
2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3143123, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL 1

CONGO2: Scalable Online Anomaly Detection and
Localization in Power Electronics Networks

Jun Yu, Huimin Cheng, Jinan Zhang, Qi Li, Shushan Wu, Wenxuan Zhong, Jin Ye, WenZhan Song, Ping Ma

Abstract—Rapid and accurate detection and localization of

electronic disturbances simultaneously are important for prevent-

ing its potential damages and determining potential remedies.

Existing anomaly detection methods are severely limited by the

low accuracy, the expensive computational cost and the need

for highly trained personnel. There is an urgent need for a

scalable online algorithm for in-field analysis of large-scale power

electronics networks.

In this paper, we propose a fast and accurate algorithm for

anomaly detection and localization of power electronics networks:

stratified colored-node graph (CONGO
2
). This algorithm hierar-

chically models the change of correlated waveforms and then

correlated sensors using the colored-node graph. By aggregating

the change of each sensor with its neighbors’ inputs, we can

spontaneously identify and localize the anomaly that cannot be

detected by data collected from a single sensor.

As our proposed method only focuses on the changes within

a short time frame, it is highly computational efficient and only

needs small data storage. Thus, our method is ideal for online and

reliable anomaly detection and localization of large-scale power

electronic networks. Compared to existing anomaly detection

methods, our method is entirely data-driven without training

data, highly accurate and reliable for wide-spectrum anomalies

detection, and more importantly, capable of both detection and

localization. Thus, it is ideal for in-field deployment for large-

scale power electronic networks. As illustrated by a distributed

energy resources (DERs) power grid with 37-node, our method

can effectively detect and localize various cyber and physical

attacks.

Index Terms—anomaly detection, anomaly localization, graph

model

I. INTRODUCTION

P
OWER electronics are the building blocks of critical
infrastructures, such as data centers, hospitals, and man-

ufacturing systems. Unexpected power quality anomalies or
disturbances incited by system faults or cyber attacks could
cause exacerbated system-level unbalanced conditions, volt-
age sags, and harmonics that worsen device-level anomalies
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Fig. 1. Attacks threaten the security of the power electronics network.

[1], [2], [3]. As illustrated in the mock example (Fig. 1),
the attacker’s malicious modification of controllers in power
electronics converters would degrade both power electronics
and the grid, leading to catastrophic failures and substantial
economic losses. An accurate and timely anomaly detection
and localization method that can protect the system is highly
desirable to trigger the in-field implementation of the counter-
measures.

For over a decade, physical-model-based methods have
been one of the most popular tools in anomaly detection.
However, despite many successful applications such as de-
tecting attacks in the transmission grid [4], distribution grid
[5] and DC microgrids [6], physical-model-based methods
have some inherent limitations, such as the requirement of
highly subjective domain-specific input and rigid physical
assumptions in solving dynamic closed-loop systems [7], [8].
More seriously, most physical-model-based methods can only
detect strong anomalies that affect the whole system and fail to
detect subtle anomalies such as anomalous power electronics
converters.

With the rapid development of high-throughput computing
techniques and artificial intelligence, the computational cost
of the large dynamic system has been dramatically reduced,
offering the great possibility for data-driven methods in smart
grid applications. Extensive studies have been published using
data-driven approaches, ranging from supervised learning to
unsupervised learning. For supervised learning, historical data
are used to train a set of features that are predictive for system
anomaly [9], [10], [11], [12]. Though the supervised learning
methods are fairly effective in detecting power grid anomaly,
they are severely limited by the cost to obtain gigantic and
accurate training data sets, which is highly labor-intensive
and time-consuming [13]. Moreover, the training set and
testing set might be highly heterogeneous for wide-spectrum
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attacks, which hinders the method’s broad in-field application.
Unsupervised learning, on the other hand, does not require the
training set. They can automatically detect the disturbances
if the disturbances change the streaming waveforms (six-
dimensional time-series: three-phase voltages and three-phase
currents) that are collected by each sensor in power grids.
Although this approach provides a great promise to detect and
even localize the anomaly in the power grid, the delivery of
this promise has not yet been fully materialized, because there
is a lack of effective and efficient computational algorithm
for handling these large-scale networks. Existing methods
mainly rely on change-point detection algorithms such as
CUSUM and Hotelling T2 [14], [15], which either assume
that the time-series/waveforms are entirely independent or
connected by unknown relationships that need to be estimated.
The independence assumption implies that all the sensor are
disconnected and that the six waveforms collected by each
sensor are independent. Thus, a change-point detection method
can be applied to each waveform individually to identify and
even localize the sensor that has been attacked [16]. Despite
the simplicity and accessibility, the anomaly detection methods
based on independence assumptions can be very inaccurate for
power grid as they ignore the connectivity between sensors and
the physical dependence between the voltages and the currents.
An alternative approach is to assume an unknown relationship
between different waveforms[8]. This approach, however, is
highly susceptible to the curse of dimensionality, which refers
to various difficulties a large number of nodes can cause to
parameter estimation and computation. Thus, it cannot be used
for large-scale power grids.

Following the unsupervised anomaly detection approaches,
in this article, we proposed a colored-node graph (CONGO)
algorithm to integrate the sensor connectivity information
and voltages-currents dependent information for a large-scale
power grid. We first build a six-node network at each time
point to incorporate the three-phase voltages and three-phase
currents dependence and mark the waveform change of each
node in a particular time frame by different colors. This is
our physical-law-based CONGO. The wave change in the
physical-law-based CONGO can be quantified using a Phase
Change (PC) score, whose value is calculated by aggregating
the changes of the nodes’ value and edges’ alteration. The
score essentially measures the graphs’ distance on Krylov
subspace. We then build a power-grid-based CONGO using
the sensor connectivity and mark the color of each sensor
in a given time frame by their PC score. As our method
uses the physical-law-based CONGO within the power-grid
based-CONGO, we referred to our method as CONGO2.
The CONGO2 provides a rich and flexible framework to
address the limitations of anomaly detection in the power
grid. By incorporating the connectivity and dependent infor-
mation between sensors and different waveforms, our method
effectively alleviated the problems of all the existing data-
driven approaches. It is worth noting that our method is highly
computational efficient and only uses data within a given time
frame. Thus, it is a truly scalable online algorithm for a short
time frame.

In addition to detection, our method can simultaneously lo-

calize the anomalies, a key feature triggering a protection plan
and providing timely guidance for reparation. Existing works
for anomaly localization was focused on localizing harmonic
sources that are mainly generated by power electronics con-
verters [17], [18]. This approach needs manually manipulate
the power electronic converters to generate different harmonic
sources. A data-driven approach is still lacking. Motivated by
the stochastic nearest neighborhood method [19], [20], eigen-
equation compression method [21], PCA-based method [22],
and k-subgraph partition method [23] proposed to localize the
anomaly of a node in a network, we proposed modifying each
sensor’s PC score by leveraging its neighbors’ PC scores.
Compared to a single sensor’s PC score, the new score is
more sensitive to the subtle attacks that cannot be detected by
a single sensor, as it aggregates the signals by integrating its
neighbours that are also affected.

The contributions and innovations of our work are summa-
rized as follows.

