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a b s t r a c t 

Phenological matching between the timing of flowering and pollinator activity is critically important for the 

persistence of pollination systems globally. Phenological mismatch between plants and their insect pollinators can 

occur if flowering and adult insect activity do not occur simultaneously. There is evidence that the phenological 

trajectories vary among bee species, but little has been done to compare these trajectories with the phenology 

of the corresponding floral community. In this work, we use daily pan trapping across nine different annual 

Clarkia (Onagraceae) plant communities that vary in Clarkia species composition to estimate the phenological 

trajectory (within-season abundance curve) of the two most abundant bee pollinators - Lasioglossum incompletum , a 

generalist, and Hesperapis regularis , a Clarkia specialist - over the course of a Clarkia flowering season in California 

USA. Clarkia flower at the end of the winter annual growing season when all other winter annual plants have 

senesced, and therefore are phenologically separate from other flowering plants. We find that Hesperapis pollinator 

abundances follow the same phenological trajectory as Clarkia floral abundances in all community types. In 

contrast, Lasioglossum abundances do not track Clarkia floral abundance through time. Our results demonstrate 

that Clarkia exhibit closer phenological matching with Hesperapis than with Lasioglossum. These findings imply 

that pollinator communities may not respond monolithically to changes in the environment. Future research 

should study the phenological trajectories of plants and pollinators in different systems to determine if this pattern 

is common and repeatable. 
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ntroduction 

The rise in mean global temperature has been associated with phe-
ological shifts in many species [ 14 , 45 , 50 ]. For example, phenologi-
al advancement has occurred in such life history events as bud burst,
nsect emergence, and egg laying dates [ 1 , 12 , 34 ] in association with
vents brought on by climate change such as earlier snowmelt and ex-
ended warm seasons [ 32 , 34 ]. In communities of flowers and their insect
ollinators, changes in the timing of species’ life history events have
he potential to disrupt pollination because plant flowering and polli-
ation must occur simultaneously in order for these interactions to be
uccessful [ 1 , 32 ]. The temporal interruption of species interactions, a
henomenon known as phenological mismatch, may cause local extinc-
ions and failure of key ecological functions [49] . Studies have shown
ases in which phenological mismatch in plant-pollinator communities
s already occurring due to climate change, and have suggested they are
ikely to increase in frequency and intensity [ 13 , 16 , 21 , 31 , 46 , 48 ]. 
The vast majority of flowering plant communities rely on unique

ssemblages of pollinators, and bees in particular are responsible for
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ollination services of terrestrial plant species worldwide [25] . Previous
tudies of the impact of climate change on plant and bee phenology have
emonstrated shifts in the timing of flowering, adult bee activity, or
oth, rendering these mutualisms vulnerable to phenological mismatch
 1 , 14 , 34 , 39 , 50 ]. Bee diversity may act as a buffer against plant commu-
ity collapse [ 19 , 22 , 30 ]: in the face of phenological mismatch, if bees
xhibit species-specific responses to changing environmental conditions
riven by species-specific phenologies, then the likelihood of complete
henological mismatch between a flowering plant and its suite of bee
ollinators will be lower than if bees do not exhibit species-specific phe-
ologies [1] . This is because even if some pollinator phenologies shift
rastically, others may not, thereby affording plants (and their bee pol-
inators) continued reproductive assurance. 
Recent work from Stemkovski et al. [44] shows that pollinator

pecies do exhibit species-specific phenologies. Less addressed in the
iterature is that the potential for mismatch may depend on the extent
o which suites of plants and pollinators are specialized on each other.
or example, there is some evidence that bees specialized on a particu-
ar floral resource are on the same phenological ‘clock’ as that resource,
 24 September 2021 
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Table 1 

Species composition and site names of locations sampled. 

