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Family history is a major risk factor for many types of cancer. Mendelian
risk prediction models translate family histories into cancer risk predictions,
based on knowledge of cancer susceptibility genes. These models are widely
used in clinical practice to help identify high-risk individuals. Mendelian
models leverage the entire family history, but they rely on many assumptions
about cancer susceptibility genes that are either unrealistic or challenging to
validate, due to low mutation prevalence. Training more flexible models, such
as neural networks, on large databases of pedigrees can potentially lead to ac-
curacy gains. In this paper we develop a framework to apply neural networks
to family history data and investigate their ability to learn inherited suscepti-
bility to cancer. While there is an extensive literature on neural networks and
their state-of-the-art performance in many tasks, there is little work apply-
ing them to family history data. We propose adaptations of fully-connected
neural networks and convolutional neural networks to pedigrees. In data sim-
ulated under Mendelian inheritance, we demonstrate that our proposed neural
network models are able to achieve nearly optimal prediction performance.
Moreover, when the observed family history includes misreported cancer di-
agnoses, neural networks are able to outperform the Mendelian BRCAPRO
model embedding the correct inheritance laws. Using a large dataset of over
200,000 family histories, the Risk Service cohort, we train prediction models
for future risk of breast cancer. We validate the models using data from the
Cancer Genetics Network.

1. Introduction. Family history is a major risk factor for many types of cancer, includ-
ing breast, colorectal, and pancreatic cancer. Various family history-based cancer risk predic-
tion models have been developed (Berry et al. (1997), Chen et al. (2006), Wang et al. (2007))
and are used in clinical practice to guide decisions about screening and interventions. Exist-
ing models are primarily based on two approaches: (1) using Mendelian laws of inheritance
to translate detailed family history information into risk predictions (Antoniou et al. (2004),
Berry et al. (1997), Tyrer, Duffy and Cuzick (2004), Wang et al. (2007, 2010)) and (2) using
summaries of family history (e.g., the number of relatives with a previous cancer diagnosis)
as covariates in regression models (Balmafia et al. (2006), Banegas et al. (2017), Choudhury
et al. (2020a, 2020b), Gail et al. (1989, 2007), Matsuno et al. (2011), Tice et al. (2008)).
Recently, deep learning models based on mammographic images have also been proposed
Portnoi et al. (2019), Yala et al. (2019).

Mendelian models take as input a pedigree (Figure 1) that reflects family history of cancer
(including relatives’ cancer diagnoses, ages at cancer onset, and current ages). They esti-
mate an individual’s probability of carrying a mutation in a cancer susceptibility gene us-
ing Mendelian laws of inheritance, Bayes’ Rule, and estimates of mutation prevalence and
penetrance (probability of disease given genotype) from epidemiological literature (e.g., see
Chen and Parmigiani (2007)). The individual risk of cancer is then calculated as a weighted
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FI1G. 1. Example of a pedigree with family history of breast and ovarian cancers. Circles represent females and
squares represent males. The arrow indicates the counselee, the individual undergoing risk assessment. Numbers
below each family member represent the individual’s current age (if alive and unaffected), age at death (if dead),
and age of diagnosis (if affected by breast or ovarian cancer).

average of mutation carrier and noncarrier risks of developing cancer. = Mendelian models
are typically recommended over regression-based models for individuals with a strong fam-
ily history of cancer, since Mendelian models use more detailed family history information
(Quante et al. (2012), Pichert et al. (2003)). However, they rely on explicit assumptions about
cancer susceptibility genes, some of which may be unrealistic or restrictive. Known suscep-
tibility genes account for a limited proportion of familial risk (Easton (1999)), and existing
Mendelian models consider only a small subset of these genes. Furthermore, Mendelian mod-
els are sensitive to misreporting of family history (Braun et al. (2014), Katki (2006)) and rely
on accurate estimation of mutation prevalence and penetrance, which is challenging, due to
low mutation prevalence and heterogeneity of prevalence across populations.

The main limitations of Mendelian models can be overcome by neural networks (NNs)
that eliminate the need to explicitly specify the effects of cancer susceptibility genes. A NN
(Bishop (1995), Nielsen (2015)) is a model based on a directed graph that represents the rela-
tionship between a set of input features, typically provided in the form of a vector or matrix,
and an outcome of interest. The graph consists of layers of nodes that apply a series of poten-
tially nonlinear transformations to the input to produce a prediction or classification. In our
setting the input to the NN will be a set of variables that describes the family history of an
individual who presents for risk assessment. Under mild assumptions, NNs are theoretically
capable of approximating any continuous function with arbitrary precision (Cybenko (1989),
Hornik (1991), Leshno et al. (1993)), and, in practice, they have achieved state-of-the-art
performance in many tasks, such as image recognition (Krizhevsky, Sutskever and Hinton
(2012)) and natural language processing (Hinton et al. (2012)). The flexibility of NNs, com-
bined with large databases, can potentially lead to accuracy gains over Mendelian models.
However, while the literature on NNs is extensive, little work has been done to evaluate
their performance in the context of family history-based cancer risk prediction. Kokuer et al.
(2006) trained a NN to classify families into risk categories for hereditary colorectal cancer,
but they used simple summaries of family history and cross-validated their model on a rel-
atively small dataset with 313 pedigrees. To the best of our knowledge, there is no previous
work leveraging large databases of pedigrees to develop NNs for cancer risk prediction.

In this paper we develop new NN models to predict future risk of breast cancer, based
on pedigree data, and investigate their ability to learn patterns of inherited susceptibility. We
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propose a method for mapping pedigrees to fixed-size NN inputs and apply two types of
NNs: (1) standard fully-connected NNs (FCNNs) and (2) convolutional NNs (CNNs) that
exploit pedigree structure. Our methodological contribution is adapting CNNs for pedigree
data by defining local functions, similar to convolutional filters for image classification, that
are applied repeatedly to sets of first-degree relatives within the pedigree (Section 2.4). We
compare the performance of NNs to BRCAPRO (Parmigiani, Berry and Aguilar (1998)), a
widely used Mendelian model, and logistic regression (LR). While there are many estab-
lished risk factors for breast cancer (Gail et al. (1989), Brentnall et al. (2019)), in this paper
we focus on prediction models based on family history. To allow for an interpretable com-
parison with BRCAPRO, which uses only family history information (along with race and
ethnicity), the NN and LR models trained here do not include risk factors beyond family
history (the counselee’s age and personal history of cancer are considered to be part of the
family history information). The inputs to the NN models are specified in Section 2.1. We
note that it is straightforward to add new risk factors (e.g., breast density) to the NN models,
and we discuss how this can be done in the Sections 2.3 and 2.4 (the methodology for FC-
NNs remains identical, while adding new features to CNN's potentially requires modifying
the way in which nodes are connected). In our simulations we generate data, based on the
Mendelian assumptions of BRCAPRO, and determine how large a sample size is needed for
NNs to achieve competitive performance compared to the generating model. Moreover, we
show that, when the observed family history includes misreported cancer diagnoses, NNs are
able to outperform the Mendelian BRCAPRO model embedding the correct inheritance laws.

In our data application we train NNs using over 200,000 families from the Risk Service
database and validate the models on data from the Cancer Genetics Network (CGN). Al-
though we focus on breast cancer risk prediction in our simulations and data application, the
proposed approach can also be applied to other cancers.

2. Methods.

2.1. Notation. Our notation is summarized in Table S1 of the Supplementary Material
(Guan et al. (2022a)). Consider a counselee (someone who presents for risk assessment)
who has not previously been diagnosed with a given type of cancer. Let { be a prespecified
number of years. Let Yy = 1 if the counselee develops the cancer of interest withinf years and
Yy = 0 otherwise. The goal is to estimate P (Y5 = 1|H ), where H represents family history
(described below).