1) To the best of our knowledge, CONGO2 is the first un-
supervised graph-based learning framework for anomaly
detection and localization in power networks in real-time.

2) CONGO2 builds graphs based on Krylov subspace dis-
tance, which is theoretically guaranteed to separate the
high-frequency disturbances from the actual signal and
thus reduces the chance of false alarms. Moreover, it
considers the topological information of the graph. Thus,
CONGO2 can determine the anomaly location with high
accuracy.

3) The PC score defined in Section III-D can be easily
computed, and anomaly detection is based on relative
changes between the current PC score and its exponential
moving average. Thus it enables real-time anomaly detec-
tion. Furthermore, only the local topological information
of the power grid is required. Thus CONGO2 is scalable
to large-scale power grid analytics, as stated in Section
III-E.

4) Experiments and evaluations were conducted in a sys-
tem of 37-node power grids with DERs under different
cyber and physical attack scenarios. The state-of-the-art
performance validates the effectiveness of CONGO2.

II. ALGORITHM DESIGN

In this section, we will first introduce the CONGO2 method
which provides a new tool for visualizing and analyzing the
power grids. We will then show how to detect and localize the
anomalies using CONGO2.

A. Problem formulation

Let ~x1(t), . . . ,~xm(t) be observed waveform data for m

sensors at time t, where ~xi(t) = (xi1(t), xi2(t), . . . , xi6(t))
is a six-dimensional vector recording the three-phase currents
and three-phase voltages for sensor i, where i = 1, . . . ,m,
t = 1, . . . , T , and T is the total number of time points.
When the power grid is normally working, the observed
waveforms of all sensors show stable waveform patterns.
However, once an anomaly occurs, the observed waveforms of
different sensors may deviate from their stable normal pattern.
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Fig. 2. Flowchart of CONGO. At each time t, we construct a colored-node
graph with six nodes, where nodes 1-3 represent three-phase currents, and
nodes 4-6 represent three-phase voltages.

In this paper, we aim to detect an anomaly as soon as it occurs
and identify the anomaly location as accurately as possible in
the power grid. The key to the success of anomaly detection
is to “raise a flag” as soon as a waveform of a senor deviates
from its normal pattern.

B. CONGO of one sensor

In the normal situation, the transmissions, loads, generators,
and the grid network decide both voltage and current. How-
ever, when there is an anomaly, e.g., a sensor feedback attack
occurs in DER, the controller generates a wrong voltage refer-
ence. The voltage then deviates from its normal pattern. This
deviation may lead to a high harmonics current appearance.
Therefore, the performance of the voltages and currents in the
whole grid may abruptly change when attacks occur.

To model the waveform data of a sensor in a three-phase
electric power grid, we first model the six-dimensional wave-
form data of each sensor with a dynamic colored-node graph
(CONGO), which has been shown to be a powerful tool to
study complex systems [24], [25]. Fig. 2 shows the workflow
of CONGO. Specifically, at each time point t of sensor i, we
construct a graph Gi(t), consisting of six nodes representing
the three-phase currents (nodes 1-3) and the three-phase volt-
ages (nodes 4-6). The color of a node j (j = 1, . . . , 6) in sen-
sor i (i = 1, . . . ,m) is determined by the score bij(t), which
is defined as the squared Krylov subspace distance between
two consecutive xij(t) and xij(t�1). We employ a cool-warm
color-coding system where the cool color (i.e., blue) represents
small change (i.e., small bij(t) ) whereas warm color (i.e.,
red) indicates large change (i.e., large bij(t)). In graph Gi(t),
we draw a weighted edge between currents and voltages. The
edge weight between two nodes j and l is wjl(i, t), which
is defined as exp(�Kry

2(xij(t), xil(t))), where Kry is the
Krylov subspace distance, j = 1, 2, 3; l = 4, 5, 6.

We now present the details of how we employ the Krylov
subspace distance [26] to calculate bij(t). We define the
trajectory matrix Xij(t) for h consecutive data points xij(t�

h), . . . , xij(t) as follows,
2

6664

xij(t � h) xij(t � h + 1) . . . xij(t � h + k � 1)
xij(t � h + 1) xij(t � h + 2) . . . xij(t � h + k)

...
...

...
xij(t � h + k0 � 1) xij(t � h + k0) . . . xij(t)

3

7775
, (1)

where k
0 and k are the pre-specified number of rows and

columns, respectively, and h = k + k
0 � 2 is the window

size. Analogously, we define the trajectory matrix Xij(t� 1)
at time t � 1. Let Xij(t � 1) and Xij(t) be the row spaces
spanned by Xij(t� 1) and Xij(t). Let bij(t) be the squared
Krylov distance between two subspaces Xij(t�1) and Xij(t),

bij(t) = Kry2(xij(t), xij(t�1)) = min
ksk=1,

s2Xij(t�1)

k(P1�P2)sk2, (2)

where P1 and P2 are the projection operators onto Xij(t� 1)
and Xij(t), respectively. Analogously, we apply the Krylov
subspace distance to calculate the edge weight wjl(i, t) be-
tween node j and node l in graph Gi(t). In this paper, we
opt to use the Krylov distance because the Krylov subspace
is theoretically guaranteed to separate the high-frequency
disturbances from the actual signal and thus reduces the chance
of false alarms [27].

The CONGO provides a friendly visualization method to
examine the AC circuits condition by considering both the
waveform of each sensor and the interactions between sensors.
A simple example of CONGO is shown in Fig. 3. As we can
see, the color of nodes 1-3 turns red at t = 0.21 because
the waveform of nodes 1-3 (i.e., the red/blue/green current
curves) have dramatic changes when evolving from 0.20 s to
0.21 s. The color of nodes 4-6 turns dark blue at t = 0.21
s because the waveform of nodes 4-6 (i.e., the red/blue/green
voltage curves) has slight changes. In this example, for vi-
sualization purposes, we delete edges with weights less than
0.8. It is observed that all edges disappear at t = 0.21 s,
indicating that the relationship between currents and voltages
has dramatic change. All aforementioned observations suggest
that an anomaly occurs between 0.20 s and 0.21 s with high
probability.

C. CONGO
2

of multiple sensors in the power grid

To model the relationship of waveforms of multiple sen-
sors in the power grid, we develop the colored-node graph
square model (CONGO2), which applies CONGO twice. In
the CONGO2, we construct an undirected colored-node graph
G

2(t) at each time t, t = 1, . . . , T . Each node in G
2(t) repre-

sents a sensor. The color of sensor i of G2(t) is determined by
the distance disi(t) between Gi(t) and Gi(t� 1). We define
disi(t) as follows,

disi(t) = 0.5||Bi(t)�Bi(t� 1)||22 + 0.5||Ai(t)�Ai(t� 1)||2F (3)

where Bi(t) = (bi1(t), . . . , bi6(t)) is the vector of the scores
of nodes in graph Gi(t), Ai(t) is the adjacency matrix of graph
Gi(t), ||·||2 is L2 distance, and ||·||F is matrix Frobenius norm.
We again employ a cool-warm color-coding system where the
cool color (i.e., blue) represents small changes (i.e., small
disi(t)) whereas warm color (i.e., red) indicates large changes
(i.e., large disi(t)).
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Fig. 3. An example of CONGO visualization. (a) is the graph representation
of the signals at time t. A visualization of waveforms of the voltage and the
current are given in (b) and (c). In this example, the anomaly occurs at 0.20
s.

