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ABSTRACT

We show the existence of indistinguishability obfuscators (iO) for
general circuits assuming subexponential security of: (a) the Learn-
ing with Errors (LWE) assumption (with subexponential modulus-
to-noise ratio); (b) a circular security conjecture regarding the Gentry-
Sahai-Waters’ (GSW) encryption scheme and a Packed version of
Regev’s encryption scheme. The circular security conjecture states
that a notion of leakage-resilient security, that we prove is satisfied
by GSW assuming LWE, is retained in the presence of an encrypted
key-cycle involving GSW and Packed Regev.
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1 INTRODUCTION

The goal of program obfuscation is to “scramble” a computer pro-
gram, hiding its implementation details (making it hard to “reverse-
engineer”), while preserving its functionality (i.e its input/output
behavior). In recent years, the notion of indistinguishability obfusca-
tion (i0) [9, 36] has emerged as the central notion of obfuscation in
the cryptographic literature: roughly speaking, this notion requires
that obfuscations iO(IT'), iO(II2) of any two functionally equiva-
lent circuits I1! and IT, (i.e. whose outputs agree on all inputs) from
some class C (of circuits of some bounded size) are computationally
indistinguishable.

On the one hand, this notion of obfuscation is strong enough for
a plethora of amazing applications (see e.g. [13-16, 19, 20, 26, 30, 35,
50-52, 72]). On the other hand, it may also plausibly exist, whereas
stronger notion of obfuscations have run into strong impossibility
results, even in idealized models (see e.g. [9, 27, 44, 57, 60, 67]).
Since the breakthrough of Garg, Gentry, Halevi, Raykova, Sahai
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and Waters [36] that presented the first iO candidate, there has
been an intensive effort toward obtaining a construction of iO
based on some form of well-studied/nice assumptions. The original
work [36] provided a candidate construction based on high-degree
multilinear maps (MLMs) [31, 32, 34, 39]; there was no proof of
security based on an intractability assumption. [66] provided the
first construction with a reduction-based proof of security, based
on a strong notion of security for MLMs, similar to a sort of “Uber
assumption”. [41] provided a construction based on a more concrete
assumption relying on composite-order MLMs. Unfortunately, both
assumptions have been broken for specific candidate constructions
of MLMs [29, 65].

iO from FE or XiO. Subsequently, several works have been con-
structing iO from seemingly weaker primitives, such as Functional
Encryption (FE) [6, 17] or XiO [57], while only using standard
assumptions, such as Learning with Errors (LWE)'. For both con-
structions, we actually need to rely on subexponentially-secure con-
structions of either FE or XiO, as well as subexponential security
of LWE. Let us recall the notion of XiO as it will be useful to us:
roughly speaking, an XiO is an iO with a very weak “exponen-
tial” efficiency requirement: the obfuscator is allowed to run in
polynomial time in the size of the truth table of the function to
be obfuscated, and it is only required to output a program that
“slightly” compresses the truth table (technically, it is sublinear in
its size).

A breakthrough result by Lin [55] showed how to obtain iO from
constant-degree MLMs (plus standard assumptions), overcoming
the black-box barriers in [60, 67]. Her construction relies on the
connection between FE and iO. Following this result, a sequence of
works (see e.g. [7, 8, 37, 47, 49, 56, 58, 59]) reduced the assumptions
and the degree of the MLM — all the way down to 2-linear maps a.k.a.
pairings— relying on certain types of low-degree pseudorandom
generators (PRGs) to build FE. This culminated in the work of [37],
whose security rely on the LWE assumption with binary errors
in the presence of some PRG leakage, which despite being quite
elegant, is new to their work, and as such, has not been significantly
crypt-analyzed. Another line of work [2, 3] replace the use of 2-
linear maps used by the aforementioned works by a noisy linear
FE for inner products. While being plausibly post-quantum, these
constructions are heuristic and do not provide a security reduction
to a simple assumption.

A recent work by Brakerski et al [22] presents a new type of
candidate construction of XiO by combining a fully-homomorphic
encryption (FHE) and a linear-homomorphic encryption (LHE) with

Note that we are omitting some works that build iO without going through FE or
XiO, such as [40] that gives a direct heuristic construction of iO from tensor products,
or [10] that describes a candidate from Affine Determinant Programs. None of these
provide a security proof.
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certain nice properties (which can be instantiated by the Damgard-
Jurik (DJ) [33] encryption scheme whose security relies on the
Decisional Composite Residuosity (DCR) assumption), and relying
on a random oracle. More precisely, they define a new primitive
called “split-FHE” and provide a candidate construction of it based
on the above primitives and a random oracle, and next show how
split-FHE implies XiO (which by earlier work implies iO under
standard assumptions). We highlight that [22] does not provide any
proof of security of the split-FHE construction (even in the random
oracle model), but rather informally argue some intuitions, which
include a) circular security (more on this below) of the FHE and the
LHE, and b) a “correlation conjecture” that the FHE randomness (after
FHE evaluations) does not correlate “too much” with the messages
being encrypted. The correlation conjecture is not formalized, as the
FHE randomness in known construction actually does depend on
the message, so the authors simply conjecture that this correlation
cannot be exploited by an attacker to break security of the iO (they
also provide heuristic methods to weaken the correlations); as such
they only get a heuristic construction.

Summarizing the above, while there have been enormous progress
on realizing iO, known constructions are either based on assump-
tions that are not well understood (high-degree MLMs, various
low-degree PRGs assumptions and LWE with leakage type of as-
sumptions), or the construction candidates simply do not have
proofs of security.

1.1 Our Results

In this work, we provide a new iO construction assuming subexpo-
nential security of (a) the LWE assumption (with subexponential
modulus-to-noise ratio), and (b) an (in our eyes) natural circular
security assumption w.r.t the Gentry-Sahai-Waters’ (GSW) [43] FHE
scheme and the DJ [33] LHE scheme. Alternatively, assumption (b)
can be replaced by a circular security conjecture regarding the GSW
encryption scheme and a “packed” variant of Regev’s encryption
scheme [69, 70].

On a high-level, our approach follows that in [22], but we show
how to remove the heuristic arguments while instead relying on a
concrete circular security assumption. We believe this constitutes
strong evidence for the existence of iO, and places iO on a qualita-
tively similar footing as unlevelled FHE (i.e. an FHE that support an
a-priori unbounded polynomial number of operations), for which
known constructions also rely on a circular security conjecture [38].
We emphasize that the type of circular security conjecture that we
rely on is stronger and more complex than the “plain” circular se-
curity conjecture used for unlevelled FHE. Yet on a philosophical
level, we do not see any concrete evidence for why the plain circular
security is more believable.?

Circular security. Circular security of encryption schemes [18,
24] considers a scenario where the attacker gets to see not only
encryptions of messages, but also encrypted key cycles. The simplest
form of circular security, referred to as I-circular security, requires
that security holds even if the attacker gets to see not only the
public key pk and an encryption Encpy (m) of a message m (to be
secured), but also an encryption Encpy (sk) of the secret key sk.

2See Section 1.4 for an extended comparison.
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A slightly more complex type of circular security, referred to
as 2-circular security, considers an encrypted key cycle of size 2
where the attacker gets to see public keys pky, pk,, a length 2 en-
crypted secret key cycle, Enc;)k1 (ska), Enc?)kz (skq), and we require

that security of Enc]ék still holds (i.e. for any mg, m1, Enc:)k (mo)
1 1

is indistinguishable from Enc;}k (m1)). Encrypted key cycles com-
1

monly arise in applications of encryption scheme such as storage

systems (e.g. BitLocker disk encryption utility), anonymous creden-

tials [24] and most recently to construct (unlevelled) FHE [38].
We refer to the assumption that:

IfEnc! and Enc? are semantically secure, then 2-circular
security holds w.r.t. Encl, Enc?.

as the 2-circular security conjecture (2CIRC) w.r.t Enc, Enc?. (We
may also consider a subexponential version of this conjecture which
is identically defined except that “security” is replaced by “subex-
ponential security”.) For our purposes, we will allow the key gen-
eration procedure of Enc! to get the public-key pk, of Enc? as an
input—for instance, this will allow Enc! and Enc? to operate over
the same field.

