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Abstract: Two new high-entropy ceramics (HECs) in the weberite and fergusonite structures, along
with the unexpected formation of ordered pyrochlore phases with ultrahigh-entropy compositions and
an abrupt pyrochlore—weberite transition, are discovered in a 21-component oxide system. While the
Gibbs phase rule allows 21 equilibrium phases, 9 out of the 13 compositions examined possess single
HEC phases (with ultrahigh ideal configurational entropies: ~2.7kg per cation or higher on one
sublattice in most cases). Notably, (15RE,5)(Nb,,Ta;;;)O4 possess a single monoclinic fergusonite
(C2/c) phase, and (15REj/;5);(Nby;,Ta;2);07 form a single orthorhombic (C222;) weberite phase,
where 15REjs represents Sci/15Y1/15Laii5Pri/1sNdy1sSmyisEuy15GdiisTbyisDyisHoisEryisTmis
Ybi/15Luyis. Moreover, a series of eight (15RE/15)2+(TiaZr4Ce1/4Hf ) 14)2-2,(Nby 2 Tay2), 07 specimens
all exhibit single phases, where a pyrochlore—weberite transition occurs within 0.75 <x < 0.8125. This
cubic-to-orthorhombic transition does not change the temperature-dependent thermal conductivity
appreciably, as the amorphous limit may have already been achieved in the ultrahigh-entropy
21-component oxides. These discoveries expand the diversity and complexity of HECs, towards
many-component compositionally complex ceramics (CCCs) and ultrahigh-entropy ceramics.

Keywords: compositionally complex ceramics; high-entropy ceramics (HECs); weberite; pyrochlore;
fergusonite; ultrahigh-entropy ceramics; many-component ceramics

ceramics (CCCs) [1], are emergent as a new research
field (Fig. 1). In the last few years, single-phase high-
entropy oxides [4-7], borides [8—14], silicides [15-17],
carbides [18-24], nitrides and carbonitrides [25,26],
fluorides [27,28], sulfides [29], and intermetallic
aluminides [30] have been fabricated. Among HECs,
* Corresponding author. high-entropy oxides in the fluorite [1,6,31-36], rocksalt
E-mail: jluo@alum.mit.edu [4], pervoskite [5,37,38], pyrochlore [39-41], and

1 Introduction

High-entropy ceramics (HECs) [1-3], which can be
generalized to a broader class of compositionally complex
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spinel [42] crystal structures, as well as more complex
silicates [43], phosphates [44], aluminates [45,46], and
molybates [47], have been studied. The vast majority
of prior HEC studies focused on five-component
equimolar compositions that produce ~1.61kg per cation
ideal configurational entropy on at least one sublattice,
where kg is the Boltzmann constant, but some studies
also include four-component [20] and six- to nine-
component [48] equimolar compositions [1-3]. Recent
studies further investigated the high-entropy phase

formation and transition in non-equimolar 10- and
11-component oxide systems, which can form either
disordered (fluorite) or ordered (pyrochlore) phase
(with either one or two cation sublattices) [31,49]. This
study aims at further exploring many-component
CCCs and discovering new high-entropy (including
ultrahigh-entropy) phases, see relevant definitions of
“many-component CCCs” and “ultrahigh-entropy
ceramics” in Fig. 1 and subsequent discussions.
Specifically, this study reported nine new single-phase

’Compositionally Complex Ceramicsm -

(CCCs)

Many-Component CCCs
(= 10 components), including
Ultrahigh-Entropy Ceramics

>2.3k; per cation configurational entropy

High-Entropy Ceramics (HECs)

>1.5kg per cation configurational entropy

on at least one sublattice
Most studies on equimolar compositions of five or more components
(sometimes including equimolar four-component compositions,
albeit they are “medium-entropy” by this definition)

More Complexity & Engineering Space (Reduced Entropy) to Include:

¥ Non-equimolar compositions, which reduce the configurational entropy
but permit an even larger compositional space, can often outperform
their equimolar high-entropy counterparts,

e'g'J {Er-.- .-:-cea.sﬂHfﬂ.JSYn.o;

Yb,, ,,)0, 5 [JECS 40: 2120 (2020)]

¥ Long- and short-range cation ordering, which also reduces the
configurational entropy, can provide additional opportunities to tailor

properties.

One Cation Sublattice

Two or More
Cation Sublattices

“More is different.” P. W. Anderson [Science 177: 393 (1972)]

Fig. 1 Schematic illustrations of high-entropy ceramics (HECs) and compositionally complex ceramics (CCCs), along with the
proposed many-component CCCs and ultrahigh-entropy ceramics. Following a convention commonly used in high-entropy
alloys [50], we can define HECs to refer to ceramics possessing > 1.5kg per cation ideal configurational entropy on at least one
sublattice [1], where kg is the Boltzmann constant. Most prior studies of HECs focused on equimolar compositions of five or
more components, but some studies also included equimolar four-component compositions, albeit they are “medium-entropy” by
this definition [1]. We also proposed to broaden HECs to CCCs to include medium-entropy and/or non-equimolar compositions
and consider long- and short-range cation ordering, which reduce the configurational entropy but provide additional

opportunities to tailor properties [1]. Many-component CCCs (= 10 components) offer further compositional complexity (and

tunability). Moreover, we can define ultrahigh-entropy ceramics (a subclass of HECs and a subclass of many-component CCCs)

as those HECs with > 2.3kg per cation ideal configurational entropy on at least one sublattice; noting that In10 ~ 2.3, so that

