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Abstract. Substantial insight into earthquake source pro-

cesses has resulted from considering frictional ruptures anal-

ogous to cohesive-zone shear cracks from fracture mechan-

ics. This analogy holds for slip-weakening representations of

fault friction that encapsulate the resistance to rupture prop-

agation in the form of breakdown energy, analogous to frac-

ture energy, prescribed in advance as if it were a material

property of the fault interface. Here, we use numerical mod-

els of earthquake sequences with enhanced weakening due to

thermal pressurization of pore fluids to show how account-

ing for thermo-hydro-mechanical processes during dynamic

shear ruptures makes breakdown energy rupture-dependent.

We find that local breakdown energy is neither a constant

material property nor uniquely defined by the amount of

slip attained during rupture, but depends on how that slip is

achieved through the history of slip rate and dynamic stress

changes during the rupture process. As a consequence, the

frictional breakdown energy of the same location along the

fault can vary significantly in different earthquake ruptures

that pass through. These results suggest the need to reex-

amine the assumption of predetermined frictional breakdown

energy common in dynamic rupture modeling and to better

understand the factors that control rupture dynamics in the

presence of thermo-hydro-mechanical processes.

1 Introduction

Fault constitutive relations that describe the evolution of

shear resistance with fault motion are critical ingredients of

earthquake source modeling. When coupled with the elasto-

dynamic equations of motion, these relations provide insight

into the growth and ultimate arrest of ruptures. Earthquake

source processes are often considered in the framework of

dynamic fracture mechanics, where the earthquake rupture

may be considered as a dynamically propagating shear crack

or pulse (Ida, 1972; Palmer and Rice, 1973; Madariaga,

1976; Rice, 1980; Kostrov and Das, 1988; Heaton, 1990;

Freund, 1990; Kanamori and Heaton, 2000; Rice, 2000;

Kanamori and Brodsky, 2004; Rubin and Ampuero, 2005).

By analogy to cohesive-zone relations for mode I open-

ing cracks, slip-weakening laws have been commonly used

to describe the dynamic decrease in shear resistance during

sliding (Ida, 1972; Palmer and Rice, 1973; Madariaga, 1976;

Kostrov and Das, 1988; Kanamori and Brodsky, 2004; Bou-

chon, 1997; Ide and Takeo, 1997; Olsen et al., 1997; Bou-

chon et al., 1998; Cruz-Atienza et al., 2009; Kaneko et al.,

2017; Gallovic et al., 2019). Linear slip weakening is one of

the simplest and most commonly used versions, in which the

shear resistance decreases linearly with slip from a peak of

τpeak to a constant dynamic level τdyn achieved at a critical

slip distance Dc (Fig. 1).

The breakdown energy G is associated with the evolution

of shear resistance from the initial shear stress τini to the peak

shear resistance τpeak and then breakdown to the minimum

dynamic shear resistance τmin. It is a part of the overall en-

ergy partitioning for dynamic ruptures, with the total strain

energy change throughout the ruptured region (1W ) being

separated into the radiated energy ER, the breakdown en-

ergy G, and other residual dissipated energy (Kanamori and

Rivera, 2006). The breakdown energy is analogous to frac-

ture energy from cohesive-zone models of fracture mechan-

ics (Palmer and Rice, 1973; Rice, 1980; Freund, 1990; Tinti

et al., 2005); hence, it is thought to be relevant to rupture dy-
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Figure 1. (a) Standard linear slip-weakening diagram where the average shear stress is assumed to increase from an initial to peak stress with

no slip and then linearly decrease to a dynamic resistance level over a critical slip distance Dc. The difference between the average initial

and final shear stress levels is called the static stress drop. The average stress vs. slip diagram is used to represent the energy partitioning of

the total strain energy change per unit rupture area (dashed red trapezoid) into the breakdown energy (dark gray triangle), residual dissipated

energy per unit area (light gray rectangle), and radiated energy per unit area (blue region). The additional dissipation associated with the

initial strengthening outside of the red trapezoid comes at the expense of the radiated energy (white triangle inside the dashed red trapezoid).

(b) The case of the initial stress equal to the peak stress. Note that this diagram is an approximation even if the local behavior is governed by

linear slip-weakening friction, as different points of the rupture would have different slip, including near-zero slip close to the rupture edges,

and averaging over the dynamic rupture would produce a different curve from the local behavior (Noda and Lapusta, 2012).

namics, e.g., rupture speed. For linear slip-weakening fric-

tion, it is given by G = (τpeak − τdyn)Dc/2. The term “frac-

ture energy”, while initially associated with the creation of

free surfaces during tensile fracture, has been routinely used

to refer broadly to inelastic dissipation relevant to the crack-

tip motion for both tensile and shear cracks, including con-

tributions from off-fault damage creation, plastic work, and

frictional heat (e.g., Rice, 1980; Freund, 1990; Rice, 2006).

However, here we follow the work of Tinti et al. (2005) in re-

ferring to this quantity as the “breakdown” work (or energy)

to further emphasize that G can incorporate various physical

sources of energy dissipation.

More involved fault constitutive laws are generally re-

quired to explain a number of aspects of faulting behavior,

most notably the restrengthening of faults between earth-

quakes. Laboratory experiments have provided significant in-

sight into the rich behavior of shear resistance, with the fric-

tional response at slip rates between 10−9 and 10−3 m/s be-

ing well described by rate-and-state friction laws (Dieterich,

2007). A number of previous studies have used models on

rate-and-state faults to provide insight into a number of

earthquake and slow slip observations, such as sequences of

earthquakes on an actual fault segment and repeating earth-

quakes (Chen and Lapusta, 2009; Barbot et al., 2012; Di-

eterich, 2007, and references therein). While incorporating

a more involved dependence of shear resistance on long-

term healing, standard Dieterich–Ruina rate-and-state fric-

tion has been shown to resemble linear slip weakening during

dynamic rupture (Okubo, 1989; Cocco and Bizzarri, 2002;

Lapusta and Liu, 2009), providing further reinforcement of

the notion that the breakdown of shear resistance during dy-

namic rupture may be adequately described by linear slip-

weakening behavior.

Many studies have attempted to infer parameters of the

slip-weakening shear resistance from the strong-motion data

resulting from natural earthquakes (Bouchon, 1997; Ide and

Takeo, 1997; Olsen et al., 1997; Bouchon et al., 1998; Cruz-

Atienza et al., 2009; Kaneko et al., 2017; Gallovic et al.,

2019). Such studies have noted substantial trade-offs in the

inferred parameters during such inversions, such as between

the slip-weakening distance Dc and strength excess τpeak −
τini, where τini is the initial stress (Fig. 1). It has been pre-

sumed that the spatial distribution of the static stress drop

and breakdown energy may be the most reliably determined

features, as the stress drop can be inferred from the spatial

distribution of slip, and the remaining variations in rupture

speed are largely controlled by the breakdown energy in such

linear slip-weakening representations (Guatteri and Spudich,

2000).