At first sight, one may be tempted to hope that circular security
holds w.r.t. all secure encryption schemes—Enc!, Enc2— after all,
the attacker never actually gets to see the secret key, but rather
an encryption of it, which intuitively should hide it by semantic
security of the encryption schemes. Yet, in recent years, counter ex-
amples to 2-circular security have been found. While for 1-circular
security of string encryption schemes, it is easy to come up with
a counter example—simply take any encryption scheme and mod-
ify it so that an encryption of m outputs m iff m is a valid secret
key, and otherwise proceeds just as before—coming up with coun-
terexamples for 1-circular security of bit encryption, or 2-circular
security for either string or bit encryption, is a lot harder (see e.g.
[1, 12, 28, 45, 46, 53, 54, 61, 71, 75]). In fact, all known counter ex-
amples are highly artificial, and require carefully embedding some
trapdoor mechanism in the encryption scheme that enables decrypt-
ing the ciphertext once you see an encryption of the secret key.
As far as we are aware, no “natural” counterexamples are known.
Indeed, a common heuristic consists of simply assuming that 2-
circular security holds for all “natural” encryption schemes that are
secure; that is, 2CIRC holds for all “natural” encryption schemes
—we refer to this as the 2CIRC heuristic. It is similar to the Ran-
dom Oracle Heuristic [11]: while “contrived” counterexamples are
known (see e.g., [25, 62]), it is still commonly used for the design
of practical protocols.

Leakage-resilient Circular Security. In this work, we rely on the
assumption that stronger forms of security are preserved in the
presence of a key cycle. More precisely, we consider a notion of
O-leakage resilient security where O is some particular random-
ness leakage oracle; this notion enhances the standard semantic
security notion by providing the attacker with access to an oracle
O(pk,m,r) that is parameterized by the public key pk, the mes-
sage m being encrypted and the randomness r under which it is
encrypted, while restricting the attacker to making only “valid”
leakage queries (that do not trivially leak information about the
message—this is formalized by letting the oracle output L when-
ever a query is invalid, and saying that the attacker fails whenever
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this happens). We next define the notion of 2-circular O-leakage
resilient security analogously to 2-circular security, and also define
a 2CIRCO conjecture (resp. a subexponential 2CIRCY conjecture)
in the same way as the 2CIRC conjecture except that “security” is
replaced by “O-leakage resilient security”; that is, we say that the
2CIRCO conjecture holds w.r.t Encl, Enc? if the following holds:

IfEnc! is O-leakage resilient secure and Enc? is secure,

then O-leakage resilient security of Enc! is preserved

in the presence of a length 2 key-cycle w.r.t. Enc! and

Enc?.
Note that we cannot hope that 2CIRCO security holds for all ora-
cles O, even with respect to “natural” encryption schemes: simply
consider an oracle O(pk, m, r) that outputs the message m iff mis a
valid secret key (just as in the counterexample to “plain” 1-circular
security for string encryption). Thus, for 2CIRCY to be meaningful,
we need to restrict not only to “natural” encryption schemes, but
also to “natural” oracles O.

Our first theorem shows that for a natural leakage oracle Osg —
which will be referred to as the “shielded randomness leakage (SRL)
oracle"—2CIRCOsRL wrt. two standard encryption schemes (GSW
and DJ) together with standard assumptions implies the existence
of iO.

THEOREM 1.1 (INFORMALLY STATED). Assume the subexponen-
tial security of the LWE assumption (with subexponential modulus-
to-noise ratio) and the DCR assumption, and the subexponential
2CIRCOsr conjecture w.r.t. GSW and and DJ. Then, iO exists for
the class of polynomial-size circuits.

Alternatively, we can replace the DJ encryption scheme with
a “packed” variant of Regev’s encryption scheme [70], which we
refer to as Packed Regev. (We note that our Packed Regev is very
similar to, but actually different from, the Packed Regev in [69].)
This construction only relies on LWE and the 2-circular security
conjecture.

THEOREM 1.2 (INFORMALLY STATED). Assume the subexponential
security of the LWE (with subexponential modulus-to-noise ratio) as-
sumption, and assume that the subexponential 2CIRCOSRL copjecture
holds w.r.t. GSW and Packed Regev. Then, iO exists for the class of
polynomial-size circuits.

In the sequel, we refer to Osg| -leakage resilient security (resp.
2-circular Osg| -leakage resilient security) as SRL-security (resp
2-circular SRL security). We proceed to explain the notion of SRL
security and how the above theorems are proven.

1.2 Shielded Randomness Leakage (SRL)
Security

As mentioned above, we consider a notion of shielded random-
ness leakage (SRL) security for FHE. Roughly speaking, given two
messages m’, m!, the attacker gets to see an FHE encryption ¢ =
FHE(m?;r) of m? for a randomly selected b € {0, 1}, and next gets
access to a “leakage oracle” Ospy (m?, r) which upon every invoca-
tion sends the attacker an “extra noisy” encryption ¢* = FHE(0; r*)
of 0—we will refer to the random string r* as the “shield”. Next,
the attacker can select some functions f and values « such that

f(mP) = a—that is, we restrict the attacker to picking functions
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for which it knows the output when applying the function to the
message m’; if f(m®) # a, the attacker directly fails in the game.
(The reason why we add this restriction on the attacker will soon
become clear). Finally, the oracle homomorphically evaluates f on
the ciphertext c, letting ¢ = FHE(f(m); rf) denote the evaluated
ciphertext, and returns r* — ry. That is, the attacker gets back the
randomness ry of the evaluated ciphertext masked by the “shield”
r*, and as usual, the attacker’s goal is to guess the bit b. The reason
why the attacker is restricted to picking functions f for which it
knows the output « is that for the FHE we consider, given ¢* and
cy, the attacker can compute c* - ¢y = FHE(0 - f(mb);r* - ry)
and thus knowing r* —r r reveals f (mP). So, by restricting to at-

tackers that already know o = f (mb), intuitively, r* — ry does
not reveal anything else. Indeed, we formally prove that under the
LWE assumption, the GSW encryption scheme is SRL-secure (i.e.
OsgrL-leakage resilient secure).

THEOREM 1.3 (INFORMALLY STATED). Assume the LWE assumption
holds (with subexponential modulus-to-noise ratio). Then, the GSW
scheme is SRL-secure.

On a very high-level, the idea behind the proof is that the encryp-
tion c* is a projection, ha (r*) = Ar* € Z" , where the randomness
r* used to produce ¢* is a vector in Z{; and A is a matrix in Z}
where ¢ > n, that is, the map hp that describes the encryption
is compressing. Therefore, some “components” of the “shield” r*
remain information-theoretically hidden. And this enables hiding

the same components of Ifs furthermore, the components that are

not hidden by r* are actually already revealed by f(m?), which the
attacker knows (as we require it to output a = f (m?)). The formal
proof of this proceeds by considering a (simplified) variant of the
Micciancio-Peikert lattice trapdoor method [64] for generating the
matrix A (which is part of the public key for GSW) together with a
trapdoor that enables sampling short preimages of ha (i.e. solving
the ISIS problem). Whereas traditional trapdoor preimage sampling
methods require the preimage to be sampled according to some
specific distribution (typically discrete Gaussian) over preimages,
we will consider a somewhat different notion: we require that given
a target vector t, the distribution of randomly sampled preimages of
t is statistically close to the distribution obtained by starting with
any “short” preimage w of t and next adding a randomly sampled
preimage of 0. Our proof relies on the fact that randomly sampled
preimages can be sufficiently larger than w to ensure that they
“smudge” w—we here rely on the fact that modulus-to-noise ratio
is subexponential (which we need anyway for the security of our
construction) to enable the smudging?.

2-Circular SRL Security. As mentioned, we define 2-circular SRL
security as 2-circular Ogg| -leakage resilient security; we emphasize
that this security game is identically defined to the “plain” SRL
security game (described above), with the only exception being
that the challenge message encrypted (using Enc:)kl) has the form

sko||m? (as opposed to just being m?), and that the attacker also
gets to see an encryption of sky (using EnclzJk )
2

3 Another consequence of using smudging is that our lattice trapdoor mechanism and
its proof become simpler than [64], which uses a polynomial-size modulus instead, for
a better efficiency.
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1.3 Overview of the XiO Construction

We present a construction that makes a modular use of any LHE
satisfying certain properties, and whose security relies the 2-circular
SRL-security w.r.t. GSW and the LHE (i.e., that SRL security of
GSW holds in the presence of a encrypted key cycle of length 2
using GSW and the LHE). To obtain a subexponentially-secure XiO
(which is required to obtain iO by [57]), we need to strengthen the
assumptions to also require subexponential security. Next, we note
that the DJ LHE satisfies the desired properties. We prove that a
packed version of Regev’s encryption scheme [70] that is similar
to, but actually different from, the packed construction from [69],
does so as well. We refer to our LHE simply as Packed Regev LHE.

