

1 **Protistan grazing impacts microbial communities and carbon cycling at deep-**
2 **sea hydrothermal vents**

3
4 Sarah K. Hu^{1*}, Erica L. Herrera¹, Amy R. Smith¹, Maria G. Pachiadaki², Virginia P. Edgcomb³,
5 Sean P. Sylva¹, Eric W. Chan⁴, Jeffrey S. Seewald¹, Christopher R. German³, Julie A. Huber¹

- 6
- 7 1. Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic
 - 8 Institution, Woods Hole, MA 02543
 - 9 2. Department of Biology, Woods Hole Oceanographic Institution, Woods Hole MA, 02543
 - 10 3. Department of Geology & Geophysics, Woods Hole Oceanographic Institution, Woods
 - 11 Hole, MA 02543
 - 12 4. School of Earth, Environment & Marine Sciences, UT-RGV, Edinburg, TX 78539

13
14
15
16
17 *Corresponding author:

18 Sarah K. Hu
19 266 Woods Hole Rd MS#51
20 Woods Hole MA, 02543
21 sarah.hu@whoi.edu
22 shu251@gmail.com

23
24
25
26 **Author Contributions:** SKH, JAH, MGP, and VPE designed research; SKH, AS, SPS, JSS,
27 JAH performed research; VPE, MGP contributed analytic tools; EWC and CRG contributed to
28 field operations; SKH analyzed data; SKH and JAH wrote the paper.

29 **Competing Interest Statement:** Authors declare no conflict of interest.

30 **Preprint server:** <https://biorxiv.org/cgi/content/short/2021.02.08.430233v1>

31 **Classification:** Environmental Sciences (major), Biological Sciences (minor)

32 **Keywords:** deep-sea hydrothermal vents, microbial eukaryote, predator-prey interactions, deep-
33 sea food web ecology

34
35
36 **This PDF file includes:**

37 Main Text
38 Figures 1-4
39 Table 1

42 **Abstract**

43 Microbial eukaryotes (or protists) in marine ecosystems are a link between primary producers
44 and all higher trophic levels, and the rate at which heterotrophic protistan grazers consume
45 microbial prey is a key mechanism for carbon transport and recycling in microbial food webs. At
46 deep-sea hydrothermal vents, chemosynthetic bacteria and archaea form the base of a food web
47 that functions in the absence of sunlight, but the role of protistan grazers in these highly
48 productive ecosystems is largely unexplored. Here, we pair grazing experiments with a
49 molecular survey to quantify protistan grazing and to characterize the composition of vent-
50 associated protists in low-temperature diffuse venting fluids from Gorda Ridge in the North East
51 (NE) Pacific Ocean. Results reveal protists exert higher predation pressure at vents compared to
52 the surrounding deep seawater environment and may account for consuming 28-62% of the daily
53 stock of prokaryotic biomass within discharging hydrothermal vent fluids. The vent-associated
54 protistan community was more species rich relative to the background deep sea, and patterns in
55 the distribution and co-occurrence of vent microbes provide additional insights into potential
56 predator-prey interactions. Ciliates, followed by dinoflagellates, Syndiniales, rhizaria, and
57 stramenopiles dominated the vent protist community and included bacterivorous species, species
58 known to host symbionts, and parasites. Our findings provide a first estimate of protistan grazing
59 pressure within hydrothermal vent food webs, highlighting the important role that diverse deep-
60 sea protistan communities play in deep-sea carbon cycling.

61 **Significance Statement**

62 Heterotrophic protists are ubiquitous in all aquatic ecosystems and represent an important
63 ecological link in food webs by transferring organic carbon from primary producers to higher
64 trophic levels. Here for the first time, we quantify the predator-prey trophic interaction among
65 protistan grazers and microbial prey within hydrothermal vent fluids from the Gorda Ridge
66 spreading center in the NE Pacific Ocean. Estimates of protistan grazing pressure were highest at
67 sites of diffusely venting fluids, which are an oasis of biological activity in the deep sea. Our
68 findings suggest that elevated grazing activity is attributed to a diverse assemblage of
69 heterotrophic protistan species drawn to the hydrothermal vent habitat and demonstrates the
70 important ecological roles protists play in the deep-sea carbon cycle.

71 **Introduction**

72 Mixing of hydrothermal vent fluids with surrounding seawater in the deep sea creates
73 redox gradients that promote a hub of biological activity supported by chemosynthetic primary
74 production in the absence of sunlight. These localized regions of elevated microbial biomass are
75 important sources of carbon and energy to the surrounding deep-sea ecosystem (1–5). In
76 particular, the consumption of hydrothermal vent microorganisms by single-celled microbial
77 eukaryotes (or protists) is an important link in the food web where carbon is transferred to higher
78 trophic levels or remineralized to the microbial loop.

79

80 Protistan grazing is a significant source of mortality for bacterial and archaeal
81 populations in aquatic ecosystems that also influences their composition and diversity (6).
82 Assessments of grazing in the mesopelagic and dark ocean indicate that rates of consumption
83 decrease with depth and correspond to bacterial abundance (7, 8). Therefore, at sites of increased
84 biological activity and microbial biomass, such as areas of redox stratification, protistan grazing
85 is higher relative to the rest of the water column (9, 10). Comparable data are lacking from deep-
86 sea hydrothermal vents, where the relatively high microbial biomass and rates of primary
87 productivity suggest protistan grazing should be a significant source of microbial mortality and
88 carbon transfer. Further, single-celled microbial eukaryotes can serve as a nutritional resource for
89 other larger protists and higher trophic levels (4, 11).

90

91 Early microscopic and culture-based experiments from several hydrothermal vents
92 confirmed the presence of single-celled microbial eukaryotes, with observations and enrichment
93 cultures revealing diverse assemblages of ciliates and flagellated protists (12, 13). The study of
94 protistan taxonomy and distribution via genetic analyses at deep-sea vents has uncovered a
95 community largely composed of alveolates, stramenopiles, and rhizaria (14–17). In addition to
96 many of these sequence surveys identifying known bacterivorous species, ciliates isolated from
97 Guaymas Basin were shown to consume an introduced prey analog (18). Collectively, these
98 studies provide supporting evidence of a diverse community of active protistan grazers at deep-
99 sea vents.