To construct edges of G2(t), we first leverage the topolog-
ical information of the smart grid to decide whether we draw
an edge between two sensors. In particular, we draw an edge
between sensor i and sensor j in G

2(t) if and only if these
two sensors satisfy the following three conditions. (i) They are
connected in the power grid. (ii) They are adjacent, i.e., there
is no other sensor placed between Gi(t) and Gj(t). (iii) They
should not lie in different branches. To better illustrate the
aforementioned three conditions, we take the simulated IEEE
37-node distributed power grid in Section III-B as an example.
The topology of this 37-node power grid is shown in Fig. 8 (a).
In Fig. 8 (a), we observe that sensor 01 and sensor 02 satisfy
conditions (i) and (ii), but they do not satisfy conditions (iii)
since they lie in different branches. Thus we do not draw an
edge between sensor 01 and sensor 02.

If there is an edge between sensor i and j, we assign a
weight Sij(t) to the edge connecting i and j in G

2(t). In this
paper, we define Sij(t) as

Sij(t) = exp{�0.5||Bi(t)�Bj(t)||22 � 0.5||Ai(t)�Aj(t)||2F }, (4)

where the exponential transformation is used to make the score
between zero to one. Note that Sij(t) = 0 if there is no
edge between sensor i and j. Intuitively, Sij(t) measures the
similarity between AC circuits conditions of sensor i and j.
Over time, the edge weight between two sensors is stable when
the power grid works normally. When an anomaly occurs,
the edge weight of sensors located close to the anomaly is
significantly different from the edge weight of other sensors
located away from the anomaly. We employ the developed
CONGO2 to localize the anomaly, as we will show in Section
II-D.

D. Anomaly detection and localization using CONGO
2

We first present how to employ CONGO2 for anomaly
detection. In particular, we propose the following phase change

score (abbreviated as PC),

PC(t) := m
�1

mX

i=1

{0.5disi(t) + 0.5�degi(t)}, (5)

where disi(t) is defined in Eq. (3), �degi(t) =
|
P

Sij(t) 6=0 Sij(t)�
P

Sij(t) 6=0 Sij(t� 1)|/Di, here Di is the
number of edges connecting to node i. The first term disi(t)
measures the difference between Gi(t) and Gi(t�1) of sensor
i. The second term �degi(t) measures the weight difference
of all edges connecting sensor i between t and t� 1.

Apparently, the system has phase change if there is an
abrupt change in PC. To determine whether a change is abrupt,
we recommend using the relative changes between the current
PC(t) and its exponential moving average EMAPC(t). If
PC(t)/EMAPC(t) is greater than a prespecified threshold,
we conclude that the system has phase change. Here the
EMAPC(t) is recursively defined as follows,

EMAPC(t) =

(
PC(1), t = 1

0.2PC(t) + 0.8EMAPC(t� 1), t > 1.

The above coefficients 0.2 and 0.8 are commonly used in the
statistical analysis [28].

We then present how to employ CONGO2 for anomaly
localization. In particular, we define the contribution of sensor
i at time t as

cPCi(t) = {0.5disi(t) + 0.5�degi(t)}/(m · PC(t)), (6)

where PC(t) is defined in Eq. (5). Note that when the system
works under normal conditions, all sensors usually contribute
equally to PC. However, when an anomaly occurs to the
system, the sensor close to the anomaly will contribute more
than others. Therefore, we localize the anomaly by observing
the contribution of each sensor.

Specifically, we first identify candidate anomaly sensors
whose cPCi(t) are higher than ⇢/m, where ⇢(> 1) is a
pre-specified parameter. After finding the candidate anomaly
sensors, we propose to localize the anomaly through the
following criteria.

• Criterion 1. If the candidate anomaly sensors cover half
of the branches, the anomaly is localized at the trunk, e.g.,
the red line in Fig. 8 (a). One example of such anomaly
is the three-phase short circuit.

• Criterion 2. If all the candidate anomaly sensors are in
the same branch, the anomaly is localized at this branch.

• Criterion 3. Suppose sensors i and j are two can-
didate anomaly sensors with the highest cPC(t). If
cPCi(t)/cPCj(t)  1.5, and sensor i lies in the trunk
and sensor j lies in one branch, the anomaly is located
at the branch of j. Criterion 3 is reasonable since the
trunk sensor usually receives more influence than the
sensors placed in the branches. For example, in Fig. 8
(a), the sensor PCC is connected to a power grid. When
the anomaly happens, sensor PCC also receives feedback
from the power grid.

• Criterion 4. If all of the aforementioned criteria are
not satisfied, we rank the candidate anomaly sensors in
the decreasing order of the cPCi(t). The anomaly is

Authorized licensed use limited to: University of Georgia. Downloaded on May 30,2022 at 01:05:35 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3143123, IEEE Internet of
Things Journal

IEEE INTERNET OF THINGS JOURNAL 5

For each sensor, build an undirected 
colored-node graph !! " , $ = 1, . . , (.

Anomaly time, 
!∗ = t

InputWaveform 
of $

sensors ℎ, ', (
Time interval [! − ℎ, !]

For all sensors, build an undirected 
colored-node graph G"(")

Calculate the phase change score ,-(")

,-(!)/123,-(!) > 'Yes
Calculate 
5,-"(!)

Output 1

Anomaly 
location

No

Output 2

Fig. 4. Flowchart of CONGO2 Algorithm. The inputs include the waveform
data of m sensors, the length of the time interval h, and the predefined
parameters ⌧ and ⇢ (⇢ > 1 ). CONGO2 outputs when the anomaly occurs
and where the anomaly occurs.

localized by sequentially checking these sensors.
Our proposed CONGO2 algorithm for anomaly detection

and localization is summarized in Fig. 4. It is imperative
to note that the detection and localization are based on the
relative changes in the spatial and temporal domain. Thus,
our method is unsupervised and easy to be applied in online
monitoring systems. We further present the computational cost
of CONGO2. Note that the calculation of PC score involves
the calculation of

Pm
i=1 disi(t) and

Pm
i=1 �degi(t). Since

calculating
Pm

i=1 disi(t) requires O(|V |) computational cost,
and calculating

Pm
i=1 �degi(t) requires O(|E|) computational

cost, the computational cost of CONGO2 is O(|V |)+O(|E|),
where |V | is the number of nodes in G

2(0), |E| is the number
of edges in G

2(0). Note that |V | is the number of sensors,
which is the aforementioned m, and |E| depends on the smart
grid topology. When G

2(0) is a sparse network, i.e., |E| is of
the order O(|V |), the computational cost is only O(|V |).