One of the most notable features of seismologically in-

ferred breakdown energies from natural earthquakes is that

the average breakdown energy from the rupture process has

been inferred to increase with the earthquake size (Aber-

crombie and Rice, 2005; Rice, 2006; Cocco and Tinti, 2008;

Viesca and Garagash, 2015; Brantut and Viesca, 2017). In-

crease in breakdown energy with slip has also been observed

in high-speed friction experiments (Nielsen et al., 2016; Sel-

vadurai, 2019), although in some experiments the increase
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saturates after a given amount of weakening (Nielsen et al.,

2016). Such findings are inconsistent with the breakdown en-

ergy being a fixed fault property as often assumed in linear

slip-weakening laws and as approximately follows from stan-

dard rate-and-state friction with uniform characteristic slip-

weakening distance (Perry et al., 2020), unless strong and

very special heterogeneity is assumed in fault properties. For

example, some modeling studies have assigned strongly het-

erogeneous Dc and hence G values to the fault, as if they are

properties of the interface, with larger patches having sig-

nificantly larger values of Dc and hence G, and these studies

considered sequences of events over such interfaces (e.g., Ide

and Aochi, 2005; Aochi and Ide, 2011).

Several theoretical and numerical studies have demon-

strated that enhanced dynamic weakening, as widely ob-

served at relatively high slip rates (> 10−3 m/s) in laboratory

experiments (Tullis, 2007; Di Toro et al., 2011), may explain

the inferred increase in breakdown energy with slip (Rice,

2006; Viesca and Garagash, 2015; Brantut and Viesca, 2017;

Perry et al., 2020). A number of different mechanisms have

been proposed for such enhanced weakening, with many of

them due to shear heating. For example, thermal pressuriza-

tion may occur due to the rapid shear heating of pore fluids

during slip (Sibson, 1973; Andrews, 2002; Rice, 2006); if

pore fluids are heated fast enough and not allowed to dif-

fuse away, they pressurize and reduce the effective normal

stress on the fault. Flash heating is another thermally in-

duced weakening mechanism, where the effective friction

coefficient is rapidly reduced due to local melting of highly

stressed micro-contacts along the fault (Rice, 1999; Goldsby

and Tullis, 2011; Passelegue et al., 2014). Considerations of

heat production during dynamic shear ruptures provide a sub-

stantial constraint for potential fault models, as field studies

show no correlation between faulting and heat flow signa-

tures and rarely suggest the presence of melt (Sibson, 1975;

Lachenbruch and Sass, 1980). Models with enhanced weak-

ening have been successful in producing fault operation at

low overall prestress and low heat production (Rice, 2006;

Noda et al., 2009; Lambert et al., 2020), as supported by sev-

eral observations (Brune et al., 1969; Zoback et al., 1987;

Hickman and Zoback, 2004; Williams et al., 2004).

Numerical models have shown that the incorporation of

thermally activated enhanced weakening mechanisms during

dynamic rupture can have profound effects on the evolution

of individual ruptures, as well as the long-term behavior of

fault segments, with the potential to make seemingly stable

creeping regions fail violently during earthquakes (Noda and

Lapusta, 2013), and for the potential deeper penetration of

large ruptures, which may explain the seismic quiescence

of mature faults that have historically hosted large earth-

quakes (Jiang and Lapusta, 2016). Despite evolving dynamic

resistance in such models, they can also be consistent with

magnitude-invariant static stress drops (Perry et al., 2020).

At the same time, accounting for thermo-hydro-

mechanical processes during dynamic rupture can clearly

weaken or even remove the analogy between frictional shear

ruptures and idealized shear cracks of fracture mechanics.

The analogy is based on two key assumptions: (1) that

the breakdown of shear resistance is concentrated in a

small region near the rupture front, referred to as small-

scale yielding, and (2) that a constant residual stress level

τdyn = τmin exists throughout the ruptured region during

sliding (Palmer and Rice, 1973; Freund, 1990). For example,

the relationship between rupture speed and fracture energy

of linear elastic fracture mechanics is only valid under these

assumptions. Clearly, these assumptions can become invalid

when thermo-hydro-mechanical processes are considered.

For example, shear heating can raise the pore fluid pressure

in regions away from the rupture front and weaken the fault

there, contributing to the breakdown of fault resistance away

from the rupture tip and varying the dynamic resistance

level. Furthermore, the shear heating itself would depend on

the overall dissipated energy, making the fault weakening

behavior, and hence the “breakdown”, depend on the abso-

lute stress levels, and not just the stress changes, as typically

considered by analogy with traditional fracture mechanics.

Moreover, studies that infer dynamic parameters from

natural earthquakes using dynamically inspired kinematic

models suggest more complicated evolutions of shear stress

with slip, including heterogeneous dynamic resistance levels

(Ide and Takeo, 1997; Bouchon et al., 1998; Tinti et al.,

2005; Causse et al., 2013).

In this study, we use numerical models of earthquake

sequences with enhanced weakening due to thermal pres-

surization to illustrate how the inclusion of thermo-hydro-

mechanical processes during dynamic shear ruptures makes

breakdown energy rupture-dependent, in that the values of

both local and average breakdown energy vary among rup-

tures on the same fault, even with spatially uniform and time-

independent constitutive properties. As such, the breakdown

energy is not an intrinsic fault property, but develops differ-

ent values at a given location, depending on the details of the

rupture process, which in part depend on the prestress before

the dynamic rupture achieved as a consequence of prior fault

slip history. Moreover, the local breakdown energy is not

uniquely defined by the amount of slip attained during rup-

ture, but depends on how that slip was achieved through the

complicated history of slip rate and dynamic stress changes

throughout the rupture process. Additional fault characteris-

tics that we do not consider here, such as heterogeneity in

fault properties and dynamically induced, evolving, inelas-

tic off-fault damage (Dunham et al., 2011a, b; Roten et al.,

2017; Withers et al., 2018), should result in qualitatively sim-

ilar effects and add even more variability to the breakdown

energy.
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2 Description of numerical models

We conduct numerical simulations of spontaneous sequences

of earthquakes and aseismic slip (SEAS) utilizing the spec-

tral boundary integral method (BIE) to solve the elastody-

namic equations of motion coupled with friction boundary

conditions, including the evolution of pore fluid pressure and

temperature on the fault coupled with off-fault diffusion (La-

pusta et al., 2000; Noda and Lapusta, 2010). Our simulations

consider mode III slip on a 1-D fault embedded into a 2-

D uniform, isotropic, elastic medium slowly loaded with a

long-term slip rate Vpl (Fig. 2). The simulations resolve the

full slip behavior throughout earthquake sequences, includ-

ing the nucleation process, the propagation of individual dy-

namic ruptures, as well as periods of post-seismic and the

interseismic slip between events that can last from months to

hundreds of years.