equimolar many-component CCCs with = 10 disordered (randomly dissolved) components should be ultrahigh-entropy. We
note that these definition thresholds adopted here (5 vs. 10 components and 1.5kg vs. 2.3kg per cation) are somewhat arbitrary
and subjective. Like HECs vs. CCCs, non-equimolar compositions and cation ordering can reduce the configurational entropy of
many-component CCCs so that they (may or) may not be ultrahigh-entropy (or even high-entropy) ceramics. Two or multiple
cation sublattices, anion mixing, mixed ionic—covalent—metallic bonding, and defects (e.g., oxygen vacancies and aliovalent
doping) can further increase the complexity of CCCs. It is important to note that maximizing the entropy may not always be
beneficial or necessary; the complexities in (many-component) CCCs offer more opportunities to tailor properties, where
different or new phenomena can be emergent in complex systems, because “more is different” [52].
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ultrahigh-entropy compositions in three crystal structures,
each with 17-21 different metal cations. Notably, this
study discovered two new (weberite and fergusonite)
HECs, somewhat unexpected formation of ordered
pyrochlore phases with ultrahigh-entropy compositions
and a rather abrupt pyrochlore—weberite transition in a
21-component oxide system.

Akin to their metallic counterparts [50], we can
propose to expand HECs to a broader class of CCCs or
“compositionally complex ceramics”, as schematically
illustrated in Fig. 1 [1]. The more generalized CCCs can
further include or consider medium-entropy compositions,
non-equimolar compositional designs, and/or short-
and long-range cation ordering, which often reduce the
configurational entropy but offer additional complexity,
more tunability, and potentially new or improved
properties [1,17,31,36,39,51]. On the one hand, the
configurational entropy can sometimes be reduced to
less than 1.5k per cation (a somewhat subjective
threshold to define HECs [1]) because of cation ordering
in a single-phase CCC [17] or non-equimolar cation
partitions (dictated by a thermodynamic equilibrium) in
a dual-phase CCC [51], even for overall equimolar
five-component compositions. On the other hand, we
can further explore multiple cation sublattices, different
crystal structures, mixed ionic—covalent-metallic bonding,
and/or defects (e.g., aliovalent doping and oxygen
vacancies) to embrace and exploit the complexity.

While the vast majority of prior studies investigated
four- [20] to nine-component [48] (mostly equimolar)
compositions [1-3], we propose to further explore
(equimolar and non-equimolar) “many-component
CCCs” (i.e., = 10 components), which can offer even
larger (and tailorable) compositional spaces and further
(extreme) complexity (Fig. 1). These many-component
CCCs include ultrahigh-entropy ceramics (a subclass
of HECs), which we define as those HECs with
> 2.3kg per cation ideal configurational entropy on at
least one sublattice; noting that In10 ~ 2.3, so that
equimolar many-component CCCs with = 10
disordered components should be ultrahigh-entropy.
However, non-equimolar compositions and cation
ordering can reduce the configurational entropy of
many-component CCCs so that they (may or) may not
be ultrahigh-entropy (or even high-entropy) ceramics
(just like CCCs vs. HECs), as shown in Fig. 1. We note
that these definition thresholds adopted here (10
components and 2.3kg per cation) are somewhat
arbitrary and subjective (just like five components and

1.5kg per cation thresholds commonly used for HECs
[1] and their metallic counterparts, high-entropy alloys
[50]). Here, we recognize (and emphasize) that
maximizing the entropy may not be necessary (or
beneficial) in many cases; instead, the compositional
and structural complexities offer new opportunities to
tailor the phase stability and properties of CCCs
[1,17,31,36,39,51]. In general, the complexities in
(many-component) CCCs offer more opportunities,
where different or new phenomena can emerge in
complex systems, because “more is different” [52]. For
example, the somewhat unexpected properties of the
21-component CCCs observed in this study include the
unusual small numbers of (only one or two)
equilibrium phases formed, unpredicted formation of
ordered pyrochlore phases (vs. the predicted disordered
defect-fluorite) with ultrahigh-entropy compositions,
and a surprisingly abrupt transition between two
phases of identical compositions but different crystal
structures within a narrow compositional region.

Compositionally complex fluorite-based oxides provide
a platform to investigate the phase stability of various
derivative “ordered” and often distorted (superlattice)
structures via changing the ratios of cations of different
valences and radii. Here, cubic AO, fluorite (Fm3m,
No. 225) of a disordered cation arrangement (with only
one cation sublattice A) is the primitive structure,
while cubic A,B,0; pyrochlore (Fd3m, No. 227),
orthorhombic A;BO; weberite (C222,, No. 20), and
monoclinic ABO, fergusonite (C2/c, No. 15) can be
considered as derivative structures with oxygen
vacancies, cation ordering, and lattice distortion (with
two cation sublattices A and B), as shown in Fig. 2.
Here, we use “weberite” and “fergusonite” (or, more
rigorously, “weberite-type” and “fergusonite-type”
structures) to only denote the aforementioned space
groups, while we note that both of them can refer to
multiple polymorphs (of different space groups and
specific crystal structures) in mineralogy [53,54].
Recent studies uncovered long-range order—disorder
(pyrochlore—fluorite) transitions in non-equimolar 10-
and 11-component HECs/CCCs [31,49], and revealed
short-range weberite ordering (at the nanoscale) in
long-range defect-fluorite structured high-entropy rare
earth (RE) niobates/tantalates RE;(Nb/Ta)O7 [32].