E. Distributed implementation of CONGO
2

In this section, we show the distributed implementation of
CONGO2. Fig. 5 shows the design of distributed implemen-
tation. In particular, we take node i as an example. First, we
calculate the disi(t) based on Gi(t) locally. Second, to calcu-
late the edge weight Sij(t) between node i and its neighbor j,
we transfer Ai(t) and Bi(t) between them accordingly. The
transferred data could be compressed into a user datagram
protocol (UDP) package with timestamp and broadcast to its
neighbors. Lastly, for event detection and localization, the
phase change score of the whole network PC(t) and sensor’s
contribution cPCi(t) are needed, as defined in Eq. (5) and
Eq. (6). Fig. 5 summarizes the distributed implementation
design. Since the message size in each communication in the
second layer graph is constant, and our method only requires
each sensor to communicate with one-hop neighbors only, thus
the communication cost (in bits) with neighbors is O(|E|).
The communication cost in global is O(|V |). Therefore, the
communication cost of our method is O(|V |)+O(|E|), which
is scalable for large smart grids.

To further reduce the communication cost, we also design a
decentralized framework. As shown in Fig. 6(a), the proposed

Fig. 5. Distributed implementation design

algorithm aggregates the information and manages cooperation
between nodes. The compressed information of the node and
its neighbor communicate in a tree structure. We choose the
tree-based aggregation technique since it is faster to reach a
consensus on a real-time system [29]. Our proposed decen-
tralized framework works in the following steps. First, we
broadcast node i’s information Gi(t) to its neighbor node j,
and calculate the Sij(t) for the edge between sensor i and
j in G

2(t). Second, we compute the PC(t) in root node by
aggregating PC(t) of subtree in a bottom-up fashion in the
spanning tree. Third, PC(t) will be passed from the root node
to the leaf nodes, and every node i can calculate its cPCi(t).
Finally, the root node collects all cPCi(t) for the event
localization. Fig. 6 illustrates how each node communicates
with neighbors and the communication in the whole network.

Fig. 6. Illustration of two ways of node communication in distributed
design. The arrow indicates the direction of communication. (a) shows that
the node broadcasts the information with its neighborhood. (b) shows the
communication in global, where the square box stands for the root of the tree
and l stands for tree’s level.

III. EMPIRICAL EVALUATIONS

To assess the performance of the proposed method, we carry
out extensive empirical evaluations. In what follows, we will
first present the threat model we use to generate simulated
data and the experiment setup. We then present the results of
our methods, and the comparison results with other existing
methods.
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Fig. 7. Diagram of the grid-connected DER.

A. Threat Model

With the emerging of IoT technology, power electronics
networks evolve into more intelligent systems with high
efficiency and expose more vulnerabilities to cyber attacks.
Many studies for cyber physical security in power networks
have been conducted. In [30], the authors summarize the
assessment, detection, and mitigation methodology for cyber
attacks in Photovoltaic (PV) farms. Cyber attacks in PV farms
are discussed extensively, including firmware attacks, software
attacks, and network attacks. Besides, attackers could design
cyber attacks in the smart meter, state estimation, and control
center using communication systems in the power electronics
networks. For smart meter security, attackers could change
the meter measurement to get monetary gains. Cyber attacks
in the state estimation and control center can lead to the
instability of the power electronics system by tempering the
control signal. For example, [31] introduces false data injection
attacks (FDIAs) that falsify the control signal of the energy
management system (EMS) in the microgrid. In [32], FDIAs
and DoS attacks are demonstrated in a Hardware-in-the-loop
testbed, and their impact is analyzed. Many methodologies
are proposed to address the cyber security in power electronics
networks through information technology. In [33], a Software-
Defined Networking-based architecture is developed to protect
the microgrid operation from cyber attacks. Blockchain-based
technology for cyber attacks defense in power electronics
devices is discussed and explored [34]. Compared to the cyber
attack compromising the software or communication link,
there is a growing concern that sensor attacks pose on the
power electronics operation. This sensor attack could falsify
the measurement of the controller in power electronics devices.
In [35], the authors demonstrate a noninvasive sensor attack
in a power electronics converter. Although many researchers
have started studying sensor attacks, they cannot mitigate them
by using information-based technologies. Thus, we proposed
a new detection and localization method for the sensor attack
in power electronics networks.

The topology of a typically distributed energy resource
(DER) is shown in Fig. 7. We use the converter as a common
interface to transfer DC power in DER to the AC grid to
generate the power grid. The LCL filter, including Lf , Cf ,
and Lg , is designed to eliminate the harmonics in voltages
and currents. Generally, the PI controller is employed to
drive switches (T1-T6) to achieve power conversion. The
measurement if , ucf , and ig works as the feedback, which

affects the performance of the controller. The measurement
can be denoted as

Y0(t) = [if , ucf , ig]
T (7)

As sensor attack compromises the measurement data in the
converter, the data integrity in the DER controller is destroyed.
Therefore, the sensor attack is defined as a data integrity attack
(DIA) as follows,

YF (t) = ↵Y0(t) + � (8)

where YF is the compromised measurement that is the con-
troller’s input; Y0 is the actual measurement; ↵ is a multiplica-
tive factor matrix that defines the weight of the attack; � is
the malicious modification of the signals.

B. Experiment Setups

An IEEE 37-node distributed power grid is simulated in
MATLAB. The grid topology is shown in Fig. 8 (a). Node 799
is modeled as a power grid with a rated voltage of 4.8 kV. The
rest of the nodes are modeled as linear loads. Besides, several
DERs are added. For every DER, a three-phase inverter is used
to convert DC power to an AC power grid, and a 20 kVA power
transformer is used to connect the inverter to the distributed
power grid. Two types of DERs are modeled. One type is
modeled as the current source inverter (CSI), which represents
the PV farm. The other type is the voltage source inverter
(VSI), which simulates battery, gas turbine, etc. Compared
with the CSI, the VSI provides constant voltage and sustains
the frequency for the whole grid. In Fig. 8 (a), DER A is
modeled as VSI., and DERs B, C, D, E are CSIs. In Fig.8 (d),
DC supply could represent a solar panel, a wind turbine, or
other DERs. The Lf , Cf , and Lg work as a filter,eliminating
the harmonics in voltages and currents.

We test and evaluate our approach in the aforementioned 37-
node power grid under various settings which have different
cyber attacks, DERs generation and load capacity. The DIAs
are designed in the converter in the power grid as presented
in Section III-A. In the attacks scenarios, the compromised
data of DIA is expressed as Y0 = [if , ucf , ig]T . The attacks
may occur on the trunk or branches of the grid due to the
different locations of DERs. Seven electrical waveform sensors
are placed in this power grid (green bars in Fig. 8 (a)). The
goal is to detect and localize anomalies on power electronics
in power grids by monitoring electrical waveform in sensors.

TABLE I
LOAD CAPACITY AND GENERATION SETTING

Power
level

DERs
generation

(kW)

Total
load
(kW)

Power
level

DERs
generation

(kW)

Total
load
(kW)

Setting 1 33.5 78 Setting 2 33.5 58.5
Setting 3 33.5 39 Setting 4 16.75 78
Setting 5 16.75 58.5 Setting 6 16.75 39

By the simulation model Eqn. (8), we simulated typical
cyber attacks on inverters and a three-phase short circuit fault
in a transmission line, considering a variety of PV farm power
generations and loads. Table I shows the total generation of
DERs and total loads in different settings. Here, the impact
from two types of power generation are considered; three kinds
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Fig. 8. (a) The 37-node power network. Green bars are sensors. The red line
is the trunk, and other black lines are branches. The blue dash lines highlight
the six branches, i.e., branches 1–6. DERs are inverters. Node 799 represents
the power grid. (b) Construction of G2(t) for sensor 01–05, 701, DER A–E,
and PCC. (c) Construction of G2(t) for sensor 01–05, 701, and PCC. (d)
DERs model.

