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ABSTRACT
We show the existence of indistinguishability obfuscators (iO) for

general circuits assuming subexponential security of: (a) the Learn-

ing with Errors (LWE) assumption (with subexponential modulus-

to-noise ratio); (b) a circular security conjecture regarding the Gentry-
Sahai-Waters’ (GSW) encryption scheme and a Packed version of

Regev’s encryption scheme. The circular security conjecture states

that a notion of leakage-resilient security, that we prove is satisfied

by GSW assuming LWE, is retained in the presence of an encrypted

key-cycle involving GSW and Packed Regev.

CCS CONCEPTS
• Security and privacy→ Cryptography.
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1 INTRODUCTION
The goal of program obfuscation is to “scramble” a computer pro-

gram, hiding its implementation details (making it hard to “reverse-

engineer”), while preserving its functionality (i.e its input/output

behavior). In recent years, the notion of indistinguishability obfusca-
tion (𝑖O) [9, 36] has emerged as the central notion of obfuscation in

the cryptographic literature: roughly speaking, this notion requires

that obfuscations 𝑖O(Π1), 𝑖O(Π2) of any two functionally equiva-
lent circuits Π1

and Π2 (i.e. whose outputs agree on all inputs) from

some class C (of circuits of some bounded size) are computationally

indistinguishable.

On the one hand, this notion of obfuscation is strong enough for

a plethora of amazing applications (see e.g. [13–16, 19, 20, 26, 30, 35,

50–52, 72]). On the other hand, it may also plausibly exist, whereas

stronger notion of obfuscations have run into strong impossibility

results, even in idealized models (see e.g. [9, 27, 44, 57, 60, 67]).

Since the breakthrough of Garg, Gentry, Halevi, Raykova, Sahai
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and Waters [36] that presented the first 𝑖O candidate, there has

been an intensive effort toward obtaining a construction of 𝑖O
based on some form of well-studied/nice assumptions. The original

work [36] provided a candidate construction based on high-degree

multilinear maps (MLMs) [31, 32, 34, 39]; there was no proof of

security based on an intractability assumption. [66] provided the

first construction with a reduction-based proof of security, based

on a strong notion of security for MLMs, similar to a sort of “Uber

assumption”. [41] provided a construction based on a more concrete

assumption relying on composite-order MLMs. Unfortunately, both

assumptions have been broken for specific candidate constructions

of MLMs [29, 65].

𝑖O from FE or 𝑋𝑖O. Subsequently, several works have been con-

structing 𝑖O from seemingly weaker primitives, such as Functional

Encryption (FE) [6, 17] or 𝑋𝑖O [57], while only using standard

assumptions, such as Learning with Errors (LWE)
1
. For both con-

structions, we actually need to rely on subexponentially-secure con-
structions of either FE or 𝑋𝑖O, as well as subexponential security
of LWE. Let us recall the notion of 𝑋𝑖O as it will be useful to us:

roughly speaking, an 𝑋𝑖O is an 𝑖O with a very weak “exponen-

tial” efficiency requirement: the obfuscator is allowed to run in

polynomial time in the size of the truth table of the function to

be obfuscated, and it is only required to output a program that

“slightly” compresses the truth table (technically, it is sublinear in

its size).

A breakthrough result by Lin [55] showed how to obtain 𝑖O from

constant-degree MLMs (plus standard assumptions), overcoming

the black-box barriers in [60, 67]. Her construction relies on the

connection between FE and 𝑖O. Following this result, a sequence of
works (see e.g. [7, 8, 37, 47, 49, 56, 58, 59]) reduced the assumptions

and the degree of theMLM—all theway down to 2-linearmaps a.k.a.

pairings— relying on certain types of low-degree pseudorandom

generators (PRGs) to build FE. This culminated in the work of [37],

whose security rely on the LWE assumption with binary errors

in the presence of some PRG leakage, which despite being quite

elegant, is new to their work, and as such, has not been significantly

crypt-analyzed. Another line of work [2, 3] replace the use of 2-

linear maps used by the aforementioned works by a noisy linear

FE for inner products. While being plausibly post-quantum, these

constructions are heuristic and do not provide a security reduction

to a simple assumption.

A recent work by Brakerski et al [22] presents a new type of

candidate construction of 𝑋𝑖O by combining a fully-homomorphic

encryption (FHE) and a linear-homomorphic encryption (LHE) with

1
Note that we are omitting some works that build 𝑖O without going through FE or

𝑋𝑖O, such as [40] that gives a direct heuristic construction of 𝑖O from tensor products,

or [10] that describes a candidate from Affine Determinant Programs. None of these

provide a security proof.
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certain nice properties (which can be instantiated by the Damgård-

Jurik (DJ) [33] encryption scheme whose security relies on the

Decisional Composite Residuosity (DCR) assumption), and relying

on a random oracle. More precisely, they define a new primitive

called “split-FHE” and provide a candidate construction of it based

on the above primitives and a random oracle, and next show how

split-FHE implies 𝑋𝑖O (which by earlier work implies 𝑖O under

standard assumptions). We highlight that [22] does not provide any

proof of security of the split-FHE construction (even in the random

oracle model), but rather informally argue some intuitions, which

include a) circular security (more on this below) of the FHE and the

LHE, and b) a “correlation conjecture” that the FHE randomness (after

FHE evaluations) does not correlate “too much” with the messages

being encrypted. The correlation conjecture is not formalized, as the

FHE randomness in known construction actually does depend on

the message, so the authors simply conjecture that this correlation

cannot be exploited by an attacker to break security of the 𝑖O (they

also provide heuristic methods to weaken the correlations); as such

they only get a heuristic construction.

Summarizing the above, while there have been enormous progress

on realizing 𝑖O, known constructions are either based on assump-

tions that are not well understood (high-degree MLMs, various

low-degree PRGs assumptions and LWE with leakage type of as-

sumptions), or the construction candidates simply do not have

proofs of security.

1.1 Our Results
In this work, we provide a new 𝑖O construction assuming subexpo-

nential security of (a) the LWE assumption (with subexponential

modulus-to-noise ratio), and (b) an (in our eyes) natural circular
security assumption w.r.t the Gentry-Sahai-Waters’ (GSW) [43] FHE

scheme and the DJ [33] LHE scheme. Alternatively, assumption (b)

can be replaced by a circular security conjecture regarding the GSW

encryption scheme and a “packed” variant of Regev’s encryption

scheme [69, 70].

On a high-level, our approach follows that in [22], but we show

how to remove the heuristic arguments while instead relying on a

concrete circular security assumption. We believe this constitutes

strong evidence for the existence of 𝑖O, and places 𝑖O on a qualita-

tively similar footing as unlevelled FHE (i.e. an FHE that support an

a-priori unbounded polynomial number of operations), for which

known constructions also rely on a circular security conjecture [38].

We emphasize that the type of circular security conjecture that we

rely on is stronger and more complex than the “plain” circular se-

curity conjecture used for unlevelled FHE. Yet on a philosophical

level, we do not see any concrete evidence for why the plain circular

security is more believable.
2

Circular security. Circular security of encryption schemes [18,

24] considers a scenario where the attacker gets to see not only

encryptions of messages, but also encrypted key cycles. The simplest

form of circular security, referred to as 1-circular security, requires
that security holds even if the attacker gets to see not only the

public key pk and an encryption Encpk (m) of a message m (to be

secured), but also an encryption Encpk (sk) of the secret key sk.

2
See Section 1.4 for an extended comparison.

A slightly more complex type of circular security, referred to

as 2-circular security, considers an encrypted key cycle of size 2

where the attacker gets to see public keys pk
1
, pk

2
, a length 2 en-

crypted secret key cycle, Enc1pk
1

(sk2), Enc2pk
2

(sk1), and we require

that security of Enc1pk
1

still holds (i.e. for any𝑚0,𝑚1, Enc1pk
1

(𝑚0)
is indistinguishable from Enc1pk

1

(𝑚1)). Encrypted key cycles com-

monly arise in applications of encryption scheme such as storage

systems (e.g. BitLocker disk encryption utility), anonymous creden-

tials [24] and most recently to construct (unlevelled) FHE [38].

We refer to the assumption that:

If Enc1 and Enc2 are semantically secure, then 2-circular
security holds w.r.t. Enc1, Enc2.

as the 2-circular security conjecture (2CIRC) w.r.t Enc1, Enc2. (We

may also consider a subexponential version of this conjecture which

is identically defined except that “security” is replaced by “subex-

ponential security”.) For our purposes, we will allow the key gen-

eration procedure of Enc1 to get the public-key pk
2
of Enc2 as an

input—for instance, this will allow Enc1 and Enc2 to operate over
the same field.

At first sight, one may be tempted to hope that circular security

holds w.r.t. all secure encryption schemes—Enc1, Enc2— after all,

the attacker never actually gets to see the secret key, but rather

an encryption of it, which intuitively should hide it by semantic

security of the encryption schemes. Yet, in recent years, counter ex-

amples to 2-circular security have been found. While for 1-circular

security of string encryption schemes, it is easy to come up with

a counter example—simply take any encryption scheme and mod-

ify it so that an encryption of m outputs m iff m is a valid secret

key, and otherwise proceeds just as before—coming up with coun-

terexamples for 1-circular security of bit encryption, or 2-circular
security for either string or bit encryption, is a lot harder (see e.g.

[1, 12, 28, 45, 46, 53, 54, 61, 71, 75]). In fact, all known counter ex-

amples are highly artificial, and require carefully embedding some

trapdoor mechanism in the encryption scheme that enables decrypt-

ing the ciphertext once you see an encryption of the secret key.

As far as we are aware, no “natural” counterexamples are known.

Indeed, a common heuristic consists of simply assuming that 2-

circular security holds for all “natural” encryption schemes that are

secure; that is, 2CIRC holds for all “natural” encryption schemes

—we refer to this as the 2CIRC heuristic. It is similar to the Ran-

dom Oracle Heuristic [11]: while “contrived” counterexamples are

known (see e.g., [25, 62]), it is still commonly used for the design

of practical protocols.