100

101 Here, we investigate protistan predation pressure upon microbial populations in venting
102 fluids along the Gorda Ridge to test the hypothesis that protistan grazing and diversity is elevated
103 within hydrothermal habitats compared to the surrounding deep sea due to increased prey
104 availability. Estimates of mortality via protistan phagotrophy are calculated from grazing
105 experiments conducted with low temperature diffusely venting fluid that mixes with seawater at
106 and below the seafloor. Paired 18S rRNA gene amplicon sequencing from the same experimental
107 sites and incubations reveal the *in situ* protistan diversity and distribution to evaluate potential
108 preferences in prey, with a focus on the protistan grazer population and their relationship to
109 bacteria and archaea. We present quantitative estimates of protistan grazing from a deep-sea
110 hydrothermal vent ecosystem, thus providing new details into the role protists play in food webs
111 and carbon cycling in the deep sea.

112 **Results & Discussion**

113 *Sea Cliff and Apollo hydrothermal vent fields*

114 Low-temperature (10-80°C) diffusely venting fluids were collected at the Sea Cliff and Apollo
115 hydrothermal vent fields along the Gorda Ridge (Figure S1; 19, 20, 21). Hydrothermal vent
116 fluids collected for experiments and genetic analysis were geochemically distinct from plume (5
117 m above active venting), near vent bottom water (lateral to venting fluid), and background
118 seawater (outside the range of detectable hydrothermal influence; Table 1). The concentration of
119 bacteria and archaea was $5-10 \times 10^4$ cells mL⁻¹ in low temperature vent fluids, which was higher
120 than background seawater concentrations ($3-5 \times 10^4$ cells mL⁻¹; Table 1). Diffuse vents sampled
121 in both fields represented a mixture of nearby high temperature vent fluid (Candelabra, 298°C
122 and Sir Ventsalot, 292°C) with seawater (22). During sample collection (30-40 minutes), the
123 temperature of the fluid being sampled fluctuated between 3-72°C, due to mixing (Table 1). The
124 temperature maxima at Mt. Edwards and Venti Latte were lower compared to Candelabra and Sir
125 Ventsalot, and ranged from 11-40°C; these sites also had visible tube worm clusters (*Ridgeia*
126 *piscesae*; Figure S1; Table 1).

127 *Protistan grazers exert predation pressure on hydrothermal vent bacteria and archaea*

128 Grazing incubations conducted with fluids collected from five sites within the Sea Cliff and
129 Apollo vent fields demonstrate that microbial eukaryotes actively graze microbial communities
130 in hydrothermal vent fluids at an elevated rate relative to the surrounding deep-sea environment
131 (Figure 1). Protists consumed microbial prey at rates ranging between 700 to 1828 cells mL⁻¹
132 hour⁻¹ in the diffuse venting fluids (Figure 1b, Table S1), whereas in near vent bottom water
133 away from active venting, the grazing rate was 255 cells mL⁻¹ hour⁻¹. The prokaryote turnover
134 rate, expressed as the percentage of the daily consumed prokaryote biomass relative to the
135 standing stock (average prokaryotic cell concentration), was 17.2% in the bottom water near the
136 hydrothermal vent sites. Protistan grazing at hydrothermal vents accounts for 28-62% of the
137 daily prokaryote biomass turnover (Figure 1c; Table S1), demonstrating that the vent microbial
138 community within discharging fluids is under more top-down pressure compared to communities
139 in the background deep-sea environment.

140

141 Free-living heterotrophic protists may adapt to low prey encounter rates, due to decreased
142 microbial biomass in the deep sea, by associating with sinking particles or localized habitats with
143 more abundant prey (6, 23). Transition zones such as redoxclines often host a more abundant
144 microbial population due to the presence of diverse sources of carbon and energy (9, 24);
145 subsequently, these habitats are also sites of comparatively higher grazing pressure (grazing rate
146 and prokaryote turnover) due to increased prey availability. In one of the only other studies to
147 quantify deep-sea predation pressure, protistan grazing within a deep-sea halocline (3500 m;
148 above the hypersaline Urania Basin in the Eastern Mediterranean Sea) was calculated to be over
149 13,500 cells mL⁻¹ hour⁻¹, in contrast to 10-390 cells mL⁻¹ hour⁻¹ in the water column outside the
150 influence of the halocline (100-3000 m; 9). Near vent bottom water grazing rates in our study
151 (Figure 1; Table S1) were comparable to rates previously obtained from mesopelagic and
152 bathypelagic water column depths (200-2500 m; ~10-400 cells consumed mL⁻¹ hour⁻¹; (8, 10)),
153 while grazing rates and prokaryotic abundance were higher in vent fluids (Figure 1; Table S1).

154

155 Commensurate with typical declining concentrations of prokaryotes with ocean depth,
156 deep-sea grazing rates in this study were lower relative to those measured in seawater from
157 euphotic regions (8, 9). However, when the microbial community abundance (cells mL⁻¹) within

158 diffuse flow fluids is taken into account, the impact of protistan grazing measured as a daily
159 prokaryote turnover rate (28-62% day⁻¹) at the hydrothermal vent sites are within the range of
160 turnover rates reported from some euphotic zone studies (6). This observation is consistent with
161 grazing rates reported from sub-euphotic depths, especially at environments with increased
162 biological activity (reviewed in 10).

163

164 Prokaryote turnover rates (% day⁻¹) were also found to be dependent on diffuse vent fluid
165 temperature maxima ($r^2 = 0.87$; Figure S4b), otherwise no other relationships between estimated
166 grazing pressure and geochemistry were detected. While this trend is consistent with correlations
167 between protistan grazing and temperature in previous euphotic zone studies (7, 25, 26), the lack
168 of a relationship between temperature and grazing rate (both cells mL⁻¹ hr⁻¹ and $\mu\text{g C L}^{-1}$ day⁻¹;
169 Figure S4b) measurements, which are independent of estimated prokaryote cell abundances,
170 suggests that there may be an indirect relationship between temperature and protist grazing
171 activity involving the impact temperature has on the growth and concentration of microbial prey
172 populations.