Family history can be visualized using a pedigree (Figure 1), a directed graph where nodes
correspond to family members and edges flow from parents to offspring. The pedigree graph
can be represented as a matrixH where each row corresponds to a family member, containing
their features and the indices of their parents. LetR be the number of relatives in the pedigree
besides the counselee. The family members are indexedby r= 0,1, ..., Rwhere r= 0
corresponds to the counselee. We have K features for each family member ': Hry, - - -, f .
In this paper we will consider the following K = 6 features for breast cancer risk prediction:
Hry = current age or age at death, Hry = breast cancer status (1 if affected, 0 otherwise),
Hy3 = ovarian cancer status (1 if affected, 0 otherwise), Hry = age at onset of breast cancer
(0 if unaffected), Hrs = age at onset of ovarian cancer (0 if unaffected), and Hrg = sex (0 if
female, 1 if male). Furthermore, let Arq be the index of /’s mother and Ar; the index of /'’s
father (either of which can be unknown). Let Hr = (Hry, - - - ik, Ary, Arp) e RK¥ 2. H s
a matrix with R + 1 rows and K + 2 columns, where, for r = 0, - - - » Rrow r + 1 contains
the information for family member /.
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2.2. Fully-connected neural networks. A NN is a directed graph consisting of a sequence
of layers (see Bishop (1995) or Nielsen (2015)) for examples and graphical representations
of NNs). Each layer is a set of nodes that are linked to nodes in the previous layer through
incoming edges and to nodes in the next layer through outgoing edges. A node receives a
set of inputs via incoming edges, computes a function of its inputs, and propagates the result
via outgoing edges. The first layer, which receives the input features (typically in the form
of a vector), is called the input layer (in our setting the input features will correspond to
the family history of the counselee). The final layer, which provides the output in the form
of prediction or classification, is called the output layer. The layers in between, which are
optional layers that apply transformations to the input data, are called hidden layers. A FCNN
is a NN where every node in a given layer is connected to every node in the previous layer.
FCNNs take as input a fixed-length vector X In the context of cancer risk prediction, X is a
vector representation of the pedigree H , and the output is a predicted probability for Yy = 1.
We describe how H is mapped to X in Section 2.3.

Let L be the number of hidden layers in the FCNN. Let/= 0 and /=L + 1 correspond to
the input and output layers, respectively. Let N/ be the number of nodes in layer /, where N
is the length of X and N+ 1 = 1. The outputs of the layers are

ad= x e RM,
ad=¢ Wa-14+p! crM, (g=1,...,0),

where W e RV*Ni-1 is the matrix of weights for layer/ with row / containing the weights of
node i, b' ¢ RV is the bias vector for layer /, and o RV RN represents the componen-
twise application of an activation functio(n) ¢ : R - R . Commonly used activation function

. . . . — exp(Z g . —

include the logistic function o (z) = Trexp( and the rectifier function ReLU(z) = max(0, 2).
The output layer ( = L+ 1) consists of a single node that uses the logistic activation function,

outputting the predicted probability

y():aL"'l:O' WL+laL+bL+1.

Given a cost function C and M training observations (Xm:» Yom), m= 1, -- -, M the
weight and bias parameters are randomly initialized and iteratively updated to minimize

%z 1 C( Yom Vom), using methods such as stochastic gradient  descent (Kiefer and Wol-
fowitz (1952)) and the Adam optimizer (Kingma and Ba (2014)). Examples of cost functions
(Janocha and Czarnecki (2017)) include mean squared error, C(y, z) = (¥ — Z) 2, and cross-
entropy loss, C(y, z) = -y log(z) - (1 - y) log(1 - z). When squared error loss or cross-
entropy loss is used, it is appropriate to interpret the NN output as a probability (Hampshire
IT and Pearlmutter (1991)).

The number of parameters ( W, D) in a FCNN grows quickly with the size of the input
and the number and size of the hidden layers. =~ Various regularization methods have been
developed to avoid overfitting, such as dropout (Srivastava et al. (2014)).

2.3. Standardizing and flattening pedigrees. ~ Since FCNNs require a fixed-size input,
they cannot be directly applied to pedigrees, which vary in size and structure. It is possi-
ble to generate a fixed-size input based on simple summaries of family history, but this can
result in substantial loss of information. Therefore, we propose the following approach: de-
fine a reference pedigree with prespecified relatives (e.g., counselee, grandparents, parents,
sister, brother) and map each actual pedigree H to a standardized version H that matches
the structure of the reference pedigree (each relative in the reference pedigree may or may
not be present in the actual pedigree), then flatten H into a fixed-length vector input X for a
FCNN.
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Fi1G. 2. Consider a reference pedigree that includes the counselee’s grandparents, parents, uncles, aunts, and
siblings, with each couple having two children of each sex. (A) Actual pedigree H . (B) Standardized pedigree
H |, obtained by mapping H to the reference structure. The actual pedigree has more maternal aunts than the
reference pedigree, so we randomly select the desired number of maternal aunts to include in H . The actual
pedigree has fewer paternal aunts, sisters, and brothers than the reference pedigree, so il we use prespecified
noninformative values for the paternal aunts, sisters, and brothers absent frofil . (C) Flattened pedigreeX which
is used as input for a FCNN.

We first describe the reference pedigree (see Figure 2(B)  for an example of a refer-
ence structure). Let the reference pedigree contain the counselee and @ other types of
relatives (mother, father, sister, brother, etc). Let ¢ = 0, 1, - - - » Qindex the relative types,
with g = 0 corresponding to the counselee. Let Rq be the number of relatives of type

q for ge{0, 1 ..., Q. Let the family members be indexedby r= 0,1, ..., R where

R = g=1 Rq, r= 0 corresponds to the counselee, r= 1, ., "1? correspond to relatives
oftypeg=1,r=R;+ 1 .-, I‘I\’+ R, correspond to relatives of type g = 2, and so on.

The choice of the reference structure should depend on the family structures observed in
the training data, and it is a compromise between model complexity/computational costs and
potential loss of information. Since every counselee has two parents and four grandparents,
the reference structure should, at least, include these relatives (assuming that most counselees
provide information on these relatives). For other relatives, one approach is to calculate a
summary measure, such as the median, for the number of relatives of each type (example:
sister, brother, etc.) in the training data and define a reference structure where the number
of relatives of a given type is equal to the value of the summary measure for the number of
relatives of that type (example: if the median number of sisters is one in the training data, then
include one sister in the reference structure). In order to reduce potential loss of information,
the median can be replaced with a higher threshold, such as the third quartile. The amount
of information lost can be quantified for each reference structure, using the mean proportion
of family members dropped from the original pedigree. The reference structure can then be
chosen based on the investigator’s judgment of how much information loss is acceptable (this
can be informed by prior knowledge or a sensitivity analysis looking at performance metrics
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for models trained using different reference structures). Implementation details are provided
in Section 2.8.

Now, we consider an actual pedigree matrix/ and describe how to standardize and flatten
it (Figure 2). Forg = 0, 1, - - -, Q let Rg be the number of relatives of typeq in H (Ry = 1).
To construct a standardized pedigree matrix, H | with the same structure as the reference
pedigree matrix, we compare the number of relatives of type ¢ in the actual pedigree to the
number in the reference pedigree for each g {0, 1, - - -, Q. If the two numbers are the
same (Rg=R q), then we include all of the Rq actual relatives in H . If the actual number
is smaller than the reference number ( Rg <R q), then we include the Rg actual relatives in
H  and represent each of the Rq - R g absent relatives using a vector of prespecified null
values (zeros). If the actual number is larger than the reference number ( Rg > R g), then we
randomly select Ry of the actual relatives to include in H . We also include a column in H
to indicate whether each row corresponds to a relative who is absent from the actual pedigree
(0 if present, 1 if absent). Therefore,H isanR + 1 by K + 1 matrix where each row consists
of a family member’s K cancer history features, along with the presence/absence indicator.
Let H, be the vector for relative ’ in H . We flatten H by concatenating its rows to get a
vector, X=(H o H, ..., B ) e R® +V+(kK+ 1) \yhich can be used as input to a FCNN. If
there are additional features of interest beyond the family history features specified above
(e.g., breast density), then they can simply be appended to the input vector X.