Our fault models adopt the laboratory-derived Dieterich–

Ruina rate-and-state friction law with the state evolution gov-

erned by the aging law (Dieterich, 1979; Ruina, 1983):

τ = σf (V,θ) = (σ − p)

[

f∗ + a log
V

V∗
+ b log

θV∗
DRS

]

, (1)

θ̇ = 1 −
V θ

DRS
, (2)

where σ is the effective normal stress, σ is the normal stress,

p is the pore fluid pressure, f∗ is the reference steady-state

friction coefficient at reference sliding rate V∗, DRS is the

characteristic slip distance, and a and b are the direct effect

and evolution effect parameters, respectively. Other formu-

lations for the evolution of the state variable exist, such as

the slip law (Ruina, 1983) as well as various composite laws,

and the formulation that best describes various laboratory ex-

periments remains a topic of ongoing research (Bhattacharya

et al., 2015, 2017; Shreedharan et al., 2019). However, the

choice of the state evolution law should not substantially in-

fluence the results of this study, as the evolution of shear

resistance during dynamic rupture within our simulations is

dominated by the presence of enhanced weakening mecha-

nisms. We use the version of the expressions (1) and (2) reg-

ularized for zero and negative slip rates (Noda and Lapusta,

2010).

During conditions of steady-state sliding (θ̇ = 0), the fric-

tion coefficient is expressed as

fss(V ) = f∗ + (a − b) log
V

V∗
. (3)

The combination of frictional properties (a − b) > 0 results

in steady-state velocity-strengthening (VS) behavior, where

stable slip is expected, and properties resulting in (a − b) <

0 lead to steady-state velocity-weakening (VW) behavior,

where accelerating slip and, hence, stick slip occur for suffi-

ciently large regions (Rice and Ruina, 1983; Rice et al., 2001;

Rubin and Ampuero, 2005).

An important, yet often underappreciated, implication of

the rate- and state-dependent effects observed in labora-

tory experiments is that notions of static and dynamic fric-

tion coefficients, as well as the slip-weakening distance, are

not well-defined and fixed quantities, as would be consid-

ered by standard linear slip-weakening laws (Cocco and Biz-

zarri, 2002; Rubin and Ampuero, 2005; Ampuero and Ru-

bin, 2008; Lapusta and Liu, 2009; Barras et al., 2019; Perry

et al., 2020). Instead, they depend on the history and current

style of motion. For example, the dynamic friction, compa-

rable to the steady-state friction at dynamic slip rates, de-

pends on the slip rate (Eq. 3), which can vary substantially

throughout rupture and between different ruptures. More-

over, the peak friction and effective slip-weakening distance

under standard rate-and-state friction depend on the history

of motion through the state variable θ as well as the sliding

rate during fast slip (Fig. 3). Let us consider a point with the

same initial friction but different periods of inter-event heal-

ing, captured by increasingly larger values of the pre-rupture

state variable. If the point is now driven to slide at a fixed

sliding rate, the peak friction and slip-weakening distance

would be larger for points that (i) have a higher pre-rupture

value of the state variable, representing better healed inter-

faces, and/or (ii) sliding at faster slip rates (Fig. 3). For stan-

dard rate-and-state friction, these effects typically translate

into generally mild variations in dynamic and static stress

drop and breakdown energy, due to the logarithmic depen-

dence of the shear stress evolution on slip rate, resulting in

both the static stress drop and breakdown energy being effec-

tively rupture-independent (Cocco and Bizzarri, 2002; Rubin

and Ampuero, 2005; Ampuero and Rubin, 2008; Lapusta and

Liu, 2009; Perry et al., 2020), at least compared to the large

variations in breakdown energy with slip inferred from natu-

ral earthquakes as discussed in Sect. 1. However, such vari-

ations in stress evolution become more substantial with en-

hanced dynamic weakening mechanisms that lead to stronger

rate-dependent weakening.

Laboratory experiments indicate that the standard rate-

and-state laws (Eqs. 1–2) provide good descriptions of

frictional behavior at relatively slow slip rates (10−9 to

10−3 m/s). However, at higher sliding rates, including aver-

age seismic slip rates of ∼1 m/s, additional enhanced weak-

ening mechanisms can occur, such as the thermal pressur-

ization of pore fluids. Thermal pressurization is governed in

our simulations by the following coupled differential equa-

tions for the evolution of temperature and pore fluid pressure
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Figure 2. (a) The fault model incorporates a velocity-weakening (VW) seismogenic region surrounded by two velocity-strengthening (VS)

sections. A fixed plate rate is prescribed outside of these regions. (b) We incorporate enhanced dynamic weakening due to the thermal

pressurization of pore fluids by calculating the evolution of temperature and pore fluid pressure due to shear heating and off-fault diffusion

throughout our simulations. (c) The beginning of the accumulated slip history for simulated sequences of crack-like earthquake ruptures and

aseismic slip. Seismic events are illustrated by red lines with slip contours plotted every 0.5 s and interseismic slip plotted in black every

10 years. The total simulated slip history spans 2675 years corresponding to cumulative slip of 84 m and contains 200 seismic events.

(Noda and Lapusta, 2010):

∂T (y,z, t)

∂t
= αth

∂2T (y,z, t)

∂y2

+
τ(z; t)V (z, t)

ρc

exp(−y2/2w2)
√

2πw
, (4)

∂p(y,z, t)

∂t
= αhy

∂2p(y,z, t)

∂y2
+ 3

∂T (y,z; t)
∂t

, (5)

where T is the pore fluid temperature, αth is the thermal dif-

fusivity, τV is the shear heating source which is distributed

over a Gaussian shear layer of half-width w, ρc is the specific

heat, y is the fault-normal distance, αhy is the hydraulic dif-

fusivity, and 3 is the coupling coefficient that provides the

change in pore pressure per unit temperature change under

undrained conditions.

The total fault domain of size λ is partitioned into a fric-

tional region of size λfr where we solve for the balance of

shear stress and frictional resistance, as well as loading re-

gions at the edges where the fault is prescribed to slip at a

tectonic plate rate (Fig. 2a). The frictional interface is com-

posed of a 24 km region with VW frictional properties of size

λVW, surrounded by a VS domain. The majority of the seis-

mic events arrest within the VW region, which we refer to as

“partial ruptures”; however, some events span the entire VW

region, which we refer to as “complete ruptures” (Fig. 2c).

Weakening due to thermal pressurization is confined to the

region with the VW properties. The parameter values used

for the simulations presented in this work are motivated by

prior studies (Rice, 2006; Noda and Lapusta, 2010; Perry

et al., 2020) and are provided in Table 1.

