written and run in R ver. 4.0.0 (<www.r-proj-
ect.org>).

Case study
Data set

From 2012 to 2020, we conducted a capture—recapture
study of Baltimore checkerspot Euphydryas phaeton but-
terflies at a natural area (Williams Conservation Land) in
the town of Harvard MA, USA (Brown and Crone 2016,
Brown et al. 2017, Crone 2018). Baltimore checkerspot
is a univoltine species, with one clear activity period of
adults per year. Surveys were conducted by visiting the
site 2-3 times a week from mid-June until the population
was clearly finished for the year; the onset of checkerspot
flight at this site is usually in late June or early July. To illus-
trate the use of a Gaussian curve to estimate phenological
metrics, we converted capture—recapture data to counts of

individual animals handled on each visit to the site. This
monitoring protocol creates a data structure that is simi-
lar to traditional ‘Pollard walk’ style monitoring (Pollard
1977, Pollard and Yates 1993, Wepprich et al. 2019) but
differs from Pollard walks in that the site was searched freely,
rather than by walking a fixed route. For comparison with
the Gaussian analyses below, we estimated population size
each year using standard open population capture—recap-
ture models (Supporting information). For comparison to
existing methods, we fit our data to the Zonneveld model
using INCA (INCA 2002). We chose to compare with the
Zonneveld model because it is also easy to use, and as a
four-parameter model it is one of the simplest (and thus
most likely to fit our sparse data).

Methods

Estimation of phenology metrics

We fit Gaussian curves to these data using generalized linear
models (GLM) with a negative binomial family and log link
function, with the number of butterflies seen on each day as
the dependent variable, day of year and day of year squared
as independent variables. We use a single model, with inter-
action terms for year (year X intercept, year X linear term,
year X quadratic term), with year as a categorical factor. This
is equivalent to ficting each year separately, except that there
is a single variance term that applies to all years. After fitting
the linear model, we used Eq. 4—7 to calculate the estimated
mean day of activity, standard deviation of activity period,
population abundance and peak abundance for each year, and
use mean day of activity and standard deviation of activity
to calculate activity period as well as onset (day of 0.1 quan-
tile) and end (day of 0.9 quantile) of activity. For illustration
purposes, we calculated confidence intervals for these metrics
using both the delta method and parametric bootstrapping.
To test for asymmetry in activity curves (a feature common
in some systems and models), we regressed residuals by day of
year using a linear model and then again with a cubic regres-
sion spline (using the mgev package) (Wood 2017).

Comparison to INCA fits

We used the INCA program to fic each year of our data
(INCA 2002). We carried out this analysis with INCA twice:
first we fit INCA using default settings, putting INCA on
a level playing field with the Gaussian method; second, we
fit INCA again, providing an informative prior on mortality
rate, defined by the mean and standard error of daily mor-
tality for the Baltimore checkerspot estimated in Brown and
Crone (2016). Both INCA and the Gaussian curve produce
indices of population abundance rather than complete pop-
ulation estimates, and these indices are on different scales.
As such, we focus on the correlation between INCA and
Gaussian metrics rather than exact correspondence.

Evaluating an environmental driver

After estimating abundance and phenology, a common
next question is to ask whether changes in these population
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characteristics are associated with changes in environmental
conditions (Roy and Sparks 2000, Forister and Shapiro 2003,
Marra et al. 2005, Jonzén et al. 2006, Miller-Rushing et al.
2008, van Buskirk et al. 2009, Hodgson et al. 2011,
Gordo et al. 2013, Bertin 2015, Cayton et al. 2015, Barton
and Sandercock 2018, Heberling et al. 2019, Oke et al.
2019, Park et al. 2019, Fric et al. 2020, Horton et al. 2020,
Stemkovski et al. 2020, Stewart et al. 2020). It is possible in
principle — and also statistically more powerful — to simul-
taneously fit drivers of population or phenological change
and parameters themselves (Mizel et al. 2019). However,
the algebra of converting a Gaussian curve to a linear model
does not enable easy inclusion of covariates of the ecologi-
cally meaningful derived metrics such as onset of activity or
peak dates (Edwards and Crone unpubl. calculations), and
would require a custom coded model. One accessible alterna-
tive to custom-coding complex models is a two-step process
of first estimating derived parameters (e.g. population abun-
dance index) with linear models, then using these derived
parameters in subsequent models (e.g. the approach used in
Wepprich et al. 2019, but using GLM:s instead of GAMs for
the first step). To account for uncertainty in derived param-
eters, it is straightforward to use parametric bootstrapping.