2.4. Convolutional neural networks. FCNNs are prone to overfitting since the number
of parameters grows quickly with network size (Geman, Bienenstock and Doursat (1992)).
CNNs (LeCun et al. (1998)), which are widely used in problems where the input has a spatial
structure, such as image classification, reduce the number of parameters by using convolu-
tional layers that enforce selective connections and weight sharing. A convolutional layer can
be viewed as a fully-connected layer where certain weights are set to 0 and certain weights are
constrained to have the same value. To exploit the correlation structure of the input (e.g., pix-
els that are spatially close often have highly correlated values), a convolutional layer applies
the same functions (e.g., X » max(0, WX)) repeatedly to different fixed-size neighborhoods
of the input (e.g., sets of neighboring pixels). These functions are called convolutional fil-
ters. The number of parameters in these local functions depends on the choice of reference
pedigree and on K, the number of features considered for each family member. The refer-
ence pedigree and K can vary across different applications (e.g., the available family history
information might be more detailed in some datasets than others), and, therefore, the corre-
sponding local functions are tailored and applied to domains with distinct dimensionalities.

Analogous to neighboring pixels, closely related individuals are likely to have similar lev-
els of susceptibility to cancer, due to genetic similarity and shared environment. Therefore,
we propose to adapt CNNs to pedigree data. For reference, a description of a standard CNN
is provided in Supplementary Material A.2 (Guan et al. (2022a)). While standard CNNs were
designed for inputs that have a fixed size and structure, various generalizations have been
proposed for graphs that vary in size and structure (Niepert, = Ahmed and Kutzkov (2016),
Wau et al. (2021)), such as molecular compounds. We follow two main steps: (1) standardize
the graphs to have the same size and structure, then (2) define a sequence of neighborhoods
within each standardized graph and apply convolutional filters to those neighborhoods.

Our approach leverages the structure of pedigrees. Like in the FCNN approach, we use a
standardized and flattened pedigree X as the input (Figure 2). Prior to running the CNN, for
each family member I in H , we define a fixed-size neighborhood, centered at I, consisting
of I and I'’s first-degree relatives: self, mother, father, /M sisters, /M, brothers, M3 daughters,
and M, sons. Similar to Figure 2, if/ has more than /My sisters, then /My of them are randomly
selected, and if /' has fewer than /M sisters, then we use a prespecified index representing an
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Fi1G. 3. The neighborhoods centered at relatives 0, 2, and 7 are shown above using shaded boxes. The same
convolutional filters are applied to all neighborhoods of the pedigree.

absent relative whose features are set to zero (analogous to zero padding in standard CNNs,
as described in Supplementary Material A.2, Guan et al. (2022a)). The same approach is
used for brothers, daughters, and sons. The neighborhood is represented by a vector N (I')
of length U= 3+ ,4: 1 Mi. Within N (r), the individuals are ordered by relative type with
respect to /.

We propose a CNN where all of the hidden layers are convolutional. There are L hidden
layers. Hidden layer / applies M; real-valued convolutional filters f 11, ceey K,,, to each of the
R + 1 neighborhoods of the pedigree (Figure 3). Foi = 1 - - - » M letf/ : RUM -1 5 R (let
My =K + 1 since each relative has K + 1 features in H ; see Section 2.3). Let af e RM pe
the output of layer / for neighborhood/family member . Let a,’g 1 )€ RY*M -1 be the vector
obtained by concatenating the layer inputs of the relatives in/V (f 5 The output from applying
filter / to I'’s neighborhood is

I - I - I
fi a/’\/(}) =@ Wi'@"v&)’fbir

where - is the dot product, W,l € RU*M -1 js the vector of weights for filter/, and b,l € Ris the
bias for filter /.
Letf!= (f 11, cee K”,) “RUMi-1 , RMi The layer outputs for relative I' are

a@=H,eRK*! for/=0 and
ar:flallg(}f) ERMII (/: ]_!"'!L)I
and the overall layer outputs are

a = aé,...,’g eRMFR D, q=0,1,...,L).
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The final output is a transformation of aé using a logistic activation function,
Vo=g Wit 1. g 4pltt,

where WL 1 ¢ RML gpd bL+ 1 ¢ R,

As in FCNNs, the weight and bias parameters are optimized with respect to C(Yoms

M
m=1
Yom), and the optimization can be carried out using stochastic gradient descent.
There are various ways to incorporate additional features beyond family history. Addi-
tional features that are applicable to all relatives (e.g., body mass index) can be appended to
the input vector & for each relative /. For additional features that are only applicable to the
counselee, a modification to the appendment approach is necessary since the use of convo-
lutional filters requires the input vector for each relative to have the same size. Two possible
approaches are: (1) append the features to the input vector of each relative, but set their values
to 0 for noncounselees, or (2) append the features for the counselee to the output vector of
the L th convolutional layer (i.e., the layer before the final output layer), thus expanding the
input vector for the final output layer (a related approach is used in Li et al. (2017)).

2.4.1. Model space. Universal approximation theorems characterize the approximation
capabilities of models and algorithms. The universal approximation theorem for FCNNs in-
dicates that any continuous function over a given domain (e.g., the real line) can be approx-
imated with arbitrary precision by a FCNN with a single hidden layer (Cybenko (1989),
Hornik (1991), Leshno et al. (1993)). The theorem establishes the existence of a FCNN that
satisfies the desired level of precision but does not provide a practical way to construct it. In
our setting this is an attractive property because it means that any continuous relation between
the family history (in the form of a fixed-length vector) and cancer risk can be approximated
arbitrarily well by a FCNN. We show in this section that the CNNs we propose are just as
powerful: they satisfy a universal approximation property similar to that of FCNNss.

Fix a reference pedigree H* of size R + 1 containing relatives of up to degree d of the
counselee. Let @ be the number of relative types in  H*, besides the counselee, and let
m = maxg=q,1,..Q Rg. Let X* R® + UK+ "V be the space of pedigrees with the same
structure as H*. We consider the CNN’s ability to approximate functions from X * to [0, 1].
We first state the universal approximation theorem for standard FCNNs (Leshno et al. (1993))
and then verify that the same property extends to CNNs (proof provided in Supplementary
Material A.3, Guan et al. (2022a)).

2.4.1.1. Universal approximation theorem for FCNN (forward direction of Theorem 1 from
Leshno et al. (1993)). Let K be a positive integer and / a compact subset of RK. Let
g : - R be continuous. Let ¢ : R > R be a piecewise continuous, locally bounded, and
nonpolynomial activation function. Then, given > 0, there exists a positive integer N and
fori= 1,---, Nconstants @, b € R and vectors W; e RX such that

N

F(X)= 0ioW;-X+bj)

=1

satisfies |F (X) — g(X)| < VX el

THEOREM 2.1 (Universal approximation theorem for pedigree CNNs).  Assume that the

elements of H, € RK* 1 are bounded forr= 0,1, - - -, R Let g : X* - [ 0, 1] be continuous.
Let @ : R > R be a continuous and invertible activation function. Let the fixed-size neighbor-
hood about each relative contain My = - - - = my = m sisters/brothers/daughters/sons. Then,

given > 0, there exists a pedigree CNN of the form described in Section 2.4 with ~ d hid-
den layers with activation function ©, M| convolutional filters for hidden layer !, bias terms
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bfeR(i= 1--..MI=1,..., L +1), and weight vectors W,leRU*M’—l(i= 1., M
I=1,..., L +1),such that the final output

F(X)=0c Wkl g (x)+bL*!
satisfies |F (X) = g(X)| < ¥Xe X*.

2.5. Missing data. In practice, there is often missing information in family history data
(e.g., an unreported relative or an unknown diagnosis age). Missing values in the training
and/or test set can be handled using standard imputation methods or complete case analysis
(Little and Rubin (2019)), though the latter may result in a substantial decrease in sample size.
Missing value imputation can be implemented as a preprocessing step separate from train-
ing or prediction (Garcia-Laencina, Sancho-Gémez and Figueiras-Vidal (2010)). In clinical
practice some models do not allow missing values (e.g., the Claus model (Claus, Risch and
Thompson (1994))), and clinicians impute missing information (e.g., ages of diagnosis for
relatives) to compute predictions. Some popular clinical tools automatically impute missing
information. For example, in the Risk Service tool, a missing diagnosis age for a relative is
imputed, based on the relative’s current age Chipman et al. (2013).