3 Energy partitioning and the notion of breakdown

energy G

In the earthquake energy budget, the total strain energy

change per unit source area 1W/A is partitioned into the

dissipated energy per unit area, EDiss/A, and the radiated en-

ergy per unit area, ER/A:

1W/A = EDiss/A + ER/A. (6)

The total strain energy released per unit area 1W/A is given

by

1W/A =
1

2
(τ ini + τfin)δ, (7)

where δ is the average final slip for the event, and τ ini and

τfin are the average initial and final shear stress weighted by

https://doi.org/10.5194/se-11-2283-2020 Solid Earth, 11, 2283–2302, 2020
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Figure 3. Illustration of the rate- and state-dependence of the peak and dynamic friction coefficients, fpeak and fdyn, respectively, as well

as the effective slip-weakening distance Dc. (a–c) Evolution of the friction coefficient with slip for points with the same initial friction

coefficient of 0.58 but different values of the initial state variable θini, corresponding to different histories of previous motion. The initially

locked point slips at an imposed slip rate of V = 1 cm/s (black) or V = 1 m/s (red), to approximately reproduce transition from the locked

state to dynamic sliding as the rupture propagates through. For a given slip rate, the friction evolves to a new steady-state level, fdyn = 0.54

and fdyn = 0.56 for V = 1 m/s and V = 1 cm/s, respectively. These levels are similar, as expected from the logarithmic dependence on the

slip rate and a narrow range of dynamic slip rates. The peak friction coefficient and effective slip-weakening distance vary more significantly

with θini, where the peak friction coefficient increases for higher θini associated with longer inter-event healing times. The example uses

typical laboratory values of (a − b) = 0.004, f∗ = 0.6, DRS = 1 µm, and V∗ = 10−6 m/s.

Table 1. Model parameters used in simulations of earthquakes and aseismic slip.

Parameter Symbol Value

Loading slip rate Vpl 10−9 m/s

Shear wave speed cs 3299 m/s

Shear modulus µ 36 GPa

Rate-and-state parameters

Reference slip velocity V∗ 10−6 m/s

Reference friction coefficient f∗ 0.6

Characteristic slip DRS 1 mm

Rate-and-state direct effect (VW) a 0.010

Rate-and-state evolution effect (VW) b 0.015

Rate-and-state direct effect (VS) a 0.050

Rate-and-state evolution effect (VS) b 0.003

Thermal pressurization parameters

Interseismic effective normal stress σ = (σ − p) 25 MPa

Coupling coefficient (when TP present) 3 0.34 MPa/K

Thermal diffusivity αth 10−6 m2/s

Hydraulic diffusivity αhy 10−3 m2/s

Specific heat ρc 2.7 MPa/K

Shear zone half-width w 10 mm

Length scales

Fault length λ 96 km

Frictional domain λfr 72 km

Velocity-weakening region λVW 24 km

Cell size 1z 3.3 m

Quasi-static cohesive zone 30 75 m

Nucleation size (Rice and Ruina, 1983) h∗
RR 200 m

Nucleation size (Rubin and Ampuero, 2005) h∗
RA

490 m

Solid Earth, 11, 2283–2302, 2020 https://doi.org/10.5194/se-11-2283-2020
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the final slip (Noda and Lapusta, 2012), respectively,

τ ini =
∫

�
τini(z)δfin(z)dz
∫

�
δfin(z)dz

, (8)

τfin =
∫

�
τfin(z)δfin(z)dz
∫

�
δfin(z)dz

. (9)

Here, � represents the ruptured domain. The static stress

drop is a measure of the difference in average stress before

and after the rupture. The relevant definition of the average

static stress drop for energy considerations is the energy-

based or slip-weighted stress drop (Noda et al., 2013):

1τ = τ ini − τfin =
∫

�
[τini(z) − τfin(z)]δfin(z)dz

∫

�
δfin(z)dz

. (10)

The dissipated energy per unit rupture area can be computed

from the evolution of shear resistance with slip:

EDiss/A =

∫

�

[

∫ δfin(z)

0 τ(δ′)dδ′
]

dz
∫

�
dz

. (11)

The dissipated energy EDiss/A is often further partitioned

into the average breakdown energy G (Palmer and Rice,

1973; Rice, 1980; Tinti et al., 2005) and the residual dissi-

pated energy (dark gray triangle and light gray rectangle in

Fig. 1, respectively). The average breakdown energy repre-

sents the spatial average of the local breakdown energy Gloc

within the source region,

G =
∫

�
Gloc(z)dz
∫

�
dz

, (12)

where the local breakdown energy is defined as

Gloc(z) =
Dc(z)
∫

0

[τ(δ′) − τmin(z)]dδ′, (13)

and τmin(z) is the minimum local shear resistance during

seismic slip after the initial strengthening from the initial to

peak shear resistance via the direct effect. Dc is defined as the

critical slip distance during the rupture such that τ(Dc(z)) =
τmin(z).

Seismological studies have attempted to estimate the av-

erage breakdown energy for natural earthquakes based on

the standard energy partitioning diagram (Fig. 1) as follows

(Abercrombie and Rice, 2005; Rice, 2006):

G′ =
δ

2

(

1τ −
2µER

M0

)

, (14)

where G′ is the approximation for the average breakdown

energy G, δ is the average slip during the rupture, 1τ is

the seismologically inferred average static stress drop, µ is

the shear modulus, ER is the radiated energy, and M0 is

the seismic moment. The definition of G′ assumes that the

rupture area exhibits negligible stress overshoot/undershoot

or that the average level of dynamic resistance during slid-

ing is the same as the final average shear stress. Numeri-

cal studies have shown that G′ may indeed provide a rea-

sonable estimate of the average breakdown energy (within a

factor of 2) for crack-like ruptures, which exhibit mild over-

shoot/undershoot compared with the static stress drop (Perry

et al., 2020); however, such estimates can dramatically differ

from the true values for ruptures that experience a consider-

able stress undershoot, as is the case of self-healing pulse-

like ruptures (Lambert et al., 2020).

Note that the energy balance shown in Eq. (6) reflects

the energy partitioning over the rupture process as a whole.

While the dissipated energy is a local quantity along the

fault, the radiated energy is not and can only be related to

the stress-slip behavior in the averaged sense over the en-

tire rupture process (Fig. 1). Seismological estimates of the

average breakdown energy can be made assuming the stan-

dard energy partitioning following the slip-weakening dia-

gram (Fig. 1) and using Eq. (14) with the total radiated en-

ergy, with the results dependent on the accuracy of the ra-

diated energy estimates and validity of the assumed energy

partitioning model, which has been shown to breakdown for

pulse-like ruptures (Lambert et al., 2020). Estimating the lo-

cal breakdown energy is more challenging. One approach is

to use finite-fault slip inversions to determine the stress evo-

lution during rupture and, hence, the breakdown work (e.g.,

Tinti et al., 2005), with the results dependent on the accuracy

of finite-fault inversions that are known to be nonunique and

affected by smoothing.

4 Breakdown energy in models with thermal

pressurization of pore fluids

The local slip and stress evolution are determined at every

point along the fault within our simulations at all times; thus,

we can calculate the local dissipation and breakdown en-

ergy throughout each rupture as well as study the evolution

of these quantities in different ruptures throughout the se-

quence. We can also compute the average energy quantities

and construct the average stress vs. slip curves for the total

rupture process in a manner that preserves the overall energy

partitioning (Noda and Lapusta, 2012). We define seismic

slip to occur when the local slip velocity exceeds a velocity

threshold Vthresh = 0.01 m/s. As slip rates during sliding are

typically around 1 m/s or higher and drop off rapidly during

the arrest of slip, modest changes of this velocity threshold of

an order of magnitude produce very mild differences in Dc

and G (of less than 1 %).