173

174 Grazing rates from Sea Cliff and Apollo vent fields indicate that protists may be
175 consuming or remineralizing 1.45 - 3.77 μg of carbon L⁻¹ day⁻¹ (Table S1; using a carbon
176 conversion factor of 86 fg carbon cell⁻¹ (27)). While few measurements of absolute fixed carbon
177 exist from hydrothermal vents, McNichol *et al.* estimate primary production of the microbial
178 community associated with low temperature diffuse fluids at the East Pacific Rise to range
179 between 17.3 - 321.4 $\mu\text{g C L}^{-1}$ day⁻¹, at 24°C and 50°C under *in situ* pressure, representing an
180 important source of new labile carbon in the deep sea (2, 3). Considering these estimates,
181 protistan grazing may account for the consumption, or transformation of up to 22% of carbon
182 fixed by the chemosynthetic population in discharging vent fluids. While the eventual fate of this
183 carbon remains unconstrained, protistan grazing will release a portion of the organic carbon into
184 the microbial loop as a result of excretion, egestion, and sloppy feeding, while another
185 proportion will be taken up by larger organisms that consume protistan cells. In prior work, it has
186 been shown that carbon fixed within hydrothermal vent plumes and exported to the underlying
187 seafloor has the potential to outweigh the flux of sinking organic carbon that persists to depth
188 from the overlying surface ocean (1); our work illustrates previously unquantified pathways by

189 which protistan grazing activity may also contribute to carbon cycling in hydrothermal
190 ecosystems. Our findings show that the trophic exchange between microbial prey and activities
191 of protistan grazers at hydrothermal vents is significant and may account for a substantial amount
192 of organic carbon transfer at the base of deep-sea food webs.

193 *Distinct microbial populations at hydrothermal vents*

194 The Sea Cliff and Apollo hydrothermal vent sites were found to host a diverse assemblage of
195 protists (Figures 2a and 3). Amplicon sequencing of the protistan (18S rRNA gene) and
196 prokaryotic (16S rRNA gene) communities resulted in 9027 and 6497 amplicon sequence
197 variants (ASVs), respectively. ASVs represent approximately species- or strain-level
198 designations based on recovered sequences (see *SI Appendix*). The taxonomic composition of
199 18S rRNA gene-derived ASVs reveal dominant members of the vent ecosystem to include
200 ciliates, dinoflagellates, Syndiniales, rhizaria, and stramenopiles (Figure 2a); these same
201 protistan groups are enriched in other deep-sea niche habitats, such as methane seeps and other
202 hydrothermal vent systems or vent-fluid influenced environments (14, 15, 17, 18, 28).

203 Community-wide analyses of both protists (18S rRNA gene amplicons) and bacteria and archaea
204 (16S rRNA gene amplicons) showed that replicate samples cluster together (Figures 2b, S5, S6;
205 *SI Appendix*). Background, plume, and near vent bottom water bacteria and archaea community
206 compositions were distinct from the vent-associated community (Figure S6). Sites of actively
207 venting fluid hosted higher relative sequence abundances assigned to the *Epsilonbacteraeota*
208 class, including *Sulfurimonas* and *Sulfurovum* (Figure S6a), which are commonly dominant
209 within vent microbial communities (29). The expected impact of vent fluid collection and
210 depressurization was evidenced by differences in the protistan community composition in
211 samples from *in situ* (SUPR or sterivex filters) and the start of each grazing experiment (T_0 ;
212 Figure 2a) (30). However, consistency among grazing experiment sample community
213 composition and ordination analysis demonstrated that the collected vent fluid used for grazing
214 incubations was representative of the hydrothermally-influenced community (Figures 2a and 2b).

215
216 To test the hypothesis that microbial eukaryotes from the surrounding deep-sea
217 environment have greater species richness at sites of low temperature diffuse venting, ASVs
218 were classified based on their distribution within and across vent fluid and non-hydrothermally

219 influenced environments (background). ‘Resident’ ASVs were found only within
220 hydrothermally-influenced samples and considered to be potentially vent endemic, and
221 ‘cosmopolitan’ ASVs included those detected throughout the background and hydrothermally-
222 influenced samples (*SI Appendix*; Figure S7). The total number of ASVs within the resident
223 population was several fold higher than in the cosmopolitan population (4236 resident versus
224 535 cosmopolitan ASVs), yet the number of sequences assigned to each population was similar
225 (48% cosmopolitan and 46% resident). An 18S rRNA gene survey comparing Mariana Arc vent
226 fluids with the background environment similarly found species richness to be higher within the
227 vent-only protistan population (17). While biases with sequence-based analyses inhibit our
228 ability to infer absolute abundances and do not necessarily provide full coverage of the entire
229 microbial community, results from these molecular surveys support the hypothesis that protistan
230 diversity is enriched (higher species richness) within hydrothermal vent mixing zones relative to
231 the surrounding deep-sea environment. The niche habitat created by the discharging fluids
232 mixing with the surrounding seawater likely contributes to supporting an increased abundance of
233 bacteria and archaea (Table 1) and, consequently, attracts a diverse community of protistan
234 heterotrophs that ultimately places top-down pressure on the microbial population (Figures 1 and
235 2, Table S1).

236

237 To assess the composition of the putative grazer population, we closely examined the
238 diversity and distribution of key protistan lineages known to exhibit heterotrophy in other
239 environments (see *SI Appendix* for detailed observations by taxonomic group; Datasets S2-S4).
240 Ciliates were identified as important grazers in the hydrothermal vent fluids from these sites, as
241 many groups detected include well-known bacterivorous species (31). The Oligohymenophorea
242 and Spirotrichea classes had particularly higher species richness within the Gorda Ridge vent
243 fluids (Figure 3), and species within these groups may be specially suited to thrive within the
244 vent environment. For example, scuticociliates (a subclass within Oligohymenophorea; Dataset
245 S4) have previously been found near hydrothermal vent sites (28, 32), and in addition to their
246 heterotrophic capabilities, are known to be parasitic or to host endosymbionts (31). Ciliates
247 found only within the vent fluid samples, such as Karyorelictea, Plagiopylea, and *Euplotia*,
248 include species capable of thriving in low oxygen to suboxic environments with modified
249 mitochondria (hydrogenosomes), and form symbiotic relationships with methanogens or bacteria

250 (33, 34). Taxonomic groups within ciliates and other alveolates, rhizaria (radiolaria and
251 cercozoa), amoebozoa, apusozoa, and excavates that were detected primarily in the resident
252 population (Figure 3) include species that are candidates in future efforts to understand the
253 functional traits among hydrothermal vent endemic protists; many of these same groups were
254 previously identified as vent endemic species along the Mariana Arc (17). Heterotrophic
255 nanoflagellate members of the stramenopile supergroup were overwhelmingly MArine
256 STramenopiles (MAST, in cosmopolitan and resident populations) or *Cafeteriaeae* (primarily in
257 the near vent bottom water samples) (Figure 3); both are recognized as important bacterivores
258 with a global distribution and often found in mesopelagic and deep-sea surveys (35–37). MAST
259 have also been found at higher relative sequence abundances within the Mariana Arc vent
260 ecosystem and hydrothermally influenced water masses within Okinawa Trough (17, 28).