Another approach that can be implemented for NNs and prediction models in general is to
include as predictors indicator functions denoting whether certain features are missing (Choi,
Dekkers and le Cessie (2019)). In our analyses we used this approach to represent absent
family members when mapping families to a reference pedigree (Figure 2) that potentially
contains relative types absent from the actual family. Since missing values are distinct from
nonexistent data, separate indicators could be used for missingness versus absence.

As described in Section 3.2.2, we performed a sensitivity analysis using simulated data to
evaluate the impact of missing relatives and missing ages of diagnosis.

2.6. Benchmark methods. In our simulations and data application, we focused on breast
cancer risk prediction and compared NNs to the Mendelian BRCAPRO model and to LR
which is equivalent to a single-node FCNN with a logistic activation function. For LR we
used the flattened pedigree X as the input.

BRCAPRO (Berry et al. (1997), Parmigiani, Berry and Aguilar (1998)) is widely used
in clinical practice and has been validated in various populations (Berry et al. (2002),
Euhus et al. (2002), Terry et al. (2019), McCarthy et al. (2019)). It estimates the proba-
bility of carrying a germline mutation in breast/ovarian cancer susceptibility genes BRCA1
and BRCA?2 as well as future risk of breast/ovarian cancer, using Bayes’ rule, laws of
Mendelian inheritance, mutation prevalence and penetrance, and family history of breast
and ovarian cancer. The family history information includes the K = 6 features described
in Section 2.1: breast/ovarian cancer status, age at onset of breast/ovarian cancer if applica-
ble, and current age or age at death. In addition, BRCAPRO provides the option of mod-
ifying the default prevalences and penetrances, using the following covariates if they are
available: race, ethnicity, genetic testing results for BRCA1/BRCA?2, marker testing results
(ER/CK14/CK5/CK6/PR/HER?2), and prophylactic mastectomy/oophorectomy (these addi-
tional covariates were not included in our simulations).

Let ¥r be the genotype of relative ! (noncarrier, carrier of a pathogenic BRCA1 muta-
tion, carrier of a pathogenic BRCA?2 mutation, or carrier of pathogenic mutations in both
BRCA1 and BRCA2). Using Bayes’ rule and the assumption of conditional independence of
phenotypes given genotypes, the counselee’s probability of having genotype Y is

Q) Pl = — 0 viwe 0P (HHyP (- kv
0 - .
P ) yyve = oP (Hely)P (Vis - - Klyo)

.....
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The summation over genotypes is calculated using the Elston—Stewart  peeling algorithm;
Elston and Stewart (1971) and P (Vi, - - - » K|yo) is calculated based on Mendelian laws of
inheritance. The prevalences P (V) are obtained from the literature and are ethnicity-specific
(in particular, different prevalences are used for Ashkenazi Jewish and non-Ashkenazi Jew-
ish families). P (Hr|yr) is calculated using literature-based penetrances for breast and ovarian
cancer. The penetrances are functions that represent the risk of cancer at different ages, and
they are genotype-, cancer-, and sex-specific. The penetrance functions for noncarriers are
based on rates from the Surveillance, Epidemiology, and End Results (SEER) program and
are race-specific, while the penetrance functions for carriers are from a meta-analysis of pub-
lished studies Chen et al. (2020).

After estimating the carrier probabilities, BRCAPRO calculates future risk of breast cancer
through a weighted average of the genotype-specific penetrance functions P (Y5 = 1|yo),

P(Yoz=1H)= P (%= 1ly)P Vo|He - - -+ 1)
Yo

2.7. Model evaluation. We evaluated model performance using four metrics (Steyerberg
et al. (2010)): (1) the ratio of observed (O) to expected (E) events (where E is the sum of the
predictions in the test set), a measure of calibration, (2) the area under the receiver operat-
ing characteristic curve (AUC), a measure of discrimination, (3) the area under the precision
recall curve (PR-AUC), another measure of discrimination that is more sensitive to class im-
balance than the AUC, and (4) the Brier score which is the mean squared difference between
the predicted probabilities and actual outcomes. We obtained 95% confidence intervals (CIs)
for the metrics by bootstrapping the test set 1000 times.

2.8. Implementation. We ran BRCAPRO using the BayesMendel R package (version
2.1-6) (Chen et al. (2004)). The NNs were implemented in Python using Keras (https://github.
com/keras-team/keras) with the Theano backend (Team et al. (2016)). For the CNNs we
adapted code from Hechtlinger, Chakravarti and Qin (2017).

In the simulations, 887,353 randomly generated families were split into a training set of
800,000 and a test set of 87,353. In the data application the Risk Service dataset (279,460
families) was used for training, and the CGN dataset (7489 families) was used for testing.
In both the simulations and data application, we used the Adam optimizer Kingma and Ba
(2014) and the mean squared error loss function (while cross-entropy loss is more commonly
used for binary outcomes, we chose to use mean squared error, because it corresponds to the
minimization of the Brier score, which is a standard performance metric in risk prediction
Steyerberg et al. (2010), and one of the metrics we used to compare models; more discussion
on this choice and a sensitivity analysis are provided in Supplementary Material B.4, Guan
et al. (2022a)). We used a typical 90/10 split of the training set to tune NN hyperparameters
via a random search Bergstra and Bengio (2012): 10% of the training set was held out for
evaluating the performance of different choices for the number of hidden layers (one to three),
sizes of hidden layers (10 to 100), number of filters for the CNN (three to 10), learning rate
(0.0001 to 0.01), weight decay parameter (0 to 0.01), activation function (ReL U, or elu),
and dropout rate (0 to 0.5). The performance in the tuning set was highly sensitive to the
hyperparameter values (in the simulations, AUCs in the held-out subset ranged from 0.38—
0.65 for the FCNN and 0.56-0.65 for the CNN: https://github.com/zoeguan/nn_cancer_risk/
tree/master/tuning_results), so it is important to explore different sets of hyperparameters.

In the simulations, the FCNNs had two hidden layers of sizes 30 and 10, and the CNNs
had two convolutional layers with 10 and five filters. In the data application the FCNN
had two hidden layers of size 30, and the CNN had two convolutional layers with five fil-
ters each. We also used a dropout layer, following the first hidden layer in each NN, with
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a dropout rate of 20%. We used the Exponential Linear Unit (ELU) activation function
(Clevert, Unterthiner and Hochreiter (2015)). For the NNs and LR, features were normal-
ized to be between 0 and 1 using min—max normalization (Patro and Sahu (2015)). The code
for the analyses is provided as a supplement (Guan et al. (2022b)) (it is also available at
github.com/zoeguan/nn_cancer_risk) and contains additional details on hyperparameter val-
ues.

In the simulations we used a reference pedigree of size 26, containing the counselee’s
grandparents, parents, aunts (two maternal, three paternal), uncles (three maternal, two pa-
ternal), siblings (two sisters, three brothers), and children (two daughters, two sons). This
was chosen based on the distribution of family structures in the CGN (see Supplementary
Material B.2, Guan et al. (2022a)). We used My = m, = 3 and M3 = m,4 = 2 for the CNN
neighborhoods. In the data application we used a reference pedigree of size 19 with the same
relative types as in the simulations but restricted to two relatives of each type and omitted
sons and daughters, due to the smaller family sizes in the training dataset (see Supplementary
Material B.2, Guan et al. (2022a)). We used M; = m, = 2 and M3 = m4 = 1 for the CNN
neighborhoods.

Studies have shown that restricting family history to first- and second-degree relatives
(Biswas et al. (2013), Terry et al. (2019)) has little impact on discriminative accuracy. There-
fore, we considered only first- and second-degree relatives in the reference pedigree. As de-
scribed in Section 3.2.2, we conducted a sensitivity analysis for various choices of reference
pedigree structures and found little variation in performance.

3. Simulations. We evaluated the performance of the proposed NN approaches in pre-
dicting 10-year risk of breast cancer in two simulation settings: one where the data are con-
sistent with BRCAPRO and one where they are not.