In this study, we investigate a 21-component Nb—
Ta—Ti—Zr-Ce—Hf-Sc—Y-La—Pr—Nd-Sm—Eu—Gd-Tb-
Dy-Ho—Er-Tm-Yb-Lu-O system. While the Gibbs
phase rule allows the co-existence of up to 21 oxide
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Fig. 2 Schematic illustration of the pyrochlore—weberite—monoclinic fergusonite (PO-WO0-MF) compositional triangle

investigated in this study. The three endmembers are single-phase high-entropy ceramics (HECs) that form three different
fluorite-based crystal structures. First, endmember PO, (15RE;5)s(TijuZry4CeyHfE4)207, where 15RE;; s refers to the
equimolar mixture of 15 rare earth (RE) elements (labeled on the top of the figure), is in the cubic A,B,0; pyrochlore structure
(Fd3m, No. 227). Second, endmember WO, (15RE,;5); (Nb;,Ta;;);05, is in the Y;TaO;-prototyped orthorhombic A;BO-
weberite-type structure (C222;, No. 20). Third, endmember MF, (15RE,;5),(Nb;,Ta;;),0s, is the YNbO,4-prototyped ABO, (or
A;B,05) monoclinic fergusonite (MF)-type structure (C2/c, No. 15). We selected 13 compositions in this PO-W0-MF
compositional triangle to investigate in this study. These include a series of eight compositions on the PO-WO0 edge (the light green
line) of (15RE;)15)2e(TijuZryuCeyygHrE1/4)2-2d(Nb1 2 Ta1 )07 (0 < x <1), which form single-phase pyrochlore or weberite
structure (with a rather abrupt transition). These eight compositions are denoted as PO, P1, P2, P3, W3, W2, W1, and WO0. In
addition, we examined the other endmember (15RE;;5),(Nb;,;Ta;,),05 that is in single-phase monoclinic fergusonite, and we
further observed three pyrochlore-MF dual-phase specimens denoted as P+MFO0, P+MF1, and P+MF2, as well as a
weberite—-MF dual-phase specimen denoted as W+MF. Since all these three structures (pyrochlore, weberite, and fergusonite)
can be considered as derivative structures based on a primitive cubic fluorite structure (Fm3m, No. 225), their unit cells are
delineated, and the lattice parameter relationships between these three structures and the primitive fluorite cell are also noted in
the figure. Here, we refer the monoclinic fergusonite structure as “MF”, and denote their lattice parameters as @, by, and cpr to
avoid confusion with the cubic fluorite structure (ay).

phases in this 21-component oxide system (assuming
fixed Po,, temperature, and pressure), 9 out of the 13
compositions examined possess single high-entropy (in
fact, ultrahigh-entropy) phases in three fluorite- derived
structures (pyrochlore, weberite, and fergusonite), and
four others are dual-phase HECs. Notably, weberite and
fergusonite HECs have never been reported previously.
This study also discovered somewhat unexpected
formation of the ordered pyrochlore phases (vs. the
disordered defect-fluorite) with the ultrahigh- entropy
compositions, along with an unexpectedly abrupt

pyrochlore—weberite transition, in the 21-component
ultrahigh-entropy oxide system.

2 Experimental

As shown in Fig. 2, we designed a compositional triangle
with the following three endmembers: (15RE,;s),
(TiyaZry4CeyysHt14)207, (15REy/15)3(Nby2Tay2)107, and
(15RE1/15)(Nb1/2T3,1/2)O4 (also written as (15RE1/15)2
(Nby;Tay),05 to have the same number of sites per
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cell/formula with the other two). Here, 15RE ;5 represents
ScinisYi1sLaisPrisNdisSmyysEuy5GdiysTbyyisDy s
Hoy/15Er/15Tmy15Yby5Luy5. Our experiments showed
that the three endmembers possess single-phase
pyrochlore, weberite, and monoclinic fergusonite
structures. Thus, they are denoted as PO, W0, and MF,
respectively. Here, we refer the monoclinic fergusonite
endmember as “MF” to avoid confusion with the base
fluorite structure. We use PO and WO to denote the
19-component pyrochlore and 17-component weberite
endmembers, respectively, as we also found six
additional 21-component compositions that are in
single-phase pyrochlore and weberite structures along
the PO-WO line, which are denoted as P1, P2, P3, W3,
W2, and W1.

As shown in Fig. S1 in the Electronic Supplementary
Material (ESM), the PO-WO0-MF compositional triangle
is a section of the larger (15RE;5),05—
(TiyuZry4Ce14HE 14)O—(Nby 2 Tay2),05  compositional
triangle. Thus, we first prepared three mixtures
composing (15REy/15),03, (TiyuZry4CeysHf14)0,, and
(Nb,Ta;»),0s, by weighting out appropriate amounts of
commercial binary oxides (~5 pm particle sizes, US
Research Nanomaterials, USA). A batch of 15 g was
desired for each mixture, and was placed in a 100 mL
Y,0s-stablized ZrO, (YSZ) planetary milling jar with
10 mL of isopropyl alcohol and YSZ milling media at a
ball-to-powder mass ratio of 10 : 1. The planetary ball
mill was conducted at 300 r'min ' for 24 hin a PQNO04
mill (Across International LLC, USA) to mix and
homogenize the powders, and the mixed powders were
dried at 75 C overnight. The dried powders were
ground into fine particles with an agate mortar and
pestle. Subsequently, these three powders were used as
precursors to fabricate specimens of the 13 different
compositions illustrated in Fig. 2.

To fabricate each specimen, appropriate amounts of
the three aforementioned precursors were weighted out
in batches of 2.5 g based on the compositions labeled
in Figs. 3 and 4 and Figs. S2-S14 in the ESM. The
mixed powders were then placed in a poly(methyl
methacrylate) high-energy ball mill (HEBM) vial with
tungsten carbide (WC) inserts and one ¢ 5/16”
(~7.94 mm) WC ball. Another 1 wt% (0.025 g) stearic
acid was added as lubricant. The HEBM was
conducted in a SPEX 8000D mill (SPEX CertiPrep,
Metuchen, NJ, USA) for 100 min, and the as-milled
powders were then pressed into green pellets at 100
MPa in a ¢ 1/2” (~12.7 mm) stainless steel die for 2

min. After that, the green pellets were placed on a Pt
foil in an alumina combustion boat and sintered inside
a muffle box furnace (SentroTech, Strongsville, OH,
USA) at 1600 ‘C for 24 h with 5 C-min ' heating rate
and furnace cooling. The sintered pellets were successively
ground and polished before further characterizations.