Leakage-resilient Circular Security. In this work, we rely on the

assumption that stronger forms of security are preserved in the

presence of a key cycle. More precisely, we consider a notion of

O-leakage resilient security where O is some particular random-
ness leakage oracle; this notion enhances the standard semantic

security notion by providing the attacker with access to an oracle

O(pk,m, r) that is parameterized by the public key pk, the mes-

sage m being encrypted and the randomness r under which it is

encrypted, while restricting the attacker to making only “valid”

leakage queries (that do not trivially leak information about the

message—this is formalized by letting the oracle output ⊥ when-

ever a query is invalid, and saying that the attacker fails whenever
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this happens). We next define the notion of 2-circular O-leakage
resilient security analogously to 2-circular security, and also define

a 2CIRCO conjecture (resp. a subexponential 2CIRCO conjecture)

in the same way as the 2CIRC conjecture except that “security” is

replaced by “O-leakage resilient security”; that is, we say that the

2CIRCO conjecture holds w.r.t Enc1, Enc2 if the following holds:
If Enc1 is O-leakage resilient secure and Enc2 is secure,
then O-leakage resilient security of Enc1 is preserved
in the presence of a length 2 key-cycle w.r.t. Enc1 and
Enc2.

Note that we cannot hope that 2CIRCO security holds for all ora-
cles O, even with respect to “natural” encryption schemes: simply

consider an oracle O(pk,m, r) that outputs the messagem iffm is a

valid secret key (just as in the counterexample to “plain” 1-circular

security for string encryption). Thus, for 2CIRCO to be meaningful,

we need to restrict not only to “natural” encryption schemes, but

also to “natural” oracles O.
Our first theorem shows that for a natural leakage oracle OSRL—

which will be referred to as the “shielded randomness leakage (SRL)

oracle"—2CIRCOSRL w.r.t. two standard encryption schemes (GSW

and DJ) together with standard assumptions implies the existence

of 𝑖O.

Theorem 1.1 (Informally stated). Assume the subexponen-
tial security of the LWE assumption (with subexponential modulus-
to-noise ratio) and the DCR assumption, and the subexponential
2CIRCOSRL conjecture w.r.t. GSW and and DJ. Then, 𝑖O exists for
the class of polynomial-size circuits.

Alternatively, we can replace the DJ encryption scheme with

a “packed” variant of Regev’s encryption scheme [70], which we

refer to as Packed Regev. (We note that our Packed Regev is very

similar to, but actually different from, the Packed Regev in [69].)

This construction only relies on LWE and the 2-circular security

conjecture.

Theorem 1.2 (Informally stated). Assume the subexponential
security of the LWE (with subexponential modulus-to-noise ratio) as-
sumption, and assume that the subexponential 2CIRCOSRL conjecture
holds w.r.t. GSW and Packed Regev. Then, 𝑖O exists for the class of
polynomial-size circuits.

In the sequel, we refer to OSRL-leakage resilient security (resp.

2-circular OSRL-leakage resilient security) as SRL-security (resp

2-circular SRL security). We proceed to explain the notion of SRL

security and how the above theorems are proven.

1.2 Shielded Randomness Leakage (SRL)
Security

As mentioned above, we consider a notion of shielded random-
ness leakage (SRL) security for FHE. Roughly speaking, given two

messages m0,m1
, the attacker gets to see an FHE encryption c =

FHE(m𝑏
; r) of m𝑏

for a randomly selected 𝑏 ∈ {0, 1}, and next gets

access to a “leakage oracle” OSRL (m𝑏 , r) which upon every invoca-

tion sends the attacker an “extra noisy” encryption c★ = FHE(0; r★)
of 0—we will refer to the random string r★ as the “shield”. Next,

the attacker can select some functions 𝑓 and values 𝛼 such that

𝑓 (m𝑏 ) = 𝛼—that is, we restrict the attacker to picking functions

for which it knows the output when applying the function to the

message m𝑏
; if 𝑓 (m𝑏 ) ≠ 𝛼 , the attacker directly fails in the game.

(The reason why we add this restriction on the attacker will soon

become clear). Finally, the oracle homomorphically evaluates 𝑓 on

the ciphertext c, letting c𝑓 = FHE(𝑓 (m); r𝑓 ) denote the evaluated
ciphertext, and returns r★ − r𝑓 . That is, the attacker gets back the

randomness r𝑓 of the evaluated ciphertext masked by the “shield”

r★, and as usual, the attacker’s goal is to guess the bit 𝑏. The reason
why the attacker is restricted to picking functions 𝑓 for which it

knows the output 𝛼 is that for the FHE we consider, given c★ and

c𝑓 , the attacker can compute c★ − c𝑓 = FHE(0 − 𝑓 (m𝑏 ); r★ − r𝑓 )
and thus knowing r★ − r𝑓 reveals 𝑓 (m𝑏 ). So, by restricting to at-

tackers that already know 𝛼 = 𝑓 (m𝑏 ), intuitively, r★ − r𝑓 does

not reveal anything else. Indeed, we formally prove that under the

LWE assumption, the GSW encryption scheme is SRL-secure (i.e.

OSRL-leakage resilient secure).
Theorem 1.3 (Informally stated). Assume the LWE assumption

holds (with subexponential modulus-to-noise ratio). Then, the GSW
scheme is SRL-secure.

On a very high-level, the idea behind the proof is that the encryp-

tion c★ is a projection, ℎA (r★) = Ar★ ∈ Z𝑛
𝑁
, where the randomness

r★ used to produce c★ is a vector in Zℓ
𝑁
and A is a matrix in Z𝑛×ℓ

𝑁
where ℓ ≫ 𝑛, that is, the map ℎA that describes the encryption

is compressing. Therefore, some “components” of the “shield” r★

remain information-theoretically hidden. And this enables hiding

the same components of r𝑓 ; furthermore, the components that are

not hidden by r★ are actually already revealed by 𝑓 (m𝑏 ), which the

attacker knows (as we require it to output 𝛼 = 𝑓 (m𝑏 )). The formal

proof of this proceeds by considering a (simplified) variant of the

Micciancio-Peikert lattice trapdoor method [64] for generating the

matrix A (which is part of the public key for GSW) together with a

trapdoor that enables sampling short preimages of ℎA (i.e. solving

the ISIS problem). Whereas traditional trapdoor preimage sampling

methods require the preimage to be sampled according to some

specific distribution (typically discrete Gaussian) over preimages,

we will consider a somewhat different notion: we require that given

a target vector t, the distribution of randomly sampled preimages of

t is statistically close to the distribution obtained by starting with

any “short” preimage w of t and next adding a randomly sampled

preimage of 0. Our proof relies on the fact that randomly sampled

preimages can be sufficiently larger than w to ensure that they

“smudge” w—we here rely on the fact that modulus-to-noise ratio

is subexponential (which we need anyway for the security of our

construction) to enable the smudging
3
.

2-Circular SRL Security. As mentioned, we define 2-circular SRL

security as 2-circular OSRL-leakage resilient security; we emphasize

that this security game is identically defined to the “plain” SRL

security game (described above), with the only exception being

that the challenge message encrypted (using Enc1pk
1

) has the form

sk2 | |m𝑏
(as opposed to just being m𝑏

), and that the attacker also

gets to see an encryption of sk1 (using Enc2pk
2

).

3
Another consequence of using smudging is that our lattice trapdoor mechanism and

its proof become simpler than [64], which uses a polynomial-size modulus instead, for

a better efficiency.
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1.3 Overview of the 𝑋𝑖O Construction
We present a construction that makes a modular use of any LHE

satisfying certain properties, andwhose security relies the 2-circular

SRL-security w.r.t. GSW and the LHE (i.e., that SRL security of

GSW holds in the presence of a encrypted key cycle of length 2

using GSW and the LHE). To obtain a subexponentially-secure 𝑋𝑖O
(which is required to obtain 𝑖O by [57]), we need to strengthen the

assumptions to also require subexponential security. Next, we note

that the DJ LHE satisfies the desired properties. We prove that a

packed version of Regev’s encryption scheme [70] that is similar

to, but actually different from, the packed construction from [69],

does so as well. We refer to our LHE simply as Packed Regev LHE.

Let us start with the construction assuming 2-circular SRL-security

w.r.t. GSW and any LHE satisfying the desired properties. As men-

tioned, on a high-level, our construction follows similar intuitions as

the BDGM construction. We combine an FHE (in our case the GSW

FHE) with a (special-purpose) LHE to implement an 𝑋𝑖O. In fact,

in our approach, we do not directly construct an 𝑋𝑖O, but rather
construct an 𝑋𝑖O with preprocessing—this notion, which relaxes

𝑋𝑖O by allowing the obfuscator to have access to some long public

parameter pp, was actually already considered in [57] and it was

noted there that subexponentially-secure 𝑋𝑖O with preprocessing

also suffices to get 𝑖O.
Towards explaining our approach, let us first recall the approach

of BDGM—which relies on the DJ LHE—using a somewhat different

language that will be useful for us.

The BDGM construction. The high-level idea is quite simple and

very elegant. Recall that an 𝑋𝑖O is only required to work for pro-

grams Π with polynomially many inputs 𝑛 = poly(𝜆) where 𝜆 is

the security parameter, and the obfuscators running time is allowed

to be polynomial in 𝑛; the only restriction is that the obfuscated

code should be sublinear in 𝑛—we require a “slight” compression of

the truth table. More precisely, the obfuscator is allowed to run in

time poly(𝑛, 𝜆) (i.e. polynomial time in the size of the truth table),

but must output a circuit of size poly(𝜆)𝑛1−𝜀 where 𝜀 > 0. Assume

that we have access to a special “batched” FHE which enables en-

crypting (and computing on) long messages of length, say𝑚 using

a short randomness of length poly(𝜆) log(𝑚); and furthermore that

1) given the secret key and a ciphertext c, we can efficiently re-

cover the ciphertext randomness 2) given a ciphertext c and its

randomness—which will also be referred to as a “hint”—one can

efficiently decrypt. Given such a special FHE, it is easy to con-

struct an 𝑋𝑖O: simply cut the truth table into “chunks” of length

𝑛𝜀 , FHE encrypt the program Π, then, homomorphically evalute

circuits 𝐶𝑖 for indices 𝑖 ∈ [𝑛1−𝜀 ] such that given the program Π
as input, 𝐶𝑖 outputs the 𝑖’th “chunk” of the truth table, which we

denote by Π𝑖 ; finally, release the randomness r𝑖 (i.e. the “hint”) of
the evaluated ciphertexts. These hints enable compressing 𝑛𝜀 bits

into poly(𝜆) log(𝑛𝜀 ) bits and thus the 𝑋𝑖O is compressing.
4

4
The reason we need to cut the truth table into chunks instead of directly computing

the whole output is that for existing FHE schemes, the size of the FHE public key and

ciphertexts grow polynomially with the length of the output of the homomorphic

evaluation i.e. the size of the plaintext encrypted in an evaluated ciphertext, also

referred to as "batching capacity". So the obfuscation is only compressing when we

have a large number of chunks.