3.1. Simulation approach. We simulated 1,000,000 pedigrees, using the generating
model assumed by BRCAPRO. To simulate each family, we first sampled a family struc-
ture (number of sisters, brothers, etc) from the CGN dataset (described in Section 4.1). For
counselees we also sampled dates of birth and baseline dates for risk assessment from the
CGN. For noncounselees, dates of birth were generated relative to the counselee’s date of
birth by assuming that the age difference between a parent and a child has mean 27 and
standard deviation 6.

Next, we generated the genotypes for each family member. We first generated the geno-
types of the counselee’s grandparents (the oldest generation) using the default Ashkenazi
Jewish allele frequencies in BRCAPRO (0.014 for BRCA1 and 0.012 for BRCA2) to mimic
a higher-risk population. For individuals in subsequent generations, we generated genotypes
according to Mendelian inheritance.

We generated ages of onset for breast and ovarian cancer conditional on the genotypes.
Each age of onset was randomly generated from {1, - - - 94}, with probabilities given by the
genotype-specific penetrance functions from BRCAPRO (the cumulative lifetime probability
of breast cancer ranges from 0.12 for noncarriers to 0.79 for carriers of mutations in both
BRCA1 and BRCAZ2). We also generated a death age for each individual from a distribution
with mean 80 and standard deviation 15. If an individual’s age of onset was greater than their
baseline age or death age, then their cancer status at baseline was set to 0.

3.2. Results. We excluded counselees who died or were diagnosed with breast cancer
prior to baseline. For the remaining counselees ( n = 887,353), we predicted 10-year risk of
breast cancer, using the baseline family history. We used 800,000 families for training and
the other 87,353 for testing. In the training set there were 23,606 cases (counselees who
developed breast cancer within 10 years). In the test set there were 2570 cases.
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FIG. 4. AUC and correlation (P) of NN predictions with BRCAPRO predictions for 10-year risk of developing
breast cancer as a function of training sample size (ranging from to 6250 to 800,000) in simulations.

We investigated how much training data is needed for the performance of the NNs to
approach that of the true model by training NNs on increasingly large subsets of the en-
tire training set, with sample sizes ranging from 6250 to 800,000 (Figure 4). As the sample
size increased, the AUCs of the NNs approached that of BRCAPRO, the true data gener-
ating model, and the predictions from the NNs became highly correlated with those from
BRCAPRO. For sample sizes under 100,000, the CNN had a higher AUC than the FCNN,
though, as expected, the differences between the two approaches decreased with increasing
sample size. With 200,000 or more training examples, both the FCNN and CNN achieved
AUC:s similar to that of the true model (both NNs had an AUC of 0.660 while the true model
had an AUC of 0.668).

The NNs provided a better approximation of the true model ~ than LR. The FCNN and
CNN trained on the entire training set achieved correlations of 0.9 and 0.92 with the true
model, while the LR model trained on the same data had a correlation of 0.82 (“True Family
History” section in Table 1). The NNs also outperformed LR with respect to AUC, PR-AUC,
and Brier score: across 1000 bootstrap replicates of the test set, the NNs had a better AUC
and Brier score than LR more than 99% of the time. The proportion of cases in our dataset
is very small; therefore, all of the models have low PR-AUCs (the baseline PR-AUC, or
PR-AUC of a model that does no better than random guessing, is the proportion of cases,
0.029). The CNN was more highly correlated with BRCAPRO than the FCNN across all
1000 bootstrap replicates. Also, the CNN had a better Brier score than the FCNN in more
than 95% of the bootstrap replicates and a higher AUC in 58% of the replicates. The CNN
and LR both had good overall calibration, with O/E= 0.99 (95% CI 0.95-1.03) for the CNN
and O/E = 1.00 (95% CI 0.96-1.04) for LR (Table 1), while the FCNN slightly overestimated
risk, with O/E = 0.93 (95% CI 0.89-0.96). Across the bootstrap replicates, the CNN and LR
performed similarly with respect to calibration, with the CNN showing better calibration in
about half of the replicates. The CNN and LR had better calibration than the FCNN in more
than 97% of the replicates. Calibration plots by decile of estimated risk (Figure 5) show that



TABLE 1
Model performance in simulated families (training set of 800,000), based on true and misreported family history. AUC: % rel
PR-AUC: % relative improvement in precision-recall AUC compared to BRCAPRO. sqrt(BS): % relative improvement
correlation with BRCAPRO. The “Comparisons Across Bootstrap Replicates™ section shows pairwise comparisons betweel
bootstrap replicates of the test set; the row forA > B shows the proportion of bootstrap replicates where model A outp.

O/E AUC PR-AUC
True Family History
Performance Metrics
FCNN 0-93 (0-89, 0-96) -1.21 (- 1.73, =0-63) -10-16 (- 13-81, —7-08)
CNN 0-99 (0-96, 1-03) -1.24 (- 1-80, -0-69) -7.93 (- 11.52, —4.35)
LR 1-00 (0-97: 1.04) -2-07 (- 268, —1-47) -14-59 (- 19-04, —10-25)
BRCAPRO 1.02 (0.98, 1.06) AUC= 0.668 PR-AUC= 0.065
Comparisons Across Bootstrap Replicates
FCNN > CNN 0.021 0.582 0.020
FCNN > LR 0.025 1.000 0.990
FCNN > BRCAPRO 0.083 0.000 0.000
CNN > LR 0.464 1.000 0.999
CNN > BRCAPRO 0.691 0.000 0.000
Misreported Family History
Performance Metrics
FCNN 1.06 (1.02, 1.10) 2.82 (1.72, 3.99) 9.31 (2.66, 16.43)
CNN 1.01 (0.97, 1.05) 2.70(1.63, 3.72) 11.15 (5.41, 17.47)
LR 1.00 (0.96, 1.04) 2.35 (1.23, 3.49) 6.12 (0.41, 12.47)
BRCAPRO 0.81 (0.78, 0.84) AUC = 0.627 PR-AUC = 0.050
Comparisons Across Bootstrap Replicates
FCNN > CNN 0.033 0.666 0.232
FCNN > LR 0.061 0.968 0.869
FCNN > BRCAPRO 1.000 1.000 0.998
CNN > LR 0.406 0.900 0.991

CNN > BRCAPRO 1.000 1.000 1.000
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FI1G. 5. Calibration plots by decile of risk in simulated families (training set of 800,000).

LR underestimated or overestimated risk in more deciles, compared to the other models. We
also plotted the precision-recall curves for the models (Figure S2, Guan et al. (2022a)) which
were not substantially different across models.

Differences between LR and CNN. Under the true model the counselee’s risk of breast
cancer increases with more affected relatives and earlier diagnosis ages. To assess whether
NN and LR predictions captured these trends, we fixed a family structure and varied the
phenotypes of the mother and maternal ~grandmother (Figure 6). We considered five sce-
narios ordered by increasing risk with respect to the true model: (A) no affected relatives,
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FIG. 6. Under the first simulation setting, we fixed a simulated family structure (counselee, grandparents, par-
ents, one paternal aunt, one maternal aunt, two maternal uncles) for a 40-year-old counselee and varied the level
of family history across five scenarios (ordered by increasing risk with respect to BRCAPRO, the true model):
1. no dffected relatives; 2. maternal grandmother diagnosed with breast cancer at age 80; 3. maternal grand-
mother diagnosed with breast cancer at age 60; 4. maternal grandmother diagnosed with breast cancer at age
60, mother diagnosed with breast cancer at age 50; 5. maternal grandmother diagnosed with breast cancer at
age 60, mother diagnosed with breast cancer at age 50 and ovarian cancer at age 60. We calculated 10-year risk
predictions for each scenario using each model.
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(B) grandmother with breast cancer, (C) grandmother with breast cancer at an earlier age,
(D) grandmother with breast cancer, mother with breast cancer, and (E) grandmother with
breast cancer, mother with breast and ovarian cancer. While the NNs gave similar predictions
to BRCAPRO across all scenarios (Figure 6), LR slightly underestimated risk in Scenario (D)
and severely underestimated risk in Scenario (E). LR assumes a restrictive functional form
for the relationship between the features and the outcome, and this functional form does not
match that of BRCAPRO, the data generating model, so the LR model is misspecified in
these simulations. NNs with multiple hidden nodes are more flexible than LR and, therefore,
less susceptible to misspecification.