To illustrate this approach, we compared yearly estimates
of the day of mean activity, activity period and population
abundance to temperature. Determining the most appropri-
ate metrics to capture environmental drivers of population
dynamics or phenology is an open question in ecology, and
beyond the scope of this study. We instead chose to dem-
onstrate the principles with growing degree days (GDD),
a common measure of thermal environment that has been
found to predict plant and insect phenology (Hodgson et al.
2011, Cayton etal. 2015). We used a developmental thresh-
old of 10 degrees as in Cayton et al. (2015), and calculated
GDD over the period from 1 January through 1 July of each
year to represent the time before most butterflies eclosed
(for details, Supporting information). For each population
metric (abundance, mean day of activity, activity period),
we fit a simple linear regression with GDD as the predictor.
We also calculated 95% confidence intervals for the slope
using parametric bootstrapping, and the proportion of p
values that were less than 0.05 among these bootstrapped
model fits.

Results

Estimation of phenology metrics

For this univoltine butterfly population, the Gaussian curve
provides a visually satisfying fit, with the model reasonably
fitcting years with many surveys (Fig. 1a—f) and those with
few (2018-2020, Fig. 1g—i). We found no overall indication
of asymmetry in activity when fitting our residuals with a
linear model (slope=0.085, p=0.57), and our fitted cubic
spline showed no notable deviations from a linear model
(estimated degrees of freedom for the smoothing term was
1, suggesting a straight line is the best fit). Estimates of our
three metrics (abundance index, activity period and day of
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peak activity) were generally very precise, with notable excep-
tions for 2019 and 2020, years with only a few non-zero sur-
vey counts (Fig. 2a—c). We also see a strong correspondence
between our abundance index and population estimates from
the capture—recapture study (R*=0.94) (Fig. 3a). These data
also demonstrate the bias of first and last dates of observa-
tions in relation to population size (Fig. 3¢—d); compared to
0.1 and 0.9 quantiles estimated from annual Gaussian curves,
years with smaller populations had later first observations and
earlier last observations.

Comparison to INCA fits

Without independent estimates of mortality, INCA fit only
three of the nine years of data (Supporting information).
Using published mortality estimates (Brown and Crone
2016) as an informative prior probability distribution, INCA
was able to fit more years of data (seven of the nine), but
still failed to fit 2019 and 2020. For the years in which the
informed INCA model fit, there was a very strong correspon-
dence between the informed INCA fit and the Gaussian fit,
with an R? of 0.996 (population abundance indices) and
0.883 (day of peak activity) (Fig. 3b).

Evaluating an environmental driver

Temperature had a strong association with population abun-
dance index, with warmer years associated with smaller popu-
lation indices (estimate slope: —2.12; bootstrapped 95% CI
of slope of N versus GDD: [-2.3087, —2.0598]; across our
bootstraps, this was almost always significant (p < 0.05 in
99.6% of bootstraps) (Fig. 2d)). Mean day of activity was
consistently earlier in warmer years (estimated slope: —0.004;
bootstrapped 95% CI of slope of p versus GDD: [—0.0065,
—0.0024]), but it was rarely statistically significant (p < 0.05
only six out of 10 000 times) (Fig. 2¢). Temperature was not
associated with differences in activity period (estimated slope:
—0.002; bootstrapped 95% CI of 6 versus GDD: [—0.0023,
0.0007], p < 0.05 0 of 10 000 times) (Fig. 2f).

Discussion

In this paper, we show how a Gaussian curve can be fit to
insect count data using familiar methods for linear models,
and that it allows us to estimate abundance and phenology
even for years of sparse data where other methods can fail. We
hope this approach provides a much-needed tool for ecologists
trying to study insect decline or the phenology and dynamics
of at-risk species (or species that have sparse count data for
other reasons). There is a particular need for tools like this
given the growing interest in documenting and understand-
ing insect decline; our ability to do so is in large part limited
by available data and methods (Didham et al. 2020). We are
not the first to use Gaussian curves to fit count data (Lindén
and Mintyniemi 2011, Dennis et al. 2015, Oke et al. 2019,
Stewart et al. 2020), but past implementations have required
custom coding and more advanced knowledge of statistical
computing.
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The combination of a simple mathematical form (three
parameters) and the robust fitting algorithms associated with
linear models allows Gaussian models to estimate phenol-
ogy and abundance even in years with relatively few obser-
vations (Fig. 1h). Recent studies of butterfly (Hodgson et al.
2011, Wepprich et al. 2019, Stewart et al. 2020) and bee
(Stemkovski et al. 2020) populations have generally been
restricted to relatively abundant species by the needs of their
more data-hungry methods. These more flexible analytical
tools like GAMs provide more detailed information about
activity curves, but at the cost of requiring sufficient data to
differentiate between the many possible shapes those more
flexible curves can take. In contrast, while the Gaussian curve
is constrained in shape and cannot capture complex activity
curves, we are consistently able to fit curves with only three
non-zero surveys (Edwards unpubl. simulations). Our goal is
not to replace existing tools, which often provide more detailed
information than a Gaussian curve can, like capturing multi-
modality (e.g. GAMs) or measuring asymmetry and linking
it to biological processes (e.g. the Zonneveld model). Rather,
we want to ‘unlock’ data sets which were previously unusable
either because the observations were too sparse for other meth-
ods, or interested parties did not have the computational sta-
tistics background needed to fit more complex models.