Unfortunately, none of the known FHE constructions have short

randomness. BDGM, however, observes that there are linear homo-

morphic encryptions schemes (LHE), notably the DJ LHE, that sat-

isfy the above requirements. Moreover, many FHEs are batcheable

(with “long” randomness) and have “essentially” linear decryption:

decryption is an inner product of the ciphertext with the secret key,

then rounding. That is, the linear operations yield the plaintext

with some additional small decryption noises, that are removing

when rounding. So if we start off with such an FHE and additionally

release an LHE encryption of the FHE secret key, we can get an FHE

with the desired “batcheable with short randomness” requirement:

we first homomorphically evaluate the inner product of the FHE

ciphertext with the encrypted FHE secret key, then simply release

the randomness for the evaluated LHE ciphertext (which now is

short).

But there are problems with this approach: (1) since FHE decryp-

tion requires performing both a linear operation and rounding, we
are leaking not only Π𝑖 but also the decryption noises, which is

detrimental for the security of the FHE (2) the LHE randomness

may actually leak more than just the decrypted LHE plaintext (i.e.

something about how the LHE ciphertext was obtained). As BDGM

shows, both of these problems can be easily overcome if we have

access to many fresh LHE encryptions of some “smudging” noise

(which is large enough to smudge the FHE decryption noises)
5
.

Therefore, the only remaining problem is to generate these LHE

encryptions of smudging noises. This is where the construction in

BDGM becomes heuristic: (1) they propose to use a random oracle

to generate a long sequence of randomness (2) this sequence of

randomness can be interpreted as a sequence of LHE encryptions

of uniformly random strings 𝑢𝑖 for 𝑖 = 1, . . . , 𝑛1−𝜀 , since the DJ

LHE has dense ciphertext (3) they additionally provide an FHE

encryption of the LHE secret key sk (note that there is now a circu-

lar security issue), on which they FHE-homomorphically evaluate

a function 𝑓𝑖 that decrypts the 𝑖’th LHE ciphertext produced by

the random oracle, and computes MSB(𝑢𝑖 ), the most significant

bits of 𝑢𝑖 (4) finally they LHE-evaluate the (partial) decryption of

the evaluated FHE ciphertext (which encrypts MSB(𝑢𝑖 )); the ob-
tained LHE ciphertext can now be subtracted from the LHE cipher-

texts generated by the random oracle, to get an LHE encryption of

𝑢𝑖 −MSB(𝑢𝑖 ), which is a noise of the appropriate size, i.e. smudging

but not uniform.

One problem with this approach, however, is that while we do

obtain an LHE encryption of appropriate smudging noise, it is not

actually a fresh ciphertext (with fresh randomness). The issue is

that the randomness r𝑓𝑖 of the evaluated FHE ciphertext ofMSB(𝑢𝑖 )
may (and actually will) depend on the randomness of the original

LHE ciphertext obtained by the RO. Another problem is that LHE

can only compute the first step of an FHE decryption (namely, the

linear operations), the LHE encryption obtained actually encrypts

a message of the form: 𝑢𝑖 −MSB(𝑢𝑖 ) + noise𝑖 . As we know, reveal-
ing the extra noise is detrimental for security (this is why we are

generating LHE encryptions of smudging noises in the first place).

Unfortunately, the extra noise that results from partially decrypting

the FHE ciphertext depends on 𝑢𝑖 , so the lower-order bits of the

5
They formally prove the security of their scheme in an idealized model with access

to an oracle that generates fresh LHE encryptions of smudging noise.
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latter cannot smudge the former. BDGM here simply assumes that

the attacker cannot exploit these correlations, and thus only obtain

a heuristic construction.

We shall now see how to obtain the appropriate LHE encryption

of smudging noises in a provably secure way, relying on 2-circular
SRL-security of GSW and DJ—that is, OSRL-leakage resilient circular
security of GSW and DJ.

Removing the RO.. Our first task will be to remove the use of the

RO. That will actually be very easy: as we have already observed, it

suffices to get an𝑋𝑖O with preprocessing to obtain 𝑖O, so instead of
using a random oracle, we will simply use a long random string as

a public parameter, and interpret it as LHE encryptions of random

strings.

Re-encrypting the FHE.. The trickier problem will be to deal with

the issue of correlations. We will here rely on the fact that we are

considering a particular instantiation of the FHE: namely, using

(a batched version of) the GSW encryption scheme. On a high-

level, the idea for breaking the correlation is to "refresh" or re-

encrypt the evaluated FHE ciphertext (which encrypts MSB(𝑢𝑖 ))
to ensure that the randomness is fresh and independent of the

evaluations. This way, the decryption noise itself is independent

of the evaluated circuit. GSW ciphertexts can be re-randomized

simply by adding a fresh extra noisy FHE encryption of 0. How

do we get such enecryptions? GSW ciphertexts are not dense, so

we cannot put them in the public parameters, and even if they

were, we still wouldn’t be able to get an encryption of 0 (we would

have an encryption of a uniformly random plaintext). The public

key of the GSW encryption scheme actually contains a bunch of

encryptions of 0, but fewer than the amount we need (or else we

wouldn’t get a compressing 𝑋𝑖O). Instead, we use the public key
of the GSW encryption to generate extra noisy encryptions of

0, and we include the (many) random coins (r★
𝑖
)𝑖∈[𝑛1−𝜀 ] used to

generate these ciphertexts as part of the public parameters of the

𝑋𝑖O (recall that the public parameters can be as long as we want).

This method does indeed enable us to get a fresh FHE encryption of

the most significant bits, and thus the correlation has be broken and

intuitively, we should be able to get a provably secure construction.

But two obstacles remain: (1) we are revealing the randomness used

to re-randomize the ciphertexts, and this could hurt security, or

render the re-randomization useless and (2) we still have a circular

security issue (as we FHE-encrypt the LHE secret key, and LHE-

encrypt the FHE secret key). Roughly speaking, the first issue will

be solved by relying on SRL-security of GSW, and the second issue

will be solved by our circular security conjecture.

In more detail, we note that the re-randomized evaluated FHE

ciphertext ofMSB(𝑢𝑖 ) and the public parameters r★
𝑖
are statistically

close to freshly generated extra noisy FHE encryption of MSB(𝑢𝑖 )
using randomness r★

𝑖
, and setting the public parameter to r★

𝑖
− r𝑓𝑖 ,

where r𝑓𝑖 is the randomness of the evaluated ciphertext, before

re-randomization. In other words, the re-randomization achieves

a notion which we refer to as “weak circuit privacy”, where the

re-randomized ciphertext is independent of the evaluated function

𝑓𝑖 . Furthermore, noisy GSW encryptions of MSB(𝑢𝑖 ) essentially
have the form of a noisy GSW encryption of 0, to which MSB(𝑢𝑖 )
is added. So, other thanMSB(𝑢𝑖 ), which is truly random, r★

𝑖
− r𝑓𝑖

is simply an SRL leakage on a GSW encryption of the LHE secret

key sk! Thus, intuitively, security should now follow from circular

SRL security of GSW and the LHE.

The final construction. We summarize our final𝑋𝑖O construction

with preprocessing. The public parameter pp is a long random string

that consists of two parts:

• The first part FHE.PubCoinwill be interpreted as a sequence

of rerandomization vectors r★;
• The second part LHE.PubCoin will be interpreted as a se-

quence of LHE encryptions

The obfuscator, given a security parameter 𝜆 and a circuit Π :

{0, 1}log𝑛 → {0, 1}, where 𝑛 = poly(𝜆) proceeds as follows:

• Output the public keys of the FHE and LHE: The obfus-
cator generates a fresh key-pair (pk, sk) for the LHE, and
next generate a key-pair (pk, sk) for the GSW FHE. (To make

it easier for the reader to rememberwhich key refers towhich

encryption scheme, we place a line over all keys, ciphertexts
and algorithms, that correspond to the linear homomorphic

encryption.) The modulus 𝑁 of the GSW encryption is set

to be the same that the modulus that defines the message

spaceZ𝑁 of the LHE scheme. Additionally, it chooses𝑁 large

enough to enable encrypting messages of size 𝑛𝜀 . Finally, it

outputs the public keys (pk, pk).
• Output an FHE encryption of the circuit: It outputs an
FHE encryption (w.r.t. pk) of the program Π, which we de-

note by ct1.
• Output encrypted key cycle: It computes ct2, an FHE en-

cryption of sk, and ct, an LHE encrytion of sk. It outputs the
key cycle ct2, ct.
• Output hints: For every 𝑖 ∈ [𝑛1−𝜀 ], it outputs a short “hint”
r𝑖 computed as follows:

– Evaluate the circuit: Homomorphically evaluate the

circuit 𝐶𝑖 on ct1 and let ct𝑖 denote the resulting evaluated

FHE ciphertext — recall that ct1 encrypts a program Π,
and the circuit 𝐶𝑖 takes a input a program Π and outputs

the 𝑖’th chunk of its truth table.

– Compute an FHE encryption ctMSB,𝑖 ofMSB(𝑢𝑖 ):Con-
sider the function 𝑓𝑖 (Π, sk) that ignores the input Π but

uses the input sk to decrypt the 𝑖’th LHE ciphertext from

LHE.PubCoin into a plaintext 𝑢𝑖 and outputs MSB(𝑢𝑖 ).
The obfuscator homomorphically evaluates 𝑓𝑖 on the ci-

phertexts ct1, ct2 (where, recall, ct2 is an encryption of

sk). Let ctMSB,𝑖 = FHE(MSB(𝑢𝑖 ); r𝑓𝑖 ) denote the resulting
evaluated FHE ciphertext.