TABLE II
SIMULATION SETTING AND ATTACK TARGET/FAULT

Case Targeted
DER/fault Power level setting Anomaly

Location
Case 1 A Setting 1 Branch 4
Case 2 B Setting 1 Trunk
Case 3 C Setting 4 Branch 4
Case 4 D Setting 4 Branch 1
Case 5 A Setting 3 Branch 4
Case 6 B Setting 3 Trunk
Case 7 C Setting 6 Branch 4
Case 8 D Setting 6 Branch 1
Case 9 A Setting 2 Branch 4
Case 10 B Setting 2 Trunk
Case 11 C Setting 5 Branch 4
Case 12 D Setting 5 Branch 1

Case 13 730-DER E
(fault) Setting 6 Trunk

of loads capacity are modeled in the grid. The sampling rate
is 20 kHz. Waveform data during one second is simulated
for each setting. Under aforementioned different settings, we
designed 13 cases, as shown in Table II. For case 1 to case 12,
the anomaly is designed to falsify different controller sensors
in DER. Case 13 simulates the three-phase short circuit fault
at the transmission line (node 730 - DER E). In all cases, the
cyber attacks begin at 0.2 s and end at 0.4 s. We collected the
waveform data of seven sensors (i.e., sensor 01-05, 701, and
PCC) and five DERs (i.e., A, B, C, D, and E). For each sensor
or DER, we have 20,000 observations recording three-phase
voltages and three-phase currents.

C. Results of CONGO
2

We consider the following two scenarios. In scenario (A),
we use all waveform data collected by the seven sensors (i.e.,
sensor 01–05, 701, and PCC) and the five DERs. In real-
world applications, we sometimes do not have the waveform
data of the device where the anomaly occurs. To evaluate the

TABLE III
DETECTION RESULTS VIA CONGO2

Case Detection
time

Localization
in scenario (A)

Localization
in scenario (B)

Case 1 0.2025 s Branch 4 Branch 4
Case 2 0.2025 s Trunk Trunk
Case 3 0.2025 s Branch 4 Branch 4
Case 4 0.2025 s Branch 1 Branch 1
Case 5 0.2025 s Branch 4 Trunk
Case 6 0.2025 s Trunk Trunk
Case 7 0.2025 s Branch 4 Branch 4
Case 8 0.2025 s Branch 1 Branch 1
Case 9 0.2025 s Branch 4 Branch 4
Case 10 0.2025 s Trunk Trunk
Case 11 0.2025 s Branch 4 Branch 4
Case 12 0.2025 s Branch 1 Branch 1
Case 13 0.2025 s Trunk Trunk

performance of our method in such a scenario, we consider
the following scenario. In scenario (B), we only have the
waveform data collected by the seven sensors, i.e., sensor 01–
05, 701, and PCC, marked in green in Fig. 8 (a). Note that it is
more difficult to detect and localize the anomalies in scenario
(B). In this paper, we set ⌧ = 1.2 and ⇢ = 1.2. It is worth
mentioning that our method is not sensitive to the specification
of these two thresholds. More details of the sensitivity analysis
refer to Section III-G.

Table III reports the results of CONGO2 in the afore-
mentioned 13 cases. From Table III, we have the following
observations. First, our method detects anomaly at 0.2025 s
for all cases. Note that the true anomaly occurs at 0.2 s. The
delay of our method is only 0.0025 s. Second, in scenario (A),
for all cases, our method correctly localizes the branch where
the anomaly happens. Thus, in scenario (A), the accuracy is
100%. Third, in scenario (B), our method correctly localizes
the branch where the anomaly happens for all cases except for
case 5. In case 5, we inaccurately localize the anomaly in the
trunk. This is because DER A meets the load consumption in
the branch, which leads to a small power exchange between
the branch (sensor 4) and the trunk. Thus, the detection result
of case 5 in scenario (B) is not that strong compared with
other power level setting and false localize the anomaly at the
trunk. The accuracy in scenario (B) is 92%. More details of
the typical examples can be found in Section III-G.

D. Comparison results with other existing methods

First, we compare our method with the Hotelling T
2 chart,

which is commonly used in multivariate statistical quality
control [36]. Then, we use the Hotelling T

2 chart on instanta-
neous amplitudes of each sensor through the Hilbert transform
on the data. We localize the anomaly branch to which the
earliest anomaly sensors belong. Second, we compare the
CUSUM method on each data dimension with our method,
since we have six-dimensional data in each sensor. To make
CUSUM more robust, the anomaly time detected by CUSUM
is when at least three dimensions are detected as abnormal.
When three or more sensors report the anomaly happens,
we record the time as the detection time. Third, we make
further comparison with a recently proposed method [37]
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TABLE IV
RESULTS OF FOUR METHODS FOR ANOMALY DETECTION.

Scenario Method ACC Delay (s) FP TP

(A)
Hotelling T 2 10/19 0.0310 0/6 4/13
CUMSUM 7/19 0.1503 2/6 3/13
Leverage 15/19 0.0445 0/6 9/13
CONGO

2
19/19 0.0025 0/6 13/13

(B)
Hotelling T 2 10/19 0.0310 0/6 4/13
CUMSUM 11/19 0.1226 0/6 5/13
Leverage 16/19 0.0569 0/6 10/13
CONGO

2
19/19 0.0025 0/6 13/13

TABLE V
RESULTS OF THREE METHODS FOR ANOMALY LOCALIZATION.

Scenario Method ACC FP TP

(A)
Hotelling T 2 6/19 0/6 0/13
CUMSUM 4/19 2/6 0/13
CONGO

2
19/19 0/6 13/13

(B)
Hotelling T 2 6/19 0/6 0/13
CUMSUM 6/19 0/6 0/13
CONGO

2
18/19 0/6 12/13

which proposes an unsupervised online anomaly detection
method based on the leverage score of the feature matrix of
all sensors. For convenience, we name this method in [37]
as “Leverage”. Note that the “Leverage” method can not be
directly applied to anomaly localization, thus we only report
the detection results of “Leverage” in Table IV.

In order to evaluate the false positive rate in the anomaly
detection step, we further simulate six normal cases under
six different power level settings. The anomaly detection
and localization results are summarized in Tables IV and V,
respectively. In Tables IV and V, TP records the true positive
rate, Delay (s) records the time difference between the true
anomaly time, i.e., 0.2 s, and the detected anomaly time; FP
record the false positive rate; ACC records the accuracy. Note
that the “Leverage” method focuses only on anomaly detection
and is inapplicable to anomaly localization. Therefore, we
only compare our method with CUSUM and Hotelling T

2

for localization problems.
From Table IV, we have the following observations. First,

under both scenarios (A) and (B), the anomaly detection
accuracy of our method is 100%, the TP of our method is
100%, and the FP of our method is zero. Second, our method
quickly detects the anomaly once it happens. The average
delay time of our method is only 0.0025 s, which is much
smaller than the average delay time of other methods under
both scenarios (A) and (B). In sum, our method achieves
the highest TP and accuracy, lowest FP and delay time.
From Table V, we observe that in scenario (A), the anomaly
localization accuracy and TP of our method are both 100%,
while those of Hotelling T

2 and CUSUM are less than 50%.
In scenario (B), the anomaly localization accuracy and TP of
our method decrease to nearly 95%, which is still much higher
than the accuracy of other methods.