261

262 We also found evidence for parasitic populations of protists that may represent a source
263 of mortality to the protists themselves and other small eukaryotes (e.g., metazoa) in venting
264 fluids from the Gorda Ridge. Parasitic protists have been found to account for a significant
265 portion of the globally distributed heterotrophic protistan community (38), where the most
266 abundant genetic signatures were affiliated with Syndiniales (also marine alveolate; MALV
267 group). Syndiniales are also recognized as a major source of mortality for many microbial
268 eukaryotes, as well as metazoa, and are typically found in association with ciliates,
269 dinoflagellates, and rhizaria (39); our data suggests they may also represent a source of mortality
270 among the vent protistan population (Dino Groups I–V; Figure 3). The prevalence of Syndiniales,
271 along with other protistan lineages known to include parasitic species (e.g., ciliates, amoebozoa,
272 or cercozoa), supports previous observations that parasitism is widespread and likely contributes
273 to carbon turnover in deep-sea food webs (40). Parasitism and grazing by microbial eukaryotes,
274 along with other modes of microbial mortality such as viral lysis, should be included in future
275 studies of deep-sea food web ecology.

276

277 Network analysis (45) based on a subset of the 18S and 16S rRNA gene-derived ASVs
278 was used to query putative predator-prey interactions in this study. While results do not confirm
279 the exact preferred prey preferences among hydrothermal vent protistan consumers, results
280 identify significantly co-occurring instances of protists and bacteria or archaea (Figure 4;

281 compare links between inner and outer circles). Within the Gorda Ridge protistan assemblage, a
282 higher proportion of the interactions associated with the resident protistan population were
283 among ciliates (Figure 4b). The most common interactions with the putative ciliate grazer
284 population were with the most abundant prokaryotic groups (Figure 4), including
285 *Alphaproteobacteria*, *Gammaproteobacteria*, *Nitrososphaeria*, and *Sulfurimonas*. Inferred
286 predator-prey relationships from this study represent hypotheses for future efforts to characterize
287 protistan grazing preferences within the hydrothermal vent food web. Identifying these
288 interactions is of ecological importance because protistan grazers can place selective pressures
289 on the prey species community composition; protists may preferentially consume cells based on
290 their morphology or nutritional value (reviewed in 41, 42). For instance, if protist grazers
291 favored small cell sizes, grazing activity may shift the microbial community suspended within
292 the diffuse fluid towards larger cell types or cells that form aggregates or filaments (43, 44). In
293 order to accurately capture predator-prey interactions *in situ* and understand the selective
294 pressures grazing may place on the microbial prey community structure, future studies need to
295 consider the diverse modes of protistan feeding and suitability of preferred prey types.

296

297 Reported grazing rates in this study quantify the impact of protistan grazing on microbial
298 prey within low-temperature diffuse hydrothermal vent fluids. Findings from our paired
299 quantitative and qualitative approach provide new insight into the ecological roles of protists at
300 deep-sea vents and their subsequent impact on the deep-sea carbon budget through carbon
301 trophic transfer and release of dissolved organic matter. Phagotrophic grazing on smaller
302 microorganisms accounts for a considerable amount of mortality in many aquatic environments
303 and undoubtedly influences the diversity and composition of the hydrothermal vent diffuse flow
304 microbial community; thus, efforts to fully characterize the microbial loop in the deep sea should
305 include the roles of microbial eukaryotes. Protistan grazing is a key route of carbon
306 transformation and exchange in the hydrothermal vent food web, and these findings contribute to
307 our growing understanding of carbon cycling in the deep ocean.

308 **Materials and Methods**

309 *Sample collection and processing*

310 The Gorda Ridge spreading center, located ~200 km off the coast of southern Oregon, was
311 visited in May-June 2019 with the E/V *Nautilus* (cruise NA108; 20). Low temperature diffuse
312 hydrothermal vent fluid samples <100°C were collected using the ROV *Hercules* and a
313 SUspended Particle Rosette Sampler (SUPR; 46). This involved measuring the fluid temperature
314 with the *Hercules* temperature probe in regions of hydrothermal fluid flow, then positioning the
315 sampler intake into the vent for collection of discharging fluid. The SUPR sampler pumped fluid
316 to either fill gas-tight bags (PET/METPET/LLDPE; ProAmpac, Rochester, NY) with 2-6 L of
317 vent fluid for processing shipboard, or to filter between 4.1-6.6 L of fluid through a 142 mm, 0.2
318 µm PES filter (MilliporeSigma™) for *in situ* samples. Filling and filtering rates ranged between
319 0.3-1.3 L min⁻¹. Fluid was also collected by Niskin bottles mounted on the port forward side of
320 the ROV within the vicinity of the hydrothermal vent, but outside of the range of venting fluid
321 (near vent bottom water) at 2745 m and within the plume by situating the ROV ~5 m above an
322 active venting site. Background seawater from the water column at ~2100 m was also obtained
323 by a Niskin bottle. Upon retrieval, filters from the SUPR sampler were stored in RNAlater™
324 (Ambion) for 18 hours at 4°C, then moved to -80°C. Niskin samples from the plume and
325 background were emptied into acid-washed cubitainers. Fluids from bags and cubitainers were
326 sampled for prokaryote cell counts by preserving fluid with formaldehyde (1% final
327 concentration). Excess fluid from each bag was also filtered onto sterivex filters (0.2 µm;
328 MilliporeSigma™) and stored with RNAlater identically to the *in situ* filters.