– Rerandomize ctMSB,𝑖 into ct′MSB,𝑖 : It uses the 𝑖’th chunk

of FHE.PubCoin to get the randomness r★
𝑖
; generates an

extra noisy FHE encryption of 0 using r★
𝑖
and homomorphi-

cally adds it to ctMSB,𝑖 . Let ct′MSB,𝑖 = FHE(MSB(𝑢𝑖 ); r★𝑖 +
r𝑓𝑖 ) denote the new (re-randomized) ciphertext.

– Proxy re-encrypt ct𝑖 as an LHE ciphertext ct𝑖 : It uses
ct (which, recall, is an LHE encryption of sk) to homo-

morphically compute the linear part of the FHE decryp-

tion of ct𝑖 , which yields an LHE encryption of the value

2
𝜔 · Π𝑖 + noise𝑖 where noise𝑖 is an FHE decryption noise,
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and 2
𝜔
is taken large enough so that the plaintext Π𝑖 can

be recovered by rounding.

Similarly, it homomorphically computes the partial FHE

decryption of ct′MSB,𝑖 , which yields an LHE encryption of

the value 2
𝜔′ ·MSB(𝑢𝑖 ) + noiseMSB,𝑖 , where once again

noiseMSB,𝑖 denotes an FHE decryption noise, and 2
𝜔′ = 1

for reasons that will become clear later. We rely on the

fact that GSW FHE (and many other FHE schemes) admits

a flexible “scaled” evaluation algorithm, that can choose

which integer 2
𝜔
to use when performing the homomor-

phic evaluation (this was used also in prior works, includ-

ing [22]). The resulting LHE ciphertext is subtracted from

LHE(2𝜔 ·Π𝑖 + noise𝑖 ), and therefore yields LHE(2𝜔 ·Π𝑖 +
noise𝑖 −MSB(𝑢𝑖 ) − noiseMSB,𝑖 ).
Finally, it homomorphically adds the LHE encryption of

𝑢𝑖 that is part of the LHE public coins, to obtain ct𝑖 =

LHE(𝑚𝑖 ), where 𝑚𝑖 = 2
𝜔 · Π𝑖 + noise𝑖 − MSB(𝑢𝑖 ) −

noiseMSB,𝑖 +𝑢𝑖 = 2
𝜔 · Π𝑖 + noise𝑖 + noiseMSB,𝑖 + LSB(𝑢𝑖 ),

where LSB(𝑢𝑖 ) denotes the least significant bits of 𝑢𝑖 .
The integer𝜔 ′ is chosen to be equal to 0 so that the smudg-

ing noise LSB(𝑢𝑖 ) is directly added to the FHE noises

noise𝑖 − noiseMSB,𝑖 . As opposed to the value Π𝑖 that we

place in the higher-order bits of the plaintext, we need

the smudging noise to be at the same level than the FHE

noises, so they "blend" together.

– Release hint r𝑖 for LHE ciphertext ct𝑖 : It uses sk to re-

cover the randomness r𝑖 of ct𝑖 (recall that the LHE we use

has a randomness recoverability property), and outputs

r𝑖 .

To evaluate the obfuscated program on an input x ∈ {0, 1}𝑛 , that
pertains to the 𝑖’th chunk of the truth table of Π for some 𝑖 ∈ [𝑛1−𝜀 ],
we compute ct𝑖 just like the obfuscator did (note that this does not

require knowing the secret key, but only information contained in

the obfuscated code). Finally, we decrypt ct𝑖 using the hint r𝑖 to
recover the message𝑚𝑖 described above (recall that the LHE we use

has the property that ciphertexts can be decrypted if you know the

randomness). Finally, perform the rounding step of FHE decryption

on𝑚𝑖 to obtain Π𝑖 , which contains Π(x).

Outline of the security proof. We provide a very brief outline of

the security proof. We will rely on the fact that LHE ciphertexts (of

random messages) are dense (in the set of bit strings), and addition-

ally on the fact that both the LHE and the FHEwe rely on (i.e. DJ and

GSW) satisfy what we refer to as a weak circuit privacy notion. This

notion, roughly speaking, says that any encryption of a message 𝑥

can be rerandomized into fresh (perhaps extra noisy) encryption of

𝑥 + 𝑦, by adding a fresh (perhaps extra noisy) encryption of 𝑦.

As usual, the proof proceeds via a hybrid argument. We start

from an 𝑋𝑖O obfuscation of a program Π0
and transition until we

get an𝑋𝑖O obfuscation ofΠ1
, whereΠ0

andΠ1
are two functionally

equivalent circuits of the same size.

• Hybrid 0: Honest 𝑋𝑖O(Π0). The first hybrid is just the

honest obfuscation of the circuit Π0
.

• Hybrid 1: Switch to freshly encrypted ct′MSB,𝑖 . Hybrid
1 proceeds exactly as Hybrid 0 up until the point that the

ciphertexts ctMSB,𝑖 get re-encrypted into ct′MSB,𝑖 , with the

exception that FHE.PubCoin are not sampled yet. Next, in-

stead of performing the re-encryption, we sample ct′MSB,𝑖 as

a fresh extra noisy encryption ofMSB(𝑢𝑖 ) using randomness

r★
𝑖
, and setting FHE.PubCoin to be r★

𝑖
− r𝑓𝑖 (recall that r𝑓𝑖 is

the randomness obtained when homomorphically evaluat-

ing 𝑓𝑖 on the FHE encryption of sk). We finally continue the

experiment in exactly the same way as in Hybrid 0.

It follows from the “weak circuit privacy” property of the

FHE that Hybrid 0 and Hybrid 1 are statistically close. Note

that in Hybrid 1, for each 𝑖 ∈ [𝑛1−𝜀 ], the 𝑖’th chunk of

FHE.PubCoin can be thought of as SRL leakage on the fresh

encryption ct′MSB,𝑖 computed w.r.t. function 𝑓𝑖 , which will

be useful for us later.

• Hybrid 2: Switch LHE.PubCoin to encryptions of ran-
dom strings. Hybrid 2 proceeds exactly as Hybrid 1 except

that instead of sampling LHE.PubCoin as a random string,

we sample it as fresh LHE encryptions of random strings 𝑢𝑖 ,

for 𝑖 = 1, . . . , 𝑛1−𝜀 . It follows by the density property of the

LHE that Hybrid 2 is statistically close to Hybrid 1.

• Hybrid 3: Generate ct𝑖 as a fresh encryption. Hybrid
3 proceeds exactly as Hybrid 2 except that ct𝑖 is gener-

ated as a fresh encryption of 𝑚𝑖 using fresh randomness

r𝑖 , and the 𝑖’th chunk of LHE.PubCoin is instead computed

homomorphically by subtracting the LHE encryption of

sk⊤ (ct𝑖 − ctMSB,𝑖 ) (obtained after homomorphically decrypt-

ing ct𝑖 and ct′MSB,𝑖 using ct) from the LHE ciphertext ct𝑖 .
Recall that𝑚𝑖 = sk⊤ (ct𝑖 − ctMSB,𝑖 ) + 𝑢𝑖 so the above way

of computing the 𝑖’th chunk of LHE.PubCoin ensures that it

is valid encryption of 𝑢𝑖 as in Hybrid 2, but this time with

non-fresh, homomorphically evaluated randomness.

It follows from the weak circuit privacy property of the LHE

that Hybrid 3 and 2 are statistically close.

Note that it was possible to define this hybrid since ct′MSB,𝑖
remains exactly the same no matter what the LHE.PubCoin
are. This was not true in Hybrid 0, and we introduced Hybrid

1 to break this dependency.

Note further that in Hybrid 3, we no longer use sk (i.e. the
secret key for LHE); previously it was used to recover r𝑖 .
• Hybrid 4: Generate ct𝑖 without FHE noises. Hybrid 4

proceeds exactly as Hybrid 3 except that ct𝑖 is generated as

a fresh encryption of𝑚𝑖 = 2
𝜔 · Π0

𝑖
+ LSB(𝑢𝑖 ), whereas in

Hybrid 3, it was generated as fresh encryption of𝑚𝑖 = 2
𝜔 ·

Π0

𝑖
+LSB(𝑢𝑖 )+noise𝑖−noiseMSB,𝑖 . That is, we use LSB(𝑢𝑖 ) as

a smudging noise to hide the extra noise noise𝑖 − noiseMSB,𝑖 .

We can do so since (1) the extra FHE noise is small and

independent of LSB(𝑢𝑖 ) (2) the rest of the obfuscated code

can be generated from the value LSB(𝑢𝑖 )+noise𝑖−noiseMSB,𝑖
only (in particular it does not require to know LSB(𝑢𝑖 ) itself).
It follows that Hybrid 4 is statistically close to Hybrid 3.

• Hybrid 5: Switch to encryption of Π1: Hybrid 5 proceeds
exactly as Hybrid 4 except that ct1 is an encryption of Π1

(instead of Π0
in prior hybrids).

Note that other than the encrypted key cycle, we never use

the FHE secret key, and due to Hybrid 3, we no longer use

the LHE secret key. So, at first sight, Hybrid 5 ought to be

indistinguishable from Hybrid 4 by circular security of the
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FHE and the LHE. Recall that FHE.PubCoin leaks something

about the randomness used by the FHE encryption ct′MSB,𝑖 ,

but the leakage is exactly an SRL leakage (and note that in

the experiment we do know the output 𝛼𝑖 of the function 𝑓𝑖
that is applied to the plaintexts encrypted in ct1, ct2—namely,

it is MSB(𝑢𝑖 ) where 𝑢𝑖 is a random string selected in the ex-

periment, see Hybrid 2). Thus, indistinguishability of Hybrid

5 and Hybrid 4 follows from 2-circular SRL-security of the

FHE and the LHE.