Site Type Species Present Site Names 

CU C. unguiculata, C. cylindrica Mile marker 26.09; BAR 25.91; 

Little Tree 

SX C. xantiana, C. speciosa Site 8; Green Rock East; Black 

Gulch Trail Sign 

CUSX C. unguiculata, C. cylindrica, 

C. xantiana, C. speciosa 

Lower China Gardens; Democrat; 

Mill Creek 
hereas more generalist bees may respond to cues to track overall flow-
ring in their region [27] . This aspect of bee and plant ecology is impor-
ant for understanding how species-specific variation is associated with
henological shifts in the future: if the timing of a bee species’ activity
onsistently matches that of a particular floral resource due to mutual
pecialization, then they likely respond to similar cues that control their
ight/flowering activity, thereby reducing the risk of phenological mis-
atch [ 6 , 13 , 33 , 37 ]. 
Because bee species can have unique phenologies and be affected

y environmental change differently [ 4 , 42 , 44 ], it is important to now
uild an understanding of how bee phenologies differ within and across
lant-pollinator systems. Little is known about phenological differences
mong bee species from the same flowering communities, particu-
arly according to how specialized they are on various floral resources
 4 , 20 , 32 , 42 ]. In this study, we use communities of showy, outcrossing
nnual flowering plants in the genus Clarkia (Onagraceae) and two bee
ollinators in the Kern River Canyon (Kern County, California) to un-
erstand how bee phenologies can differ within the flowering season
f a specific floral resource. Importantly, the four Clarkia species sym-
atric in this region co-flower at the end of the winter annual growing
eason, a time when all other annual plants have senesced and there
s no significant perennial floral resource; as such Clarkia make up the
ast majority of plants in flower when they flower and are generally
henologically isolated. These Clarkia rely on a shared suite of bees
or pollination services ([ 24 , 28 ], Singh 2014). Some of these bees are
ligoleges (specialized on the Clarkia genus) and exhibit morphological
nd behavioral traits that help them collect Clarkia pollen [24] , whereas
ther species visiting Clarkia are apparent non-specialists that still visit
larkia and carry Clarkia pollen [ 17 , 28 ], as it is the dominant genus
f flowering plants when in flower. Accordingly, the distinct flowering
henology of Clarkia allows us to evaluate if its pollinators’ phenolog-
cal trajectories vary with respect to their level of Clarkia specializa-
ion. 
Due to its flowering phenology in the region and the varied spe-

ialization of its pollinators, the unique natural history of this Clarkia
ystem allows us to investigate differences among bee species’ pheno-
ogical trajectories through the Clarkia flowering season. To do this, we
se daily pan trapping in Clarkia communities to assess the phenologies
f the two most abundant bee species in the system: Lasioglossum in-

ompletum (Halictidae) and Hesperapis regularis (Melittidae). Hesperapis
egularis exhibits specialization on Clarkia , while Lasioglossum incomple-

um is a known generalist. We hypothesize that Lasioglossum incompletum

nd Hesperapis regularis will exhibit different phenological trajectories
hrough time, where the shape of the abundance curve through time
nd the date of peak abundance should be different between the two
axa. Furthermore, we predict that the abundance curves of Hesperapis
ees and Clarkia flowers should coincide through the season and have
imilar dates of peak abundance due to the specialization of Hesperapis
egularis on Clarkia , whereas the Lasioglossum incompletum and Clarkia
bundance curves will not match. 

ethods 

ystem 

There are four common and abundant outcrossing species of Clarkia
hat are sympatric in the Kern River Canyon in Kern County, Califor-
ia: C. cylindrica ssp. clavicarpa (Jeps.) Lewis & Lewis , C. speciosa ssp.
olyantha Lewis & Lewis , C. unguiculata Lindl. , C. xantiana ssp. xantiana
. Gray. The Clarkia in this region co-occur in annual plant communities
omprising one to four species of Clarkia. Both bee species in this study,
esperapis regularis (Mellitidae) and Lasioglossum incompletum (Halicti-
ae) are highly common in the area of Clarkia sympatry and active dur-
ng Clarkia flowering periods (Singh 2014). Hesperapis regularis is very
pecialized on Clarkia . It has scopae of thinly distributed hairs that are
dapted for accommodating clumps of large Clarkia pollen grains con-
2 
ected by viscin threads [ 24 , 28 ]. Furthermore, Hesperapis also exhibits
 vibratory ‘pollen dance’ when foraging for pollen on Clarkia to harvest
ollen from the slow-dehiscing anthers of Clarkia , and it is reported to
e locally highly adapted to the food resources in Clarkia communities
24] . On the other hand, Lasioglossum incompletum is not a known Clarkia
pecialist, and does not exhibit morphological or behavioral adaptations
o Clarkia pollen or anther dehiscence [24] . Irrespective of their spe-
ialization on Clarkia, both taxa collect and carry Clarkia pollen when
larkia is flowering ( [28] , James unpublished data). 