Let us start with the construction assuming 2-circular SRL-security
w.r.t. GSW and any LHE satisfying the desired properties. As men-
tioned, on a high-level, our construction follows similar intuitions as
the BDGM construction. We combine an FHE (in our case the GSW
FHE) with a (special-purpose) LHE to implement an XiO. In fact,
in our approach, we do not directly construct an XiO, but rather
construct an XiO with preprocessing—this notion, which relaxes
XiO by allowing the obfuscator to have access to some long public
parameter pp, was actually already considered in [57] and it was
noted there that subexponentially-secure XiO with preprocessing
also suffices to get iO.

Towards explaining our approach, let us first recall the approach
of BDGM—which relies on the D] LHE—using a somewhat different
language that will be useful for us.

The BDGM construction. The high-level idea is quite simple and
very elegant. Recall that an XiO is only required to work for pro-
grams II with polynomially many inputs n = poly(1) where 1 is
the security parameter, and the obfuscators running time is allowed
to be polynomial in n; the only restriction is that the obfuscated
code should be sublinear in n—we require a “slight” compression of
the truth table. More precisely, the obfuscator is allowed to run in
time poly(n, A) (i.e. polynomial time in the size of the truth table),
but must output a circuit of size poly(1)n'~¢ where ¢ > 0. Assume
that we have access to a special “batched” FHE which enables en-
crypting (and computing on) long messages of length, say m using
a short randomness of length poly (1) log(m); and furthermore that
1) given the secret key and a ciphertext ¢, we can efficiently re-
cover the ciphertext randomness 2) given a ciphertext ¢ and its
randomness—which will also be referred to as a “hint”—one can
efficiently decrypt. Given such a special FHE, it is easy to con-
struct an XiO: simply cut the truth table into “chunks” of length
n®, FHE encrypt the program II, then, homomorphically evalute
circuits C; for indices i € [n1¢] such that given the program IT
as input, C; outputs the i’th “chunk” of the truth table, which we
denote by II;; finally, release the randomness r; (i.e. the “hint”) of
the evaluated ciphertexts. These hints enable compressing n® bits
into poly(2) log(nf) bits and thus the XiO is compressing.?

4The reason we need to cut the truth table into chunks instead of directly computing
the whole output is that for existing FHE schemes, the size of the FHE public key and
ciphertexts grow polynomially with the length of the output of the homomorphic
evaluation i.e. the size of the plaintext encrypted in an evaluated ciphertext, also
referred to as "batching capacity”. So the obfuscation is only compressing when we
have a large number of chunks.
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Unfortunately, none of the known FHE constructions have short
randomness. BDGM, however, observes that there are linear homo-
morphic encryptions schemes (LHE), notably the DJ LHE, that sat-
isfy the above requirements. Moreover, many FHEs are batcheable
(with “long” randomness) and have “essentially” linear decryption:
decryption is an inner product of the ciphertext with the secret key,
then rounding. That is, the linear operations yield the plaintext
with some additional small decryption noises, that are removing
when rounding. So if we start off with such an FHE and additionally
release an LHE encryption of the FHE secret key, we can get an FHE
with the desired “batcheable with short randomness” requirement:
we first homomorphically evaluate the inner product of the FHE
ciphertext with the encrypted FHE secret key, then simply release
the randomness for the evaluated LHE ciphertext (which now is
short).

But there are problems with this approach: (1) since FHE decryp-
tion requires performing both a linear operation and rounding, we
are leaking not only II; but also the decryption noises, which is
detrimental for the security of the FHE (2) the LHE randomness
may actually leak more than just the decrypted LHE plaintext (i.e.
something about how the LHE ciphertext was obtained). As BDGM
shows, both of these problems can be easily overcome if we have
access to many fresh LHE encryptions of some “smudging” noise
(which is large enough to smudge the FHE decryption noises)’.
Therefore, the only remaining problem is to generate these LHE
encryptions of smudging noises. This is where the construction in
BDGM becomes heuristic: (1) they propose to use a random oracle
to generate a long sequence of randomness (2) this sequence of
randomness can be interpreted as a sequence of LHE encryptions
of uniformly random strings u; for i = 1,.. .,n'7¢, since the DJ
LHE has dense ciphertext (3) they additionally provide an FHE
encryption of the LHE secret key sk (note that there is now a circu-
lar security issue), on which they FHE-homomorphically evaluate
a function f; that decrypts the i’th LHE ciphertext produced by
the random oracle, and computes MSB(u;), the most significant
bits of u; (4) finally they LHE-evaluate the (partial) decryption of
the evaluated FHE ciphertext (which encrypts MSB(u;)); the ob-
tained LHE ciphertext can now be subtracted from the LHE cipher-
texts generated by the random oracle, to get an LHE encryption of
u; — MSB(u;), which is a noise of the appropriate size, i.e. smudging
but not uniform.

One problem with this approach, however, is that while we do
obtain an LHE encryption of appropriate smudging noise, it is not
actually a fresh ciphertext (with fresh randomness). The issue is
that the randomness r; of the evaluated FHE ciphertext of MSB (u;)
may (and actually will) depend on the randomness of the original
LHE ciphertext obtained by the RO. Another problem is that LHE
can only compute the first step of an FHE decryption (namely, the
linear operations), the LHE encryption obtained actually encrypts
a message of the form: u; — MSB(u;) + noise;. As we know, reveal-
ing the extra noise is detrimental for security (this is why we are
generating LHE encryptions of smudging noises in the first place).
Unfortunately, the extra noise that results from partially decrypting
the FHE ciphertext depends on u;, so the lower-order bits of the

5They formally prove the security of their scheme in an idealized model with access
to an oracle that generates fresh LHE encryptions of smudging noise.
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latter cannot smudge the former. BDGM here simply assumes that
the attacker cannot exploit these correlations, and thus only obtain
a heuristic construction.

We shall now see how to obtain the appropriate LHE encryption
of smudging noises in a provably secure way, relying on 2-circular
SRL-security of GSW and DJ—that is, Osp| -leakage resilient circular
security of GSW and D]J.

Removing the RO.. Our first task will be to remove the use of the
RO. That will actually be very easy: as we have already observed, it
suffices to get an XiO with preprocessing to obtain iO, so instead of
using a random oracle, we will simply use a long random string as
a public parameter, and interpret it as LHE encryptions of random
strings.

Re-encrypting the FHE.. The trickier problem will be to deal with
the issue of correlations. We will here rely on the fact that we are
considering a particular instantiation of the FHE: namely, using
(a batched version of) the GSW encryption scheme. On a high-
level, the idea for breaking the correlation is to "refresh" or re-
encrypt the evaluated FHE ciphertext (which encrypts MSB(u;))
to ensure that the randomness is fresh and independent of the
evaluations. This way, the decryption noise itself is independent
of the evaluated circuit. GSW ciphertexts can be re-randomized
simply by adding a fresh extra noisy FHE encryption of 0. How
do we get such enecryptions? GSW ciphertexts are not dense, so
we cannot put them in the public parameters, and even if they
were, we still wouldn’t be able to get an encryption of 0 (we would
have an encryption of a uniformly random plaintext). The public
key of the GSW encryption scheme actually contains a bunch of
encryptions of 0, but fewer than the amount we need (or else we
wouldn’t get a compressing XiO). Instead, we use the public key
of the GSW encryption to generate extra noisy encryptions of
0, and we include the (many) random coins (r});c[,1-¢] used to
generate these ciphertexts as part of the public parameters of the
XiO (recall that the public parameters can be as long as we want).
This method does indeed enable us to get a fresh FHE encryption of
the most significant bits, and thus the correlation has be broken and
intuitively, we should be able to get a provably secure construction.
But two obstacles remain: (1) we are revealing the randomness used
to re-randomize the ciphertexts, and this could hurt security, or
render the re-randomization useless and (2) we still have a circular
security issue (as we FHE-encrypt the LHE secret key, and LHE-
encrypt the FHE secret key). Roughly speaking, the first issue will
be solved by relying on SRL-security of GSW, and the second issue
will be solved by our circular security conjecture.

In more detail, we note that the re-randomized evaluated FHE
ciphertext of MSB(u;) and the public parameters r;‘ are statistically
close to freshly generated extra noisy FHE encryption of MSB(u;)
using randomness rl*, and setting the public parameter to r;‘ -1y,
where rf is the randomness of the evaluated ciphertext, before
re-randomization. In other words, the re-randomization achieves
a notion which we refer to as “weak circuit privacy”, where the
re-randomized ciphertext is independent of the evaluated function
f;. Furthermore, noisy GSW encryptions of MSB(u;) essentially
have the form of a noisy GSW encryption of 0, to which MSB(u;)
is added. So, other than MSB(u;), which is truly random, rf -5
is simply an SRL leakage on a GSW encryption of the LHE secret
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key sk! Thus, intuitively, security should now follow from circular
SRL security of GSW and the LHE.