3.2.1. Perturbations of Mendelian models. Misreported cancer diagnoses can consider-
ably distort predictions from Mendelian models (Katki (2006), Braun et al. (2014)). In the
second simulation setting we introduced noise to the simulated family histories through in-
correctly reported diagnoses, diagnosis ages, and current ages for noncounselees, using mis-
reporting rates from Ziogas and Anton-Culver (2003) and Braun et al. (2018) (see Supple-
mentary Material B.1 for details, Guan et al. (2022a)).

Under misreporting the NNs outperformed BRCAPRO with respect to calibration, AUC,
and Brier score across almost all of the 1000 bootstrap replicates of the test set (Table 1),
illustrating the advantage of NNs over BRCAPRO when the Mendelian assumptions are not
fully satisfied. The NNs also outperformed LR with respect to AUC and PR-AUC in most of
the bootstrap replicates. With respect to the Brier score, the CNN outperformed LR in more
than 99% of the replicates, while the FCNN performed similarly to LR. The CNN had similar
calibration to LR, while the FCNN had worse calibration.

3.2.2. Sensitivity analyses. Using simulated data, we performed sensitivity analyses to
evaluate the impact of the choice of reference pedigree and missing data.

To evaluate the impact of the choice of reference pedigree, we quantified the amount of
information lost (mean proportion of family members dropped from the original pedigree) for
various reference structures based on different summary measures for the number of relatives
of each type (Supplementary Material B.2, Guan et al. (2022a)). We considered “symmetric”
reference structures, where the number of daughters is equal to the number of sons for each
couple as well as reference structures without this constraint. We assessed the discriminatory
accuracy of the models trained, using the various reference structures. The results show only
small differences in performance for reference structures based on using the first,  second,
third, or fourth quartile as the summary measure, even though the mean proportion of family
members dropped varies substantially across these choices (from 0 for the fourth quartile to
approximately 0.4 for the first quartile). Therefore, in our application the performance of the
NN is not particularly sensitive to the choice of reference structure. In the main analyses we
used a symmetric reference structure, based on the third quartile of relative counts. In other
settings where performance may be more sensitive to the choice of reference structure, it can
be chosen based on cross-validation AUCs or other performance metrics.

We also considered the impact of different proportions of missing data in the training and
test sets. We evaluated the impact of: (1) missing relatives by removing relatives from the
pedigree and (2) missing diagnosis ages for affected relatives. In the first scenario we con-
sidered removing relatives at random, which corresponds to noninformative missingness as
well as removing only unaffected relatives, which corresponds to informative missingness. In
prediction problems, missing data is likely to have a larger impact when the amount of miss-
ingness differs between the training and test datasets, so we considered scenarios where there
were missing data in the training set but complete data in the test set as well as symmetric
scenarios with complete data in the training set and missing data in the test set. We varied the
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proportion of missing relatives and missing diagnosis ages from 0.05 to 0.3. We used single
imputation to handle the missing ages, setting them to 50 for individuals over 50 and setting
them to the individual’s current age otherwise. The types of missingness considered did not
have a substantial impact on any of the performance measures (Tables S5-S8, Guan et al.
(2022a)).

3.2.3. Computational costs. Among the models trained, LR is the least computationally
intensive and CNN the most computationally intensive. The training times, using a single
CPU core for different training set sizes ranging from 6250 to 800,000, are provided in Fig-
ure S3 (Guan et al. (2022a)) (using the NN hyperparameters from the main simulation analy-
sis). The relationship between sample size and training time is approximately linear for each
model. With 800,000 training families, it took about one minute to train the LR model, five
minutes to train the FCNN, and 20 minutes to train the CNN. The NNs also require addi-
tional computation to tune the hyperparameters prior to training the final model which can
considerably increase the computational burden. However, hyperparameter tuning methods,
such as grid search and random search, can be parallelized, and in some cases, using a GPU
Oh and Jung (2004) can speed up the tuning/training process.

4. Data application. We trained NN and LR models to predict  5-year risk of breast
cancer using data from the Risk Service and compared their performance to BRCAPRO
using data from the CGN. We excluded male counselees, counselees who had breast can-
cer/bilateral mastectomy/bilateral oophorectomy before baseline, counselees under 18 years
old, and counselees for whom we could not run BRCAPRO (counselees over 89 years old).

4.1. Datasets.

4.1.1. Risk service. The Risk Service (Chipman et al. (2013)) is a web service that pro-
vides risk predictions from various family history-based cancer risk models, including BR-
CAPRO. It has been used in primary care, breast imaging, and genetic counseling clinics. As
of January 2018, the Risk Service database contained patient-reported family history inputs
for over 450,000 counselees, with 285,161 counselees consenting to the use of their data for
research.

Model training requires baseline and follow-up data, but the Risk Service does not follow
counselees over time. We, therefore, defined each counselee’s baseline date to be five years
prior to the date at which they used the Risk Service and the follow-up date to be the date at
which they used the Risk Service. We retrospectively reconstructed the family history at the
baseline date, based on the ages and diagnosis ages of the family members. However, due to a
considerable amount of missing age information for noncounselees (74% of first- and second-
degree relatives were missing “age” and 34% of affected first- and second-degree relatives
were missing “age at diagnosis”), we decided not to use ages or diagnosis ages of noncoun-
selees for training, and we imputed baseline cancer status for noncounselees with missing
diagnosis ages (see Supplementary Material B.7 for more details, Guan et al. (2022a)).

The training set consisted of 279,460 counselees (Table 2). The median age was 45, and
the median family size was eight. Also, 36,783 counselees (13.2%) had at least one affected
first-degree relative, and 13,307 (4.8%) developed breast cancer during the follow-up period.

4.1.2. CGN. The CGN is a national consortium of 15 academic medical centers that
was established for the purpose of studying inherited predisposition to cancer (Anton-Culver
et al. (2003)). Between 1999 and 2010, 26,941 participants with cancer or a family history of
cancer were recruited through population-based registries, high-risk clinics, and selfreferral.
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TABLE 2
Characteristics of training (Risk Service) and test (CGN) datasets

Variable Category Risk Service CGN
N (counselees) 279,460 7489
Age (median [IQR]) 45 [39, 55] 47 [38, 57]
Family Size (median [IQR]) 817, 14] 16 [12, 21]
Affected 1st-degree Relatives (%) 0 242,677 (86.8) 4277 (57.1)
1 35,241 (12.6) 2549 (34.0)
2+ 1542 (0.6) 663 (8.9)
Ascertainment (%) Population-Based — 4050 (54.1)
Clinic-Based — 2187 (29.2)
Self-Referral — 1247 (16.7)
Unknown — 5(0.1)
Censored (%) 0(0.0) 1017 (13.6)
Cases (%) 13,307 (4.8) 114 (1.5)

They provided information on personal and family history of cancer and sociodemographic
factors through a baseline phone interview and annual follow-up updates.

The test cohort consisted of 7489 counselees. The median age was 47, and the median
family size was 16. The majority (54.1%) of counselees were recruited from population-based
cancer registries. Also, 42.9% of counselees had at least one female first-degree relative with
breast cancer (a much higher proportion than in the Risk Service), 114 (1.5%) counselees
developed breast cancer within five years of baseline, and 1017 counselees (13.6%) were lost
to follow-up within five years without being diagnosed with breast cancer (Table 2). To adjust
for censoring, we used inverse probability of censoring weights (Uno et al. (2007), Gerds and
Schumacher (2006)) (see Supplementary Material B.8 for details, Guan et al. (2022a)).

4.2. Training and test populations. There are many differences between the Risk Service
and CGN cohorts (Table 2). Since CGN participants were recruited based on family history
of cancer, the CGN cohort represents a higher-risk population and has more counselees with
a positive family history (Table 2). Due to different data collection and ascertainment proce-
dures, the family history information available in the CGN is more detailed than in the Risk
Service. To handle the considerable amount of missing age information in the Risk Service
data, we did not use current or diagnosis ages of noncounselee relatives in the NN features
and used only their breast and ovarian cancer affection statuses (we still used the counselee’s
age). Moreover, the Risk Service cohort is affected by selection bias because individuals who
are diagnosed with breast cancer often seek genetic counseling shortly after diagnosis.

