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Phenological matching between the timing of flowering and pollinator activity is critically important for the
persistence of pollination systems globally. Phenological mismatch between plants and their insect pollinators can
occur if flowering and adult insect activity do not occur simultaneously. There is evidence that the phenological
trajectories vary among bee species, but little has been done to compare these trajectories with the phenology
of the corresponding floral community. In this work, we use daily pan trapping across nine different annual
Clarkia (Onagraceae) plant communities that vary in Clarkia species composition to estimate the phenological
trajectory (within-season abundance curve) of the two most abundant bee pollinators - Lasioglossum incompletum, a
generalist, and Hesperapis regularis, a Clarkia specialist - over the course of a Clarkia flowering season in California
USA. Clarkia flower at the end of the winter annual growing season when all other winter annual plants have
senesced, and therefore are phenologically separate from other flowering plants. We find that Hesperapis pollinator
abundances follow the same phenological trajectory as Clarkia floral abundances in all community types. In
contrast, Lasioglossum abundances do not track Clarkia floral abundance through time. Our results demonstrate
that Clarkia exhibit closer phenological matching with Hesperapis than with Lasioglossum. These findings imply
that pollinator communities may not respond monolithically to changes in the environment. Future research
should study the phenological trajectories of plants and pollinators in different systems to determine if this pattern

is common and repeatable.

Introduction

The rise in mean global temperature has been associated with phe-
nological shifts in many species [14,45,50]. For example, phenologi-
cal advancement has occurred in such life history events as bud burst,
insect emergence, and egg laying dates [1,12,34] in association with
events brought on by climate change such as earlier snowmelt and ex-
tended warm seasons [32,34]. In communities of flowers and their insect
pollinators, changes in the timing of species’ life history events have
the potential to disrupt pollination because plant flowering and polli-
nation must occur simultaneously in order for these interactions to be
successful [1,32]. The temporal interruption of species interactions, a
phenomenon known as phenological mismatch, may cause local extinc-
tions and failure of key ecological functions [49]. Studies have shown
cases in which phenological mismatch in plant-pollinator communities
is already occurring due to climate change, and have suggested they are
likely to increase in frequency and intensity [13,16,21,31,46,48].

The vast majority of flowering plant communities rely on unique
assemblages of pollinators, and bees in particular are responsible for
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pollination services of terrestrial plant species worldwide [25]. Previous
studies of the impact of climate change on plant and bee phenology have
demonstrated shifts in the timing of flowering, adult bee activity, or
both, rendering these mutualisms vulnerable to phenological mismatch
[1,14,34,39,50]. Bee diversity may act as a buffer against plant commu-
nity collapse [19,22,30]: in the face of phenological mismatch, if bees
exhibit species-specific responses to changing environmental conditions
driven by species-specific phenologies, then the likelihood of complete
phenological mismatch between a flowering plant and its suite of bee
pollinators will be lower than if bees do not exhibit species-specific phe-
nologies [1]. This is because even if some pollinator phenologies shift
drastically, others may not, thereby affording plants (and their bee pol-
linators) continued reproductive assurance.

Recent work from Stemkovski et al. [44] shows that pollinator
species do exhibit species-specific phenologies. Less addressed in the
literature is that the potential for mismatch may depend on the extent
to which suites of plants and pollinators are specialized on each other.
For example, there is some evidence that bees specialized on a particu-
lar floral resource are on the same phenological ‘clock’ as that resource,
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whereas more generalist bees may respond to cues to track overall flow-
ering in their region [27]. This aspect of bee and plant ecology is impor-
tant for understanding how species-specific variation is associated with
phenological shifts in the future: if the timing of a bee species’ activity
consistently matches that of a particular floral resource due to mutual
specialization, then they likely respond to similar cues that control their
flight/flowering activity, thereby reducing the risk of phenological mis-
match [6,13,33,37].

Because bee species can have unique phenologies and be affected
by environmental change differently [4,42,44], it is important to now
build an understanding of how bee phenologies differ within and across
plant-pollinator systems. Little is known about phenological differences
among bee species from the same flowering communities, particu-
larly according to how specialized they are on various floral resources
[4,20,32,42]. In this study, we use communities of showy, outcrossing
annual flowering plants in the genus Clarkia (Onagraceae) and two bee
pollinators in the Kern River Canyon (Kern County, California) to un-
derstand how bee phenologies can differ within the flowering season
of a specific floral resource. Importantly, the four Clarkia species sym-
patric in this region co-flower at the end of the winter annual growing
season, a time when all other annual plants have senesced and there
is no significant perennial floral resource; as such Clarkia make up the
vast majority of plants in flower when they flower and are generally
phenologically isolated. These Clarkia rely on a shared suite of bees
for pollination services ([24,28], Singh 2014). Some of these bees are
oligoleges (specialized on the Clarkia genus) and exhibit morphological
and behavioral traits that help them collect Clarkia pollen [24], whereas
other species visiting Clarkia are apparent non-specialists that still visit
Clarkia and carry Clarkia pollen [17,28], as it is the dominant genus
of flowering plants when in flower. Accordingly, the distinct flowering
phenology of Clarkia allows us to evaluate if its pollinators’ phenolog-
ical trajectories vary with respect to their level of Clarkia specializa-
tion.