The final construction. We summarize our final XiO construction
with preprocessing. The public parameter pp is a long random string
that consists of two parts:

o The first part FHE.PubCoin will be interpreted as a sequence
of rerandomization vectors r*;

e The second part LHE.PubCoin will be interpreted as a se-
quence of LHE encryptions

The obfuscator, given a security parameter A and a circuit IT :
{0, 118" — (0,1}, where n = poly(2) proceeds as follows:

e Output the public keys of the FHE and LHE: The obfus-
cator generates a fresh key-pair (pk, sk) for the LHE, and
next generate a key-pair (pk, sk) for the GSW FHE. (To make
it easier for the reader to remember which key refers to which
encryption scheme, we place a line over all keys, ciphertexts
and algorithms, that correspond to the linear homomorphic
encryption.) The modulus N of the GSW encryption is set
to be the same that the modulus that defines the message
space Z of the LHE scheme. Additionally, it chooses N large
enough to enable encrypting messages of size n®. Finally, it
outputs the public keys (pk, pk).

e Output an FHE encryption of the circuit: It outputs an
FHE encryption (w.r.t. pk) of the program II, which we de-
note by ct;.

e Output encrypted key cycle: It computes ctz, an FHE en-
cryption of sk, and ct, an LHE encrytion of sk. It outputs the
key cycle cty, ct.

e Output hints: For every i € [n
r; computed as follows:

— Evaluate the circuit: Homomorphically evaluate the
circuit C; on ct; and let ct; denote the resulting evaluated
FHE ciphertext — recall that ct; encrypts a program II,
and the circuit C; takes a input a program IT and outputs
the i’th chunk of its truth table.

- Compute an FHE encryption ctysg ; of MSB(u;): Con-
sider the function f;(IT, sk) that ignores the input II but
uses the input sk to decrypt the i’th LHE ciphertext from
LHE.PubCoin into a plaintext u; and outputs MSB(u;).
The obfuscator homomorphically evaluates f; on the ci-
phertexts cty, cty (where, recall, cty is an encryption of
s_k). Let ctpmsp,; = FHE(MSB (u;); rfi) denote the resulting
evaluated FHE ciphertext.

Rerandomize ctpsp ; into Ctl,\/\SB,i: It uses the i’th chunk

of FHE.PubCoin to get the randomness r;‘; generates an

1=¢] it outputs a short “hint”

extra noisy FHE encryption of 0 using r;( and homomorphi-
cally adds it to ctys,;- Let cty g ; = FHE(MSB (u;); rf+
r ﬁ_) denote the new (re-randomized) ciphertext.

Proxy re-encrypt ct; as an LHE ciphertext ct;: It uses
ct (which, recall, is an LHE encryption of sk) to homo-
morphically compute the linear part of the FHE decryp-
tion of ct;, which yields an LHE encryption of the value
29 .TI; + noise; where noise; is an FHE decryption noise,
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and 2% is taken large enough so that the plaintext IT; can
be recovered by rounding.
Similarly, it homomorphically computes the partial FHE

’

decryption of ct MSB.i” which yields an LHE encryption of

the value 2¢" - MSB (u;) + noisepmsp, i, where once again
noisepsp ; denotes an FHE decryption noise, and 20" =1
for reasons that will become clear later. We rely on the
fact that GSW FHE (and many other FHE schemes) admits
a flexible “scaled” evaluation algorithm, that can choose
which integer 2% to use when performing the homomor-
phic evaluation (this was used also in prior works, includ-
ing [22]). The resulting LHE ciphertext is subtracted from
LHE(2¢ -II; + noise;), and therefore yields LHE(2? - IT; +
noise; — MSB(u;) — noisemsg,;)-

Finally, it homomorphically adds the LHE encryption of
u; that is part of the LHE public coins, to obtain ct; =
LHE(m;), where m; = 2“ - II; + noise; — MSB(u;) —
noisemsg,; + ui = 2 - II; + noise; + noisepmsp,; + LSB(u;),
where LSB(u;) denotes the least significant bits of u;.
The integer ' is chosen to be equal to 0 so that the smudg-
ing noise LSB(u;) is directly added to the FHE noises
noise; — noisepmsg,;. As opposed to the value II; that we
place in the higher-order bits of the plaintext, we need
the smudging noise to be at the same level than the FHE
noises, so they "blend" together.

- Release hint r; for LHE ciphertext ct;: It uses sk to re-
cover the randomness r; of ct; (recall that the LHE we use
has a randomness recoverability property), and outputs
Ii.

To evaluate the obfuscated program on an input x € {0, 1}", that
pertains to the i’th chunk of the truth table of I for some i € [n1~¢],
we compute ct; just like the obfuscator did (note that this does not
require knowing the secret key, but only information contained in
the obfuscated code). Finally, we decrypt ct; using the hint r; to
recover the message m; described above (recall that the LHE we use
has the property that ciphertexts can be decrypted if you know the
randomness). Finally, perform the rounding step of FHE decryption
on m; to obtain II;, which contains I1(x).

Outline of the security proof. We provide a very brief outline of
the security proof. We will rely on the fact that LHE ciphertexts (of
random messages) are dense (in the set of bit strings), and addition-
ally on the fact that both the LHE and the FHE we rely on (i.e. D] and
GSW) satisfy what we refer to as a weak circuit privacy notion. This
notion, roughly speaking, says that any encryption of a message x
can be rerandomized into fresh (perhaps extra noisy) encryption of
x +y, by adding a fresh (perhaps extra noisy) encryption of y.

As usual, the proof proceeds via a hybrid argument. We start
from an XiO obfuscation of a program I1° and transition until we
get an XiO obfuscation of I, where I1° and T1! are two functionally
equivalent circuits of the same size.

e Hybrid 0: Honest XiO(I1°). The first hybrid is just the
honest obfuscation of the circuit I1°.

e Hybrid 1: Switch to freshly encrypted Ct;\ASB,i‘ Hybrid
1 proceeds exactly as Hybrid 0 up until the point that the

ciphertexts ctpmsp,; get re-encrypted into Ct;v\SB,i’ with the
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exception that FHE.PubCoin are not sampled yet. Next, in-
stead of performing the re-encryption, we sample Ctl/\/\SB,i as
a fresh extra noisy encryption of MSB(u;) using randomness
r;‘, and setting FHE.PubCoin to be r} — ry; (recall that r; is
the randomness obtained when homomorphically evaluat-
ing f; on the FHE encryption of sk). We finally continue the
experiment in exactly the same way as in Hybrid 0.

It follows from the “weak circuit privacy” property of the
FHE that Hybrid 0 and Hybrid 1 are statistically close. Note
that in Hybrid 1, for each i € [n!7¢], the i’th chunk of
FHE.PubCoin can be thought of as SRL leakage on the fresh
encryption Ct;v\SB,i computed w.r.t. function f;, which will
be useful for us later.

Hybrid 2: Switch LHE.PubCoin to encryptions of ran-
dom strings. Hybrid 2 proceeds exactly as Hybrid 1 except
that instead of sampling LHE.PubCoin as a random string,
we sample it as fresh LHE encryptions of random strings u;,
for i = 1,...,n17¢ It follows by the density property of the
LHE that Hybrid 2 is statistically close to Hybrid 1.
Hybrid 3: Generate ct; as a fresh encryption. Hybrid
3 proceeds exactly as Hybrid 2 except that ct; is gener-
ated as a fresh encryption of m; using fresh randomness
r;, and the i’th chunk of LHE.PubCoin is instead computed
homomorphically by subtracting the LHE encryption of
sk T (ct; — ctmsp,;) (obtained after homomorphically decrypt-
ing ct; and Ct;v\SB,i using ct) from the LHE ciphertext ct;.
Recall that m; = sk (ct; — ctpmsp,;) + u; so the above way
of computing the i’th chunk of LHE.PubCoin ensures that it
is valid encryption of u; as in Hybrid 2, but this time with
non-fresh, homomorphically evaluated randomness.

It follows from the weak circuit privacy property of the LHE
that Hybrid 3 and 2 are statistically close.

Note that it was possible to define this hybrid since Ct/,\/\SB,i
remains exactly the same no matter what the LHE.PubCoin
are. This was not true in Hybrid 0, and we introduced Hybrid
1 to break this dependency.