• Hybrids 6-10: For 𝑖 ∈ [5], Hybrid 5 + 𝑖 is defined exactly

as 5 − 𝑖 , except that ct1 be an encryption of Π1
. Statistical

closeness of intermediary hybrids follows just as before.

The above sequence of hybrid allows us to conclude the following

theorem.

Theorem 1.4 (Informally stated). Assume the 2-circular SRL-
security of the GSW and DJ encryption schemes. Then, there exists
an 𝑋𝑖O for polynomial-size circuits taking inputs of length log(𝜆)
where 𝜆 is the security parameter.

An alternative LHE based on Packed Regev. We remark that we

can obtain an alternative construction of an LHE with the desired

properties by considering an packed version of the Regev encryp-

tion scheme. Our construction is slightly different, but similar in

spirit, to the Packed Regev from [69]. Recall that a (plain) Regev

public key consist of a pair A, s⊤A + e⊤, where A←R Z
𝑚×𝑛
𝑞 with

𝑚 ≥ 𝑛 log(𝑞), the vector s←R Z
𝑛
𝑞 is the secret key, and e ∈ Z𝑚𝑞 is

some small “noise” vector. An encryption of a message 𝜇 has the

form Ar, (s⊤A + e⊤)r + 𝐵 · 𝜇 where r ←R {0, 1}𝑚 is the encryp-

tion randomness and 𝐵 is an upper bound on the size of noise (so

as to enable decryption). This scheme is linearly homomorphic,

but for security, the size of the randomness |r| needs to be greater

than 𝑛 log(𝑞), which is more than that size of the message: the

randomness is too long for our purposes.

To get succinct decryption hints, we simply reuse the same

randomness r for many encryptions using different secret keys

s1, s2, . . . sℓ and different noises e1, e2, . . . , eℓ . The secret key is now
a matrix S ∈ Zℓ×𝑛𝑞 , and the public key becomes (A, SA + E) where
E ∈ Zℓ×𝑚𝑞 is a noise matrix. The encryption of a vector of messages

𝜇 = (𝜇1, . . . , 𝜇ℓ ) is then (Ar, (SA + E)r + 𝐵𝜇). This is the scheme

from [69]. Despite the fact that this encryption is still linearly ho-

momorphic, and has the advantage of having rate-1 ciphertext size,

its randomness is not short: to carry on the proof of security, we

need to rely on the fact that r contains enough bits of entropy even

when the information Ar (which is short) and Er (that is long) is
leaked. The can only be true when the dimension of r,𝑚, grows

with the number of bits that are batched, ℓ .

Thus, we depart from the scheme in [69] by adding a smudging

noise
6
in the ciphertext, to hide the information Er. The ciphertext

is of the form: (Ar, (SA + E)r + e′ + 𝐵 · 𝜇), where e′ is the extra

smudging noise that hides the error term Er, ensuring that we only
have the short Ar leakage and the usual proof can again be applied.

This scheme is still linearly homomorphic, but the encryption

randomness is still large, as even though we reuse r, the added

6
Note that using a carefully crafted noise that needs not be of smudging size, as done

in [64], we can "unskew" the noise Er and hide the information of r. We favor clarify

of the exposition over efficiency and resort to using smudging noises.

noise terms e′ are large. However, we rely on the fact that knowing

e′ is not needed for decrypting. Indeed, to decrypt, we just need

to know a small vector r̃ ∈ Z𝑚𝑞 such that Ãr = Ar. That can be

used to remove the term SAr from the ciphertext, and recover 𝐵 · 𝜈
plus some small noise. To sample such vector, we use a standard

trapdoor sampling mechanism as in prior works [4, 5, 42, 64]. This

makes the scheme hintable with succinct hints.

We still have two (minor) obstacles, though. This scheme (as

well as Regev’s original scheme or the scheme from [69]) does not

satisfy two of the other properties needed for our𝑋𝑖O construction:

(1) density, and (2) weak circuit privacy. But it almost does. Extra
noisy ciphertexts, where the noise reaches the bound 𝐵 are actually

dense, and for extra noisy ciphertext, weak circuit privacy also

holds (just as it did for GSW). So, we can directly instantiate the

LHE in our 𝑋𝑖O construction with this Packed Regev construction,

as long as we slightly relax the notion of an LHE to just require

density when considering extra noisy ciphertexts.

Thus we can conclude:

Theorem 1.5 (Informally stated). Assume 2-circular SRL se-
curity of the GSW and the Packed Regev encryption schemes holds.
Then, there exists an 𝑋𝑖O for polynomial-size circuits taking inputs
of length log(𝜆) where 𝜆 is the security parameter.

The proof of Theorems 1.1, 1.2 is finally concluded by upgrading

Theorems 1.3, 1.4 and 1.5 to apply also in the subexponential regime,

relying on the subexponential 2CIRCOSRL conjecture, and finally

relying on the transformation from subexponentially-secure 𝑋𝑖O
with pre-processing (and subexponential LWE) to 𝑖O [57].

1.4 Comparing Circular SRL-security to “Plain”
Circular Security

Let us make a few remarks on the 2-circular SRL-security assump-

tion w.r.t GSW and some LHE (e.g. Dåmgard Jurik or Packed-Regev).

Clearly, this assumption is stronger than the 2-circular assumption

w.r.t GSW and the LHE—simply consider an attacker that does not

request any leakage. Additionally, we wish to highlight a few qual-

itative differences between “plain” circular security and circular

SRL-security:

• “Plain” circular security is a simple non-interactive falsifi-

able assumption. Circular SRL-security is also a (relatively

simple) falsifiable assumption, but the security game is now

interactive; for the type of SRL security needed for our ap-

plication, a single “parallel” SRL query suffices and such a

notion of SRL security can be specified as a 5-round security

game.

As we explain in more detail in the full version of this paper,

for our application, one could define a non-interactive falsifi-
able variant of SRL security—roughly speaking, where the

messages and the leakage-selection algorithm are randomly

selected—such that the subexponential hardness of this cir-

cular “random-SRL” security notion suffices
7
, but in our eyes,

this non-interactive security game is less natural than the

interactive one (and thus does not add much insight).

7
This follows from a union bound as the length of both the messagesm0,m1

and the

description of the leakage-selection algorithm are “short”.
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• It is also worth noting that for the notion of “plain” circular

security, an alternative way of defining circular security is to

require that Enc1pk
1

(sk2), Enc2pk
2

(sk1) is computationally in-

distinguishable from Enc1pk
1

(0 |sk2 |), Enc2pk
2

(sk1) (here Enc1

denotes GSW and Enc2 denotes LHE); this notion (together

with non-circular security) implies circular security the way

we have defined it (i.e. indistinguishability of encryptions

of two messages in the presence of an encrypted key cycle).

However, this implication no longer holds in the context

of SRL security. And this is why we are directly defining

circular security as indistinguishability of encryptions of

messages in the presence of an encrypted key cycle.

The above two points indicate that the circular SRL-security w.r.t.

GSW and LHE is both (a-priori) stronger, and also different from a

qualitative point of view than the “plain” circular security assump-

tion. Yet, some of the justifications for believing the latter holds

true are also valid for circular SRL-security:

• In both cases (plain and SRL), security holds in a non-circular

setting, assuming LWE.

• In both cases (plain and SRL), the security game being con-

sidered captures a simple and natural process (albeit for the

case of SRL security, it is more complex).

• Finally, just as for the notion of plain circular security, it

does not appear simple to even just come up with any bit-
encryption scheme (such as GSW) that is SRL secure, but

not circular SRL secure.
8

1.5 Concurrent and Subsequent Work
A concurrent and independent breakthrough result by Jain, Lin and

Sahai [48] presents a construction of 𝑖O based on subexponential

security of well-founded assumptions: (1) the SXDH assumption on

asymmetric bilinear groups, (2) the LWE assumption with subexpo-

nential modulus-to-noise ration, (3) a Boolean PRG in 𝑁𝐶0
, and (4)

an LPN assumption over a large field and with a small error rate
1

ℓ𝛿

where 𝛿 > 0 and ℓ is the dimension of the LPN secret. Assumptions

(1) and (2) have widespread use and are considered standard. (3) has

also been well-studied in recent years. (4) is a very natural coding

problem, but the range of parameters used in (4) differs from most

prior works in the cryptographic literature, a majority of which

focus on a less sparse error rate (typically a constant) and/or use

the field F2.
A concurrent and independent work by Wee and Wichs [74]

presents a new elegant heuristic instantiation of the BDGM para-

digm based only on lattice-based primitives. Similarly to us, their

construction proceeds by implementing 𝑋𝑖O with pre-processing.

They also state a new security assumption with a circular security

flavor (involving a PRF and LWE samples) under which they can

prove the security of their construction: Roughly speaking, their

construction proceed by reducing 𝑋𝑖O with pre-processing to the

task of “oblivious LWE sampling”, and next they provide a heuristic

instantiation of a protocol for performing oblivious LWE sampling.

8
Wichs and Zirdelis [75] show that any public-key bit encryption scheme can modified

in a way that preserves security yet violates circular security (using a special form of

obfuscation that can be satisfied under LWE). The same method can be used to obtain

an SRL-secure encryption scheme (by modifying GSW as in [75]) that is not 1-circular

SRL secure.

Their security assumption is essentially that their protocol is a se-

cure oblivious LWE sampler. It is worth noting that even though

they also rely on the BDGM approach to implement𝑋𝑖O, they man-

age to directly construct an FHE with short randomness, relying on

a “dual” variant of the GSW encryption scheme, thereby completely

removing the use of any LHE (whereas we obtain short decryption

hints by combining GSW with our Packed Regev).

The initial version of our paper did not contain the LWE-based

instantiation of the LHE using Packed Regev (we just had the DJ-

based instantiation). Following up on the initial posting of our

paper, but concurrently and independently from our LWE-based

construction, a preprint by Brakerski et al [23] also provides an

LWE-based way to instantiate the LHE within our framework. Dif-

ferently from our construction, however, they rely on a variant of

the “Dual Regev” encryption scheme, whereas we rely on regular

Regev.