To account for the described differences between the CGN and Risk Service populations,
we recalibrated the models trained on the Risk Service to general U.S. population incidence
rates adjusted for family history. The approaches have been previously discussed for various
regression calibration problems (Carroll et al. (2006)). We calculated age-specific five-year
risks, based on 2012-2016 incidence rates from the Surveillance, Epidemiology, and End Re-
sults (SEER) program (Horner et al. (2009)). We then modified the risk, based on the number
of affected first-degree relatives, using relative risk estimates from Collaborative Group on
Hormonal Factors in Breast Cancer (2001) (the relative risks were 1.8 for one affected rela-
tive, 2.9 for two affected relatives, and 3.9 for two or more affected relatives). To recalibrate
each model, we used the Risk Service data to fit a linear regression with the family history-
adjusted five-year SEER risk as the outcome and the five-year risk from the model as the
predictor. We also evaluated a recalibrated version of BRCAPRO, obtained via the SEER
recalibration approach.
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4.3. Results. Table 3 compares the performance of five models (FCNN, CNN, LR, BR-
CAPRO, and BRCAPRC® , the SEER-recalibrated version of BRCAPRO) in the CGN dataset
which were not used for training. All models underpredicted risk, with underprediction being
most severe in the clinic-based subset of CGN. This may be because the CGN counselees
were ascertained based on having a family history of cancer and, therefore, represented a
higher-risk population than the sources of the data used for training and recalibration. Over-
all, the NNs and BRCAPRO had comparable PR-AUCs and Brier scores, performing better
than LR with respect to these metrics. The CNN and BRCAPRO also performed better than
LR with respect to the AUC. In the analyses stratified by ascertainment mode, the compar-
isons across 1000 bootstrap replicates show evidence of accuracy improvements achieved by
the CNN over the other models. Both in the population-based test pedigrees (63 cases) and
in the clinic-based test pedigrees (39 cases), the CNN achieved better PR-AUCs and Brier
scores than LR and BRCAPRO in the majority of the bootstrap replicates. = The CNN also
achieved a higher AUC than LR in the majority of the bootstrap replicates in each stratum. In
the population-based pedigrees, the CNN achieved a higher AUC than BRCAPRO in 94% of
the bootstrap replicates, while, in the clinic-based pedigrees, BRCAPRO achieved a higher
AUC than the CNN in 58% of the replicates.

We performed an additional analysis where we trained the NN and LR models, using only
40,000 Risk Service families, instead of all 279,460 families. The models trained, using the
smaller sample size, all performed worse (Table S10, Guan et al. (2022a)) than the versions
trained using all Risk Service families (Table 3). In particular, the models trained using 40,000
families had worse calibration. The FCNN had considerably lower discrimination in the over-
all cohort and population-based subset compared to before, indicating that large training sets
are needed to develop accurate empirical models. However, the CNN trained using 40,000
families still performed reasonably well, compared to BRCAPRO.

5. Discussion. The main contributions of our paper are: (1) adapting FCNNs and CNNs
to family history data and (2) investigating their potential for learning genetic susceptibility
to cancer. To the best of our knowledge, we are the first to develop cancer risk prediction
models using a dataset of more than 200,000 pedigrees. Our simulations and data application
show that NNs are a promising approach for developing new models.

In simulations under the assumptions of BRCAPRO, we examined how much training
data is required for NNs to achieve comparable performance to BRCAPRO. The FCNNs and
CNNss trained on 200,000 or more families were highly correlated with BRCAPRO and had
AUCs similar to that of BRCAPRO. With training set sizes under 200,000, the CNN per-
formed better than the FCNN, showing that leveraging pedigree structure via convolutions
can lead to more efficient training. In the setting where family history was subject to misre-
porting, the NNs outperformed BRCAPRO. The simulations also showed that NNs can learn
feature interactions that are not prespecified (such as rare but strongly predictive patterns in-
volving multiple affected individuals on the same side of the family or multiple cancers in
the same individual).

In our data application we trained NNs on over 200,000 families from the Risk Service
database and validated the models on families from the CGN. In the CGN the NNs achieved
competitive performance, compared to BRCAPRO in the overall cohort. They had slightly
higher AUCs than BRCAPRO in population-based counselees but performed worse than BR-
CAPRO in clinic-based counselees with a stronger family history. These results are promising
because BRCAPRO is based on domain knowledge accumulated over two decades of epi-
demiological studies (including Antoniou et al. (2002), Chen and Parmigiani (2007), Easton,
Ford and Bishop (1995), Miki et al. (1994), Wooster et al. (1995)) while the NNs were trained
on a single dataset. The poorer performance of the NNs in clinic-based counselees may partly
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TABLE 3
Performance in CGN cohort, overall and stratified by ascertainment mode. The NN and LR models were trained
using a randomly selected subset of 40,000 Risk Service counselees. BRCAPRG : Recalibrated version of
BRCAPRO. AUC: % relative improvement in AUC compared to BRCAPRO. AUC: % relative improvement in
PR-AUC compared to BRCAPRO. sqrt(BS): % relative improvement in root Brier Score compared to
BRCAPRO. P: correlation with BRCAPRO. In the table the “Comparisons Across Bootstrap Replicates”
component shows pairwise comparisons between the NN models and the other models across 1000 bootstrap
replicates of the test set; the row forA > B shows the proportion of bootstrap replicates where model A
outperformed model B with respect to each metric

O/E AUC PR-AUC sqrt(BS)
Overall (114 cases)
Performance Metrics
FCNN 1.16 (0.95, 1.37) —4.22 (- 12.37,4.76) —6.70 (- 33.06, 27.75) —0.02 (—=0.27, 0.24)
CNN 1.10(0.90, 1.30) —2.53 (- 10.69, 5.92) —-4.79 (-31.35, 33.38) 0.03 (- 0.22, 0.31)
LR 1.07 (0.89, 1.27) —4.56 (— 12.87, 4.25) —11.34 (- 34.51, 20.35) —0.09 (- 0.36, 0.19)
BRCAPRO 1.34 (1.11,1.59)  0.00 (0.00, 0.00) 0.00 (0.00, 0.00) —0.03 (—0.05,-0.00)
BRCAPRO® 1.20 (0.99, 1.42) AUC= 0.654 PR- AUC= 0.029 sqrt(BS) = 0.130
Comparisons Across Bootstrap Replicates
FCNN > CNN 0.090 0.251 0.334 0.153
FCNN > LR 0.109 0.597 0.784 0.887
FCNN > BRCAPRO 0.956 0.195 0.314 0.396
CNN > LR 0.179 0.803 0.852 0.972
CNN > BRCAPRO 0.923 0.279 0.386 0.566

Population— Based (63 cases)
Performance Metrics

FCNN 1.12(0.87,1.39) 6.05(—5.26,16.80) 25.25 (- 14.99, 63.46) 0.07 (- 0.18, 0.28)
CNN 1.05(0.81,1.31) 6.12 (- 1.55,14.09) 22.35(-12.58,55.70) 0.07 (—0.14, 0.26)
LR 1.07(0.83, 1.34) 4.23 (—7.14,15.67) 13.35(—21.87,53.71) —0.04 (—0.33, 0.20)
BRCAPRO 1.41 (1.09, 1.76)  0.00 (0.00, 0.00) 0.00 (0.00, 0.00) —-0.03 (- 0.05, 0.00)
BRCAPRO® 1.25(0.97, 1.56) AUC= 0.648 PR-AUC= 0.024 sqre(BS) = 0.128
Comparisons Across Bootstrap Replicates