Note further that in Hybrid 3, we no longer use sk (i.e. the
secret key for LHE); previously it was used to recover r;.
Hybrid 4: Generate ct; without FHE noises. Hybrid 4
proceeds exactly as Hybrid 3 except that ct; is generated as
a fresh encryption of m; = 2¢ - H(l.) + LSB(u;), whereas in
Hybrid 3, it was generated as fresh encryption of m; = 2¢ -
H?+LSB(ui)+noisei—noiseMSB,i. That is, we use LSB(u;) as
a smudging noise to hide the extra noise noise; — noisepmsg ;.
We can do so since (1) the extra FHE noise is small and
independent of LSB(u;) (2) the rest of the obfuscated code
can be generated from the value LSB(u;)+noise; —noisepmsp, ;
only (in particular it does not require to know LSB(u;) itself).
It follows that Hybrid 4 is statistically close to Hybrid 3.
Hybrid 5: Switch to encryption of I1': Hybrid 5 proceeds
exactly as Hybrid 4 except that ct; is an encryption of IT!
(instead of TI° in prior hybrids).

Note that other than the encrypted key cycle, we never use
the FHE secret key, and due to Hybrid 3, we no longer use
the LHE secret key. So, at first sight, Hybrid 5 ought to be
indistinguishable from Hybrid 4 by circular security of the
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FHE and the LHE. Recall that FHE.PubCoin leaks something

about the randomness used by the FHE encryption Ct;\ASB,i’
but the leakage is exactly an SRL leakage (and note that in
the experiment we do know the output «; of the function f;
that is applied to the plaintexts encrypted in ct1, ctp—namely,
it is MSB(u;) where u; is a random string selected in the ex-
periment, see Hybrid 2). Thus, indistinguishability of Hybrid
5 and Hybrid 4 follows from 2-circular SRL-security of the
FHE and the LHE.

e Hybrids 6-10: For i € [5], Hybrid 5 + i is defined exactly
as 5 — i, except that ct; be an encryption of II!. Statistical
closeness of intermediary hybrids follows just as before.

The above sequence of hybrid allows us to conclude the following
theorem.

THEOREM 1.4 (INFORMALLY STATED). Assume the 2-circular SRL-
security of the GSW and DJ encryption schemes. Then, there exists
an XiO for polynomial-size circuits taking inputs of length log(1)
where A is the security parameter.

An alternative LHE based on Packed Regev. We remark that we
can obtain an alternative construction of an LHE with the desired
properties by considering an packed version of the Regev encryp-
tion scheme. Our construction is slightly different, but similar in
spirit, to the Packed Regev from [69]. Recall that a (plain) Regev
public key consist of a pair A,sTA + e, where A «g ZZ’X” with
m > nlog(q), the vector s < Zg is the secret key, and e € Zg' is
some small “noise” vector. An encryption of a message u has the
form Ar, (sTA +e")r+ B -y where r < {0,1}™ is the encryp-
tion randomness and B is an upper bound on the size of noise (so
as to enable decryption). This scheme is linearly homomorphic,
but for security, the size of the randomness |r| needs to be greater
than nlog(q), which is more than that size of the message: the
randomness is too long for our purposes.

To get succinct decryption hints, we simply reuse the same
randomness r for many encryptions using different secret keys
$1, 82, - - - ¢ and different noises ey, ey, . . ., ep. The secret key is now
a matrix S € Zf]x", and the public key becomes (A, SA + E) where
Ee ngm is a noise matrix. The encryption of a vector of messages
1= (u1,..., ) is then (Ar, (SA + E)r + By). This is the scheme
from [69]. Despite the fact that this encryption is still linearly ho-
momorphic, and has the advantage of having rate-1 ciphertext size,
its randomness is not short: to carry on the proof of security, we
need to rely on the fact that r contains enough bits of entropy even
when the information Ar (which is short) and Er (that is long) is
leaked. The can only be true when the dimension of r, m, grows
with the number of bits that are batched, .

Thus, we depart from the scheme in [69] by adding a smudging
noise® in the ciphertext, to hide the information Er. The ciphertext
is of the form: (Ar, (SA+E)r+e’ + B- p1), where €’ is the extra
smudging noise that hides the error term Er, ensuring that we only
have the short Ar leakage and the usual proof can again be applied.

This scheme is still linearly homomorphic, but the encryption
randomness is still large, as even though we reuse r, the added

Note that using a carefully crafted noise that needs not be of smudging size, as done
in [64], we can "unskew" the noise Er and hide the information of r. We favor clarify
of the exposition over efficiency and resort to using smudging noises.
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noise terms e’ are large. However, we rely on the fact that knowing
¢’ is not needed for decrypting. Indeed, to decrypt, we just need
to know a small vector T € Z* such that At = Ar. That can be
used to remove the term SAr from the ciphertext, and recover B - v
plus some small noise. To sample such vector, we use a standard
trapdoor sampling mechanism as in prior works [4, 5, 42, 64]. This
makes the scheme hintable with succinct hints.

We still have two (minor) obstacles, though. This scheme (as
well as Regev’s original scheme or the scheme from [69]) does not
satisfy two of the other properties needed for our XiO construction:
(1) density, and (2) weak circuit privacy. But it almost does. Extra
noisy ciphertexts, where the noise reaches the bound B are actually
dense, and for extra noisy ciphertext, weak circuit privacy also
holds (just as it did for GSW). So, we can directly instantiate the
LHE in our XiO construction with this Packed Regev construction,
as long as we slightly relax the notion of an LHE to just require
density when considering extra noisy ciphertexts.

Thus we can conclude:

THEOREM 1.5 (INFORMALLY STATED). Assume 2-circular SRL se-
curity of the GSW and the Packed Regev encryption schemes holds.
Then, there exists an XiO for polynomial-size circuits taking inputs
of length log(1) where A is the security parameter.

The proof of Theorems 1.1, 1.2 is finally concluded by upgrading
Theorems 1.3, 1.4 and 1.5 to apply also in the subexponential regime,
relying on the subexponential 2CIRC Osri conjecture, and finally
relying on the transformation from subexponentially-secure XiO
with pre-processing (and subexponential LWE) to iO [57].

1.4 Comparing Circular SRL-security to “Plain”
Circular Security

Let us make a few remarks on the 2-circular SRL-security assump-
tion w.r.t GSW and some LHE (e.g. Damgard Jurik or Packed-Regev).
Clearly, this assumption is stronger than the 2-circular assumption
w.r.t GSW and the LHE—simply consider an attacker that does not
request any leakage. Additionally, we wish to highlight a few qual-
itative differences between “plain” circular security and circular
SRL-security:

e “Plain” circular security is a simple non-interactive falsifi-

able assumption. Circular SRL-security is also a (relatively
simple) falsifiable assumption, but the security game is now
interactive; for the type of SRL security needed for our ap-
plication, a single “parallel” SRL query suffices and such a
notion of SRL security can be specified as a 5-round security
game.
As we explain in more detail in the full version of this paper,
for our application, one could define a non-interactive falsifi-
able variant of SRL security—roughly speaking, where the
messages and the leakage-selection algorithm are randomly
selected—such that the subexponential hardness of this cir-
cular “random-SRL” security notion suffices’, but in our eyes,
this non-interactive security game is less natural than the
interactive one (and thus does not add much insight).

0

"This follows from a union bound as the length of both the messages m®, m! and the

description of the leakage-selection algorithm are “short”.
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o It is also worth noting that for the notion of “plain” circular
security, an alternative way of defining circular security is to
require that Enc:)k (ska), Enc;k (skq) is computationally in-

1 2

distinguishable from Enclljk (olskaly, Encllz)k (sk1) (here Enc?
1 2

denotes GSW and Enc? denotes LHE); this notion (together
with non-circular security) implies circular security the way
we have defined it (i.e. indistinguishability of encryptions
of two messages in the presence of an encrypted key cycle).
However, this implication no longer holds in the context
of SRL security. And this is why we are directly defining
circular security as indistinguishability of encryptions of
messages in the presence of an encrypted key cycle.

The above two points indicate that the circular SRL-security w.r.t.
GSW and LHE is both (a-priori) stronger, and also different from a
qualitative point of view than the “plain” circular security assump-
tion. Yet, some of the justifications for believing the latter holds
true are also valid for circular SRL-security:

e Inboth cases (plain and SRL), security holds in a non-circular
setting, assuming LWE.

e In both cases (plain and SRL), the security game being con-
sidered captures a simple and natural process (albeit for the
case of SRL security, it is more complex).

e Finally, just as for the notion of plain circular security, it
does not appear simple to even just come up with any bit-
encryption scheme (such as GSW) that is SRL secure, but
not circular SRL secure.’