The average breakdown energy G computed from our

simulations increases with average slip and matches esti-

mates of breakdown energy for natural events (Fig. 4), as ex-

pected from the simplified theoretical considerations (Rice,
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Figure 4. (a) The simulations result in a sequence of mostly crack-like ruptures that, despite including dynamic weakening due to thermal

pressurization of pore fluids, are capable of reproducing nearly magnitude-invariant average static stress drops, with values between 1 and

10 MPa. (b) These crack-like ruptures display the overall increasing trend in the average breakdown energy with average slip, as inferred

for natural earthquakes (Abercrombie and Rice, 2005; Rice, 2006). (c) The simulated fault maintains reasonable temperatures and avoids

melting, due to a relatively low interseismic effective normal stress of 25 MPa (and, hence, chronic fluid overpressurization) and sufficiently

efficient enhanced weakening due to thermal pressurization of pore fluids.

2006). As demonstrated in previous numerical studies (Perry

et al., 2020), when our fault models combine moderately ef-

ficient thermal pressurization with persistently weak condi-

tions, such as from relatively low interseismic effective nor-

mal stresses (25 MPa) due to substantial chronic fluid over-

pressurization, the models produce mostly crack-like rup-

tures that reproduce all main observations about earthquakes,

including magnitude-invariant average static stress drops of

1–10 MPa, breakdown energy values that are quantitatively

comparable to estimates from natural earthquakes, and fault

temperatures well below representative equilibrium melting

temperatures near 1000 ◦C for wet granitic compositions in

the shallow crust (Rice, 2006). It is important to note that the

presence of enhanced dynamic weakening is critical for pro-

ducing reasonable values of static stress drop (> 1 MPa) in

such fault models with chronic fluid overpressurization; oth-

erwise, the stress changes due to the standard rate-and-state

friction would be too low (as they are proportional to the

effective normal stress). As such, dynamic weakening due

to thermal pressurization still dominates the overall weak-

ening behavior during dynamic rupture. These results sug-

gest that fault models incorporating chronic fault weakness

and enhanced weakening may be plausible representations

of rupture behavior on mature faults. The work of Perry et al.

Solid Earth, 11, 2283–2302, 2020 https://doi.org/10.5194/se-11-2283-2020



V. Lambert and N. Lapusta: Breakdown energy as a process quantity 2291

(2020) and Lambert et al. (2020) provides a broader explo-

ration of models with different parameters, including differ-

ent levels of interseismic effective stresses and efficiency of

enhanced dynamic weakening. Here, we use a representative

model to illustrate the resulting properties of the breakdown

energy in such models.

Let us examine the spatial distribution of shear stress and

breakdown energy in three ruptures of varying size within the

same simulated sequence of earthquakes (Fig. 5). All three

ruptures nucleate, propagate, and arrest predominantly in the

VW region that has uniform fault properties, with the only

difference being how big the events become. The distribution

of shear stress along the fault before each rupture is hetero-

geneous due to the stress drop from previous ruptures. While

each earthquake nucleates in a region with approximately

the same locally high initial stress, the ruptures propagate

and arrest over regions with lower prestress. Larger ruptures

with more slip experience greater weakening and larger local

stress drops in some regions, which facilitates further rup-

ture propagation over areas of lower prestress. As such, while

the final average shear stress decreases for larger ruptures,

the average initial stress also decreases, resulting in nearly

magnitude-invariant average stress drops.

Despite the fault constitutive properties being uniform

and constant in time, the breakdown energy varies spatially

within each event and also differs at each location for differ-

ent ruptures (Figs. 5c and 6). Larger ruptures that experience

larger average slip also exhibit more weakening, resulting in

the average breakdown energy generally increasing with the

rupture size (Fig. 5c). If we examine individual points that

are common among all three ruptures, we see that the local

breakdown energy also varies as the points experience differ-

ent degrees of slip and overall weakening behavior (Fig. 6).

This suggests that the local and average breakdown energy is

not just a function of the local fault material properties but a

more complicated evolution of effective weakening behavior

and stress throughout the rupture.

Note that the breakdown energy illustrated in Fig. 6 is

dominated by the thermal pressurization of pore fluids, with

negligible contribution from the weakening due to standard

rate-and-state friction. The breakdown energy due to rate-

and-state friction can be estimated following Perry et al.

(2020):

G =
1

2
bσDRS

(

log
θiniVdyn

DRS

)2

, (15)

where the effective normal stress σ is assumed to be con-

stant, θini is the value of the state variable at the beginning

of slip, and Vdyn is the representative dynamic slip rate. As-

suming that σ is still approximately given by the interseismic

value at the beginning of slip (which would produce an upper

bound), θini is given by the representative inter-event time of

10 years, and Vdyn is given by the representative peak rate

of 10 m/s, the breakdown energy due to the standard rate-

and-state friction in our simulation has the upper bound of

0.15 MJ/m2. This is an order of magnitude smaller than the

values from 1 to 6 MJ/m2 in Fig. 6.

5 Overall increase in breakdown energy with slip and

significant rupture-dependent scatter

Previous theoretical work has demonstrated how the incor-

poration of thermo-hydro-mechanical processes such as the

thermal pressurization of pore fluids can explain the inferred

increase in breakdown energy with increasing event size

(Rice, 2006). The work of Rice (2006) presented solutions

for two end-member cases for the evolution of shear resis-

tance and breakdown energy with thermal pressurization, il-

lustrating how continuous weakening occurs with slip and

results in breakdown energy increasing with slip.

If slip occurs within a layer of thickness h that is large

enough to justify the neglect of heat and fluid transport, con-

ditions may be considered adiabatic and undrained, which

may be relevant for relatively short slip durations (Rice,

2006; Viesca and Garagash, 2015). Under such conditions,

the weakening behavior is controlled by the ratio of the cou-

pling coefficient 3 and specific heat ρc, as well as the thick-

ness of the shearing layer h which controls the efficiency of

heat production. Assuming a constant friction coefficient f

and slip rate V , one can express the evolution of shear resis-

tance τ and breakdown energy G as functions of slip (Rice,

2006):

τ(δ) = f (σ − p0)exp

(

−
f 3

ρc

δ

h

)

, (16)

G(δ) =
ρc (σ − p0)h

3

[

1 −
(

1 +
f 3δ

ρch

)

exp

(

−
f 3δ

ρch

)]

. (17)

Under such conditions, increasing slip results in continued

weakening of the shear resistance and increasing values of

breakdown energy. The continued weakening is the result of

shear heating and subsequent pressurization, which remains

active as long as the slip rate and shear stress are nonzero.