329

330 Whenever possible, the same vent fluids and high temperature end-members were also
331 sampled with Isobaric Gas Tight samplers (47) for geochemical analyses, which were processed
332 immediately after recovery of the ROV. Shipboard analyses included pH measured at room
333 temperature (25°C) using a Ag/AgCl combination reference electrode, dissolved H₂ and CH₄ by
334 gas chromatography with thermal conductivity detection following headspace extraction, and
335 total aqueous sulfide ($\Sigma\text{H}_2\text{S} = \text{H}_2\text{S} + \text{HS}^- + \text{S}^{2-}$) following aqueous precipitation as Ag₂S for
336 subsequent gravimetric determination in a shore-based laboratory. Aliquots of fluid were stored
337 in 30 mL serum vials and acid-cleaned Nalgene bottles for shore-based measurement of total

338 dissolved carbonate ($\Sigma\text{CO}_2 = \text{H}_2\text{CO}_3^* + \text{HCO}_3^- + \text{CO}_3^{2-}$) by gas chromatography and Mg by ion
339 chromatography, respectively.

340 *Grazing experimental procedure*

341 Stocks of Fluorescently-labeled Prey (FLP) were prepared using a modified protocol from (48)
342 with monocultures of *Hydrogenovibrio* (Strain MBA27; 49); preparation of FLP prey analog is
343 described in the *Supplementary Text*. The prey type was specifically chosen as a hydrothermal
344 vent representative isolate and was found to have a similar size and morphology to resident
345 bacteria (Figure S1). FLP stained with 5-(4,6- dichlorotriazin-2-yl) aminofluorescein (DTAF) are
346 non-toxic to consumers, and upon ingestion, the DTAF label disappears (48).

347

348 Grazing experimental setup and execution followed the guidelines in Caron (50) with
349 modifications described below (Figure S2). A summary of grazing experiments including: site,
350 vent name, depth, incubation temperatures, start times, and sampling time points can be found in
351 Table S1. Vent fluid collected from gas-tight bags was first filtered through 300 μm mesh to
352 remove large multicellular metazoa and transferred into acid-washed and clean 500 mL plastic
353 bottles using a peristaltic pump. Controls were prepared by filtering the fluid through a 0.2 μm
354 filter to ensure that the FLP tracer did not disappear over the course of the experiment in the
355 absence of grazers. Experiments were conducted in duplicate or triplicate and controls were
356 conducted in duplicate (Figure S2). FLP were added at concentrations 50% greater than the *in*
357 *situ* microbial population, as there were no prior estimates of microbial concentrations or the
358 ability to count cells onboard before the initiation of the experiments (Table S1). The suggested
359 amount of labeled prey to be added is between 1 and 10% of *in situ* microbial concentration (50),
360 thus the higher amount given during these incubations have probably led to overestimation of the
361 estimated rates. Samples at T_0 were collected for cell counts following addition of FLP and
362 gently mixing by fixing 10 mL of fluid in cold formaldehyde at a final concentration of 1%.
363 Collected fluid in bags (vents) or Niskin bottles (background) remained on the ROV for several
364 hours before the start of each shipboard incubation, thus to minimize additional temperature
365 changes and keep incubation conditions consistent between all experiments, bottles were placed
366 in a dark cooler for incubation, where temperatures ranged between 12-17°C (Table S1). In
367 addition to other potential artifacts of bottle-based grazing experiments (*i.e.*, pressure

368 differences, sample handling, and bottle effect), we acknowledge that incubation temperatures
369 for the grazing experiments were lower than the *in situ* discharging hydrothermal vent fluid and
370 higher than the measured background seawater environment, which may have contributed to an
371 underestimate or overestimate of grazing rates, respectively.

372

373 Grazing incubations were run for a total of 24-48 hours, where sample fluid for FLP
374 counts was preserved with formaldehyde at two time points (T₁ and T₂, Table S1). To assess the
375 composition of protistan grazers in grazing incubations via molecular analysis, samples at each
376 time point were vacuum filtered onto 0.2 µm PES filters (MilliporeTM Express), stored with
377 RNAlater at 4°C overnight and frozen at -80°C. These were collected in duplicate when possible,
378 and the volume filtered ranged from 0.9-2.7 L (Table S1, Figure S2). In some cases, a T₀ sample
379 was taken after addition of FLP and before incubation started, providing an assessment of the
380 degree to which the community composition in the initial water samples was altered by sample
381 handling between collection *in situ* and initiation of the experiments shipboard. A molecular
382 sample at T₀ was not always collected (*e.g.*, Candelabra and Sir Ventsalot), and a subset of
383 grazing experiments were conducted at different time points ranging from 18 to 36 hours (Table
384 S1).

385

386 To track the disappearance of FLP over time, triplicate slides were prepared from each
387 time point in a shore-based laboratory by filtering 2-4 mL of preserved fluid from each time onto
388 0.2 µm black polycarbonate filters. Following filtration, 10-15 µl of a stain solution made with
389 4',6-diamidino-2-phenylindole (DAPI; ~10 µg/mL; see *Supplementary Text*) was gently pipet
390 onto the filter, and covered with a cover slip. Experimental and control slides were counted using
391 epifluorescence microscopy within 1-2 days and stored at 4°C. FLPs were counted under the
392 fluorescein isothiocyanate (FITC) filter at 100x or 63x; 16 fields of view were counted and the
393 cell mL⁻¹ concentration was determined from this value for each slide. The technical error rate
394 was calculated by taking the percentage of the standard deviation over the mean for replicate
395 counts. This technical error rate percentage was used to set the threshold at which a change in
396 FLP abundance over time was considered true (*i.e.*, if the percent change in FLP from T₀ to T₁
397 did not exceed the technical error rate, the loss of FLP by T₁ was not considered significantly
398 different from T₀).

399

400 The concentration of FLPs at each time point was averaged across replicates. The
401 difference in FLP concentration (cells mL⁻¹) from T₀ and T_F was used to estimate the number of
402 cells grazed (G). For each experiment, T₁ or T₂ was chosen as T_F, when the loss in FLP exceeded
403 the technical error rate. In the case where both T₁ and T₂ exceeded the range of error, T₁ was
404 chosen as T_F (Figure S3). Using a model described in Salat and Marrasé (51) the number of cells
405 grazed by protists (G) was estimated using the equation:

406

407 (Equation 1.) $G = (T_0 - T_F) \left(\frac{N_0}{T_0} \right)$

408

409 where T₀ and T_F equal the average FLP concentrations at the beginning and end of the
410 experiment and N₀ equals the concentration of *in situ* prokaryote cell concentration (51). This
411 model assumes that the ratio of FLP to *in situ* microbial prey remains consistent. The grazing
412 rate was calculated by normalizing G to time at T_F (cells mL⁻¹ hr⁻¹). The daily prokaryote
413 turnover percentage was calculated by multiplying the *in situ* prokaryote cell concentration
414 (taken at T₀) by the estimated grazing rate per day (9, 51). Grazing rates were converted to
415 measures of carbon biomass using the assumption that the amount of carbon per prey cell is 86
416 fg C (Morono *et al.* (27); Table S1).