A Rigaku Miniflex II diffractometer was utilized to
collect the X-ray diffraction (XRD) data at 30 kV and
15 mA. For each single-phase specimen, unit cell
refinement was performed through JADE software to
obtain the lattice parameters, and the theoretical
density was calculated based on the measured lattice
parameters and the composition. Scanning electron
microscopy (SEM) and energy dispersive X-ray
spectroscopy (EDS) were conducted on a Thermo-
Fisher (formerly FEI) Apreo microscope equipped with
Oxford N-Max" EDS detector to examine the
microstructure and compositional homogeneity. Scanning
transmission electron microscopy (STEM) specimens
were prepared by a Thermo-Fisher Scios focused ion
beam (FIB), and STEM and nanoscale EDS were
conducted at 300 kV on a JEOL JEM-ARM300CF
aberration-corrected microscope (AC-STEM) with a
high-angle annular dark-field (HAADF) detector.

Bulk densities were measured abiding by ASTM
Standard C373-18 utilizing boiling water. Young’s
modulus (E) was determined following ASTM Standard
C1198-20 wusing a Tektronix TDS 420A digital
oscilloscope with 20 MHz longitudinal ultrasonic wave
and 5 MHz transverse ultrasonic wave. Measured
modulus was corrected for porosity according to £ =
Erneasured/(1 — 1.29P) [55], where P is the pore fraction.
Thermal conductivity (k) was calculated as the product
of thermal diffusivity, bulk density, and heat capacity.
Specimens were first coated with black carbon to
maximize laser absorption and infrared emission. The
thermal diffusivity was measured by a laser flash
analyzer (LFA 467 HT HyperFlash, NETZSCH), and
fit with a transparent model with the consideration of
the radiative heat transfer (Supplementary Method and
Fig. S16 in the ESM for the detailed procedure and
discussion). The heat capacity was calculated by the
Neumann—Kopp rule using the data from Ref. [56].
Similar to Young’s modulus, thermal conductivity was
also corrected for porosity using the formula: k =
kmeasured/ (1 — P)3/ 2 [57]. Thus, all Young’s modulus and
thermal conductivity values reported in this study
represent the intrinsic properties for fully dense
materials (with the porosity effects removed). For the
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high-temperature data, the reported & values represent
the true (net) thermal conductivity values after removing
the radiative heat transfer contributions (Supplementary
Method in the ESM).

3 Results and discussion

Figure 2 illustrates the PO-WO0-MF compositional
triangle and the 13 specimens investigated in this study.
All the three endmembers (PO, W0, and MF) are
single-phase HECs that form three different fluorite-
based crystal structures. First, endmember PO,
(15RE1/15)2(Ti1/4ZI‘1/4C€1/4Hf1/4)207, is in the cubic
A,B,0; pyrochlore structure (Fd3m, No. 227). Second,
endmember WO, (15RE1/15)3(Nb1/2T31/2)107, is in the
Y;TaO;-prototyped orthorhombic A;BO; weberite-type
structure (C222;, No. 20). Third, endmember MF,
(15RE1/15)2(Nb1/2T211/2)208 (Wlth the actual unit cell and
irreducible formula (15REy/;5)(NbysTay,)04), is the
YNbO,-prototyped ABO4 monoclinic fergusonite-type
structure (C2/c, No. 15). Here, we adopt the unique
c-axis for the monoclinic fergusonite, which can
alternatively be interpreted as an /2/a structure with the
unique b-axis. A combination of XRD characterization
and EDS elemental mapping confirmed that these three
endmembers are compositionally homogenous without
detectable secondary phase. See Figs. S2, S9, and S10
in the ESM for the detailed XRD and EDS
characterization results case by case, and the XRD
patterns are also shown in Figs. 3 and 4. Since

lower crystal symmetry will result in more diffraction
peaks, the orthorhombic weberite and monoclinic
fergusonite structures possess more diffraction peaks in
the corresponding XRD patterns than the cubic
pyrochlore.

To the best of our knowledge, HECs of the
weberite-type and fergusonite-type structures have not
been reported to date. Thus, our 17-component WO
(15RE}5)3(NbysTa; )07  and  MF  (15REj)s),
(Nby,Ta;),0g represent the two new HEC phases
discovered. They both possess ultrahigh ideal
configurational entropy of ~2.71kg per cation on the A
sublattice and the overall mean configurational
entropies of ~2.2kg per cation for WO and ~1.7kg per
cation for MF, averaged for A and B sublattices (Table
S2 in the ESM). Thus, they can be classified as
ultrahigh-entropy ceramics (a subclass of HECs with >
2.3kg per cation ideal configurational entropy on at
least one sublattice, as well as a subclass of many-
component CCCs, as schematically illustrated in Fig. 1).
Here, we have ignored the anti-site disorder (entropy-
driven swapping of A vs. B site cations), which is
inevitable and can increase the entropy further, in
calculating these ideal configurational entropies.