Due to its flowering phenology in the region and the varied spe-
cialization of its pollinators, the unique natural history of this Clarkia
system allows us to investigate differences among bee species’ pheno-
logical trajectories through the Clarkia flowering season. To do this, we
use daily pan trapping in Clarkia communities to assess the phenologies
of the two most abundant bee species in the system: Lasioglossum in-
completum (Halictidae) and Hesperapis regularis (Melittidae). Hesperapis
regularis exhibits specialization on Clarkia, while Lasioglossum incomple-
tum is a known generalist. We hypothesize that Lasioglossum incompletum
and Hesperapis regularis will exhibit different phenological trajectories
through time, where the shape of the abundance curve through time
and the date of peak abundance should be different between the two
taxa. Furthermore, we predict that the abundance curves of Hesperapis
bees and Clarkia flowers should coincide through the season and have
similar dates of peak abundance due to the specialization of Hesperapis
regularis on Clarkia, whereas the Lasioglossum incompletum and Clarkia
abundance curves will not match.

Methods
System

There are four common and abundant outcrossing species of Clarkia
that are sympatric in the Kern River Canyon in Kern County, Califor-
nia: C. cylindrica ssp. clavicarpa (Jeps.) Lewis & Lewis, C. speciosa ssp.
polyantha Lewis & Lewis, C. unguiculata Lindl., C. xantiana ssp. xantiana
A. Gray. The Clarkia in this region co-occur in annual plant communities
comprising one to four species of Clarkia. Both bee species in this study,
Hesperapis regularis (Mellitidae) and Lasioglossum incompletum (Halicti-
dae) are highly common in the area of Clarkia sympatry and active dur-
ing Clarkia flowering periods (Singh 2014). Hesperapis regularis is very
specialized on Clarkia. It has scopae of thinly distributed hairs that are
adapted for accommodating clumps of large Clarkia pollen grains con-
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nected by viscin threads [24,28]. Furthermore, Hesperapis also exhibits
a vibratory ‘pollen dance’ when foraging for pollen on Clarkia to harvest
pollen from the slow-dehiscing anthers of Clarkia, and it is reported to
be locally highly adapted to the food resources in Clarkia communities
[24]. On the other hand, Lasioglossum incompletum is not a known Clarkia
specialist, and does not exhibit morphological or behavioral adaptations
to Clarkia pollen or anther dehiscence [24]. Irrespective of their spe-
cialization on Clarkia, both taxa collect and carry Clarkia pollen when
Clarkia is flowering ([28], James unpublished data).

Experimental design

We used daily pan trapping to collect bees at nine Clarkia communi-
ties in the Kern River Canyon, from 9 May to 13 June 2016 on a nine-
day rotation. We sampled one site per day for the duration of the Clarkia
flowering period, and each site was visited 4 times over the course of
the season. Though all four Clarkia species overlap in flowering phenol-
ogy, two of the species (C. unguiculata and C. cylindrica) begin flowering
earlier than the other two (C. xantiana and C. speciosa; Eisen et al. 2019,
[18]). To capture the widest possible phenological variation in com-
munities throughout the entire Clarkia flowering season, we sampled
three common multi-species community types in the Kern River canyon
— those comprising C. cylindrica and C. unguiculata (CU); C. speciosa
and C. xantiana (SX); and all four species (CUSX; Fig. 1; Table 1). We
selected Clarkia communities that were discrete spatially and separated
from each other by at least a 0.5 km of linear distance (but almost always
more; Fig. 1). As both bee species are small-bodied, we were reasonably
certain that bees were not flying between sites [53]. In the case of Hes-
perapis regularis, MacSwain et al. [24] reported that bee populations are
self-contained within Clarkia communities and bees do not venture far
from their home communities.