Comparing fits and estimates of the Baltimore check-
erspot butterfly using our Gaussian method, the INCA

implementation of the Zonneveld model, and capture-recap-
ture tools demonstrates the value of our approach. Without
outside information, the INCA model fit only one third of
our nine years of data, and even with the inclusion of an inde-
pendent estimate of mortality rates, INCA failed to fit the
two years with the lowest estimated abundance (Supporting
information). However, for years when we could fit the data
using the INCA model informed by independent estimates
of mortality, we see a very strong correspondence between
INCA and Gaussian estimates of population abundance
indices (R*=0.99) (Fig. 3b), suggesting that our proposed
method is a useful and comparable alternative to INCA when
data are sparse. We also see a tight correlation between the
abundance index of the Gaussian model and capture-recap-
ture estimates of population size calculated separately from the
same data (Fig. 3a), which suggests that abundance estimates
are unbiased. This correlation compares favorably with other
methods of fitting transect data; Haddad et al. (2008) found
no correlation between mark—recapture estimates of popula-
tion size and population size estimated using the Zonneveld
model. However, the fact that we find a 1:1 match of V (an
index that reflects longevity as well as abundance) and cap-
ture—recapture estimates is likely coincidental. By chance,
our capture probability during surveys was = 0.15 (L. Brown
and Crone unpubl.), and the apparent survival of Baltimore
checkerspot butterflies at our site is 0.844/day (Brown and

1341



(a)
4000

x >
)
°
£
© = 3000
o9 .
2 > L
c 8
el t
2E 2000
c 2
52 t
¢ 1000{
(] -
O 38

0{®

0 1000 2000 3000 4000
Mark-recapture estimate
(# butterflies)

(c)

N
O,
=
s Q
o °
g . :
s 9
2 3 @
b O
>
8 o O
= |
=]
3
Jun 26 Jul' 04 Jul'12

Day of 0.1 quantile
(beginning of activity period)

(b)

4000+ .
x O
()
©
£
8g 30001
£3 o
23 20004
< 8
c5 o
I3 ‘
% 10001
15 &

0 -

500 1000 1500

INCA abundance index
(# butterflies per detection area)

(d)

Aug 06

Day of last observation
Jul 24

Jul 11

Jul14 Jul27
Day of 0.9 quantile

(end of activity period)

Jul' 01
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above (c) and below (d) the 1:1 line).

Crone 2016); these values mean that in our example, the cap-
ture probability — by chance — exactly cancelled out the fact
that /V is actually in units of ‘butterfly days’.

While it is becoming increasingly rare, objectively prob-
lematic metrics for phenological patterns such as first or
last observations are still used by at least some ecologists
(Colom et al. 2021, Fric et al. 2020). For many types of data
sets, observations of first and last events are known to be
biased, as the day of first or last observation depends in part
on population size and detectability (Miller-Rushing et al.
2008, Van Strien et al. 2008, Inouye et al. 2019). Of course,
sometimes data limitations constrain analysis to only use first
or last metrics, especially when comparing with historic data
sets (Heberling et al. 2019). However, in many cases ecolo-
gists have much more complete data, and should not be lim-
ited to using problematic phenological metrics. This point has
been made thoroughly in other studies; as expected, for the
Baltimore Checkerspot we see consistent biases in first and
last date observed based on population size (Fig. 3c—d). As
an alternative to problematic metrics, fitting Gaussian curves
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may be a reasonable first step for many ecologists interested
in describing phenology. Early and late quantiles (e.g. 0.1 and
0.9, as in Jonzén et al. 2006 and Michielini et al. 2020, or
0.05 and 0.95 as in Stemkovski et al. 2020) can easily be
calculated from estimated p and o, and are unbiased analogs
to represent the early and late parts of the activity season (cf.
Bonoan et al. 2021).