Attacks on SRL security. Following up our work, the recent beau-

tiful work [73] provides counter-examples to a generalization of

the 2CIRCOSRL conjecture where the SRL leakage can be obtained

for circuits with algebraic gates that depends on the structure of

the encryption scheme itself, as opposed to Boolean circuits (call

this “extended SRL security”). Namely, they rely on the fact that

the GSW FHE can also evaluate multiplication by a constant mod

𝑁 gates, where 𝑁 is the modulus used by the scheme itself. They

present a variant of the GSW encryption scheme (GSW with even

noise) which is both semantically and extended-SRL secure under

LWE, yet circular extended-SRL security fails to hold—they present

a concrete attack that cleverly exploits the above-mentioned homo-

morphic property. Alternatively, [73] can re-interpret their attack as

an attack of “plain” (as opposed to “extended”) circular SRL-security

but w.r.t to a more artificial variant of the GSW encryption scheme.

In this new encryption scheme, homomorphic multiplication is

done in a more complicated way to ensure that the randomness

of the evaluated ciphertext is correlated with one of the plaintexts.

(Roughly speaking, the new homomorphic multiplication opera-

tion is performing some extra multiplication mod 𝑁 computations,

“under the hood” to achieve the same effect as in an extended SRL

attack).

Their result thus highlights that circular SRL-security indeed is

a qualitatively stronger notion than “plain” circular security (for

which non-trivial attacks are not known for “natural” bit encryp-

tion schemes), and that more research is needed to understand the

interplay between the class of leakage functions allowed in the

definition of SRL security and the underlying FHE scheme, and

notably, how the homomorphic operations are done. In particular,

it appears important to use an FHE where homomorphic operations

do not enable “biasing” the randomness of evaluated ciphertexts in a

substantial way. Formalizing such a property is left as an important

problem for future research.

2 DEFINITIONS
2.1 Definition of PKE and FHE
We start by recalling the definition of public key encryption (PKE)

and fully-homomorphic encryption (FHE). For our purposes, we

will consider the Common Reference String (CRS) model, where
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we first generate a CRS, and next, the key generation algorithm

will take the CRS as input. This added generality will be useful

to capture scenarios where multiple encryption schemes will be

operating over the same ring Z𝑁—this ring can be specified in the

CRS.

Definition 2.1 (Public-Key Encryption). A Public-Key Encryption

(PKE) scheme is a tuple of PPT algorithms (CRSgen,Gen, Enc,Dec)
where:

• CRSgen(1𝜆): given as input the security parameter 𝜆 ∈ N, it
outputs a common reference string crs.
• Gen(crs): given as input crs, it outputs the pair (pk, sk).
• Encpk (𝑚; 𝑟 ): given as input the public key pk, a message

𝑚 ∈ {0, 1}∗ and some randomness 𝑟 ←R {0, 1}∞9
, it outputs

a ciphertext ct.
• Decsk (ct): given as input the secret key sk and a ciphertext

ct, it deterministically outputs a plaintext.

We furthermore require these algorithms to satisfy the follow-

ing correctness condition: for all 𝜆 ∈ N, all crs in the support of

CRSgen(1𝜆), all pairs (pk, sk) in the supportGen(crs), all messages

𝑚 ∈ {0, 1}∗, all ciphertexts ct in the support of Encpk (𝑚), we have:

Decsk (ct) =𝑚.

Definition 2.2 (Fully-Homomorphic Encryption). A PKE scheme

(CRSgen,Gen, Enc,Dec) is said to be a Fully-Homomorphic En-

cryption (FHE) scheme for depth 𝛿 (·) circuits if there exists a PPT
algorithm Eval such that for all 𝜆 ∈ N, all crs in the support of

CRSgen(1𝜆), all pairs (pk, sk) in the support of Gen, all 𝑛 ∈ N, all
messages𝑚1, . . . ,𝑚𝑛 ∈ {0, 1}, all ciphertexts ct1, . . . , ct𝑛 in the sup-

port of Encpk (𝑚1), . . . , Encpk (𝑚𝑛) respectively, all Boolean circuits

𝑓 : {0, 1}𝑛 → {0, 1} of depth at most 𝛿 (𝜆), Eval(pk, 𝑓 , ct1, . . . , ct𝑛)
deterministically outputs an evaluated ciphertext ct𝑓 such that

Decsk (ct𝑓 ) = 𝑓 (𝑚1, . . . ,𝑚𝑛).

Note that the depth of the Boolean circuits that can be homomor-

phically evaluated is a priori bounded by 𝛿 (𝜆) for a polynomial 𝛿

(that is, we consider the case of leveled FHE). We consider Boolean

circuits, that is, directed acyclic graphs where each vertex corre-

sponds to an input or a logical (NOT, OR, AND) gate.

2.2 Leakage-Resilient and Circular Security
We recall the standard definition of CPA-security for encryption

schemes; we furthermore generalize it to a notion of O-leakage
resilient security, which extends the standard definition by also

providing the attacker with access to a leakage oracle O receiv-

ing the public key pk, the message m★
being encrypted, and the

randomness r under which it is encrypted. Our notion of O leakage-

resilience restricts to attackers that only make “valid” leakage

queries, where a query is said to be valid if the oracle does not

return ⊥ in response to it. In more detail, to “win” in the security

game, the attacker A must (a) correctly guess which among two

message m0,m1
is being encrypted, while (b) not having made any

queries to O on which O returns ⊥.

9
As usual, since all algorithms are PPT we really only need to consider a finite prefix

of {0, 1}∞ to define the uniform distribution.

Definition 2.3 (O-leakage resilient security). We say that a public-

key encryption scheme PKE = (CRSgen,Gen, Enc,Dec) is O-
leakage resilient secure if for all stateful nuPPT adversaries A,

there exists some negligible function 𝜇 (·) such that for all 𝜆 ∈ N,
Pr[ExpPKE

𝜆,A = 1] ≤ 1/2 + 𝜇 (𝜆), where the experiment ExpPKE
𝜆,A is

defined as follows:

ExpPKE
𝜆,A =



crs← CRSgen(1𝜆), (pk, sk) ← Gen(crs)
(m0,m1) ← A(pk), 𝑏 ← {0, 1}
m★ = m𝑏 , r←R {0, 1}∞
ct = Encpk (m★

; r), 𝑏 ′ ← AO(pk,m★,r) (ct)
Return 1 if |m0 | = |m1 |, 𝑏 ′ = 𝑏 and

O did not return ⊥; 0 otherwise.


We say that PKE is simply secure if the above holds when we do

not give A access to an oracle.

We will also consider a 2-circular secure variant of O-leakage
resilient security, which is similarly defined except we require in-

distinguishability of m0
and m1

in the presence not only of some

randomness leakage, but also of an encrypted key cycle w.r.t. two

public-key encryption schemes PKE and PKE. Note that we set
the CRS of PKE to be the public key of PKE; this is to ensure

compatibility between the schemes, i.e. for them to operate on the

same ring.

Definition 2.4 (O-leakage resilient 2-circular security). We say that

public-key encryption schemes PKE = (CRSgen,Gen, Enc,Dec)
and PKE = (CRSgen,Gen, Enc,Dec) are O-leakage resilient 2-

circular secure if for all stateful nuPPT adversaries A, there exists

some negligible function 𝜇 (·) such that for all 𝜆 ∈ N,

Pr[ExpPKE,PKE
𝜆,A = 1] ≤ 1/2 + 𝜇 (𝜆),

where the experiment ExpPKE,PKE
𝜆,A is defined as follows:

ExpPKE,PKE
𝜆,A =



crs← CRSgen(1𝜆), (pk, sk) ← Gen(crs)
(pk, sk) ← Gen(pk)
(m0,m1) ← A(pk, pk)
𝑏 ← {0, 1},m★ = sk∥m𝑏

r←R {0, 1}∞, ct = Encpk (m★
; r)

ct← Encpk (sk), 𝑏
′ ← AO(pk,m★,r) (ct, ct)

Return 1 if |m0 | = |m1 |, 𝑏 ′ = 𝑏 and

O did not return ⊥; 0 otherwise.


We finally state the 2CIRC assumption that we will rely in our

main theorem.

Definition 2.5 (2CIRC assumption). We say that the (subexponen-
tial) 2CIRCO assumption holds w.r.t PKE and PKE if the follow-

ing holds: if PKE is (subexponentially) O-leakage resilient secure
and PKE is (subexponentially) secure, then (subexponential) O-
leakage resilient 2-circular security holds w.r.t PKE and PKE.

2.3 Definition of Shielded Randomness
Leakage Security

To define our notion of SRL security, we focus on FHE schemes that

satisfy the following properties.
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2.3.1 Batch Correctness. This property states that decryption of

evaluated ciphertexts solely consists of computing the inner product

of the evaluated ciphertext with the secret key (both of which are

vectors), then rounding. Also, a single scalar obtained by decryption

can encode many output bits of the evaluated function. That is, we

consider FHE scheme where the crs contains a modulus 𝑁crs such

that decryption of an evaluated ciphertext yields a scalar in Z𝑁crs .

Our definition of FHE is flexible w.r.t. the choice of the modulus

𝑁crs, which we can afford since the LWE assumption holds for

essentially any (large enough) modulus. As observed in [21, 22, 63],

most existing FHE schemes can fit this framework.

Definition 2.6 (Batch correctness). For all poynomials 𝛿 , an FHE

scheme (CRSgen,Gen, Enc,Dec, Eval) for depth-𝛿 circuits satisfies

batch correctness if there exist a PPT Eval′ and a polynomial 𝜎 such

that following holds:

• For all 𝜆 ∈ N, all crs in the support of CRSgen(1𝜆) contain a

modulus 𝑁crs ∈ N; for all (pk, sk) in the support ofGen(crs),
we have: pk contains 𝐵pk ∈ N such that 𝑁crs ≥ 2

𝜆𝐵pk; the

secret key is of the form: sk ∈ Z𝜎 (𝜆) .
• For all 𝜆 ∈ N, all crs in the support of CRSgen(1𝜆), all
(pk, sk) in the support of Gen(crs), all input length 𝑛 ∈
N, all output length 𝜈 ∈ N s.t. 𝜈 < log(𝑁crs), all mes-

sages 𝑚1, . . . ,𝑚𝑛 ∈ {0, 1}, all depth-𝛿 (𝜆) Boolean circuits

𝑓 : {0, 1}𝑛 → {0, 1}𝜈 , all ciphertexts ct𝑖 in the support of

Encpk (𝑚𝑖 ) for all 𝑖 ∈ [𝑚], all scaling factors 𝜔 < log(𝑁crs),
the algorithm Eval′(pk, 𝑓 , 𝜔, ct1, . . . , ct𝜈 ) deterministically

outputs an evaluated ciphertext ct𝑓 ∈ Z
𝜎 (𝜆)
𝑁crs

such that:

sk⊤ct𝑓 = 2
𝜔 𝑓 (m) + noise𝑓 ∈ Z𝑁crs ,

with |noise𝑓 | < 𝐵pk.