At each site, we placed four 20-meter-long permanent transects
through Clarkia patches that remained in the same locations through
the study. We made an effort to sample across the whole site, and tran-
sects were at least 10 m apart, and usually farther apart. Along each
transect, we placed four 30 ml (1 ounce, 4.5 cm diameter at the top and
3.2 cm tall) pan traps at five-meter intervals (two yellow and two blue
traps). Pan traps of this size are thought to perform as well as larger
pan traps and to be less susceptible to evaporation in arid environments
[8]. On sampling days, we filled the traps with soapy water between
7:00AM and 8:00AM. We returned in the afternoon to collect the traps’
contents between 3:00PM and 4:00PM. We also measured Clarkia floral
density along the transects in the afternoon by placing a %mz quadrat
on either side of the transect at four-meter intervals along the transects
and recording the number of open flowers of each Clarkia species in
the quadrats. After collection, bees were washed, pinned, and identi-
fied [15,25]. Lasioglossum specimens were identified by Joel Gardner
(University of Manitoba). After bee identification, we selected the most
abundant bee species in our samples for analysis, one a Clarkia special-
ist, and one generalist: Hesperapis regularis was the most common Clarkia
specialist, and Lasioglossum incompletum was the most common general-
ist. We captured ten additional bee species in our samples in 2016, but
chose not to include them in the present analysis due to their lower
abundances through time.

Table 1
Species composition and site names of locations sampled.
Site Type Species Present Site Names
CU C. unguiculata, C. cylindrica Mile marker 26.09; BAR 25.91;
Little Tree
SX C. xantiana, C. speciosa Site 8; Green Rock East; Black
Gulch Trail Sign
CUSX C. unguiculata, C. cylindrica, Lower China Gardens; Democrat;

C. xantiana, C. speciosa Mill Creek
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Latitude

-118.65 -118.60

Longitude

Data and statistical analysis

We analyzed bee and floral abundance through time using gener-
alized linear mixed effects models (GLMMSs). The floral abundance re-
sponse variable was the total number of open flowers in the quadrats
placed along the transects (flowers per 4m?2), and the bee abundance
variables were the total number of each bee species recovered in the
16 pan traps per day. To predict Clarkia floral abundance and estimate
the phenology curve for each community type, we built two candidate
models. The first included an interaction of two fixed effects: community
type (CU, CUSX, or SX) and date (days since the start date). The second
model included an interaction of community type, date, and the second-
order polynomial of date. The polynomial term allowed for a potential
increase, peak, and then decrease of abundance in each community type
as the season progressed. We used a Poisson error distribution with a log
link function and included two random effects: site identity, and an ob-
servation level random effect to account for overdispersion in the count
data. We used AICc to compare model fit, and used the model with the
lower AICc score to generate Clarkia abundance predictions.

To predict daily bee abundance for both bee species, we built two
candidate models for each dataset: the first included the interacting
fixed effects of community type and date, and the second included the
interaction of community type, date, and a second-order polynomial
of the date to allow for a potential peak. We included models with-
out a second-order effect to determine if the species exhibited a peak
or not during the period of time that we were collecting samples. We
also included an additive fixed effect of centered and standardized flo-
ral abundance (number of flowers counted per day) in these models to
account for variation in bee abundance that could be explained by varia-
tion in floral abundance rather than date alone. We used a Poisson error
distribution with a log link function, and included the site identity as
a random effect in all candidate models. As before, we calculated the
candidate models’ AICc scores. Using the best-fit models (lowest AICc
scores), we determined the predicted date of peak abundance for Clarkia
flowers, Hesperapis regularis, and Lasioglossum incompletum by (1) find-
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Fig. 1. Map of sampling locations. Point color indi-
cates the phenology and Clarkia species composition
of the site.

SiteType
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ing the maximum predicted abundance values for each taxon, and then
(2) extracting the day that corresponds to these values. All predictions
were limited to the sampled Clarkia flowering period. We also estimated
marginal and conditional pseudo R? values to determine how well the
models explained variation in abundance data, where marginal pseudo
R? is the value for only the fixed effects in the model, and conditional
pseudo R? is the value for the model including random effects. All anal-
yses were performed in R version 3.5.3 (R [36]) using the Ime4, boot-
predictlme4, and MuMIn packages [2,3,10].

Results

In total, we captured 250 bees over the course of 34 sampling days.
Of these, 92 bees were Hesperapis regularis and 49 were Lasioglossum in-
completum. We did not sample for the entirety of the fourth round of
sampling, stopping two days short (that is, not sampling the two re-
maining sites in the fourth round) due to the decline to zero Clarkia
floral abundance in all community types by day 34. The best-fit model
of Clarkia abundance explained a high amount of variation in the data
(Marginal pseudo R%2=0.90, Conditional pseudo R?=0.91). Predictions
from the best-fit models of Clarkia abundance indicate that floral abun-
dance is best explained with a second-order polynomial term in the
model, and follows a hump shape throughout the course of the sea-
son (Table 2). The Clarkia SX community type had significantly lower
floral abundances than the CU community (p<0.001; Table S1) and the
CUSX community (data not shown), but the CU and CUSX communities
exhibited similar floral abundances (Table S1).