The inclusion of thermal and hydraulic diffusion intro-

duces a diffusion timescale to the problem, which governs

the efficiency of weakening over extended slip durations. If

one considers slip on a mathematical plane, a characteristic

weakening timescale t∗, may be defined assuming a constant

friction coefficient and slip rate (Mase and Smith, 1987):

t∗ =
4

f 2

(ρc

3

)2
(√

αhy + √
αth

)2

V 2
. (18)

Rice (2006) demonstrated that this may be related to a char-

acteristic slip-weakening distance for thermal pressurization,

L∗ =
4

f 2

(ρc

3

)2
(√

αhy + √
αth

)2

V
, (19)

such that the evolution of shear resistance and breakdown

energy for slip on a plane may also be expressed as a function
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Figure 5. Comparison of three earthquake ruptures of different sizes nucleating over the same fault area. (a) Slip distributions for the three

ruptures. (b) Distributions of initial (solid black) and final (solid blue) shear stress for the three ruptures. Gray shading denotes the ruptured

region, and orange shading denotes the region where each rupture nucleates. The dashed red and blue lines denote the average initial and

final shear stress in the ruptured region. Large events have smaller initial and smaller final average stress, resulting in similar stress drops.

(c) Distribution of breakdown energy (solid black) and average breakdown energy for each event (dashed line). The average breakdown

energy generally increases with the rupture size.

of slip (Rice, 2006):

τ(δ) = f (σ − p0)exp

(

δ

L∗

)

erfc

(

√

δ

L∗

)

, (20)

G(δ) = f (σ − p0)L
∗

[

exp

(

δ

L∗

)

erfc

(

√

δ

L∗

)

(

1 −
δ

L∗

)

− 1 + 2

√

δ

πL∗

]

. (21)

Unlike the case of a critical slip-weakening distance Dc in

standard slip-weakening models, the weakening of shear re-

sistance is continuous with increasing slip (Fig. 7a), with

L∗ providing a measure of how much slip is needed to

weaken by a certain degree. Note that the evolution of stress

in Eqs. (16) and (20) does not consider the elastic interac-

tions that occur due to nonuniform slip within finite ruptures;

therefore, it is assumed that the slip velocity is not only tem-

porally constant but also spatially uniform over the fault.

Both of these thermal pressurization solutions have the

convenient feature of expressing the breakdown of shear re-

sistance as a function of slip, drawing familiarity to standard

slip-weakening notions of shear fracture. As pointed out by

Rice (2006), the representation of breakdown energy purely

as a function of slip is a considerable simplification, whereas

the physics underlying the mechanisms for weakening re-

quire that τ is a complicated function of the slip rate his-

tory up to the current time. During dynamic rupture, the lo-

cal slip rate experiences considerable acceleration near the

rupture front, resulting in a more pronounced weakening rate

(Fig. 7), which in turn facilitates large dynamic stresses and

higher slip rates in other parts of the rupture. As the rup-

ture front passes, both the slip rate and weakening rate de-

crease. However, the slip rate may persist around typical seis-

mic values of 1 m/s until the arrival of arrest waves from the

edges of the rupture or local healing. Note that while the slip

rates behind the rupture front in our models appear more or

less stable around 1 m/s (Fig. 7e and g), they may vary de-

pending on the arrival of wave-mediated dynamic stresses

from other slipping regions in the rupture, which drive pro-

longed slip and, therefore, modulate the weakening rate due

to shear heating mechanisms like thermal pressurization. In

general, the friction coefficient may also vary considerably

with the slip rate, particularly when accounting for additional

enhanced weakening processes such as flash heating (Rice,

1999; Goldsby and Tullis, 2011; Passelegue et al., 2014).
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Figure 6. The dependence of shear stress on slip for the three ruptures of Fig. 5. (a) Slip distributions with the locations that are examined

in detail marked. (b) Average shear stress vs. slip curves, illustrating the energy partitioning of the ruptures based on the averaging method-

ology of Noda and Lapusta (2012) that attempts to preserve local rupture behavior. The curves capture the continuous weakening with slip

experienced by most rupture locations. (c, d) Local shear stress vs. slip curves at two points within the three ruptures, illustrating the general

trend in increasing breakdown energy with increasing slip at the same point.

The continued weakening with slip due to thermal pres-

surization is an important factor that drives rupture propaga-

tion and allows ruptures to propagate under lower (and hence

less favorable) prestress conditions. Let us consider two fault

models with the same initial prestress and the same rate-and-

state frictional parameters, but with and without enhanced

weakening due to thermal pressurization (Fig. 8). The rupture

governed by only standard rate-and-state friction exhibits rel-

atively mild stress variations with slip rate and, thus, requires

higher prestress conditions to propagate. While the local slip

rate evolution varies among points throughout the rupture,

the evolution of shear resistance with slip associated with

the breakdown process is generally comparable throughout

the rupture with uniform rate-and-state properties (Fig. 8

left column). In contrast, the rupture that is driven by en-

hanced weakening due to thermal pressurization experiences

a stronger feedback between the evolution of shear stress and

slip rate, resulting in a much larger rupture that propagates

over lower prestress conditions. The evolution of the slip rate

is highly variable for different points throughout the crack-

like rupture, with long tails of seismic slip behind the rup-

ture front that experience periods of acceleration and decel-

eration due to dynamic stress interactions from neighboring

points. This variability in local slip rate translates into fur-

ther variability in local weakening, even for points with the

same initial prestress. This emphasizes that the local weaken-

ing behavior, and the associated breakdown energy, depend

not only on the local prestress and weakening properties but

also on the distribution of prestress and weakening behavior

throughout the entire rupture process.
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Figure 7. (a) Prediction of continuous weakening of shear resistance with slip or time due to the thermal pressurization of pore fluids during

slip on a plane at constant slip rate V and constant friction coefficient f (Rice, 2006). (b) Evolution of slip during a dynamic rupture,

slip contoured every 0.2 s. (c) Evolution of shear stress localized around the point z = 4.8 km within the rupture. The time window shown

corresponds to the duration of sliding at seismic slip rates at z = 4.8 m. (d, e) Evolution of local shear stress and slip rate with time at the

point indicated by the blue line in panel (b). (f ,g) Evolution of local shear stress and slip rate with slip at the same point. While qualitatively

consistent with panel (a) in terms of the continued weakening with slip and time, the evolution of shear resistance during dynamic ruptures

depends on the more complicated history of slip rate, which varies throughout the rupture process. Most of the initial local weakening occurs

at slip rates higher than 1 m/s as the rupture front passes by, followed by more gradual weakening behind the rupture front at lower, although

still seismic, slip rates.

An important consequence of continued fault weakening is

that much of the additional dissipated energy, which leads to

the increase in breakdown energy with continued slip, is not

concentrated near the rupture front (Fig. 7). Moreover, weak-

ening may not actually be strictly monotonic, but local points

can experience transient increases in shear stress as they be-

gin to arrest before being loaded by neighboring slipping re-

gions and forced to slip and weaken further (Figs. 6, 10). The

continued and variable weakening of shear resistance behind

the rupture front emphasizes a critical difference between dy-

namic shear ruptures and mode I fracture, where the crack

surface is typically traction-free behind the cohesive zone at

the rupture front. The attribution of the continually dissipated

energy to the breakdown process governing rupture propaga-

tion is also inconsistent with the assumption of small-scale

yielding, which facilitated the original mathematical analogy

based on laboratory constitutive relations derived at lower

slip rates (Palmer and Rice, 1973).