417 *Eukaryotic molecular sample processing*

418 Samples collected for molecular analyses included *in situ* filters from the SUPR sampler,
419 shipboard sterivex filters, or time points from grazing experiments (all collected into 0.2 µm pore
420 size filters; MilliporeSigma™). RNA was extracted and the 18S rRNA gene was reverse
421 transcribed to make cDNA; the V4 hypervariable region (52) was amplified according to Hu *et*
422 *al.* (53); protocols.io; dx.doi.org/10.17504/protocols.io.hk3b4yn) and as described in the
423 *Supplementary Text*. Samples were multiplexed, pooled at equimolar concentrations and
424 sequenced with the MiSeq 300 x 300 bp PE kit at the Marine Biological Laboratory Bay Paul
425 Center sequencing facility.

426 *Prokaryotic sample processing*

427 Prokaryotic cells were enumerated in formaldehyde-fixed fluids using DAPI (see *Supplementary*
428 *Text*). DNA was extracted from PES filters or sterivex filters (0.2 μ m) as described in (54) and
429 the *Supplementary Text*. 16S rRNA gene amplicon libraries were prepared and sequenced by the
430 UConn Microbial Analysis, Resources, and Services using modified EMP 16S rRNA gene V4
431 primers 515F and 806R (55–58).

432 *Sequence analysis*

433 All sequences were quality controlled and processed in QIIME2 (v2019.4; 59). Chimeric
434 sequences were removed (pooled) and Amplicon Sequence Variants (ASVs) (60). ASVs from
435 18S rRNA amplicons were assigned taxonomy using the Protist Ribosomal 2 Database (v4.12;
436 <https://github.com/pr2database/pr2database>; (61). Taxonomy assignment was performed with the
437 naive Bayesian classifier method in the DADA2 R package with a minimum bootstrap of 70 (60,
438 62). Removal of contaminant 18S rRNA sequences is described in the *Supplementary Text*. For
439 16S rRNA gene derived ASVs, the SILVA database (v132; 63) was used for taxonomy
440 assignment.

441

442 Molecular samples from *in situ* filters and shipboard sterivex filters were treated as
443 replicates, where sequence counts were averaged across replicates at the ASV level. ASV
444 taxonomy assignment for both the 18S rRNA and 16S rRNA gene was manually curated and
445 visualized to highlight the main taxonomic groups (see *Supplementary Text*). Due to the
446 compositional nature of tag-sequence datasets, data were transformed by center-log ratio ahead
447 of Principle Coordinate Analysis and to visualize ASV-level changes across samples (64, 65).

448

449 To detect possible microbial interactions, Sparse InversE Covariance estimation for
450 Ecological Association and Statistical Inference (SPIEC-EASI) analysis was performed using the
451 cross-domain approach with ASVs from 18S rRNA and 16S rRNA gene results (66). SPIEC-
452 EASI is designed to minimize spurious ASV-ASV interactions that result from the influence of
453 the compositional nature of tag-sequencing results (45). Only *in situ* samples that were found in both
454 the 18S rRNA and 16S rRNA gene amplicon results were considered for the network analysis.
455 Both datasets were subsampled to include ASVs that appeared in at least 3 samples, had at least

456 50 sequences each, and made up at least 0.001% of the sequenced reads. 18S rRNA and 16S
457 rRNA gene datasets were each center-log ratio transformed then SPIEC-EASI was run using the
458 Meinshausen-Buhlmann's neighborhood selection estimation method. Significant interactions to
459 infer putative predator-prey relationships were determined by subsetting only interactions
460 between 18S rRNA and 16S rRNA-derived ASVs.

461 *Data availability*

462 A complete compilation of code to reproduce all analyses is available at
463 <https://shu251.github.io/protist-gordaridge-2021/>. A GitHub repository also includes raw
464 microscopy count results, raw sequence count information, and ASV tables. Both 18S rRNA and
465 16S rRNA amplicon sequences have been deposited in the Sequence Read Archive under
466 BioProject PRJNA637089 (Dataset S1).

467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487

488 **Acknowledgements and funding sources**

489 Authors would like to thank Chip Breier, Darlene Lim, and Nicole Raineault for their
490 contributions to the field operations. We would also like to extend gratitude to David Caron,
491 Paige (Connell) Hu, Susanne Menden-Deuer, Roxanne Beinart, and Alexis Pasulka for helpful
492 conversation and discussion regarding grazing experiments and deep-sea protistan diversity and
493 to Jesse McNichol for discussion of carbon fixation rates. Margrethe Serres and Patrick Carter
494 provided laboratory support for preparation of FLP. This research was supported by the NASA
495 Planetary Science and Technology Through Analog Research (PSTAR) Program
496 (NNH16ZDA001N-PSTAR) grant (16-PSTAR16_2-0011), NOAA Office of Ocean Exploration
497 and Research, Ocean Exploration Trust and NOAA-OER grant NA17OAR0110336, and the
498 Charles E. Hollister Endowed Fund for Support of Innovative Research at WHOI. This research
499 used samples and data provided by the Ocean Exploration Trust's Nautilus Exploration Program,
500 Cruise NA108. EH was supported by the WHOI Summer Student Fellowship and NSF REU
501 (OCE-1852460). The NSF Center for Dark Energy Biosphere Investigations (C-DEBI) supported
502 JAH as well as SKH through a C-DEBI Postdoctoral Fellowship (OCE-0939564). Research and
503 analysis was also supported through an NSF grant (OCE-1947776) awarded to JAH and MGP.
504 This is SUBSEA Publication Number SUBSEA-2021-001 and C-DEBI contribution number
505 568.