As in the Clarkia model, the best-fit model of Hesperapis regularis
abundance explained a high amount of variation in the data (Marginal
pseudo R%=0.79, Conditional pseudo R>=0.91). This model included a
second-order polynomial term (Table 2), indicating a nonlinear relation-
ship between abundance and date. As with floral abundance, predictions
from the best-fit Hesperapis regularis models indicate that the nonlinear
relationship is hump-shaped through the season (Table 2,Fig. 2). The
best-fit model of Lasioglossum incompletum did not include a polyno-
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Table 2
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Model comparisons for predicting Clarkia, Hesperapis regularis, and Lasioglossum incompletum abundance. All models were GLMM with Poisson error distribu-

tions. Best-fit models have a dAICc

score of zero.

Model dAICc  Degrees of Weight Residual Degrees
Freedom of Freedom
Clarkia Floral Abundance ~ Day * Site Type + Day? * Site Type + (1|Sample ID) + (1|Site ID) 0.0 11.0 1.0 26
Clarkia Floral Abundance ~ Day * Site Type + (1|Sample ID) + (1|Site ID) 27.7 8.0 <0.001 23
Hesperapis regularis Abundance ~ Day * Site Type + Day? * Site Type + Floral Abundance + (1|Site ID) 0.0 11.0 1.0 23
Hesperapis regularis Abundance ~ Day * Site Type + Day? * Site Type + Floral Abundance + (1|Site ID) 10.5 8.0 0.0 26
Lasioglossum incompletum Abundance ~ Day * Site Type + Floral Abundance + (1|Site ID) 0.0 8.0 0.8 23
Lasioglossum incompletum Abundance ~ Day * Site Type + Day? * Site Type + Floral Abundance + (1|Site ID) 3.0 11.0 0.2 26
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Fig. 2. Predicted phenological trajectories of Clarkia abundance (top row), Hesperapis regularis abundance (middle row), and Lasioglossum incompletum abundance
(bottom row) in each site type: CU (left column), SX (middle column) and CUSX (right column). Predicted abundance values all represent back-transformed model-
predicted daily abundance. Blue points in all panels indicate the best-fit model predictions for peak Clarkia floral abundance. Purple points in the middle row
indicate the best-fit model predictions for peak Hesperapis regularis abundance, and orange in the bottom row are the best-fit model predictions for peak Lasioglossum
incompletum abundance. Line segments between the points show the difference between the predicted peak of floral abundance and predicted peaks of bee abundance.
Curved lines are the model predictions for abundance through the season, or what we call phenological trajectories. Gray ribbons are 95% confidence intervals, and

gray points are actual counts.
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mial, and instead described a linear relationship between Lasioglossum
incompletum abundance and date in all site types. This model explained
a moderate amount of variation in the Lasioglossum incompletum abun-
dance (Marginal pseudo R?=0.59, Conditional pseudo R?=0.67). In all
site types, the relationship between Lasioglossum incompletum abundance
and floral abundance increased with date (Table 2,Fig. 2, Table S1).

The predicted days of peak floral abundance varied among site types,
where CU and CUSX community types exhibited peak abundances at 15
days and 14 days, respectively, while floral abundance peaked at 23
days in SX communities (days are reported as days from the start of the
sampling period). The predicted peak for Hesperapis regularis pollinator
abundance occurred 6 days after peak floral abundance in the CU sites,
2 days after in the SX sites, and on the same day in CUSX sites. By
contrast, the predicted peak of Lasioglossum incompletum was on the final
census day in all site types (19, 11, and 20 days later than peak Clarkia,
respectively).

Discussion

Although phenological shifts are being reported in plant-pollinator
communities, we are currently unable to predict the occurrence or mag-
nitude of these shifts [5,7,49,51]. Recent research shows that bee phe-
nology responds to environmental changes based on species’ functional
traits [44], but we still do not know which species are most at risk for
phenological mismatch, or the impact this will have on pollinator assem-
blages and their host plants’ survival [21,44,51]. One reason for our lack
of knowledge is that there is little information on differences in phenol-
ogy among pollinator species from the same communities. In our study
of Clarkia plant-pollinator communities, we focused on a group of plants
that flower at the end of the winter annual growing season in California,
providing the abundant food resource to bees before seasonal dry down.
We found that the phenology of Hesperapis regularis, a Clarkia specialist,
closely matches Clarkia flowering phenology, while the phenology of
Lasioglossum incompletum, a generalist Clarkia pollinator, does not. Our
work corroborates and adds to findings in other systems [38]. We pro-
pose that because pollinators exhibit different phenological trajectories
in this system, they may differ in the extent to which their phenologies
shift in response to climate change.