The Hotelling T
2 and CUSUM fail to detect and localize

the anomaly for the following reasons. (i) CUSUM fails to
capture the correlation between sensors. (ii) Hotelling T

2

fails to consider different types of interaction within sensors.
(iii) All the other three methods focus on the amplitude
information and ignore the phase angle information, which is
a more powerful indicator for anomaly detection. Due to the
characteristic of branch impedance in the distribution grid, the
phase angles of voltage in different nodes are different. Thus,
the phase angle can be extracted to monitor the system status.
These three reasons make a relatively high false discovery
rate. Since the alarming time for each sensor is very close,
the CUSUM and Hotelling T

2 result in false locations for all
13 anomaly cases.

We then compare the computational cost and communica-
tion cost of different methods. It has been shown that the
computational cost of CUSUM and Hotelling T

2 are both
O(|V |) [36]. The computational cost of “Leverage” method
has been shown to be O(|V |2). In comparison, the computa-
tional cost of our method is O(|V |) + O(|E|), which is no
more than that of “Leverage”. In particular, when G

2(0) is a
sparse network, i.e., |E| is of the order O(|V |), our method,
CUSUM and Hotelling T

2 have the same computational cost,
i.e., O(|V |). Furthermore, the communication cost (in bits) of
our method is O(|V |) + O(|E|), If we apply CUSUM and
Hotelling T

2 in a distributed way, the communication costs of
CUSUM and Hotelling T

2 are both O(|V |). When G
2(0) is

sparse network, i.e., |E| is of the order O(|V |), our method,
CUSUM and Hotelling T

2 have the same communication cost,
i.e., O(|V |). Since [37] did not design the distributed algorithm
of the “Leverage” method, we do not make a comparison
with the “Leverage” method regarding the communication
cost. Aforementioned observations suggest that our method
uniformly outperforms other methods.

E. Sensitivity analysis of CONGO
2

In our proposed method CONGO2, we have a tuning
parameter ⌧ for anomaly detection and a tuning parameter
⇢ for anomaly localization. In this subsection, we evaluate
the performance of CONGO2 under varying ⌧ and ⇢. First,
to assess the robustness of CONGO2 to different ⌧ , we
investigate the anomaly detection accuracy while ⌧ varies from
1.0 to 1.5. As shown in Fig. 9 (a) and (b), the anomaly
detection accuracy keeps one when ⌧ varies from 1.2 to 1.3,
under both scenarios (A) and (B). Second, we investigate the
anomaly localization accuracy while ⇢ varies from 1.05 to
1.5. As shown in Fig. 9 (c), in scenario (A), the anomaly
localization accuracy keeps one under various ⇢. As shown in
Fig. 9 (d), in scenario (B), the anomaly localization accuracy
stays constant, which is very close to one under various ⇢.
This indicates that CONGO2 is robust to ⇢. In summary, our
method CONGO2 is robust to ⇢, and we suggest setting ⌧

between 1.2 and 1.3 in the application.

F. Distributed CONGO
2

As discussed in Section II-E, our method is naturally
suitable for decentralized distributed implementation with less
communication cost than a centralized setting. For the cen-
tralized implementation, at time t, all information will be
sent to a chosen central node from other nodes. Then the
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Fig. 9. (a) and (b) show the detection accuracy with ⌧ ranging from 1.0 and
1.5, under scenario (A) and scenario (B), respectively. (c) and (d) show the
localization accuracy with ⇢ ranging from 1.05 to 1.50, under scenario (A)
and scenario (B), respectively.

PC(t) and corresponding cPCi(t) will be calculated. For the
distributed implementation, at time t, neighbors first exchange
information through broadcast based on the topology of G2(t).
There is no information exchange between them if there
is no edge between two nodes in G

2(t). After every node
gets its neighbors’ information, a tree-based network will be
constructed as described in Fig. 6, and the node will send its
local result from leaf to root, back and forth for two rounds. In
the first round, disi(t) and degi(t) are sent to the root node
to calculate the PC(t) and back along to the leaf nodes to
calculate respective cPCi(t). In the second round, the cPCi(t)
from different nodes are sent back to the root node for further
event localization. Since most computation is in the local node,
only results would be transferred, so communication overhead
is low.

To evaluate the communication cost, we consider the G
2(t)

with 13 nodes. Unlike Fig 8(b), the G
2(t) is designed ac-

cording to the topology of the 37-node power network, and
we randomly draw k edges in the corresponding graph. The
communication cost ratio between centralized settings and
distributed settings with different k is reported in Fig. 10.
One can see that the decentralized framework significantly
accelerates the algorithm, especially when G

2(t) is sparse.

Fig. 10. Communication cost in each time steps t when the number of the
edges of G2(t) are different from the centralized setting.

G. More details of simulation results

We provide more details and discussions of the simulation
results by taking the normal case under setting 1, cases 1, 8
and 13 for representative examples. We opt to present cases
1, 8 and 13 because they have different targeted faults, i.e.,
DER A, D and three-phase short circuit.

We first present one normal case (in which no anomaly
occurs) under setting 1 in Fig. 11. Fig. 11 (a) and (c) show
the phase change score of different time for scenarios (A) and
(B), respectively. It is observed that there is no abrupt change
in phase change score, suggesting no anomaly happens. Fig.
11 (b) and (d) present the G

2(t) at 0.2025 s for scenario (A)
and (B), respectively. Since all the G

2(t) plot for all time t

are the same, we only demonstrate the plot at time 0.2025 s
when the anomaly was detected in Table III. For visualization
purposes, at time t, we only show an edge between nodes i

and j of G
2(t) if dij(t) is greater than 0.85 throughout this

section.

Fig. 11. (a) Phase change score for scenario (A); (b) Visualization of the
G2(t) at 0.2025 s for scenario (A); (c) Phase change score for scenario (B);
(d) Visualization of the G2(t) at 0.2025 s for scenario (B).