It was suggested that the orthorhombic weberite
(instead of the defect-fluorite) should form for
stoichiometry A;B;0; with a larger ratio of cation radii

of r,,. / Fgse > ~1.40 based on the data for ternary

A3+
niobates and tantalates [53,58—61]. Our 17-component
WO (15RE};5)3(Nby,Tay2);07 has a ratio of average

(a) PO [(5RE)(TissZrCeyHfi,),0; (x = o, pyrochlore) (b) (222), o0y (c) @40), (©22), (d) @30,
1 l. — . | )
P1 I(‘SREM), 25Ty 20 yqCey HE )y (NBysTay,), 550, (% = 0,25, pyrochiore) A
] | A | | J\
L P2 ey A
3. ‘ | | i " | y - i
8, P3 I(q;as (TiygZry,Ce, i, oslNby Tauo 05 =075, Syrodhlore) A i )
oy A LA A VA
‘B r;na s vzs(Th 20, c=“m wo.s7s(NDy:Ta,)8050, (x = 0.8125, weberite A
5 ISEANGI
@ A W A
E r;ke‘.?)wl W2, u AT Dons(ND,.Ta,), 2.0, (x = 0.875, weberite) M
le[ Yagzs(Tiyelr (n HF i Yons(ND . Ta,2)o.05550; (X = 0.9375, weberite ﬂ
| o —'J\ = M (312),+(312),,
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Fig. 3 (a) XRD patterns of eight specimens in the pyrochlore—weberite series of PO, P1, P2, P3, W3, W2, W1, and WO, with

compositions of (15RE;5)2+(Tii4Zr4Cey4HE ) 14),-2(Nby o Ta2),07 (x =

0, 0.25, 0.5, 0.75, 0.8125, 0.875, 0.9375, and 1). (b—d)

Enlarged views of the peak evolutions from cubic pyrochlore to orthorhombic weberite. Due to the orthorhombic structure of

weberite, where b, ~ \/Eaf , Cy ® x/Eaf ,but b, #c,,

its XRD reflections usually show double peaks. The (331), in (d) is the

pyrochlore superstructure peak (over the primitive cubic fluorite). Detailed XRD and SEM-EDS elemental mapping results of
these eight compositions are documented in Figs. S2—-S9 in the ESM. Note that the orthorhombic weberite structure of lower

symmetry shows more XRD peaks.
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Fig. 4 (a) XRD patterns of four dual-phase specimens, along with monoclinic fergusonite (MF) (15RE,;;5),(Nb;,Ta,;),0Os.
XRD patterns of the pyrochlore PO (15REj5)(Tiy4Zr1,4Ce1,4HE1/4),0; and weberite WO (15RE;5)3(Nb,;Ta;,);0; are also
juxtaposed for comparison to ratify the dual phases of the other four compositions. (b—d) Enlarged views of the detailed peak
comparisons. Detailed XRD and SEM-EDS elemental mapping results of all these seven compositions are documented in Figs.
S2 and S9-S14 in the ESM. In single-phase specimens, the orthorhombic weberite WO and monoclinic fergusonite (MF) possess
more XRD peaks (compared with cubic pyrochlore P0O) due to their low symmetries.

cation radii rAT/rBT ~ 1.56 (calculated based on

the ionic radii from Ref. [62]), which is consistent with
the observed weberite-type phase. However, we also
note that this criterion for forming weberite vs. fluorite
structure is not always held for ternary oxides. In fact,
Y35NbO; was known to form the defect-fluorite
structure [63], and Y3TaO; was shown to be stable in
both structures [63-65], even though both of them

have similar high Py / Fgse values.

The fergusonite structure has been widely reported
in ternary RE niobates (RENbO4) and tantalates
(RETaO,) [66]. Although HECs of the fergusonite-type
structure have not been fabricated, natural YNbOs-
based minerals of the fergusonite-type structure can
contain more than 10 cations (with Y and Nb being the
major metal cations, so they are many-component
CCCs, but may not be “high-entropy” yet) [67]. Thus,
the 17-component MF (15RE;;5)(Nby,Ta;»)04)
represents the first HEC fabricated in the monoclinic
fergusonite-type structure (and they are also ultrahigh-
entropy ceramics, a subgroup of HECs). While most
prior studies of HECs have been focused on high-
symmetry (cubic, hexagonal, and tetragonal) phases,
the studies of low-symmetry orthorhombic and
monoclinic HECs are less common (but with several
exceptions, e.g., high-entropy orthorhombic pervoskite
[38], silicide carbides [68], monoborides [9], and M;B4
borides [10], as well as monoclinic silicates [43,69]

and phosphates [44]).
Although high-entropy pyrochlore oxides have been
reported in several prior studies [39—41], the discovery

of PO (15RE1/15)2(Ti1/4Zr1/4Ce1/4Hf1/4)207 is interesting
not only because it is ultrahigh-entropy (~2.71kg per
cation on the A sublattice and ~2.05kp per cation for
the overall mean on both sublattices, Table S2 in the
ESM) but also because its formation is somewhat
unexpected based on the criterion for ternary oxides or
conventional high-entropy pyrochlore oxides. Here, it
is well established based on ternary oxides that
stoichiometry A,;B,07 should form ordered pyrochlore
structure with a larger ratio of cation radii Fae / Fgie >

~1.46, while the (disordered) defect-fluorite structure
should form for a smaller ratio [70]. This criterion has
been extended and verified for conventional
high-entropy compositions based on the average cation
radii with the same pyrochlore—fluorite transition

threshold of r,.. /7. = 1.46 [71]. That study [71]

proposed that a large size disorder [39] & > ~5% may
lead to a dual-phase region near the threshold for 1.4 <

ros/ VBT < 1.5. Notably, our 19-component PO

(I5RE1/15)2(Tiy4Zr14Ce14HE114),07  has  a

average cation radii Ty /rB4+ ~ 1.43 (below the

threshold of ~1.46) and exceptionally high size

disorder: 8y ~ 6.6%, & ~ 13%, and 8" =+/5, + 52 ~
14.6% for the ordered pyrochlore. The size disorder
would be even higher (Jyisorder = 19.9%) if a disordered
defect-fluorite structure formed, where we used the
same cation radii in the ordered pyrochlore (CN = 8 for
the A-site RE elements and CN = 6 for the B-site 4+
cations based on Ref. [62]) for simplicity and a better

ratio of
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comparison. However, we observed a single ultrahigh-
entropy pyrochlore phase. This result suggests a
deviation of the pyrochlore vs. fluorite stability rules
(that would predict defect-fluorite based on ternary
oxides or dual-phase) for this ultrahigh-entropy
composition. As we will show subsequently, it is even
more surprising that this ultrahigh-entropy pyrochlore
structure is highly stable even after adding significant
amounts of Nb°" and Ta’" cations to change the A : B
stoichiometry to an equivalent y value of 0.75 (in our
specimen P3), while ternary A, B, 0., can

disorder (to form the defect-fluorite structure) at y >
~0.1-0.3 [31,72].