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525 **References**

- 526 1. C. R. German, *et al.*, Hydrothermal Fe cycling and deep ocean organic carbon scavenging:
527 Model-based evidence for significant POC supply to seafloor sediments. *Earth Planet. Sci.*
528 *Lett.* **419**, 143–153 (2015).
- 529 2. N. Le Bris, *et al.*, Hydrothermal Energy Transfer and Organic Carbon Production at the
530 Deep Seafloor. *Front. Mar. Sci.* **5**, 531 (2019).
- 531 3. J. McNichol, *et al.*, Primary productivity below the seafloor at deep-sea hot springs. *Proc.*
532 *Natl. Acad. Sci. U. S. A.* **115**, 6756–6761 (2018).
- 533 4. S. A. Bennett, *et al.*, Trophic regions of a hydrothermal plume dispersing away from an
534 ultramafic-hosted vent-system: Von Damm vent-site, Mid-Cayman Rise. *Geochem.*
535 *Geophys. Geosyst.* **14**, 317–327 (2013).
- 536 5. L. A. Levin, *et al.*, Hydrothermal Vents and Methane Seeps: Rethinking the Sphere of
537 Influence. *Front. Mar. Sci.* **3** (2016).
- 538 6. E. B. Sherr, B. F. Sherr, Bacterivory and herbivory: Key roles of phagotrophic protists in
539 pelagic food webs. *Microb. Ecol.* **28**, 223–235 (1994).
- 540 7. B. Cho, S. Na, D. Choi, Active ingestion of fluorescently labeled bacteria by mesopelagic
541 heterotrophic nanoflagellates in the East Sea, Korea. *Mar. Ecol. Prog. Ser.* **206**, 23–32
542 (2000).
- 543 8. E. Rocke, M. G. Pachiadaki, A. Cobban, E. B. Kujawinski, V. P. Edgcomb, Protist
544 Community Grazing on Prokaryotic Prey in Deep Ocean Water Masses. *PLoS One* **10**,
545 e0124505 (2015).
- 546 9. M. G. Pachiadaki, *et al.*, In situ grazing experiments apply new technology to gain insights
547 into deep-sea microbial food webs. *Deep Sea Res. Part 2 Top. Stud. Oceanogr.* **129**, 223–
548 231 (2016).
- 549 10. L. E. Medina, *et al.*, A Review of Protist Grazing Below the Photic Zone Emphasizing
550 Studies of Oxygen-Depleted Water Columns and Recent Applications of In situ
551 Approaches. *Front. Mar. Sci.* **4** (2017).
- 552 11. C. L. Van Dover, B. Fry, Microorganisms as food resources at deep-sea hydrothermal vents.
553 *Limnol. Oceanogr.* **39**, 51–57 (1994).
- 554 12. M. S. Atkins, A. P. Teske, O. R. Anderson, A Survey of Flagellate Diversity at Four Deep-
555 Sea Hydrothermal Vents in the Eastern Pacific Ocean Using Structural and Molecular
556 Approaches. *J. Eukaryot. Microbiol.* **47**, 400–411 (2000).
- 557 13. E. B. Small, M. E. Gross, Preliminary observations of protistan organisms, especially
558 ciliates, from the 21 N hydrothermal vent site. *Bull. Biol. Soc. Wash.*, 401–410 (1985).

- 559 14. V. P. Edgcomb, D. T. Kysela, A. Teske, A. de V. Gomez, M. L. Sogin, Benthic Eukaryotic
560 Diversity in the Guaymas Basin Hydrothermal Vent Environment. *Proc. Natl. Acad. Sci. U.*
561 *S. A.* **99**, 7658–7662 (2002).
- 562 15. P. López-García, A. Vereshchaka, D. Moreira, Eukaryotic diversity associated with
563 carbonates and fluid-seawater interface in Lost City hydrothermal field. *Environ. Microbiol.*
564 **9**, 546–554 (2007).
- 565 16. P. López-García, H. Philippe, F. Gail, D. Moreira, Autochthonous eukaryotic diversity in
566 hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. *Proc.*
567 *Natl. Acad. Sci. U. S. A.* **100**, 697–702 (2003).
- 568 17. S. A. Murdock, S. K. Juniper, Hydrothermal vent protistan distribution along the Mariana
569 arc suggests vent endemics may be rare and novel. *Environ. Microbiol.* **21**, 3796–3815
570 (2019).
- 571 18. A. Pasulka, *et al.*, SSU rRNA Gene Sequencing Survey of Benthic Microbial Eukaryotes
572 from Guaymas Basin Hydrothermal Vent. *J. Eukaryot. Microbiol.*, jeu.12711 (2019).
- 573 19. K. L. Von Damm, *et al.*, Chemistry of vent fluids and its implications for subsurface
574 conditions at Sea Cliff hydrothermal field, Gorda Ridge. *Geochem. Geophys. Geosyst.* **7**
575 (2006).
- 576 20. D. S. S. Lim, *et al.*, SUBSEA 2019 Expedition to the Gorda Ridge. *Oceanography* **33**, 36
577 (2020).
- 578 21. D. A. Clague, J. B. Paduan, D. W. Caress, J. McClain, R. A. Zierenberg, Lava Flows
579 Erupted in 1996 on North Gorda Ridge Segment and the Geology of the Nearby Sea Cliff
580 Hydrothermal Vent Field From 1-M Resolution AUV Mapping. *Front. Mar. Sci.* **7**, 27
581 (2020).
- 582 22. V. Milesi, *et al.*, Forward Geochemical Modeling as a Guiding Tool During Exploration of
583 Sea Cliff Hydrothermal Field, Gorda Ridge. *Planet. Space Sci.* **197**, 105151 (2021).
- 584 23. T. Fenchel, *Ecology of Protozoa: The Biology of Free-living Phagotrophic Protists*
585 (Springer-Verlag, 2013).
- 586 24. V. P. Edgcomb, M. Pachiadaki, Ciliates along Oxyclines of Permanently Stratified Marine
587 Water Columns. *J. Eukaryot. Microbiol.* **61**, 434–445 (2014).
- 588 25. C. Lawerence, S. Menden-Deuer, Drivers of protistan grazing pressure: seasonal signals of
589 plankton community composition and environmental conditions. *Mar. Ecol. Prog. Ser.* **459**,
590 39–52 (2012).
- 591 26. C. Marrasé, E. Lim, D. Caron, Seasonal and daily changes in bacterivory in a coastal
592 plankton community. *Mar. Ecol. Prog. Ser.* **82**, 281–289 (1992).
- 593 27. Y. Morono, *et al.*, Carbon and nitrogen assimilation in deep subseafloor microbial cells.