xperimental design 

We used daily pan trapping to collect bees at nine Clarkia communi-
ies in the Kern River Canyon, from 9 May to 13 June 2016 on a nine-
ay rotation. We sampled one site per day for the duration of the Clarkia
owering period, and each site was visited 4 times over the course of
he season. Though all four Clarkia species overlap in flowering phenol-
gy, two of the species ( C. unguiculata and C. cylindrica ) begin flowering
arlier than the other two ( C. xantiana and C. speciosa; Eisen et al. 2019,
18] ) . To capture the widest possible phenological variation in com-
unities throughout the entire Clarkia flowering season, we sampled
hree common multi-species community types in the Kern River canyon
those comprising C. cylindrica and C. unguiculata (CU); C. speciosa

nd C. xantiana (SX); and all four species (CUSX; Fig. 1 ; Table 1 ). We
elected Clarkia communities that were discrete spatially and separated
rom each other by at least a 0.5 km of linear distance (but almost always
ore; Fig. 1 ). As both bee species are small-bodied, we were reasonably
ertain that bees were not flying between sites [53] . In the case of Hes-
erapis regularis , MacSwain et al. [24] reported that bee populations are
elf-contained within Clarkia communities and bees do not venture far
rom their home communities. 
At each site, we placed four 20-meter-long permanent transects

hrough Clarkia patches that remained in the same locations through
he study. We made an effort to sample across the whole site, and tran-
ects were at least 10 m apart, and usually farther apart. Along each
ransect, we placed four 30 ml (1 ounce, 4.5 cm diameter at the top and
.2 cm tall) pan traps at five-meter intervals (two yellow and two blue
raps). Pan traps of this size are thought to perform as well as larger
an traps and to be less susceptible to evaporation in arid environments
8] . On sampling days, we filled the traps with soapy water between
:00AM and 8:00AM. We returned in the afternoon to collect the traps’
ontents between 3:00PM and 4:00PM. We also measured Clarkia floral
ensity along the transects in the afternoon by placing a 1 2 m 

2 quadrat
n either side of the transect at four-meter intervals along the transects
nd recording the number of open flowers of each Clarkia species in
he quadrats. After collection, bees were washed, pinned, and identi-
ed [ 15 , 25 ]. Lasioglossum specimens were identified by Joel Gardner
University of Manitoba). After bee identification, we selected the most
bundant bee species in our samples for analysis, one a Clarkia special-
st, and one generalist: Hesperapis regularis was the most common Clarkia
pecialist, and Lasioglossum incompletum was the most common general-
st. We captured ten additional bee species in our samples in 2016, but
hose not to include them in the present analysis due to their lower
bundances through time. 
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Fig. 1. Map of sampling locations. Point color indi- 

cates the phenology and Clarkia species composition 

of the site. 
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ata and statistical analysis 

We analyzed bee and floral abundance through time using gener-
lized linear mixed effects models (GLMMs). The floral abundance re-
ponse variable was the total number of open flowers in the quadrats
laced along the transects (flowers per 4m 