To investigate the pyrochlore vs. weberite phase
stability and transformation, we further prepared and
analyzed six specimens along the PO-WO0 edge in Fig. 2
between the PO and WO endmembers, with the
compositions (15REy5)2(TiysZri4CeraHf4)220 (Nbip
Tap)0; (x= 0.25, 0.5, 0.75, 0.8125, 0.875, and
0.9375). The results are summarized in Table S1 and
documented in Figs. S2—S9 in the ESM. Interestingly,
all the six 21-component ultrahigh-entropy compositions
form single-phase HECs in either pyrochlore or

weberite structure (Fig. 3 and Figs. S3—S8 in the ESM).

Thus, we named them as P1 (x = 0.25), P2 (x = 0.5),
and P3 (x = 0.75) for the three 21-component
pyrochlore oxides and W3 (x = 0.8125), W2 (x =
0.875), and W1 (x = 0.9375) for the three 21-
component weberite oxides. Moreover, a rather abrupt
pyrochlore-to-weberite transition (PWT) occurs within
a narrow compositional range between x = 0.75 and
0.8125, where the (222),, peak starts to split into (202),,
and (220),, peaks due to the cubic—orthorhombic
transition (by, # ¢y in orthorhombic weberite), as shown
in Fig. 3(b). Due to the compositional and structural
complexities, it is infeasible to determine the distributions
for each of the 21 cations at A vs. B sites. Thus, we
cannot calculate the exact configurational entropies for
this series of “mixed” compositions (with non-
stoichiometric ratios of A-type vs. B-type cations).
However, we can estimate the configurational entropies
for ideal cases with random (high-entropy) or preferential
(low-entropy) anti-site mixing, as shown for P3 and
W3 in Table S2 in the ESM, which are generally
higher than the endmembers. In brief, the long-range
pyrochlore vs. weberite ordering with ultrahigh-entropy
compositions, as well as an abrupt PWT or cubic-to-
orthorhombic transition, is unequivocally evident (but
it is uncertain if it is a first-order transition).

Given the Gibbs phase rule that allows the co-
existence of up to 21 equilibrium phases, the single-
phase formation with a quite abrupt transition along
the PO—WO line is surprising and scientifically
interesting. Here, we do not infer that the PWT or
cubic-to-orthorhombic transition in 21-component
oxides with change x must be a rigorous first-order
transition defined in thermodynamics (as we feel that it
is probably unlikely); but it does occur within a narrow
compositional region of Ax = 0.0625 (that we cannot
resolve further experimentally, given the complexity of
the system and the already subtle differences in the
splitting of the XRD peaks for x = 0.75 vs. 0.8125, as
shown in Fig. 3). We should note that it is also
surprising that the ultrahigh-entropy pyrochlore

structure (with a Fas /rB4+ ratio of ~1.43 in PO,

lower than the normal threshold of ~1.46 to disorder) is
stable in the ordered pyrochlore structure (against
forming disordered defect-fluorite structure, either as a
secondary phase or via an order—disorder transition
overall) even after adding significant amounts of Nb”"
and Ta’" cations in the series of (15RE/15)24x
(Tiy/aZr4Cey4HE 14)2-2(Nby o T2y )07, This addition
not only introduces aliovalent doping, but also changes
the A:B
pyrochlore structure is stable up to an A: B ratio of
2.75:1.25 or an equivalent y value of 0.75 (in
composition P3). In contrast, it is known that an order—
disorder transition can occur at y > ~0.1-0.3 in ternary

stoichiometry. Notably, the ordered

AyiByr 075, oxides to form disordered defect-

fluorite phase [31,72]. This again suggests the unusual
phase stability with ultrahigh-entropy compositions.

In order to further confirm the crystal structures
(including the cubic—orthorhombic transition or PWT)
and verify the elemental homogeneities at nanoscale,
AC-STEM-HAADF imaging and EDS elemental
mapping have been carried out for the three
representative specimens, namely P3 (Fig. 5), W3 (Fig.
6), and MF (Fig. 7). For pyrochlore P3, the zone axis
[211], and two perpendicular planes (111), and (011),
are marked in Fig. 5(a). For weberite W3, the zone axis
[110],, and two perpendicular planes (110),, and (001),,
are indicated in Fig. 6(a). In the weberite specimen, the
lattice parameters by, and ¢y, are too close (7.4323 vs.
7.4802 A) to differentiate in STEM imaging.
Nevertheless, digital image processing of the raw
STEM image shows intensity modulations along the
vertical direction and reveals cation ordering,
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Fig. 5 (a) STEM-HAADF image of P3 (1SRE1/15)2A75(Ti1/4Zr1/4Ce1/4Hf1/4)0_5(Nb1/2Ta1/2)0.7507, which illustrates the pyrochlore
atomic structure. The zone axis [211], and two perpendicular planes (01 T)p and (1 TT)p of the pyrochlore structure are marked.
(b) Fast Fourier transform (FFT) diffraction pattern, which further validates the aforementioned crystallographic orientations. (c)
STEM micrograph with the corresponding EDS elemental mappings, demonstrating the homogenous elemental distributions at
the nanoscale.