1.5

A concurrent and independent breakthrough result by Jain, Lin and
Sahai [48] presents a construction of iO based on subexponential
security of well-founded assumptions: (1) the SXDH assumption on
asymmetric bilinear groups, (2) the LWE assumption with subexpo-
nential modulus-to-noise ration, (3) a Boolean PRG in NC?, and (4)
an LPN assumption over a large field and with a small error rate [%
where § > 0 and ¢ is the dimension of the LPN secret. Assumptions
(1) and (2) have widespread use and are considered standard. (3) has
also been well-studied in recent years. (4) is a very natural coding
problem, but the range of parameters used in (4) differs from most
prior works in the cryptographic literature, a majority of which
focus on a less sparse error rate (typically a constant) and/or use
the field Fs.

A concurrent and independent work by Wee and Wichs [74]
presents a new elegant heuristic instantiation of the BDGM para-
digm based only on lattice-based primitives. Similarly to us, their
construction proceeds by implementing XiO with pre-processing.
They also state a new security assumption with a circular security
flavor (involving a PRF and LWE samples) under which they can
prove the security of their construction: Roughly speaking, their
construction proceed by reducing XiO with pre-processing to the
task of “oblivious LWE sampling”, and next they provide a heuristic
instantiation of a protocol for performing oblivious LWE sampling.

Concurrent and Subsequent Work

8Wichs and Zirdelis [75] show that any public-key bit encryption scheme can modified
in a way that preserves security yet violates circular security (using a special form of
obfuscation that can be satisfied under LWE). The same method can be used to obtain
an SRL-secure encryption scheme (by modifying GSW as in [75]) that is not 1-circular
SRL secure.
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Their security assumption is essentially that their protocol is a se-
cure oblivious LWE sampler. It is worth noting that even though
they also rely on the BDGM approach to implement XiO, they man-
age to directly construct an FHE with short randomness, relying on
a “dual” variant of the GSW encryption scheme, thereby completely
removing the use of any LHE (whereas we obtain short decryption
hints by combining GSW with our Packed Regev).

The initial version of our paper did not contain the LWE-based
instantiation of the LHE using Packed Regev (we just had the DJ-
based instantiation). Following up on the initial posting of our
paper, but concurrently and independently from our LWE-based
construction, a preprint by Brakerski et al [23] also provides an
LWE-based way to instantiate the LHE within our framework. Dif-
ferently from our construction, however, they rely on a variant of
the “Dual Regev” encryption scheme, whereas we rely on regular
Regev.

Attacks on SRL security. Following up our work, the recent beau-
tiful work [73] provides counter-examples to a generalization of
the 2CIRC skt conjecture where the SRL leakage can be obtained
for circuits with algebraic gates that depends on the structure of
the encryption scheme itself, as opposed to Boolean circuits (call
this “extended SRL security”). Namely, they rely on the fact that
the GSW FHE can also evaluate multiplication by a constant mod
N gates, where N is the modulus used by the scheme itself. They
present a variant of the GSW encryption scheme (GSW with even
noise) which is both semantically and extended-SRL secure under
LWE, yet circular extended-SRL security fails to hold—they present
a concrete attack that cleverly exploits the above-mentioned homo-
morphic property. Alternatively, [73] can re-interpret their attack as
an attack of “plain” (as opposed to “extended”) circular SRL-security
but w.r.t to a more artificial variant of the GSW encryption scheme.
In this new encryption scheme, homomorphic multiplication is
done in a more complicated way to ensure that the randomness
of the evaluated ciphertext is correlated with one of the plaintexts.
(Roughly speaking, the new homomorphic multiplication opera-
tion is performing some extra multiplication mod N computations,
“under the hood” to achieve the same effect as in an extended SRL
attack).

Their result thus highlights that circular SRL-security indeed is
a qualitatively stronger notion than “plain” circular security (for
which non-trivial attacks are not known for “natural” bit encryp-
tion schemes), and that more research is needed to understand the
interplay between the class of leakage functions allowed in the
definition of SRL security and the underlying FHE scheme, and
notably, how the homomorphic operations are done. In particular,
it appears important to use an FHE where homomorphic operations
do not enable “biasing” the randomness of evaluated ciphertexts in a
substantial way. Formalizing such a property is left as an important
problem for future research.

2 DEFINITIONS

2.1 Definition of PKE and FHE

We start by recalling the definition of public key encryption (PKE)
and fully-homomorphic encryption (FHE). For our purposes, we
will consider the Common Reference String (CRS) model, where
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we first generate a CRS, and next, the key generation algorithm
will take the CRS as input. This added generality will be useful
to capture scenarios where multiple encryption schemes will be
operating over the same ring Zxn—this ring can be specified in the
CRS.

Definition 2.1 (Public-Key Encryption). A Public-Key Encryption
(PKE) scheme is a tuple of PPT algorithms (CRSgen, Gen, Enc, Dec)
where:

. CRSgen(l’l): given as input the security parameter A € N, it
outputs a common reference string crs.

e Gen(crs): given as input crs, it outputs the pair (pk, sk).

e Ency(m;7): given as input the public key pk, a message
m € {0,1}* and some randomness r «g {0, 1}’
a ciphertext ct.

e Decg(ct): given as input the secret key sk and a ciphertext

ct, it deterministically outputs a plaintext.

, it outputs

We furthermore require these algorithms to satisfy the follow-
ing correctness condition: for all 1 € N, all crs in the support of
CRSgen(lA), all pairs (pk, sk) in the support Gen(crs), all messages
m € {0,1}", all ciphertexts ct in the support of Encpy (m), we have:

Decgi (ct) = m.

Definition 2.2 (Fully-Homomorphic Encryption). A PKE scheme
(CRSgen, Gen, Enc, Dec) is said to be a Fully-Homomorphic En-
cryption (FHE) scheme for depth §(-) circuits if there exists a PPT
algorithm Eval such that for all A € N, all crs in the support of
CRSgen(1%), all pairs (pk, sk) in the support of Gen, all n € N, all
messages my, . . ., my € {0, 1}, all ciphertexts cty, . . ., ct, in the sup-
port of Encpy (m1), . . ., Encpi (mp) respectively, all Boolean circuits
f:{0,1}" — {0, 1} of depth at most §(1), Eval(pk, f, cty, ..., cty)
deterministically outputs an evaluated ciphertext cty such that
Decgi (ctp) = f(my, ..., mp).

Note that the depth of the Boolean circuits that can be homomor-
phically evaluated is a priori bounded by §(1) for a polynomial §
(that is, we consider the case of leveled FHE). We consider Boolean
circuits, that is, directed acyclic graphs where each vertex corre-
sponds to an input or a logical (NOT, OR, AND) gate.

2.2 Leakage-Resilient and Circular Security

We recall the standard definition of CPA-security for encryption
schemes; we furthermore generalize it to a notion of O-leakage
resilient security, which extends the standard definition by also
providing the attacker with access to a leakage oracle O receiv-
ing the public key pk, the message m* being encrypted, and the
randomness r under which it is encrypted. Our notion of O leakage-
resilience restricts to attackers that only make “valid” leakage
queries, where a query is said to be valid if the oracle does not
return L in response to it. In more detail, to “win” in the security
game, the attacker A must (a) correctly guess which among two
message m’, m! is being encrypted, while (b) not having made any
queries to O on which O returns L.

9 As usual, since all algorithms are PPT we really only need to consider a finite prefix
of {0, 1}* to define the uniform distribution.
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Definition 2.3 (O-leakage resilient security). We say that a public-
key encryption scheme PKE = (CRSgen, Gen, Enc, Dec) is O-
leakage resilient secure if for all stateful nuPPT adversaries A,
there exists some negligible function y(-) such that for all A € N,
Pr[Epo:;[f8 =1] < 1/2+ p(A), where the experiment Exp)f;’,(f8 is
defined as follows:
crs «— CRSgen(lA), (pk, sk) « Gen(crs)

(m®, m') « A(pk),b « {0,1}

m* =m?,r —g {0,1}®

ct = Encp (m*;1),b" AO(Pkm™.r) (¢t
Return 1 if [m®| = |m!|, b’ = b and

O did not return L; 0 otherwise.

PKE
Exp/Lﬂ =

We say that PKE is simply secure if the above holds when we do
not give A access to an oracle.

We will also consider a 2-circular secure variant of O-leakage
resilient security, which is similarly defined except we require in-
distinguishability of m® and m! in the presence not only of some
randomness leakage, but also of an encrypted key cycle w.r.t. two
public-key encryption schemes PKE and PKE. Note that we set
the CRS of PKE to be the public key of PKE; this is to ensure
compatibility between the schemes, i.e. for them to operate on the
same ring.