We then present the results of case 1 in Fig. 12. In case 1,
a cyber attack occurs from 0.2 s to 0.4 s. The attacker falsifies
DER A’s controller sensor and the measurement ilf , ucf , ilg

are changed into fake ones. The related parameters can be
found in Tables I and II. Fig. 12 (a) visualizes the location
where the true anomaly occurs for case 1. The red and pink
circle highlights the anomaly localization for scenarios (A)
and (B). Fig. 12 (b) and (d) show the phase change score of
different times for scenarios (A) and (B), respectively. One
can observe that the sudden jump first occurs around 0.2 s,
implying that the anomaly happens. The two sudden jumps
around 0.4 s and 0.7s stand for the attack ended, and the
system is back to normal after the system self-adjustment.
Because it takes some time for the PI controller to track
the reference and adjust the system status, Fig. 12 (c) and
(e) present the G

2(t) at 0.2025 s for scenarios (A) and (B),
respectively. It is observed that in scenario (A), the candidate
anomaly sensors detected by our method are sensor A and
sensor 4; in scenario (B), the candidate anomaly sensors
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detected by our method are sensor 4. The cPCs for the
sensors 01–05, 701, PCC, and DERs A–E are around 0.01,
0.03, 0.03, 0.25, 0.03, 0.07, 0.07, 0.4, 0.03, 0.05, 0.00, and
0.03, respectively at time 0.2025 s. This implies the anomaly
happens in branch 4, detected by our algorithm.

Fig. 12. (a) The 37-node distributed grid, with the circles in red and pink
representing the true anomaly targeted location for scenarios (A) and (B),
respectively; (b) Phase change score on the time interval for scenario (A); (c)
Visualization of the G2(t) on time 0.2025 s under case 1 and scenario (A).
(d) Phase change score on the time interval for scenario (B); (e) Visualization
of the G2(t) on time 0.2025 s under case 1 and scenario (B). In (b) and
(d), the red lines highlight when phase changes are detected. In (c) and (e),
the nodes colored in red are the candidate anomaly sensors by the CONGO2

Algorithm.

In case 8, a cyber attack is designed for compromising the
controller sensor of DER D. Fig. 13 (a) visualizes the location
where the true anomaly occurs for case 8. Fig. 13 (b) shows
the phase change scores for scenario (A). One can observe a
sudden jump at time 0.2025 s in phase change score, which
implies the anomaly happens, and another jump around 0.4s,
corresponding to the case that the attack ended. This is because
DER D is modeled as CSI. The sensor attack changes the
measurement feedback of PI control, which only impacts the
performance of the current control loop. Compared to case
1, an attack on DER A influences the voltage of the whole
system, which means it takes a longer time for DER A to
restore the voltage status of the whole system. The cPCs for
the sensors 01–05, 701, PCC, and DERs A–E are around 0.57,
0.02, 0.02, 0.01, 0.02, 0.06, 0.04, 0.01, 0.02, 0.01, 0.20, and
0.02, respectively at time 0.2025 s. This implies the anomaly
occurs near or at sensor 01, the accurate attacked branch in the
grid. The results for scenario (B) that only the data in sensors
01–05, 701, and PCC are used are shown in Fig. 13 (d) and
13 (e) we can also conclude the same result.

In case 13, a three-phase short circuit is simulated. This
fault location is shown in Fig. 14 (a): between current inverter
E and load 730. The detailed settings can be obtained from
TABLE II. Fig. 14 (b) displays the phase change scores for

Fig. 13. (a) The 37-node distributed grid, with the circles in red and pink
representing the true anomaly targeted location for scenarios (A) and (B),
respectively; (b) Phase change score on the time interval for scenario (A); (c)
Visualization of the G2(t) on time 0.2025 s under case 8 and scenario (A);
(d) Phase change score on the time interval for scenario (B); (e) Visualization
of the G2(t) on time 0.2025 s under case 8 and scenario (B). In (b) and
(d), the red lines highlight when phase changes are detected. In (c) and (e),
the nodes colored in red are the candidate anomaly sensors by the CONGO2

Algorithm.

scenario (A). One can observe a sudden jump at time 0.2025
s in phase change score, which implies the anomaly happens,
and another jump around 0.4s corresponds to the case that the
attack ended. The cPCs for the sensors 01–05, 701, PCC, and
DERs A–E are around 0.15, 0.03, 0.15, 0.15, 0.03, 0.17, 0.17,
0.03, 0.03, 0.03, 0.03, and 0.03, respectively at time 0.2025
s. In this case, sensors 01, 03, 04, 701, and PCC are anomaly
sensors according to the CONGO2 Algorithm. More than half
branches are detected as abnormal, which implies the anomaly
may happen at the trunk. The results for scenario (B) that only
the data in sensors 01–709 and PCC are collected, are shown
in Fig. 14 (d) and 14 (e) we can also locate the anomaly at
the trunk.

IV. CONCLUSION

In this paper, we developed a graph-based methodology,
i.e., CONGO2, to detect and localize anomalies on power
grids. Some typical DIAs and faults, such as the three-phase
short circuits, were simulated in the IEEE 37-node distributed
power grid. In particular, we combined the physical knowledge
and observed waveform data to construct a two-layer graph to
describe the power network condition at each time point. The
CONGO2 enjoys the following advantages. First, our method
can both detect and localize anomalies with high accuracy.
Second, our method is based on unsupervised online learning,
which does not require a training stage, making it efficient
and implementable in a real-time problem. Third, our method
only requires the local topological structure of the smart grid.
Thus, our method can be easily extended to a large-scale
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Fig. 14. (a) The 37-node distributed grid, with the circles in red and pink
representing the true anomaly targeted location for scenarios (A) and (B),
respectively; (b) Phase change score for scenario (A); (c) Visualization of the
G2(t) at time 0.2025 s under case 13 and scenario (A); (d) Phase change
score for scenario (B); (e) Visualization of the G2(t) at 0.2025 s under case
13 and scenario (B). In (b) and (d), the red lines highlight when phase changes
are detected. In (c) and (e), the nodes colored in red are the candidate anomaly
sensors by the CONGO2 Algorithm.

grid system. Fourth, the graph representation of smart grids
allows us to leverage many cutting-edge graph algorithms
for downstream analysis. As a sequel to this work, a graph
neural network based method for identifying the root cause
of anomalies, e.g., three-phase short circuit (case 13 in this
paper) and cyber attack (cases 1-12 in this paper), is under
active development. Despite the success of our method in
detecting the cyber threats in the device, as demonstrated in
Section III-B, some interesting situation, such as detection of
DIAs in the system estimation and control, still needs to be
studied in future work.

APPENDIX A
MATHEMATICAL ANALYSIS OF CONGO2

In this section, we provide a detailed mathematical analysis
of CONGO2, showing that CONGO2 can detect anomalies
with a theoretical guarantee. We assume that the observed
waveform xij(t), j = 1, . . . , 6, is a linear combination of the
true signal and the random noise, i.e., we have

xij(t) = zij(t) + "ij(t), (9)

where zij(t) represents the true signal, and "ij(t) represents
the random noise. In the following analysis, we consider two
scenarios.

• Scenario 1: Noise-free scenario, i.e., "ij(t) = 0.
• Scenario 2: Random noise term exists, "ij(t) 6= 0.
To establish the connection between anomaly and our pro-

posed PC score we impose the following Model Assumption
1 and Condition 1.