Here,m = (𝑚1, . . . ,𝑚𝑛) ∈ {0, 1}𝑁 , and 𝑓 (m) = ∑𝜈
𝑖=1 2

𝑖−1 𝑓𝑖 (m) ∈
Z𝑁crs , where for all 𝑖 ∈ [𝜈], 𝑓𝑖 (m) ∈ {0, 1} denotes the 𝑖’th out-

put bit of the Boolean circuit 𝑓 . Note that if 𝜈 < log(𝑁crs/𝐵pk),
one can recover the value 𝑓 (m) when using any scaling factor

𝜔 > log(𝐵pk). That is, we can define Eval(pk, 𝑓 , ct1, . . . , ct𝜈 ) =

Eval′(pk, 𝑓 , ⌈log(𝐵pk)⌉ + 1, ct1, . . . , ct𝜈 ).

2.3.2 Randomness Homomorphism. This property states that it is

possible to homomorphically evaluates a Boolean circuit 𝑓 not only

on the ciphertexts, but also the randomness used by the cipher-

texts. The resulting evaluated randomness r𝑓 belongs to a noisy

randomness space R★ — typically the fresh randomness comprises

noises, and the evaluated randomness consists of larger-magnitude

noises. The encryption algorithm Enc★ is essentially the same as

Enc except it operates on the evaluated (noisier) randomness. The

ciphertext obtained by first evaluating the randomness, then using

the noisy encryption algorithm Enc★ is the same as obtained by

directly evaluating the original ciphertexts.

Definition 2.7 (Randomness homomorphism). An FHE scheme

FHE = (CRSgen,Gen, Enc,Dec, Eval) for depth-𝛿 Boolean cir-

cuits that satisfies batch correctness (defined above) also satisfies

randomness homomorphism if there exists a sequence of noisy

randomness spaces {R★
𝜆
}𝜆∈N, and the following additional PPT

algorithms:

• Evalrand (pk, 𝑓 , r,m): given as input the public key pk, a depth-
𝛿 (𝜆) Boolean circuit 𝑓 : {0, 1}𝑛 → {0, 1}𝜈 , random coins

r = (r1, . . . , r𝑛) where for all 𝑖 ∈ [𝑛], r𝑖 ∈ {0, 1}∞, and mes-

sages m ∈ {0, 1}𝑛 , it deterministically outputs an evaluated

randomness r𝑓 ∈ R★𝜆 .
• Enc★pk (𝜇; r

★): given as input the public key pk, a message

𝜇 ∈ Z𝑁crs and the randomness r★ ∈ R★, it outputs a noisy
ciphertext ct★.

We furthermore require these algorithms to satisfy the following

condition: for every 𝜆 ∈ N, all crs in the support of CRSgen(1𝜆), all
pairs (pk, sk) in the support of Gen(crs), all 𝑛 ∈ N, 𝜈 ∈ N s.t. 𝜈 <

log(𝑁crs), all depth-𝛿 (𝜆) Boolean circuits 𝑓 : {0, 1}𝑛 → {0, 1}𝜈 , all
messages𝑚1, . . . ,𝑚𝑛 ∈ {0, 1}, all randomness r1, . . . , r𝑛 ∈ {0, 1}∞,
denoting ct𝑖 = Encpk (𝑚𝑖 ; r𝑖 ) for all 𝑖 ∈ [𝑛] and r𝑓 = Evalrand (pk,
𝑓 , r,m), we have r𝑓 ∈ R★𝜆 and:

Eval′(pk, 𝑓 , 0, ct1, . . . , ct𝜈 ) = Enc★pk (𝑓 (m); r𝑓 ),

where 𝑓 (m) = ∑𝜈
𝑖=1 2

𝑖−1 𝑓𝑖 (m) ∈ Z𝑁crs and for all 𝑖 ∈ [𝜈], 𝑓𝑖 (m) ∈
{0, 1} denotes the 𝑖’th output bit of the Boolean circuit 𝑓 .

2.3.3 Shielded Randomness-Leakage Security. We proceed to for-

mally define shielded randomness leakage (SRL) security for ran-

domness homomorphic FHEs with batch correctness. SRL security

will be defined as O-leakage resilient security for a particular leak-

age oracle OSRL that given the public key pk, a message m★
and

randomness r, allows the attacker A to ask to see a “shielded” ver-

sion of the homomorphically evaluated randomness r𝑓 for any

Boolean circuit 𝑓 for which A knows the output 𝑓 (m★). To make

sure the attacker can only query the oracle with Boolean circuits on

which it knows the output, we require the attacker to also provide

the output 𝛼 , and the oracle outputs ⊥ if 𝑓 (m★) ≠ 𝛼 (and thus, by

the definition of O-leakage resilient security, the attacker fails if it
ever picks a function for which it does not know the output).

To formalize the SRL oracle, we restrict ourselves to FHE where

the noisy randomness consists of integer vectors. That is, there

exists a polynomial 𝑡 (·) such that the sequence {R★
𝜆
}𝜆∈N is such

that for all 𝜆 ∈ N, R★
𝜆
⊆ Z𝑡 (𝜆) . Henceforth, we denote by r1 + r2 ∈

R★
𝜆
and r1 − r2 ∈ R★𝜆 the addition and subtraction in Z𝑡 (𝜆) . We

denote R★
𝜆
by R★ for simplicity.

Definition 2.8 (SRL security). An FHE scheme FHE for depth 𝛿

Boolean circuits satisfying randomness homomorphism is said to be

SRL-secure if it is OFHESRL -leakage resilient secure for the following

oracle OFHESRL , where Evalrand and Enc★ are the algorithms guar-

anteed to exist by the definition of randomness homomorphism.

Similarly, for any public-key encryption scheme PKE, we say 2-

circular SRL security holds w.r.t. FHE andPKE ifOFHESRL -leakage

resilient 2-circular security holds w.r.t. FHE and PKE.
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OFHESRL (pk,m
★, r):

r★←R R★, ct★ = Enc★pk (0; r
★)

(𝑓 , 𝛼) ← A(ct★)
r𝑓 = Evalrand (pk, 𝑓 , r,m★).
If 𝑓 (m★) = 𝛼 and 𝑓 is of depth at most 𝛿 ,

then leak = r★ − r𝑓 ∈ R★.
Otherwise, leak = ⊥. Return leak.

Roughly speaking, given a messagem★
and randomness r, the or-

acle OFHESRL samples fresh random coins r★ from which it generates

a noisy encryption of zero, that is sent to the adversary. The adver-

sary next chooses a Boolean circuit 𝑓 and a value 𝛼 ∈ {0, 1}∗. The
oracle then checks that 𝑓 (m★) = 𝛼 , upon which it returns the eval-

uated randomness “shielded” with the randomness r★; otherwise,
it outputs ⊥ and in this case, the attacker fails.

In the concrete FHE we consider from [43], the randomness leak-

age corresponds to the randomness obtained from homomorphi-

cally subtracting the evaluated challenge ciphertext from Enc★pk (0; r
★).

Revealing such leakage allows the adversary to decrypt and recover

the value 0 − 𝑓 (m★). This is why we only allow the attacker to

request leakage for Boolean circuits 𝑓 for which it knows the output

𝑓 (m★) ∈ {0, 1}∗.
Whenever the scheme FHE is clear from context, we simply

write OSRL to denote OFHESRL .

2.4 Definition of iO
We recall the definition of 𝑖O [9, 36]. Given polynomials𝑛(·), 𝑠 (·), 𝑑 (·),
let C𝑛,𝑠,𝑑 = {C𝜆}𝜆∈N denote the class of circuits such that for all

𝜆 ∈ N, C𝜆 is the set of circuits with input size 𝑛(𝜆), size at most 𝑠 (𝜆)
and depth at most 𝑑 (𝜆). We say that a sequence of circuits {Π𝜆}𝜆∈N
is contained in {C𝜆}𝜆∈N (denoted by {Π𝜆}𝜆∈N ∈ {C𝜆}𝜆∈N) if for
all 𝜆 ∈ N, Π𝜆 ∈ C𝜆 .

Definition 2.9 (𝑖O for P/poly). We say that 𝑖O exists for P/poly
if for all polynomials 𝑛(·), 𝑠 (·), 𝑑 (·), there exists a tuple of PPT

algorithms (Obf, Eval) such that the following holds:

• Correctness: For all {Π𝜆}𝜆∈N ∈ C𝑛,𝑠,𝑑 , there exists a negli-
gible function 𝜇 such that for all 𝜆 ∈ N, all x ∈ {0, 1}𝑛 (𝜆) ,

Pr[Π̃ ← Obf (1𝜆,Π𝜆) : Eval(1𝜆, Π̃, x) = Π(x)] ≥ 1 − 𝜇 (𝑛)

• IND-security:
For all sequences {Π𝜆

0
}𝜆∈N, {Π𝜆

1
}𝜆∈N ∈ C𝑛,𝑠,𝑑 such that for

all 𝜆 ∈ N, Π𝜆
0
and Π𝜆

1
are functionally equivalent circuits, the

following ensembles are computationally indistinguishable:{
Π̃ ← Obf (1𝜆,Π0

𝜆
) : Π̃)

}
𝜆∈N{

Π̃ ← Obf (1𝜆,Π1

𝜆
) : Π̃)

}
𝜆∈N

2.5 Learning with Errors Assumption
Definition 2.10 (LWE assumption [68, 70]). For all sequences

𝑞 ∈ 2
poly(𝜅)

, all ensembles 𝜒 of efficiently sampleable distribu-

tions over Z, we say that (subexponential) security of the LWE

assumption holds w.r.t. the sequence 𝑞 and the ensemble 𝜒 if for all

polynomials𝑚(·), the following ensembles are (subexponentially)

computationally indistinguishable:{
A←R Z

𝑚 (𝜅)×𝜅
𝑞𝜅 , s← 𝜒𝜅𝜅 , e← 𝜒

𝑚 (𝜅)
𝜅 , z = As + e ∈ Z𝑚 (𝜅)𝑞𝜅 :

(A, z)
}
𝜅∈N

.{
A←R Z

𝑚 (𝜅)×𝜅
𝑞𝜅 , z←R Z

𝑚 (𝜅)
𝑞𝜅 : (A, z)

}
𝜅∈N

.