Definition 2.4 (O-leakage resilient 2-circular security). We say that
public-key encryption schemes PKE = (CRSgen, Gen, Enc, Dec)
and PKE = (CRSgen, Gen, Enc, Dec) are O-leakage resilient 2-
circular secure if for all stateful nuPPT adversaries A, there exists
some negligible function y(-) such that for all 1 € N,

Pr[Epr"I;&PWS =1] <1/2+4u(d),

PKEPKE

A is defined as follows:

where the experiment Exp
crs — CRSgen(1%), (pk, sk) < Gen(crs)
(pk, sk) — Gen(pk)

(m®, m") — A(pk, pk)

b — {0,1}, m* = sk|/m?

r g {0,1}%,ct= Encpk(m*;r)

ot — mp—k(sk), b — A0 pkm™0) (¢t Tp)
Return 1 if [m°| = |m!|, b’ = b and

O did not return L; 0 otherwise.

PKEPKE _

EXp)L,ﬂ

We finally state the 2CIRC assumption that we will rely in our
main theorem.

Definition 2.5 (2CIRC assumption). We say that the (subexponen-
tial) 2CIRCO assumption holds w.r.t PKE and PKE if the follow-
ing holds: if PKE is (subexponentially) O-leakage resilient secure

and PKE is (subexponentially) secure, then (subexponential) O-
leakage resilient 2-circular security holds w.r.t PKE and PKE.

2.3 Definition of Shielded Randomness
Leakage Security

To define our notion of SRL security, we focus on FHE schemes that
satisfy the following properties.
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2.3.1 Batch Correctness. This property states that decryption of
evaluated ciphertexts solely consists of computing the inner product
of the evaluated ciphertext with the secret key (both of which are
vectors), then rounding. Also, a single scalar obtained by decryption
can encode many output bits of the evaluated function. That is, we
consider FHE scheme where the crs contains a modulus N¢s such
that decryption of an evaluated ciphertext yields a scalar in Zy,.
Our definition of FHE is flexible w.r.t. the choice of the modulus
Ners, which we can afford since the LWE assumption holds for
essentially any (large enough) modulus. As observed in [21, 22, 63],
most existing FHE schemes can fit this framework.

Definition 2.6 (Batch correctness). For all poynomials §, an FHE
scheme (CRSgen, Gen, Enc, Dec, Eval) for depth-§ circuits satisfies
batch correctness if there exist a PPT Eval” and a polynomial o such
that following holds:

e Forall A € N, all crs in the support ofCRSgen(lA) contain a
modulus N¢rs € N; for all (pk, sk) in the support of Gen(crs),
we have: pk contains By € N such that Neys > ZABPk; the
secret key is of the form: sk € Z7W).

e For all A € N, all crs in the support of CRSgen(l’l), all
(pk, sk) in the support of Gen(crs), all input length n €
N, all output length v € N s.t. v < log(Ners), all mes-
sages my,...,my € {0,1}, all depth-5(1) Boolean circuits
f:{0,1}" — {0,1}", all ciphertexts ct; in the support of
Encpi (m;) for all i € [m], all scaling factors w < log(Ners),
the algorithm Eval’(pk, f, w, cty,...,cty) deterministically

outputs an evaluated ciphertext cty € ZZ(A) such that:

schtf =2%f(m) + noises € Zn,,,
with [noise | < Bpy.

Here,m = (my,...,my) € {0,1}N, and f(m) = ¥/, 277 fi(m) €
ZN,,,, where for all i € [v], fi(m) € {0,1} denotes the i’th out-
put bit of the Boolean circuit f. Note that if v < log(Ners/Bpi),
one can recover the value f(m) when using any scaling factor
w > log(Bpk). That is, we can define Eval(pk, f,cty,...,cty) =
Eval’(pk, f, [log(Bpi) 1+ 1,cty, ..., cty).

2.3.2  Randomness Homomorphism. This property states that it is
possible to homomorphically evaluates a Boolean circuit f not only
on the ciphertexts, but also the randomness used by the cipher-
texts. The resulting evaluated randomness r¢ belongs to a noisy
randomness space R* — typically the fresh randomness comprises
noises, and the evaluated randomness consists of larger-magnitude
noises. The encryption algorithm Enc* is essentially the same as
Enc except it operates on the evaluated (noisier) randomness. The
ciphertext obtained by first evaluating the randomness, then using
the noisy encryption algorithm Enc* is the same as obtained by
directly evaluating the original ciphertexts.

Definition 2.7 (Randomness homomorphism). An FHE scheme
FHE = (CRSgen, Gen, Enc, Dec, Eval) for depth-§ Boolean cir-
cuits that satisfies batch correctness (defined above) also satisfies
randomness homomorphism if there exists a sequence of noisy
randomness spaces {‘R/’{} 21en, and the following additional PPT
algorithms:
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o Eval and(pk, f, r,m): given as input the public key pk, a depth-
&(A) Boolean circuit f : {0,1}" — {0,1}", random coins
r=(ry,...,ry) where foralli € [n], r; € {0,1}*°, and mes-
sages m € {0, 1}", it deterministically outputs an evaluated
randomness ry € RY.

. Enc:)‘k (y;7): given as input the public key pk, a message
u € Zy... and the randomness r* € R*, it outputs a noisy

crs

ciphertext ct*.

We furthermore require these algorithms to satisfy the following
condition: for every A € N, all crs in the support of CRSgen(1%), all
pairs (pk, sk) in the support of Gen(crs), alln € N, v e Ns.t. v <
log(Ncrs), all depth-6(A) Boolean circuits f : {0,1}" — {0,1}", all
messages my, ..., my € {0,1}, all randomness ry,...,r, € {0,1}*,
denoting ct; = Encpy(my; ;) for all i € [n] and ry = Evaliang(pk,
f.r,m), we have ry € R/’{ and:

Eval’(pk, f,0,cty,...,cty) = Enc;k(f(m);rf),

where f(m) = 3, 2171 f(m) € ZN,, and for all i € [v], fi(m) €
{0, 1} denotes the i’th output bit of the Boolean circuit f.

2.3.3 Shielded Randomness-Leakage Security. We proceed to for-
mally define shielded randomness leakage (SRL) security for ran-
domness homomorphic FHEs with batch correctness. SRL security
will be defined as O-leakage resilient security for a particular leak-
age oracle Osg| that given the public key pk, a message m* and
randomness r, allows the attacker A to ask to see a “shielded” ver-
sion of the homomorphically evaluated randomness ry for any
Boolean circuit f for which A knows the output f(m*). To make
sure the attacker can only query the oracle with Boolean circuits on
which it knows the output, we require the attacker to also provide
the output @, and the oracle outputs L if f(m*) # « (and thus, by
the definition of O-leakage resilient security, the attacker fails if it
ever picks a function for which it does not know the output).

To formalize the SRL oracle, we restrict ourselves to FHE where
the noisy randomness consists of integer vectors. That is, there
exists a polynomial ¢(-) such that the sequence {RI }len is such

that for all A € N, RI c 7t Henceforth, we denote by rj + 12 €
R/’{ andr; — 13 € ‘R;‘ the addition and subtraction in Z'Y . We
denote R; by R* for simplicity.

Definition 2.8 (SRL security). An FHE scheme ¥ HE for depth §
Boolean circuits satisfying randomness homomorphism is said to be
SRL-secure if it is 0 /1¢

SRL
oracle 057;7[:{8, where Eval,ynq and Enc* are the algorithms guar-

anteed to exist by the definition of randomness homomorphism.

-leakage resilient secure for the following

Similarly, for any public-key encryption scheme PKE, we say 2-

circular SRL security holds w.r.t. F HE and PKE if Og?ga -leakage

resilient 2-circular security holds w.r.t. FHE and PKE.
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057;7'_{6 (pk, m*,r):
r* «Rp R*, ct* = Enc;k(O;r*)

(f,@) & A(ct™)

rf = Evalang(pk, f,r, m*).

If f(m*) = a and f is of depth at most 8,
then leak = r* — rp € R*.

Otherwise, leak = L. Return leak.

Roughly speaking, given a message m* and randomness r, the or-
acle ()57;}58 samples fresh random coins r* from which it generates
a noisy encryption of zero, that is sent to the adversary. The adver-
sary next chooses a Boolean circuit f and a value a € {0,1}*. The
oracle then checks that f(m*) = a, upon which it returns the eval-
uated randomness “shielded” with the randomness r*; otherwise,
it outputs L and in this case, the attacker fails.