2 ), and the bee abundance
ariables were the total number of each bee species recovered in the
6 pan traps per day. To predict Clarkia floral abundance and estimate
he phenology curve for each community type, we built two candidate
odels. The first included an interaction of two fixed effects: community
ype (CU, CUSX, or SX) and date (days since the start date). The second
odel included an interaction of community type, date, and the second-
rder polynomial of date. The polynomial term allowed for a potential
ncrease, peak, and then decrease of abundance in each community type
s the season progressed. We used a Poisson error distribution with a log
ink function and included two random effects: site identity, and an ob-
ervation level random effect to account for overdispersion in the count
ata. We used AICc to compare model fit, and used the model with the
ower AICc score to generate Clarkia abundance predictions. 
To predict daily bee abundance for both bee species, we built two

andidate models for each dataset: the first included the interacting
xed effects of community type and date, and the second included the
nteraction of community type, date, and a second-order polynomial
f the date to allow for a potential peak. We included models with-
ut a second-order effect to determine if the species exhibited a peak
r not during the period of time that we were collecting samples. We
lso included an additive fixed effect of centered and standardized flo-
al abundance (number of flowers counted per day) in these models to
ccount for variation in bee abundance that could be explained by varia-
ion in floral abundance rather than date alone. We used a Poisson error
istribution with a log link function, and included the site identity as
 random effect in all candidate models. As before, we calculated the
andidate models’ AICc scores. Using the best-fit models (lowest AICc
cores), we determined the predicted date of peak abundance for Clarkia
owers, Hesperapis regularis , and Lasioglossum incompletum by (1) find-
 b  

3 
ng the maximum predicted abundance values for each taxon, and then
2) extracting the day that corresponds to these values. All predictions
ere limited to the sampled Clarkia flowering period. We also estimated
arginal and conditional pseudo R 2 values to determine how well the
odels explained variation in abundance data, where marginal pseudo
 
2 is the value for only the fixed effects in the model, and conditional
seudo R 2 is the value for the model including random effects. All anal-
ses were performed in R version 3.5.3 (R [36] ) using the lme4, boot-
redictlme4, and MuMIn packages [ 2 , 3 , 10 ]. 

esults 

In total, we captured 250 bees over the course of 34 sampling days.
f these, 92 bees were Hesperapis regularis and 49 were Lasioglossum in-

ompletum . We did not sample for the entirety of the fourth round of
ampling, stopping two days short (that is, not sampling the two re-
aining sites in the fourth round) due to the decline to zero Clarkia
oral abundance in all community types by day 34. The best-fit model
f Clarkia abundance explained a high amount of variation in the data
Marginal pseudo R 2 = 0.90, Conditional pseudo R 2 = 0.91). Predictions
rom the best-fit models of Clarkia abundance indicate that floral abun-
ance is best explained with a second-order polynomial term in the
odel, and follows a hump shape throughout the course of the sea-
on ( Table 2 ). The Clarkia SX community type had significantly lower
oral abundances than the CU community ( p < 0.001; Table S1) and the
USX community (data not shown), but the CU and CUSX communities
xhibited similar floral abundances (Table S1). 
As in the Clarkia model, the best-fit model of Hesperapis regularis

bundance explained a high amount of variation in the data (Marginal
seudo R 2 = 0.79, Conditional pseudo R 2 = 0.91). This model included a
econd-order polynomial term ( Table 2 ), indicating a nonlinear relation-
hip between abundance and date. As with floral abundance, predictions
rom the best-fit Hesperapis regularis models indicate that the nonlinear
elationship is hump-shaped through the season ( Table 2 , Fig. 2 ). The
est-fit model of Lasioglossum incompletum did not include a polyno-
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Table 2 

Model comparisons for predicting Clarkia, Hesperapis regularis , and Lasioglossum incompletum abundance. All models were GLMM with Poisson error distribu- 

tions. Best-fit models have a dAICc score of zero. 