We say the (subexponential) security of the LWE assumption holds

if there exists a constant 𝑐 ∈ (0, 1) such that for all sequences

𝑞 ∈ 2
poly(𝜅)

and all polynomials 𝐵 such that for all 𝜅 ∈ N, the
following holds:

• 𝐵(𝜅) ≥ 2

√
𝜅 log(𝜅)

• 𝐵(𝜅) ≥ 𝑞𝜅2
−𝜅𝑐

the LWE assumption holds w.r.t. 𝑞, 𝜒 , where 𝜒 = {𝜒𝜅 }𝜅∈N is the

ensemble of distributions where for all 𝜅 ∈ N, 𝜒𝜅 is the uniformly

random distribution over [−𝐵(𝜅), 𝐵(𝜅)].

3 OUR IO CONSTRUCTION
Our construction relies on the GSW FHE and the Packed-Regev

PKE, decribed below.

3.1 The GSW FHE Scheme
We recall the FHE from [43]. We present the leveled variant (with-

out bootstrapping), which is parameterized by a polynomial 𝛿 that

bounds the depth of the Boolean circuits that can be homomorphi-

cally evaluated. Its security relies on the LWE assumption with a

subexponential modulus-to-noise ratio. We denote the scheme by

GSW𝛿 .

For all polynomials 𝛿 , we denote by 𝑏𝛿 a polynomial (aribtrarily

chosen) such that for all polynomials 𝐵𝜒 , 𝜅, all 𝜆 ∈ N, the noise
obtained fromhomomorphically evaluating circuits of depth atmost

𝛿 (𝜆) on GSW ciphertexts generated with an LWE noise distribution

uniformly random over [−𝐵𝜒 (𝜆, ), 𝐵𝜒 (𝜆)] and an LWE secret of

dimension 𝜅 (𝜆), is upper bounded by 2
𝑏𝛿 (𝜆)

.

Boolean circuits are encoded naturally with addition, subtraction,

multiplication, and addition by a constant gates over the integers.

Namely, for any bit 𝑎, 𝑏 ∈ {0, 1}, NOT(𝑎) is implemented by 1 − 𝑎,
AND(𝑎, 𝑏) is implemented by 𝑎 ·𝑏, and OR(𝑎, 𝑏) is implemented by

𝑎+𝑏−𝑎 ·𝑏, where the addition + and multiplication · are performed

in Z. Note that this encoding only incurs a constant mutiplicative

blow-up in the circuit size, and no increase in the circuit depth.

• Gen(crs):
Given as input crs which contains a modulus 𝑁 ≥ 2

2𝜆+𝑏𝛿 (𝜆)
, it

chooses a sequence {𝑞𝑛}𝑛∈N and polynomials 𝐵𝜒 , 𝜅 such that LWE

holds w.r.t. 𝑞 and 𝜒 the 𝐵𝜒 -bounded ensemble of uniformly random

distributions, and 𝑞𝜅 (𝜆) = 𝑁 (by the LWE assumption, given in Def-

inition 2.10, we know such parameters exist). We abuse notations

and write 𝜅 = 𝜅 (𝜆), 𝜒 = 𝜒𝜅 (𝜆) and 𝐵𝜒 = 𝐵𝜒 (𝜅 (𝜆)) from here on.

The algorithm sets𝑤 = (𝜅 +1) ⌈log(𝑁 )⌉,𝑚 = 2(𝜅 +1) ⌈log(𝑁 )⌉ +2𝜆,
𝐵★ = 2

𝜆 (𝑤 + 1)𝛿 ⌈log(𝑁 )⌉ and 𝐵 = 𝐵𝜒 (𝑤 + 1)𝛿 log(𝑁 )𝑚. Note that

we have 𝑁 ≥ 2
2𝜆𝐵.

It samples A ←R Z
𝜅×𝑚
𝑁

, s ← 𝜒𝜅 , e ← 𝜒𝑚 , g = (1, 2, . . . ,
2
⌈log(𝑁 ) ⌉−1) ∈ Z ⌈log(𝑁 ) ⌉

𝑁
, G = g⊤ ⊗ Id ∈ Z(𝜅+1)×𝑤

𝑁
where Id ∈

Z
(𝜅+1)×(𝜅+1)
𝑁

denotes the identitymatrix,U =
( A
s⊤A+e⊤

)
∈ Z(𝜅+1)×𝑚

𝑁
.
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It sets pk = (𝐵,U,G), and sk = (−s, 1) ⊗ g ∈ Z𝑤
𝑁
. The parameters

define the noisy randomness space R★ = [−𝐵★, 𝐵★]𝑚 . It outputs

(pk, sk).

• Enc(pk,𝑚):
Given the public pk, a message𝑚 ∈ {0, 1}, it samples the random-

ness R←R [−1, 1]𝑚×𝑤 and outputs the ciphertext ct = UR +𝑚G ∈
Z
(𝜅+1)×𝑤
𝑁

. For any m ∈ {0, 1}𝑛 , we denote by Encpk (m; r) the con-
catenation of the encryptions Encpk (𝑚1;R1), . . . , Encpk (𝑚𝑛 ;R𝑛).

• Eval(pk, 𝑓 , ct1, . . . , ct𝜈 ):
Given the public key pk, a depth-𝛿 (𝜆) Boolean 𝑓 : {0, 1}𝑛 → {0, 1}𝜈 ,
ciphertexts ct1, . . . , ct𝑛 , it runs ct𝑓 ← Eval′(pk, 𝑓 , 𝜔, ct1, . . . , ct𝑛)
with scaling factor 𝜔 = ⌈log(𝐵)⌉ + 1, where the algorithm Eval′ is
described below, for the batch correctness property.

Theorem 3.1 (SRL security). Assume the (subexponential) LWE
assumption holds. Then, for all polynomials 𝛿 , GSW𝛿 is (subexponen-
tially) SRL secure.

The proof of this theorem is given in the full version of this

paper.

3.2 The Packed-Regev PKE Scheme
We present a packed version of Regev encryption scheme [70],

which is parameterized by polynomials ℓ1 and ℓ2. We denote the

scheme by P-Regevℓ1,ℓ2
. These parameters are used to define some

special properties of the encryption scheme (e.g. some "batching"

properties), which are defined and proven in the full version of this

paper. The scheme relies on trapdoor sampling, whereby a matrix

A is sampled together with an associated trapdoor 𝑇A that permits

to sample short pre-image of the map x→ Ax. Again, we defer to
the full version of this paper for further details.

• CRSgen(1𝜆):
It simply outputs crs = 1

𝜆
, i.e. there is no proper crs for that scheme.

• Gen(crs):
Given as input crs = 1

𝜆
, it chooses 𝑞 = {𝑞𝜅 }𝜅∈N with 𝑞𝜅 = 2

𝜅𝑐
,

𝐵𝜒 (𝜅) = 𝜅 and 𝜅 (𝜆) = ℓ1 (𝜆)1/𝑐 , where 𝑐 ∈ (0, 1) is the constant
from Definition 2.10, and 𝑁 = 𝑞𝜅 (𝜆) . We abuse notations and write

𝜅 = 𝜅 (𝜆), 𝜒 = 𝜒𝜅 (𝜆) and 𝐵𝜒 = 𝐵𝜒 (𝜅 (𝜆)) from here on.

Then, the algorithm samples (A,𝑇A) ← TrapGen(1𝜆, 𝑁 , 𝜅), S←
𝜒ℓ2×𝜅 , E ← 𝜒ℓ2×𝑚 , and sets pk = (𝑁,A, SA + E) ∈ N × Z𝜅×𝑚

𝑁
×

Zℓ2×𝑚
𝑁

, sk = S. It outputs (pk, sk).

• Encpk (x ∈ Z𝜈𝑁 ):
Given the public pk, a vector x ∈ Z𝜈

𝑁
, it samples R← [−1, 1]𝑚×𝜈ℓ2 ,

E′ ←R [−2𝜆/2, 2𝜆/2]ℓ2×𝜈ℓ2 and outputs the ciphertext ct =
(
AR, (SA+

E)R+E′ +x⊤ ⊗ Idℓ2
)
∈ Z(𝜅+ℓ2)×𝜈ℓ2

𝑁
, where Idℓ2 ∈ Z

ℓ2×ℓ2
𝑁

denotes the

identity matrix, and x⊤ ⊗ Idℓ2 ∈ Z
ℓ2×𝜈ℓ2
𝑁

.

• Decsk (ct):
Given as input the secret key sk and a ciphertext ct = (t, z) with

t ∈ Z𝜅
𝑁
, z ∈ Zℓ2

𝑁
, it outputs d = z − St ∈ Zℓ2

𝑁
.

Theorem 3.2 (security). Assume the (subexponential) LWE as-
sumption holds. Then, for all polynomials ℓ1, ℓ2, P-Regevℓ1,ℓ2 is (subex-
ponentially) secure.

The proof of this theorem is given in the full version of this

paper.

3.3 Our Main Result
Theorem 3.3. Assume the subexponential LWE assumption holds.

Assume further that for all polynomials 𝛿 , ℓ1 and ℓ2, the subexpo-
nential 2CIRCOSRL conjecture holds w.r.t. GSW𝛿 and P-Regevℓ1,ℓ2
(described above). Then subexponentially-secure 𝑖O for P/poly exists.

The proof of this theorem is given in the full version of this

paper.
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