Ho,,Er,, Tm,, Yb, Lu

Weberite W3: (Sc,,.Y,,.La,,.Pr,,.Nd
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Fig. 6 (a) STEM-HAADF image of W3 (1SRE1/15)2_8125(Ti1/4Zr1/4Cel/4Hf1/4)0_375(Nb1/2Ta1/2)0_g12507, which illustrates the
weberite-type atomic structure. The zone axis [110],, and two perpendicular planes (110),, and (001),, of the weberite structure
are indicated. In this weberite specimen, the lattice parameters b, and c,, are too close (7.4323 vs. 7.4802 A). Nevertheless,
digital image processing of the raw STEM-HAADF image shows intensity modulations along the vertical direction to reveal
cation ordering, which matches the atomic configuration of (001),, plane with the [110],, zone axis, but not the (010),, plane with
the [101]y, zone axis. (b) FFT diffraction pattern, which further validates the aforementioned crystallographic orientations.
(c) STEM micrograph with the corresponding EDS elemental mappings, demonstrating the homogenous elemental distributions
at the nanoscale.
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which matches the atomic configuration of (001),
plane with the [110],, zone axis, but not the (010)y
plane with the [101], zone axis, as shown in Fig. 6(a).
For fergusonite MF, the zone axis [011]y and two
planes, (111)¢ and (100),,¢, with an angle of ~86°, are
labeled in Fig. 7(a). The fast Fourier transform (FFT)
diffraction patterns of each STEM micrographs are
also shown in Figs. 5(b), 6(b), and 7(b), to further
validate the crystal structures and the crystallographic
orientations. The STEM-HAADF micrographs for
these three specimens (P3, W3, and MF) showing
larger regions can be found in Fig. S15 in the ESM.

In addition, STEM micrographs with the corresponding
STEM-EDS elemental mappings are shown in Fig. 5(c)
for pyrochlore P3, Fig. 6(c) for weberite W3, and Fig.
7(c) for fergusonite MF. The combination of STEM—
HAADF imaging and EDS mappings has verified the
homogeneous elemental distributions at atomic and
nanometer scales, in addition to microscale as shown
by SEM-EDS (as shown in Figs. S2-S10 in the ESM).
In particular, STEM-HAADF imaging and EDS
mappings directly verified the presence of single
ultrahigh-entropy pyrochlore phase in P3 and weberite
phase in W3, just before and after the cubic-to-
orthorhombic transition or the PWT, without detecting

Monoclinic fergusonite MF: (Sc,,,Y,La,,Pr,,Nd,,Sm, Eu,, Gd

Tbmsoym5H°|/‘5Erm5Tm‘/15Yb|

hs

s Lu‘/|s)(Nb‘/zTa,,,)O4

-

'

Fig. 7 (a) STEM-HAADF image of MF (15RE},5),(Nb,/;Ta;/,),0g, which illustrates the monoclinic fergusonite-type atomic
structure. The zone axis [011],¢ and two planes, (111),,¢ and (100),,¢ of the fergusonite structure, which are at an angle of ~86°,
are labeled accordingly. (b) FFT diffraction pattern, which further validates the aforementioned crystallographic orientations.
(c) STEM micrograph with the corresponding EDS elemental mappings, demonstrating the homogenous elemental distributions
at the nanoscale.

any nanoscale structural or compositional inhomogeneity
(i.e., no phase separation).

We further prepared and analyzed four specimens
between the endmember fergusonite MF and the
P0-WO edge in the MF-PO—WO0 compositional triangle
shown in Fig. 2, which are labeled as P+MF0, P+MF]1,
P+MF2, and W+MF in Fig. 2. Dual-phase HECs have
been observed for these four specimens (Figs. S11-S14
in the ESM). By comparing their XRD spectra with the
three endmembers (PO, WO, and MF) in Fig. 4,
specimens P+MF0, P+MF1, and P+MF2 have been
found to contain pyrochlore and fergusonite dual
phases. Similarly, specimen W+MF has been unveiled
to comprise dual HEC phases of weberite and fergusonite.
Based on the relative XRD peak intensities, SEM
micrographs, and EDS elemental mappings, pyrochlore
and weberite phases (of brighter contrast in SEM
micrographs) are enriched in Sc (as well as Ti, Zr, and
Hf for specimens P+MFO0 to P+MF2). The fergusonite
phases (of darker contrast in SEM micrographs) are
enriched in Nb (and probably Ta). Dual-phase HECs
(of five metal cations) have been reported previously
[51], while the four dual-phase HECs discovered here
have 17, 19, or 21 different metal cations. We note that
the formation of dual HEC phases is still significantly
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less than the maximum numbers of 17-21 equilibrium
phases allowed by the Gibbs phase rule.

Figure 8 shows the measured lattice parameters,
Young’s modulus, thermal conductivity, and E/k ratio
for the series of eight specimens with the compositions
(15RE1/15)24x(TiiaZr1/4Ce1/4HE1/4)224(Nby 2 Ta12),07 (0 <
x < 1), denoted as PO, P1, P2, P3, W3, W2, W1, and
WO. The lattice parameters normalized to that of the
primitive cubic fluorite cell (ar) are shown in Fig. 8(a).
In general, gradual increases in the normalized lattice
parameters have been observed from PO (x = 0) to W0
(x = 1), which can be attributed to the increasing
fractions of large RE elements [62]. However, the abrupt
change in the normalized lattice parameters due to the
occurrence of PWT was observed between specimens
P3 (x=0.75) and W3 (x = 0.8125).