Model dAICc Degrees of 

Freedom 

Weight Residual Degrees 

of Freedom 

Clarkia Floral Abundance ∼ Day ∗ Site Type + Day 2 ∗ Site Type + (1|Sample ID) + (1|Site ID) 0.0 11.0 1.0 26 

Clarkia Floral Abundance ∼ Day ∗ Site Type + (1|Sample ID) + (1|Site ID) 27.7 8.0 < 0.001 23 

Hesperapis regularis Abundance ∼ Day ∗ Site Type + Day 2 ∗ Site Type + Floral Abundance + (1|Site ID) 0.0 11.0 1.0 23 

Hesperapis regularis Abundance ∼ Day ∗ Site Type + Day 2 ∗ Site Type + Floral Abundance + (1|Site ID) 10.5 8.0 0.0 26 

Lasioglossum incompletum Abundance ∼ Day ∗ Site Type + Floral Abundance + (1|Site ID) 0.0 8.0 0.8 23 

Lasioglossum incompletum Abundance ∼ Day ∗ Site Type + Day 2 ∗ Site Type + Floral Abundance + (1|Site ID) 3.0 11.0 0.2 26 

Fig. 2. Predicted phenological trajectories of Clarkia abundance (top row), Hesperapis regularis abundance (middle row), and Lasioglossum incompletum abundance 

(bottom row) in each site type: CU (left column), SX (middle column) and CUSX (right column). Predicted abundance values all represent back-transformed model- 

predicted daily abundance. Blue points in all panels indicate the best-fit model predictions for peak Clarkia floral abundance. Purple points in the middle row 

indicate the best-fit model predictions for peak Hesperapis regularis abundance, and orange in the bottom row are the best-fit model predictions for peak Lasioglossum 

incompletum abundance. Line segments between the points show the difference between the predicted peak of floral abundance and predicted peaks of bee abundance. 

Curved lines are the model predictions for abundance through the season, or what we call phenological trajectories. Gray ribbons are 95% confidence intervals, and 

gray points are actual counts. 

4 
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ial, and instead described a linear relationship between Lasioglossum
ncompletum abundance and date in all site types. This model explained
 moderate amount of variation in the Lasioglossum incompletum abun-
ance (Marginal pseudo R 2 = 0.59, Conditional pseudo R 2 = 0.67). In all
ite types, the relationship between Lasioglossum incompletum abundance
nd floral abundance increased with date ( Table 2 , Fig. 2 , Table S1). 
The predicted days of peak floral abundance varied among site types,

here CU and CUSX community types exhibited peak abundances at 15
ays and 14 days, respectively, while floral abundance peaked at 23
ays in SX communities (days are reported as days from the start of the
ampling period). The predicted peak for Hesperapis regularis pollinator
bundance occurred 6 days after peak floral abundance in the CU sites,
 days after in the SX sites, and on the same day in CUSX sites. By
ontrast, the predicted peak of Lasioglossum incompletum was on the final
ensus day in all site types (19, 11, and 20 days later than peak Clarkia ,
espectively). 

iscussion 

Although phenological shifts are being reported in plant-pollinator
ommunities, we are currently unable to predict the occurrence or mag-
itude of these shifts [ 5 , 7 , 49 , 51 ]. Recent research shows that bee phe-
ology responds to environmental changes based on species’ functional
raits [44] , but we still do not know which species are most at risk for
henological mismatch, or the impact this will have on pollinator assem-
lages and their host plants’ survival [ 21 , 44 , 51 ]. One reason for our lack
f knowledge is that there is little information on differences in phenol-
gy among pollinator species from the same communities. In our study
f Clarkia plant-pollinator communities, we focused on a group of plants
hat flower at the end of the winter annual growing season in California,
roviding the abundant food resource to bees before seasonal dry down.
e found that the phenology of Hesperapis regularis , a Clarkia specialist,
losely matches Clarkia flowering phenology, while the phenology of
asioglossum incompletum , a generalist Clarkia pollinator, does not. Our
ork corroborates and adds to findings in other systems [38] . We pro-
ose that because pollinators exhibit different phenological trajectories
n this system, they may differ in the extent to which their phenologies
hift in response to climate change. 
Previous studies have suggested that bee phenologies might dif-