While breakdown energy does not appear to be a constant

material property, one may ask if the effects of local weaken-
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Figure 8. Comparison of accumulated slip, local shear stress vs. slip, and local slip rate vs. time for ruptures with rate-and-state (RS)

friction with and without enhanced weakening due to thermal pressurization (TP). The two ruptures occur with the same initial shear stress

distribution (top right), which results in a relatively small rupture in the RS-only model that is localized within the relatively highly prestressed

nucleation region (top left). The inclusion of TP allows the rupture to grow and propagate over lower prestress conditions (top center). For

the rupture governed by only RS (left column), the breakdown of shear resistance is generally comparable at different locations with the

same fault properties, despite differences in local slip rate. This is due to the relatively mild dependence of RS friction on the slip rate. The

rupture governed by RS and TP (center and right columns) exhibits a more complex evolution of local shear stress and slip rate throughout

the rupture, which depends not only on the local prestress but also on the prestress and weakening behavior over the entire rupture through

dynamic stress interactions.

ing due to thermal pressurization may be adequately encap-

sulated into a slip-weakening formulation such as Eqs.(16)–

(20). To gain insight into such possibility, let us examine

three large ruptures in our simulations that have comparable

average slip and breakdown energy (Fig. 9). If we consider

the evolution of local shear stress and slip at points shared

among the three ruptures, we can see that the local break-

down energy differs, even for comparable local slip. More-

over, the three points, which share the same constitutive de-

scription, do not exhibit a systematic scaling relationship be-

tween the local slip and breakdown energy. For example, the

point at z = −4.8 km exhibits a generally increasing trend in

local G with increasing slip, whereas the point at z = 4.8 km

shows decreasing values of G for increasing slip among the

three ruptures (Fig. 9c vs. e). The point in the center of the

rupture (z = 0) does not even exhibit a monotonic trend, as

G both increases and decreases for ruptures with increasing

slip (Fig. 9D). Indeed, if we examine the spatial distribution
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Figure 9. Comparison of local breakdown energy for three large earthquake ruptures with nearly the same average breakdown energy

and comparable average slip. (a) Slip distributions for the three ruptures. (b) Average shear stress vs. slip curves, illustrating the energy

partitioning of the ruptures. (c–e) Local shear stress vs. slip curves at three points within the ruptures. There is not a strictly increasing trend

of breakdown energy with slip for all points. In panel (c), point z = −4.8 km experiences increasing G with increasing slip. However, in

panel (e), point z = 4.8 km experiences lower values of G in ruptures with larger local slip.

of local stress and breakdown energy within each rupture, we

see that while the three ruptures have comparable average G

and slip, they achieve both in different ways (Fig. 10).

The general trend of increasing breakdown energy with

slip qualitatively holds for most local points within our sim-

ulated ruptures; however, there is considerable variability for

individual values of G at a given slip (Fig. 11). While val-

ues of average breakdown energy and slip for individual rup-

tures appear to demonstrate a consistent scaling relationship,

these average values smooth out the greater variability in lo-

cal breakdown energy and slip. For points within our simu-

lated ruptures that experience a net decrease (or breakdown)

in shear stress, the local G is generally within a factor of 3 of

the scaling relationship between average G and average slip.

This variation adds up to approximately an order of magni-

tude variation in local G for some values of slip.

For frictional ruptures, substantial slip may occur in re-

gions that experience a net increase in shear stress, particu-

larly in the regions near the rupture arrest (Fig. 6b). We find

that points in our simulated ruptures that experience a net in-
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Figure 10. Comparison of the spatial breakdown energy distribution for the three large earthquake ruptures with nearly the same average

breakdown energy and comparable average slip to Fig. 9. (a) Slip distributions for the three ruptures. (b) Spatial distributions of initial (solid

black) and final (solid blue) shear stress for the three ruptures. Gray shading denotes the ruptured region and dashed red and blue lines

indicate the average initial and final shear stresses, respectively. (c) Spatial distributions of the local breakdown energy. While the three

ruptures have comparable average breakdown energy, the spatial variation throughout the rupture process considerably differs. Furthermore,

the same spatial locations can have significantly different breakdown energy values in different rupture events of comparable size.

crease in shear stress exhibit greater variability in G with slip

(Fig. 11, yellow circles), potentially due to the greater vari-

ability in the slip rate during rupture deceleration and arrest.

These points illustrate the challenge of partitioning the dis-

sipated energy into components that are thought to be, and

not be, relevant to the dynamic rupture process. These points

exhibit no net local breakdown of shear resistance but rather

a net strengthening. A more appropriate approach may be to

distinguish between the concepts of breakdown energy and

“restrengthening energy”, as discussed in Tinti et al. (2005).

However, the physical relevance of either component, or their

distinction, during the rupture process is not directly evident.

Understanding the physical significance of different compo-

nents of dissipated energy for dynamic rupture propagation

is an important topic of active research.

The theoretical considerations of Rice (2006) have been

extended to the spatially and temporally variable slip rate as-

sociated with steady rupture propagation (Viesca and Gara-

gash, 2015). Approximate expressions for the scaling of

breakdown energy with slip can be presented for end-

member conditions of undrained Gu(δ) and drained Gd(δ)

weakening as follows:

Gu(δ) ≈ f (σ − p0)
f 3δ2

2ρch
, undrained, small slip; (22)

Gd(δ) ≈ (12π)−1/3f (σ − p0)L
∗1/3δ2/3,

slip on a plane, large slip. (23)

Similar to the solutions (17) and (21) that assume constant

slip rate, the steady-state solutions (22)–(23) do not capture

the variability of the local breakdown energy with slip seen

in our simulated dynamic ruptures (Fig. 11). This is because

our simulated dynamic ruptures do not exhibit steady rupture

propagation but rather have considerable spatial variations in

slip rate evolution, as is likely the case for natural earthquake

ruptures. This comparison illustrates a limitation of steady-

state rupture solutions for examining rupture properties that

are highly sensitive to spatial heterogeneity in slip motion,

such as breakdown energy in the presence of thermal pres-

surization.

While the general increase in breakdown energy with slip

is qualitatively consistent among the theoretical solutions

and our simulated dynamic ruptures in 2-D models with 1-D

faults (Fig. 11), the scaling relationship between breakdown

energy and slip would be best studied in 3-D models of dy-
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Figure 11. The average and local breakdown energy values for the simulated ruptures show an increasing trend with average and local slip,

consistent with inferences from natural earthquakes (Fig. 4). The general trend of increasing breakdown energy with slip qualitatively holds

for local points within our simulated ruptures; however, there is considerable variability for individual values of G at a given slip. For points

that exhibit net weakening behavior in our simulated ruptures (blue circles), local values of G tend to vary within a factor of 3 from the

scaling relationship between average G and average slip. The shaded band bordered by gray dashed lines illustrates the variation in G at a

given value of slip. Local values of G are more variable for regions that experience a net increase in stress during the rupture process (yellow

circles), e.g., regions close to rupture arrest. Theoretical curves for G vs. slip are indicated by solid lines for Eqs. (17) and (21) based on Rice

(2006) and dashed lines for Eqs. (22)–(23) based on Viesca and Garagash (2015), with the coefficient of friction of f = 0.53 and the values

otherwise indicated in Table 1. In both cases, the magenta and black lines correspond to the solutions for slip on a plane with two different

values of L∗, and the green line corresponds to the solution for an adiabatic and undrained shear band of 20 mm width.

namic rupture with 2-D faults. For example, for ruptures on

2-D faults would have a larger fraction of the ruptured area

associated with rupture arrest and, hence, may demonstrate

a wider scatter in local G, as seen by points in our simu-

lated ruptures that experience a net increase in shear stress.