In the concrete FHE we consider from [43], the randomness leak-
age corresponds to the randomness obtained from homomorphi-

cally subtracting the evaluated challenge ciphertext from Enc;‘k (0;1™).

Revealing such leakage allows the adversary to decrypt and recover
the value 0 — f(m™*). This is why we only allow the attacker to
request leakage for Boolean circuits f for which it knows the output
f(m*) € {0, 1}".

Whenever the scheme FHE is clear from context, we simply

write OsgrL to denote Og;{{ é

2.4 Definition of iO

We recall the definition of iO [9, 36]. Given polynomials n(-), s(-), d(-),
let Cy, 5.4 = {Ca}aen denote the class of circuits such that for all
A € N, C) is the set of circuits with input size n(A), size at most s(1)
and depth at most d(1). We say that a sequence of circuits {II) } 1 eny
is contained in {Cy }) e (denoted by {II) }1en € {Ch}ren) if for
alld e N, HA € C}L-

Definition 2.9 (i0 for P/poly). We say that iO exists for P/poly
if for all polynomials n(-),s(),d(-), there exists a tuple of PPT
algorithms (Obf, Eval) such that the following holds:

o Correctness: For all {II} } iy € Cyy 5 4> there exists a negli-
gible function g such that for all A € N, all x € {0, 1}"(’1),

Pr[II « Obf(1%,11)) : Eval(1*, 11, x) = II(x)] > 1 — p(n)

o IND-security:
For all sequences {Hé }rens {I'[’l1 }ren € Cp .4 such that for
allAl e N, l'I())L and H’l1 are functionally equivalent circuits, the
following ensembles are computationally indistinguishable:

{ﬁ — Obf(14,119) :ﬁ)}leN

{ﬁ — Obf(14,11}) :ﬁ)}leN

2.5 Learning with Errors Assumption

Definition 2.10 (LWE assumption [68, 70]). For all sequences
q € 2P°Y() 4]l ensembles y of efficiently sampleable distribu-
tions over Z, we say that (subexponential) security of the LWE
assumption holds w.r.t. the sequence ¢ and the ensemble y if for all
polynomials m(-), the following ensembles are (subexponentially)

746

STOC °21, June 21-25, 2021, Virtual, Italy

computationally indistinguishable:

(A.2) }KEN.

{A “—R Z;?{(K)XK,Z “—R ZZZ(K) : (A, z)}

m(x)

,z:As+e€Zq
K

KEN

We say the (subexponential) security of the LWE assumption holds
if there exists a constant ¢ € (0, 1) such that for all sequences
q € 2Poly(8) and all polynomials B such that for all k € N, the
following holds:

o B(k) > 24/ log(x)

e B(k) > g{KZ_KC
the LWE assumption holds w.r.t. g, y, where y = {yx}xen is the
ensemble of distributions where for all k € N, y; is the uniformly
random distribution over [-B(x), B(k)].

3 OURIO CONSTRUCTION

Our construction relies on the GSW FHE and the Packed-Regev
PKE, decribed below.

3.1 The GSW FHE Scheme

We recall the FHE from [43]. We present the leveled variant (with-
out bootstrapping), which is parameterized by a polynomial § that
bounds the depth of the Boolean circuits that can be homomorphi-
cally evaluated. Its security relies on the LWE assumption with a
subexponential modulus-to-noise ratio. We denote the scheme by
GSWs.

For all polynomials §, we denote by bs a polynomial (aribtrarily
chosen) such that for all polynomials B v K all A € N, the noise
obtained from homomorphically evaluating circuits of depth at most
J(A) on GSW ciphertexts generated with an LWE noise distribution
uniformly random over [~By(4,), By(A)] and an LWE secret of
dimension k(4), is upper bounded by 2bs (1)

Boolean circuits are encoded naturally with addition, subtraction,
multiplication, and addition by a constant gates over the integers.
Namely, for any bit a,b € {0, 1}, NOT(a) is implemented by 1 — a,
AND(a, b) is implemented by a - b, and OR(a, b) is implemented by
a+b—a-b, where the addition + and multiplication - are performed
in Z. Note that this encoding only incurs a constant mutiplicative
blow-up in the circuit size, and no increase in the circuit depth.

e Gen(crs):
Given as input crs which contains a modulus N > 224405 (M)t
chooses a sequence {qn }nen and polynomials By , x such that LWE
holds w.r.t. g and y the By-bounded ensemble of uniformly random
distributions, and g, () = N (by the LWE assumption, given in Def-
inition 2.10, we know such parameters exist). We abuse notations
and write k = k(4), ¥ = x«(1) and By = By (x(4)) from here on.
The algorithm sets w = (x+1)[log(N)1, m = 2(x+1)[log(N)T+24,
B* = 2 (w+1)%[log(N)] and B = By(w+ 1)% log(N)m. Note that
we have N > 2%1B.

It samples A g Z{™

2MogMN)1-1) ¢ 28T G = g7 @1d € Z{*™ where Id €

Z}(\'Iﬁl) *+1) denotes the identity matrix, U = (s aser) € Z}(\'Jﬁl) xm,

, 8 — Yfoe « Y™t g=(1,2...,
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It sets pk = (B,U,G), and sk = (-s,1) @ g € Zl‘\“}. The parameters
define the noisy randomness space R* = [-B*, B¥]™. It outputs

(pk, sk).

e Enc(pk, m):

Given the public pk, a message m € {0, 1}, it samples the random-
ness R «—g [—1, 1]™*" and outputs the ciphertext ct = UR+mG €
Z(FDXW pop any m € {0,1}", we denote by Encpy (m;r) the con-
catenation of the encryptions Encpy (m1;R1), ..., Encpp(mn; Rp).

e Eval(pk, f,cty,...,cty):

Given the public key pk, a depth-§(1) Boolean f : {0,1}" — {0,1}",
ciphertexts cty, ..., ctp, it runs cty — Eval’(pk, f, w,cty, ..., cty)
with scaling factor @ = [log(B)] + 1, where the algorithm Eval’ is
described below, for the batch correctness property.

THEOREM 3.1 (SRL SECURITY). Assume the (subexponential) LWE
assumption holds. Then, for all polynomials §, GSW is (subexponen-
tially) SRL secure.

The proof of this theorem is given in the full version of this
paper.

3.2 The Packed-Regev PKE Scheme

We present a packed version of Regev encryption scheme [70],
which is parameterized by polynomials ¢ and ¢;. We denote the
scheme by P-Regevy, , . These parameters are used to define some
special properties of the encryption scheme (e.g. some "batching”
properties), which are defined and proven in the full version of this
paper. The scheme relies on trapdoor sampling, whereby a matrix
A is sampled together with an associated trapdoor T that permits
to sample short pre-image of the map x — Ax. Again, we defer to
the full version of this paper for further details.

e CRSgen(1%):

It simply outputs crs = 14, i.e. thereis no proper crs for that scheme.

e Gen(crs):
Given as input crs = 14, it chooses ¢ = {gx }xen with g = 2%,
By(x) = kand k(1) = £ (M)V¢, where ¢ € (0,1) is the constant
from Definition 2.10, and N = g,.(3). We abuse notations and write
k =x(A), x = Xx(n) and By = By (x(4)) from here on.

Then, the algorithm samples (A, Ty) «— TrapGen(lA, N,x),S «
X% E « y%*™ and sets pk = (N,A,SA+E) € N x ZKNX"’ X

ng[xm, sk = S. It outputs (pk, sk).

e Encp(x € Zg)):

Given the public pk, a vector x € ZY,, it samples R « [—1, 1]V,
E’ g [-24/2,24/2]&XVE and outputs the ciphertext ct = (AR, (SA+
ER+E +x' ® Idzz) € ZI(\';”Z)XWZ, where Idg, € Zf\zjwz denotes the

identity matrix, and x' ® Id, € fo,x véz,

® Decg (ct):
Given as input the secret key sk and a ciphertext ct = (t,z) with
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l . L.
teZi,ze€Zg, itoutputsd =z - St € Z.

THEOREM 3.2 (SECURITY). Assume the (subexponential) LWE as-
sumption holds. Then, for all polynomials £y, £, P-Regev,, , is (subex-
ponentially) secure.

The proof of this theorem is given in the full version of this
paper.

3.3 Our Main Result

THEOREM 3.3. Assume the subexponential LWE assumption holds.
Assume further that for all polynomials 8, £1 and t, the subexpo-
nential 2CIRCYSRC conjecture holds wr.t. GSWs and P-Regev, 4,
(described above). Then subexponentially-secure iO for P/poly exists.

The proof of this theorem is given in the full version of this
paper.
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