The measured Young’s modulus (£) largely follows
the rule-of-mixture (RoM) average of the two
endmembers PO and W0, which decreases slightly from
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PO to WO (Fig. 8(b)). The measured thermal conductivity
(k) at room temperature decreases more appreciably
with increasing x, which also follows the RoM average
of the endmembers PO and WO largely (Fig. 8(c)).
However, there are small but noticeable changes in
both measured Young’s modulus and measured room-
temperature thermal conductivity from P3 (x = 0.75) to
W3 (x = 0.8125) with the occurrence of PWT (i.e., a
cubic—orthorhombic transition), as shown in Figs. 8(b)
and 8(c), which may be attributed to the changes of
crystal symmetry and structure [32,73]. The pyrochlore
endmember PO possesses an FE/k ratio of
~173 GPam-K-W™', on a par with those of high-
entropy pyrochlore oxides [31,39]. In Fig. 8(d), the
weberite endmember WO exhibits a high E/k ratio of
~193 GPa-m-K-W™' (being thermally insulating yet
stiff), consistent with ternary weberite niobates [73].
The temperature-dependent thermal conductivity
was further measured for the specimens P3 (x = 0.75)
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Fig. 8 (a) Lattice parameters and room-temperature (b) Young’s modulus (£), (c) thermal conductivity (k), and (d) E/k ratio
measured for the eight specimens in the pyrochlore—weberite series of the general compositional formula (15RE;/s)yy
(Tiy4Zry;sCey4HfE | 14)2-2,(Nby T2y 5),07 with composition variable 0 < x <X 1. Arrows and dashed lines are used to denote the
pyrochlore-to-weberite transition (PWT). Dotted lines represent the rule-of-mixture averages from two endmembers. The lattice
parameters are obtained from unit cell refinements of the XRD spectra, and are normalized to the primitive fluorite cell (ar) for

direct comparison.
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and W3 (x = 0.8125), which represent the compositions
just before and after the PWT. The measured thermal
conductivity (after correction to remove the radiation
contribution at high temperatures, following the model
described in the ESM) vs. temperature curves are
shown in Fig. 9. The thermal diffusivity vs. temperature
curves are shown in Fig. S17 in the ESM. Despite a
distinctive change in the crystal structure (from cubic
to orthorhombic), the measured thermal conductivity
vs. temperature curves for the pyrochlore P3 and
weberite W3 are similar (“amorphous” behavior). The
thermal conductivity monotonically increases slightly
from ~1.27-1.28 W-m "K' at room temperature to
~1.41-1.42 W-m K" at 600 ‘C. This increase is due
to the rising specific heat capacity. Thermal diffusivity,
as shown in Fig. S17 in the ESM, decreases from room
temperature to 200 °C, and then remains approximately
a constant from 200 to 600 ‘C. The temperature
dependences of the thermal conductivity and thermal
diffusivity suggest diffuson-like behavior of the
heat-carrying vibrational modes of P3 and W3 from
200 to 600 C, where the thermal conductivity rises are
mainly due to the heat capacity contributions [74]. This

1.47
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Fig. 9 Measured thermal conductivity (after removing
the radiation contribution and corrected for porosity) vs.
temperature curves of pyrochlore P3 (15REj;5),75
(Ti1aZry4Ce114H1114)0 s(Nby1 2 Tay 12)0.7507 (denoted by
purple circles) and weberite W3  (15REj/5)28125
(Ti1/aZr14Ce114H1114)0 375(Nb1 2 Ta12)0 812507 (denoted by
orange diamond), which are the two compositions just
before and after the occurrence of the PWT. Notably, the &
values reported here represent the true (net) thermal
conductivities after removing the radiative heat transfer
contributions at high temperatures using a transparent
model (differing from the apparent thermal conductivities
calculated using the standard model from measured
thermal diffusivities). The procedure to remove the
radiation contribution is described and discussed in the
Supplementary Method in the ESM.

behavior is similar to those observed for other
high-entropy fluorite and pyrochlore oxides in a prior
study [31]. Typically, lower symmetry means higher
anharmonicity in a crystal, thereby causing stronger
phonon umklapp scattering and lower lattice thermal
conductivity [75]. However, in this case, since the
phonon scattering is so strong that the minimum
thermal conductivity is already achieved in both materials,
there is no difference in the thermal conductivity due
to the different symmetries. Presumably, the cubic-to-
orthorhombic transition (PWT) does not change the
temperature-dependent thermal conductivity appreciably
because the amorphous limit of phonon scattering may
have already been achieved in the 21-component
oxides at a relatively low temperature of 200 C to
produce a low thermal conductivity. However, such phase
transitions can alter other properties more appreciably.

4 Conclusions

We have investigated a 21-component oxide system to
discover two new ultrahigh-entropy weberite and
fergusonite phases and somewhat unexpected formation
of ordered pyrochlore phases with ultrahigh-entropy
compositions. While the Gibbs phase rule allows the
formation of up to 21 equilibrium phases, 9 out of the
13 compositions examined possess single HEC phases,
and the other four are dual-phase HECs. We further
investigated a series of eight (15RE;/5)2
(TiyaZriuCeisHf1/4)224(Nb1 T2 )07 (0 < x < 1)
compositions, which all possess single-phase cubic
pyrochlore or orthorhombic weberite structure, with a
fairly sharp pyrochlore—weberite (cubic—orthorhombic)
transition occurring between x = 0.75 and x = 0.8125.
This study reported nine new single-phase
ultrahigh-entropy compositions in three crystal
structures, each with 17-21 different metal cations and
ultrahigh ideal configurational entropies. The
ultrahigh-entropy compositions can exhibit phase
stability deviating from the rule derived based on the
simple ternary oxides or conventional five-component
HECs. For example, single-phase ordered pyrochlore
structure (instead of disordered defect-fluorite structure)
forms, and is highly stable in 19-component and
21-component HECs with smaller r,3+/rgs+, large size
disorder, and significant non-stoichiometries (e.g., after
adding significant amount of Nb°" and Ta’* cations).
The thermal conductivity appears to already achieve
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the low amorphous limit above 200 ‘C, which does not
change appreciable with the occurrence of a
pyrochlore—weberite (cubic—orthorhombic) transition.
In a broader context, this study has expanded the
diversity and complexity of HECs, towards many-
component CCCs and ultrahigh-entropy ceramics.
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