In addition, it would be prudent to examine any differences

in scaling behavior for ruptures that are geometrically con-

fined along a given direction, as may be representative of

large crustal earthquakes. However, we expect that the main

results of this work – that the local and average breakdown

energy can vary among ruptures and are not unique functions

of slip – would be consistent with 2-D rupture scenarios in 3-

D models.

6 Conclusions

The average breakdown energy for our simulated ruptures

tends to increase with increasing rupture size and average

slip in a manner consistent with inferences from field ob-

servations and simplified theoretical models (Rice, 2006; Vi-

esca and Garagash, 2015). At the same time, the values of

local breakdown energy for a given amount of slip have a

wide spread in our simulations, even though the constitu-

tive properties are uniform and time-independent along the

fault, highlighting the reality that breakdown energy in mod-

els with thermo-hydro-mechanical mechanisms is not fun-

damentally a function of slip. In fact, ruptures with near-

uniform slip can have local values of the breakdown energy

vary by as much as a factor of 4 (Fig. 10c), making a homo-

geneous fault appear to be heterogeneous. This is because the

breakdown energy depends on the specific history of motion

and dynamic stress changes that occur throughout individual

rupture processes. Furthermore, as the history of rupture mo-

tion is determined, in part, by the fault prestress before the

dynamic rupture, the breakdown energy also depends on the

history of other slip events on the fault that determine the

prestress.

The analytic formulations for the evolution of shear resis-

tance with slip for the thermal pressurization presented by

Rice (2006) provide profound insight into the first-order be-

havior of such thermally activated hydro-mechanical weak-

ening mechanisms. However, they are based on the kinematic

assumptions of a spatially uniform and temporally constant

slip velocity, as well as a constant friction coefficient, that

allow for the weakening rate to be determined as a func-

tion of slip. In the fully dynamic statement of the problem,

the evolving and spatially nonuniform slip rate is a key part

of the solution which leads to the evolution in the associ-

ated shear heating and weakening/strengthening of the fault

that depend not only on the amount of slip but also on how

that slip is achieved through the complex history of slip ve-

locity. Our results demonstrate that the extension to steady-

state rupture solutions with a nonconstant slip rate (Viesca

and Garagash, 2015) similarly does not capture the variabil-
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ity in local breakdown energy associated with the complex

and evolving history of slip velocity and dynamic stress in-

teractions in nonsteady ruptures, even in fault models with

uniform fault properties like ours.

Note that this variability in local G for a given slip is

achieved among points with uniform and constant constitu-

tive properties. Such variability in the effective weakening

rate and G may become more pronounced in the presence

of fault heterogeneity, such as for geometrically rough faults

with variable effective normal stress, or if the hydraulic prop-

erties of the shearing layer and surrounding rock were to

evolve during the rupture process, such as from changes in

rock permeability due to off-fault damage. The evolution of

permeability during dynamic rupture may have considerable

implications for the role of thermo-hydro-mechanical pro-

cesses in the evolution of shear resistance on faults, and it

is an important topic for future work.

While we follow the assumption that most of the break-

down energy occurs on the shearing surface (Rice, 2006; Vi-

esca and Garagash, 2015), additional dissipation may also

come from the production of damage and off-fault inelastic

deformation (Poliakov et al., 2002; Andrews, 2005; Okubo

et al., 2019), especially on rough, nonplanar faults (Dunham

et al., 2011b). Such sources of additional dissipated energy

may contribute to the inferred increase in average breakdown

energy with average slip for natural earthquakes. Estimates

from laboratory and field measurements suggest that the con-

tribution of damage and other off-fault processes to dissipa-

tion may be relatively small, < 10 % (Chester et al., 2005;

Rockwell et al., 2009; Aben et al., 2019); however, this re-

mains an area of active research. As the off-fault damage

would be rupture-dependent as well, adding it to the con-

sideration of the breakdown energy would likely further re-

inforce the conclusion of this study that breakdown energy is

not an intrinsic fault property but rather is rupture-dependent.

The finding that the breakdown energy – as well as the

weakening rate – can vary substantially along a given rup-

ture and among subsequent ruptures, even for comparable

values of slip, suggests that caution is needed in using the in-

ferred breakdown energies from natural events for modeling

of future earthquake scenarios. Some dynamic rupture sim-

ulations account for thermo-hydro-mechanical effects (An-

drews, 2002; Bizzarri and Cocco, 2006; Noda et al., 2009;

Schmitt et al., 2015) and/or incorporate the effects of inelas-

tic off-fault damage (Dunham et al., 2011a, b; Roten et al.,

2017; Withers et al., 2018) that should result in qualitatively

similar effects on the breakdown energy. However, many em-

ploy simplified shear resistance evolutions that prescribe the

breakdown energy and/or weakening rate directly, as a local

fault property (Richards-Dinger and Dieterich, 2012; Shaw

et al., 2018; Gallovic et al., 2019; Dalguer et al., 2020).

Future work is needed to investigate whether and how the

complexity of the local weakening and strengthening behav-

ior experienced by the simulated faults with thermo-hydro-

mechanical and other mechanisms can be translated into

simulations with more simplified local relations, e.g., slip-

dependent relations, and still result in similar rupture dynam-

ics.

Furthermore, several features of faulting in the presence of

thermo-hydro-mechanical effects call into question the over-

all analogy with cohesive-zone dynamic fracture theory and,

hence, the significance of the breakdown energy as the quan-

tity that controls rupture dynamics. The analogy between

breakdown and fracture energies, and more broadly frictional

faulting and shear cracks of traditional fracture mechanics,

requires that the breakdown process be confined close to the

rupture tip (small-scale yielding) and that the dynamic re-

sistance level be constant; under such conditions, the con-

clusions of dynamic fracture theory apply, including on the

significance of breakdown energy (Freund, 1990). However,

neither of these assumptions holds for the faults with thermo-

hydro-mechanical processes. The weakening – and hence

breakdown process – typically continues with ongoing slip

at seismic slip rates on such faults, long after the rupture

front passes. As a result, the breakdown process is not con-

fined to the rupture tip and the dynamic resistance level is

not constant. Moreover, the total dissipated energy – not just

the energy included in the notion of breakdown energy –

contributes to shear heating and, hence, fault weakening in

thermo-hydro-mechanical fault models. That is why the en-

tire dissipated energy may affect rupture dynamics as well.

These considerations emphasize the need for a better under-

standing of rupture dynamics and its controls in the presence

of thermo-hydro-mechanical processes and for more system-

atic incorporation of such processes in earthquake source

modeling.
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