Previous studies have suggested that bee phenologies might dif-
fer due to bee species’ unique foraging and reproductive needs
[13,29,40,47,52]. In our study, we addressed this by comparing Clarkia
abundance curves over a growing season to those of the two most abun-
dant bee pollinators. Predictions from the best-fit models for Hesper-
apis regularis show that peak Hesperapis regularis abundance occurs in
the middle of the Clarkia flowering season, and that Hesperapis regularis
peaked at each site type very close to the peak Clarkia abundance at
those site types. Such a pattern indicates that Hesperapis regularis pop-
ulations are very closely phenologically matched to local Clarkia abun-
dance. Future studies based on more frequent sampling at all sites are
needed to confirm the close matching between Hesperapis regularis and
Clarkia. In contrast to Hesperapis regularis, the best-fit model for La-
sioglossum incompletum did not exhibit a hump-shaped abundance peak
during Clarkia flowering. In fact, Lasioglossum incompletum abundance
increased over time, suggesting that we captured only a portion of its
abundance curve. Specifically, we may have only captured a portion of
this species’ phenological trajectory: this particular species is not known
to specialize on any particular floral resources (including Clarkia), and
therefore may peak at a different time in the year.

Our study constitutes evidence that bee species from the same
flowering communities differ in their within-season abundance curves
through time. The next step is to understand the mechanisms that cause
such differences in bee species’ phenological trajectories, which will
help determine the link between variation in bee species’ intra-annual
phenological trajectories and variation in their inter-annual responses
to climate change. This is because the drivers or mechanisms explain-
ing species-level differences in abundance curves within a year may also
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be what drive changes in phenologies between years as climate change
progresses. For example, environmental cues such as temperature and
soil humidity affect the timing of adult emergence of different bee
species and therefore cause variation in bee species’ abundance through
time within growing seasons [13,27,35,47]. Studies have suggested that
species-specific differences in emergence cues will cause species phe-
nologies to differentially respond to climate change- in particular, spe-
cialist pollinators might not experience phenological mismatch to the
same extent that generalists do [26,41]. Therefore, though our study
shows that different pollinators have species-specific phenological tra-
jectories that may be related to their level of specialization on Clarkia,
more research is needed on the emergence biology of Hesperapis regu-
laris and other Clarkia specialist pollinators (e.g. Diadasia angusticeps, a
Clarkia speciosa specialist), especially in contrast to other more gener-
alist species such as Lasioglossum incompletum. In addition, multi-year
studies of Clarkia flowering phenology, which can shift inter-annually
based on rainfall and temperature (pers. obs.), and of pollinator flight
phenology would help pin down the degree of matching for specialist
vs. generalist pollinators. If Hesperapis regularis and other specialists ex-
hibit phenological matching with Clarkia by responding to the same cues
for emergence (as in other systems; [27]), while generalists such as La-
sioglossum incompletum do not, this would suggest that specialists will
be less vulnerable to phenological mismatch with Clarkia. Whether a
phenological mismatch with Clarkia affects generalist pollinators would
depend on the role of Clarkia in supporting their populations.

Finally, evidence of species-specific phenological trajectories has im-
plications for how pollinator communities might phenologically fracture
as the environment changes. The community-level ramifications of phe-
nological mismatch are unclear for most plant-pollinator communities,
but changes in pollinator assemblages will likely result in a long-term
fitness decline of both host plants and pollinators due to declines in pol-
lination efficiency and redundancy [9]. In the Clarkia system, we know
Hesperapis regularis is a more effective Clarkia pollinator than Lasioglos-
sum incompletum due to its morphological and behavioral specialization
on Clarkia [11,24]. Thus, if Hesperapis regularis populations declined for
any reason, Clarkia communities would almost certainly also decline as
a result of pollinator limitation to reproduction [29]. In the communi-
ties we studied, such declines might occur first in the SX site type, where
total Clarkia abundance is consistently lower than in the other two site
types [23,43].

Finally, our research provides some insight into how different species
of bees interact phenologically with their host plants but is only a snap-
shot from one year and should be expanded. Work in plant-pollinator
systems in the future should continue to investigate the species-specific
diversity of responses to environmental changes in a variety of plant
communities and incorporate information on bee population abundance
both over the course of growing seasons and across years.
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