We demonstrated how our approach can be used to link
population-level patterns with environmental (or other)
drivers. In doing so, we found a significant negative relation-
ship between growing degree day (GDD) and abundance
indices, and a non-significant pattern of earlier activity in
warmer years that was consistent across bootstraps. These
results are largely consistent with the patterns found in
other studies. Warmer temperatures have led to earlier
activity for butterfly species in the UK (MacGregor et al.
2019), Spain (Stefanescu et al. 2003, Stewart et al. 2020)
and Ohio (Cayton et al. 2015), and studies have found
that in recent decades butterflies have advanced their phe-
nology in the UK (MacGregor et al. 2019) and across the



Northern Hemisphere (Parmesan 2007). The relationship
between temperature and abundance across studies is more
complicated. Studies have found warmer temperatures lead-
ing to higher population abundance in most butterfly spe-
cies in the UK (Roy et al. 2001) and a mixture of butterfly
abundance responses to temperature in Spain (Stewart et al.
2020). In contrast, Isaac et al. (2011) found butterfly den-
sity in England was generally lower in regions with higher
temperatures, and Colom et al. (2021) found warmer sum-
mers were associated with smaller butterfly populations on
the Spanish island of Menorca. In Massachusetts USA, but-
terfly populations near their species’ northern range limits
are generally increasing, and populations near their species
southern range limits are generally decreasing (Breed et al.
2012, Michielini et al. 2021).

Gaussian curves are only well-suited to represent data
that is unimodal and approximately symmetric. For many
phenological events, the assumption of symmetry may
be a reasonable approximation (Fig. 1 and Stewart et al.
2020), although this is of course a hypothesis that could
be explored depending on the goals of an analysis. In our
analysis of Baltimore checkerspot, residuals did not indi-
cate skew. Multimodal distributions may be more prob-
lematic. For multivoltine insects, generalized additive
models (GAMs) (Knudsen et al. 2007, Moussus et al. 2009,
Hodgson et al. 2011, Newson et al. 2016, Stemkovski et al.
2020) have been used to capture changes in phenology
over time. Although they are not described by a paramet-
ric equation, features like the onset (0.1 quantile) or end
(0.9 quantile) can be extracted from GAMs numerically
(cf. Stemkovski et al. 2020). Another approach to evalu-
ating phenological events without assuming a particular
distribution is quantile regression (Cade and Noon 2003,
Koenker 2019), which has been used in several studies of
bird migration (Gordo et al. 2013, Barton and Sandercock
2018), and occasionally for Lepidoptera (Gimesi et al.
2012, Michielini et al. 2021). Like GAMs and GLMs,
quantile regression shares the property of drawing on well-
established and well-validated statistical approaches, rather
than developing new ones.

Understanding trends in abundance has long been a goal
of both population ecology and conservation management,
and this has become all the more urgent with observed and
suspected population declines in a wide range of species, par-
ticularly insects. Similarly, because phenological shifts are
one of the most conspicuous signs of climate change, there
is growing interest in their causes and consequences. We
expect that the widespread interest in abundance and phe-
nology will continue to lead to a growing number of new
methods for interpreting patterns in count data. At the same
time, not every new method is guaranteed to work for all (or
even most) data, and custom-coding for every question can
be error-prone, time consuming and intimidating to many
ecologists. We encourage ecologists to be aware of well-estab-
lished existing methods, and provide the linearized Gaussian
model as a simple tool for unlocking previously-inaccessible
sparse data sets.

Speculations

As part of this project, we explored fitting year-specific
Gaussian curves with mixed models (GLMM:s), with random
intercepts and slopes of linear and quadratic terms for each
year. We expected the shrinkage associated with random effects
(Gelman et al. 2003) would be necessary to fit years of sparse
data. However, even our low-data years were fit with fixed
effects terms. We removed applications of GLMMs from this
paper for three reasons. First, estimated confidence intervals
for GLMMs are currently based on uncertain and approximate
methods (Bolker 2021, <https://bbolker.github.io/mixed-
models-misc/glmmFAQ.html>). Second, the shrinkage asso-
ciated with random effects implies real parameter values vary
around some mean, and that for years with data of abnormal
abundance and phenology, the ‘reality’ is somewhere between
the actual data from that year, and the average across years. This
property will tend to shrink the estimated difference between
years, which will, in turn, tend to bias post hoc analyses that
look to link variation in yearly phenology or abundance to
environmental or other drivers. Finally, as an introduction to
the approach, adding the complexity of GLMMs was unneces-
sary. Nonetheless, GLMM extensions of this approach may be
useful when data are especially sparse (Bonoan et al. unpubl.).
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