er due to bee species’ unique foraging and reproductive needs
 13 , 29 , 40 , 47 , 52 ]. In our study, we addressed this by comparing Clarkia
bundance curves over a growing season to those of the two most abun-
ant bee pollinators. Predictions from the best-fit models for Hesper-
pis regularis show that peak Hesperapis regularis abundance occurs in
he middle of the Clarkia flowering season, and that Hesperapis regularis
eaked at each site type very close to the peak Clarkia abundance at
hose site types. Such a pattern indicates that Hesperapis regularis pop-
lations are very closely phenologically matched to local Clarkia abun-
ance. Future studies based on more frequent sampling at all sites are
eeded to confirm the close matching between Hesperapis regularis and
larkia . In contrast to Hesperapis regularis , the best-fit model for La-
ioglossum incompletum did not exhibit a hump-shaped abundance peak
uring Clarkia flowering. In fact, Lasioglossum incompletum abundance
ncreased over time, suggesting that we captured only a portion of its
bundance curve. Specifically, we may have only captured a portion of
his species’ phenological trajectory: this particular species is not known
o specialize on any particular floral resources (including Clarkia ), and
herefore may peak at a different time in the year. 
Our study constitutes evidence that bee species from the same

owering communities differ in their within-season abundance curves
hrough time. The next step is to understand the mechanisms that cause
uch differences in bee species’ phenological trajectories, which will
elp determine the link between variation in bee species’ intra-annual
henological trajectories and variation in their inter-annual responses
o climate change. This is because the drivers or mechanisms explain-
ng species-level differences in abundance curves within a year may also
5 
e what drive changes in phenologies between years as climate change
rogresses. For example, environmental cues such as temperature and
oil humidity affect the timing of adult emergence of different bee
pecies and therefore cause variation in bee species’ abundance through
ime within growing seasons [ 13 , 27 , 35 , 47 ]. Studies have suggested that
pecies-specific differences in emergence cues will cause species phe-
ologies to differentially respond to climate change- in particular, spe-
ialist pollinators might not experience phenological mismatch to the
ame extent that generalists do [ 26 , 41 ]. Therefore, though our study
hows that different pollinators have species-specific phenological tra-
ectories that may be related to their level of specialization on Clarkia ,
ore research is needed on the emergence biology of Hesperapis regu-
aris and other Clarkia specialist pollinators (e.g. Diadasia angusticeps , a
larkia speciosa specialist) , especially in contrast to other more gener-
list species such as Lasioglossum incompletum. In addition, multi-year
tudies of Clarkia flowering phenology, which can shift inter-annually
ased on rainfall and temperature ( pers. obs. ), and of pollinator flight
henology would help pin down the degree of matching for specialist
s. generalist pollinators. If Hesperapis regularis and other specialists ex-
ibit phenological matching with Clarkia by responding to the same cues
or emergence (as in other systems; [27] ), while generalists such as La-
ioglossum incompletum do not, this would suggest that specialists will
e less vulnerable to phenological mismatch with Clarkia . Whether a
henological mismatch with Clarkia affects generalist pollinators would
epend on the role of Clarkia in supporting their populations. 
Finally, evidence of species-specific phenological trajectories has im-

lications for how pollinator communities might phenologically fracture
s the environment changes. The community-level ramifications of phe-
ological mismatch are unclear for most plant-pollinator communities,
ut changes in pollinator assemblages will likely result in a long-term
tness decline of both host plants and pollinators due to declines in pol-
ination efficiency and redundancy [9] . In the Clarkia system, we know
esperapis regularis is a more effective Clarkia pollinator than Lasioglos-
um incompletum due to its morphological and behavioral specialization
n Clarkia [ 11 , 24 ] . Thus, if Hesperapis regularis populations declined for
ny reason, Clarkia communities would almost certainly also decline as
 result of pollinator limitation to reproduction [29] . In the communi-
ies we studied, such declines might occur first in the SX site type, where
otal Clarkia abundance is consistently lower than in the other two site
ypes [ 23 , 43 ]. 
Finally, our research provides some insight into how different species

f bees interact phenologically with their host plants but is only a snap-
hot from one year and should be expanded. Work in plant-pollinator
ystems in the future should continue to investigate the species-specific
iversity of responses to environmental changes in a variety of plant
ommunities and incorporate information on bee population abundance
oth over the course of growing seasons and across years. 
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