FCNN > CNN 0.269 0.499 0.618 0.450
FCNN > LR 0.244 0.839 0.923 0.955
FCNN > BRCAPRO 0.907 0.872 0.891 0.703

CNN > LR 0.668 0.697 0.773 0.893

CNN > BRCAPRO 0.864 0.943 0.891 0.758

Clinic— Based (39 cases)
Performance Metrics

FCNN 1.49 (1.08, 1.97)— 7.02 (- 23.59, 14.35) 3.08 (- 44.82, 107.03) 0.07 (- 0.46, 0.67)
CNN 1.40 (1.01, 1.84)— 1.65 (— 17.46, 18.21) 17.62 (- 37.69, 164.32) 0.24 (- 0.35, 0.90)
LR 1.29(0.94, 1.71)— 5.49 (- 23.12, 14.61) — 5.46 (— 46.78, 62.30) 0.05 (- 0.58, 0.64)
BRCAPRO 1.38 (1.00, 1.84)  0.00 (0.00, 0.00) 0.00 (0.00, 0.00) —0.04 (-0.07,-0.00)
BRCAPROC 1.27 (0.92, 1.69) AUC= 0.619 PR-AUC= 0.033 sqrt(BS) = 0.146
Comparisons Across Bootstrap Replicates

FCNN > CNN 0.016 0.084 0.024 0.168

FCNN > LR 0.023 0.399 0.584 0.753

FCNN > BRCAPRO 0.024 0.233 0.607 0.552

CNN > LR 0.038 0.845 0.964 0.955

CNN > BRCAPRO 0.046 0.420 0.803 0.693
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be explained by the fact that the NNs used less detailed family history information than BR-
CAPRO. Due to missing data in the training set, we did not include age information on
noncounselees in the NN inputs. This information could potentially improve the accuracy of
the NNs. The performance of the NNs could also be improved by considering risk factors
besides family history. Since NNs are empirical models, they can easily be extended to han-
dle additional features by adding the features to the input vector. It is less straightforward to
incorporate additional risk factors into Mendelian models because explicit assumptions need
to be made about how the risk factors modify the genotype-specific risks.

Model performance can be highly dependent on how similar the test population is to the
training population (Castaldi, Dahabreh and Ioannidis (2011), Bernau et al. (2014)). In prac-
tice, the training and test datasets are often representative of distinct populations with dif-
ferent characteristics. Some methodologies are more robust to these differences than others
(Yu (2013), Trippa et al. (2015)). Our application is an example of training and testing us-
ing data from different populations: the Risk Service represents a lower-risk population than
the test data from the CGN which specifically recruited participants with a family history
of cancer. An advantage of training and testing in populations with different characteristics
is that it allows us to evaluate how robust the model is to heterogeneity across populations.
Despite the differences between the Risk Service and the CGN, the NNs trained in the Risk
Service achieved comparable discriminatory accuracy to BRCAPRO which uses parameter
estimates based on higher-risk populations. Also, various methods have been developed to ad-
just for differences between the training and test populations (Janssen et al. (2008), Sugiyama,
Krauledat and Miiller (2007), Zhang et al. (2013)) which can help improve predictions.

One challenging problem we have not investigated in this paper is ascertainment, or the
sampling mechanism. Pedigree-based studies of cancer risk typically use inclusion criteria
that enrich for the genotypes and/or phenotypes of interest (e.g., including only families with
affected members). This can lead to ascertainment bias, that is, risk estimates that are not
generalizable to the population of interest. In particular, when developing pedigree-based
risk prediction models, there can be differences in ascertainment between training and test
datasets, and not adjusting for these differences can affect performance (especially calibra-
tion) in the test dataset. There is an extensive literature on methods for adjusting for ascer-
tainment (Carayol and Bonaiti-Pellié (2004), Choi, Kopciuk and Briollais (2008), Kraft and
Thomas (2000), Le Bihan et al. (1995), Iversen and Chen (2005)). One approach for obtain-
ing general population estimates from an ascertained population is to weight families by the
inverse probability of being ascertained (Choi, Kopciuk and Briollais (2008)). This approach
has similarities to weighting approaches that adjust for differences in covariate distributions
between training and tests sets (Sugiyama, Krauledat and Miiller (2007), Zhang et al. (2013))
and can be applied during training by using weights in the calculation of the loss function.
However, the approach requires a model for the ascertainment mechanism, which is gener-
ally unknown or difficult to quantify, and is not directly applicable to existing models, such as
BRCAPRO. In our data application, ascertainment differed for the training and test datasets.
The Risk Service counselees mostly came from mammography screening populations while
the CGN counselees were ascertained based on having a family history of cancer. More-
over, there was heterogeneous ascertainment in both cohorts, since the Risk Service includes
some counselees from genetic counseling clinics and the CGN used both population-based
and clinic-based recruitment. We took some steps to address the ascertainment differences
between the Risk Service and the CGN by recalibrating the models trained in the Risk Ser-
vice before applying them to the CGN. However, this did not perfectly calibrate the models,
especially for the clinic-based subset of the CGN, highlighting the challenge of quantifying
ascertainment.

While NNs allow for greater flexibility than Mendelian models and traditional regression
models and do not require prior biological understanding, one disadvantage of NN is that
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their black box nature makes it challenging to interpret the relationship between the predic-
tors and risk predictions (Fan, Xiong and Wang (2020)). In contrast, traditional regression
methods, such as logistic regression, explicitly describe monotone relationships between the
predictors and risk predictions. Various post hoc methods have been developed to determine
feature importance in black box models (Ribeiro, = Singh and Guestrin (2016), Shrikumar,
Greenside and Kundaje (2017)). Methods have also been proposed for developing NN mod-
els that are intrinsically interpretable (Dong et al. (2017), Zhang, Nian Wu and Zhu (2018),
Lietal. (2018)), but further investigation is needed in the context of family history-based
cancer risk prediction.

Other disadvantages of NNs include computational burden (especially in the case of
CNNs) and sample size requirements. Our simulations and data application suggest that NNs
need large sample sizes ( ~ 100,000 or more) to achieve good accuracy in family history-
based cancer risk prediction. In the data application the FCNN performed particularly poorly
when the training set was restricted from over 200,000 families to 40,000 families, though the
CNN was still able to achieve reasonable performance. The potential benefits of using NNs
are currently limited to a small number of diseases for which many pedigrees are available.
In healthcare, datasets with over 100,000 pedigrees exist yet are still uncommon since col-
lecting detailed and accurate family history is a time-consuming process. Examples besides
the Risk Service include the Breakthrough Generations breast cancer study, which includes
over 113,000 women (Swerdlow et al. (2011)), the Swedish Family-Cancer Database, which
includes over two million families (Dong and Hemminki (2001)), cancer studies based on
the Utah Population Database, which includes over 1.3 million probands (Cannon-Albright,
Carr and Akerley (2019), Teerlink et al. (2012)), and a cancer study based on an Icelandic
genealogical database with over 600,000 individuals (Amundadottir et al. (2004)). Though
sample sizes are currently limited for most diseases, in recent years, extensive progress has
been made to improve and expand family health history collection, including growing efforts
in systematic data collection by research consortia (John et al. (2004), Petersen et al. (2006),
Newcomb et al. (2007)) and genetic testing companies (Ginsburg, Wu and Orlando (2019)),
the development of a wide array of electronic patient-facing family history tools Welch
et al. (2018), which allow patients to gather family history information outside the clinic
and, therefore, overcome the time constraints of traditional approaches where practitioners
record family history during clinical visits, and the implementation of technology allowing
for communication between family history tools and electronic health records (Mandel et al.
(2016)). Also, electronic genealogical databases are rapidly expanding, and there are contin-
uing efforts to link them with clinical data to generate pedigrees (Amundadottir et al. (2004),
Stefansdottir et al. (2013, 2019), Teerlink et al. (2012)). These developments will lead to in-
creased opportunities to refine NN models for hereditary cancer and to train NN models for
other hereditary diseases.

While NNs require further development and validation before they can be considered as a
viable competitor to existing family history-based models, our work indicates that they can
potentially be a helpful tool for investigating and assessing familial risk.
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SUPPLEMENTARY MATERIAL

Supplement to “Prediction of hereditary cancers using neural networks” (DOI:
10.1214/21-AOAS1510SUPPA,; .pdf). The supplementary material includes a notation ta-
ble, an overview of standard CNNs, the proof of Theorem 2.1, and additional details on the
simulations and data application.

Code for “Prediction of hereditary cancers using neural networks” (DOI: 10.1214/21-
AOAS1510SUPPB; .zip). The simulation code is included as a zip file. It is also available at
github.com/zoeguan/nn_cancer_risk.
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