Model Assumption 1. If no anomaly occurs, the six waveform

signals of all sensors show the stable pattern: (1) For each

signal zij(t), i = 1, . . . ,m; j = 1, . . . , 6, it has a stable

linear relationship with its previous values, i.e., zij(t) =

a
h1i
ij zij(t�1)+ . . .+a

hqji
ij zij(t�qj), where a

h1i
ij , . . . , a

hqji
ij are

constant coefficients, and qj varies for different j. (2) For any

two signals zij(t) and zil(t), j = 1, . . . , 6, l = 1, . . . , 6, the

interaction between them is stable, i.e., zij(t) = �
h1i
ij zil(t �

1)+. . .+�
hqjli
ij zil(t�qjl), where �

h1i
ij , . . . ,�

hqjli
ij are constant

coefficients, and qjl may vary for different j and l. Note

that in this paper, we only consider the interaction between

voltage signals and the current signals, indicating that we only

consider {q14, q15, q16 . . . , q36}.

Condition 1. Let k, k
0

denote the number of rows and columns

of the trajectory matrix in Eq. (1) in the main manuscript,

k, k
0

and q1, . . . , q6, q14, . . . , q36 satisfy that min(k, k0) >

max(q1, . . . , q6, q14, . . . , q36).

Analysis under the scenario 1. Under the noise-free
scenario, the following Lemma 1 indicates that the proposed
PC score is a good indicator for anomaly detection.

Lemma 1. Under the noise-free scenario, assume Model

Assumption 1 and Condition 1 hold, if no anomaly occurs

at time t, we have PC(t) = 0. Thus, PC(t) > 0 indicates

that an anomaly occurs at time t.

Proof. To prove PC(t) = 0, it is sufficient to prove disi(t) =
0 and �degi(t) = 0, when there is no anomaly happens, for
each sensor i.

First, we prove that if no anomaly occurs at time t, we have
disi(t) = 0, i = 1, . . . ,m. Recall that disi(t) = 0.5||Bi(t)�
Bi(t�1)||22+0.5||Ai(t)�Ai(t�1)||2F . The disi(t) = 0 implies
||Bi(t)�Bi(t� 1)||22 = 0 and ||Ai(t)�Ai(t� 1)||2F = 0.

We now present the calculation of bij(t) which is the jth
elements in Bi(t). Let Zij(t) denote the trajectory matrix
calculated using the data zij(t), where the trajectory matrix
is defined in Eq. (1) in the main manuscript. Let Zij(t � 1)
and Zij(t) be the column spaces spanned by Zij(t � 1) and
Zij(t). Under the Model Assumption 1, if no anomaly occurs
at time t, we have zij(t) = a

h1i
ij zij(t�1)+. . .+a

hqji
ij zij(t�qj).

Therefore, the last column in Zij(t) can be represented by a
linear combination of the last qj columns in Zij(t� 1). Note
that when the Condition 1 hold, all the columns in Zij(t)
can be represented by a linear combination of the columns in
Zil(t). Thus, we have Zij(t) ✓ Zij(t� 1). By Theorem 2 in
[26], when Zij(t) ✓ Zij(t� 1), the Krylov subspace distance
between Zij(t� 1) and Zij(t) is zero, i.e., bij(t) = 0 for all
i = 1, . . . ,m and j = 1, . . . , 6. Thus, if no anomaly occurs,
we have ||Bi(t)�Bi(t� 1)||22 = 0. for all i = 1, . . . ,m.

Analogously, we can prove that if no anomaly occurs at
time t, Zil(t) ✓ Zil(t). Again we apply the Theorem 2
in [26], we prove that Kry(zij(t), zil(t)) = 0, implying
exp{�Kry(zij(t), zil(t))} = 1. Thus, when anomaly occurs,
all edges have a constant weight, i.e., one. Thus, if no
anomaly occurs, we have ||Ai(t) � Ai(t � 1)||2F = 0, for
all i = 1, . . . ,m and j = 1, . . . , 6. Therefore, combining the
results of ||Bi(t) � Bi(t � 1)||22 and ||Ai(t) � Ai(t � 1)||2F ,
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we come to the conclusion that if no anomaly occurs at time
t, we have disi(t) = 0.

Second, we show that if no anomaly occurs at time t,
we have �degi(t) = 0, i = 1, . . . ,m. From previous anal-
ysis, we know that if no anomaly occurs, (bi1, . . . , bi6) =
(bj1, . . . , bj6) = (0, . . . , 0), thus we have ||Bi(t)�Bj(t)||22 =
0. Furthermore, all edges in Ai(t) and Aj(t) have the same
weight, i.e., one, when no anomaly occurs. Thus, we have
||Ai(t) � Aj(t)||2F = 0. Therefore, combining the results of
||Bi(t) � Bj(t)||22 and ||Ai(t) � Aj(t)||2F , we come to the
conclusion that if no anomaly occurs at time t, we have
�degi(t) = 0.

Combining the results of disi(t) and �degi(t), we conclude
that under the noise-free scenario, assume Model Assumption
1 and Condition 1 hold, PC(t) > 0 indicates that an anomaly
occurs at time t.

Analysis under the scenario 2. Under the scenario where
the random noise term exists, the observed signal xij(t) is not
necessarily equal to the true signal zij(t). From Corollary 6.1
in [27], we know that assuming "ij(t) is a Gaussian white
noise, as k ! 1 and k

0 ! 1 with k/k
0 ! c0 > 0, where

c0 is a constant, the observed signal x1j(t) is stochastically
separable from the random noise "ij(t). This indicates that
the space spanned by the trajectory matrix Xij(t), which
is calculated using xij(t), can be decomposed into two or-
thogonal subspaces, thus we have Xij(t) = Zij(t) +Eij(t),
where Zij(t) denotes the trajectory matrix calculated using
zij(t), and Eij(t) denotes the trajectory matrix calculated
using "ij(t).

We can write the singular value decomposition (SVD) of
trajectory matrices Zij(t), Eij(t) and Xij(t) as Zij(t) =P

l �ijlUijl(t)V T
ijl(t), Xij(t) =

P
l �̃ijlŨijl(t)Ṽ T

ijl(t),

Eij(t) =
P

l �̇ijlU̇ijl(t)V̇ T
ijl(t), where �ijl is the lth

eigenvalue of Zij(t), Uijl(t) is the left singular vector
that spans the column space of Zij(t); Vijl(t) is the right
singular vector; �̃ijl, Ũijl(t), and Ṽ

T
ijl(t) denote the analogous

representation for Xij(t); �̇ijl, U̇ijl(t), and V̇
T
ijl(t) denote

the analogous representation for Eij(t).
Under the Model Assumption 1, the dimension of column

space of Zij(t) is qj . Recall that Zij(t) denote the column
space of Zij(t). Let Uij(t) denote the space spanned by
Ũij1(t), . . . , Ũijqj (t). If minl {�ijl} > maxl {�̇ijl}, for all
i = 1, . . . ,m; j = 1, . . . , 6, Uij(t) is a consistent estimate of
Zij(t). Thus, Kry(Uij(t� 1),Uij(t)) is a consistent estimate
of Kry(Zij(t�1),Zij(t)). Thus Kry(Uij(t�1),Uij(t)) > 0
implies Kry(Zij(t� 1),Zij(t)) > 0, which further indicates
an anomaly occurs by Lemma 1. Recall that in this paper,
PC score depends on Kry(Uij(t � 1),Uij(t)) to determine
whether an anomaly occurs. Therefore, PC is a good indicator
for anomaly detection under the scenario 2.

APPENDIX B
PSEUDO CODE OF CONGO2 ALGORITHM
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