- 594 *Proc. Natl. Acad. Sci. U. S. A.* **108**, 18295–18300 (2011).
- 595 28. M. Mars Brisbin, A. E. Conover, S. Mitarai, Influence of Regional Oceanography and
596 Hydrothermal Activity on Protist Diversity and Community Structure in the Okinawa
597 Trough. *Microb. Ecol.* **80**, 746–761 (2020).
- 598 29. J. A. Huber, *et al.*, Isolated communities of *Epsilonproteobacteria* in hydrothermal vent
599 fluids of the Mariana Arc seamounts. *FEMS Microbiol. Ecol.* **73**, 538–549 (2010).
- 600 30. V. P. Edgcomb, *et al.*, Comparison of Niskin vs. *in situ* approaches for analysis of gene
601 expression in deep Mediterranean Sea water samples. *Deep Sea Res. Part 2 Top. Stud.*
602 *Oceanogr.* **129**, 213–222 (2016).
- 603 31. D. Lynn, *The Ciliated Protozoa: Characterization, Classification, and Guide to the*
604 *Literature* (Springer Science & Business Media, 2008).
- 605 32. F. Zhao, K. Xu, Molecular diversity and distribution pattern of ciliates in sediments from
606 deep-sea hydrothermal vents in the Okinawa Trough and adjacent sea areas. *Deep Sea Res.*
607 *Part I* **116**, 22–32 (2016).
- 608 33. R. A. Beinart, D. J. Beaudoin, J. M. Bernhard, V. P. Edgcomb, Insights into the metabolic
609 functioning of a multipartner ciliate symbiosis from oxygen-depleted sediments. *Mol. Ecol.*
610 **27**, 1794–1807 (2018).
- 611 34. T. Fenchel, T. Perry, A. Thane, Anaerobiosis and Symbiosis with Bacteria in Free-living
612 Ciliates. *J. Protozool.* **24**, 154–163 (1977).
- 613 35. C. R. Giner, *et al.*, Marked changes in diversity and relative activity of picoeukaryotes with
614 depth in the world ocean. *ISME J.* (2019) <https://doi.org/10.1038/s41396-019-0506-9>.
- 615 36. R. Massana, R. Terrado, I. Forn, C. Lovejoy, C. Pedros-Alio, Distribution and abundance of
616 uncultured heterotrophic flagellates in the world oceans. *Environ. Microbiol.* **8**, 1515–1522
617 (2006).
- 618 37. A. Schoenle, *et al.*, Global comparison of bicosoecid *Cafeteria*-like flagellates from the
619 deep ocean and surface waters, with reorganization of the family Cafeteriaceae. *Eur. J.*
620 *Protistol.* **73**, 125665 (2020).
- 621 38. C. de Vargas, *et al.*, Eukaryotic plankton diversity in the sunlit ocean. *Science* **348**,
622 1261605–1261605 (2015).
- 623 39. L. Guillou, *et al.*, Widespread occurrence and genetic diversity of marine parasitoids
624 belonging to *Syndiniales* (*Alveolata*). *Environ. Microbiol.* **10**, 3349–3365 (2008).
- 625 40. D. Moreira, Are hydrothermal vents oases for parasitic protists? *Trends Parasitol.* **19**, 556–
626 558 (2003).
- 627 41. J. Pernthaler, Predation on prokaryotes in the water column and its ecological implications.

- 628 *Nat. Rev. Microbiol.* **3**, 537–546 (2005).
- 629 42. K. Simek, *et al.*, Morphological and compositional shifts in an experimental bacterial
630 community influenced by protists with contrasting feeding modes. *Appl. Environ.*
631 *Microbiol.* **63**, 587–595 (1997).
- 632 43. M. W. Hahn, M. G. Höfle, Flagellate predation on a bacterial model community: interplay
633 of size-selective grazing, specific bacterial cell size, and bacterial community composition.
634 *Appl. Environ. Microbiol.* **65**, 4863–4872 (1999).
- 635 44. M. W. Hahn, E. R. Moore, M. G. Höfle, Bacterial filament formation, a defense mechanism
636 against flagellate grazing, is growth rate controlled in bacteria of different phyla. *Appl.*
637 *Environ. Microbiol.* **65**, 25–35 (1999).
- 638 45. Z. D. Kurtz, *et al.*, Sparse and compositionally robust inference of microbial ecological
639 networks. *PLoS Comput. Biol.* **11**, e1004226 (2015).
- 640 46. J. A. Breier, *et al.*, A large volume particulate and water multi-sampler with *in situ*
641 preservation for microbial and biogeochemical studies. *Deep Sea Res. Part I* **94**, 195–206
642 (2014).
- 643 47. J. S. Seewald, K. W. Doherty, T. R. Hammar, S. P. Liberatore, A new gas-tight isobaric
644 sampler for hydrothermal fluids. *Deep Sea Res. Part I* **49**, 189–196 (2002).
- 645 48. B. F. Sherr, E. B. Sherr, R. D. Fallon, Use of monodispersed, fluorescently labeled bacteria
646 to estimate *in situ* protozoan bacterivory. *Appl. Environ. Microbiol.* **53**, 958–965 (1987).
- 647 49. E. Trembath-Reichert, D. A. Butterfield, J. A. Huber, Active subseafloor microbial
648 communities from Mariana back-arc venting fluids share metabolic strategies across
649 different thermal niches and taxa. *ISME J.* **13**, 2264–2279 (2019).
- 650 50. D. A. Caron, Protistan herbivory and bacterivory. *Methods Microbiol.* **30**, 289–315 (2001).
- 651 51. J. Salat, C. Marrasé, Exponential and linear estimations of grazing on bacteria: effects of
652 changes in the proportion of marked cells. *Mar. Ecol. Prog. Ser.* **104**, 205–209 (1994).
- 653 52. T. Stoeck, *et al.*, Multiple marker parallel tag environmental DNA sequencing reveals a
654 highly complex eukaryotic community in marine anoxic water. *Mol. Ecol.* **19**, 21–31
655 (2010).
- 656 53. S. K. Hu, P. E. Connell, L. Y. Mesrop, D. A. Caron, A Hard Day’s Night: Diel Shifts in
657 Microbial Eukaryotic Activity in the North Pacific Subtropical Gyre. *Front. Mar. Sci.* **5**,
658 351 (2018).
- 659 54. C. S. Fortunato, B. Larson, D. A. Butterfield, J. A. Huber, Spatially distinct, temporally
660 stable microbial populations mediate biogeochemical cycling at and below the seafloor in
661 hydrothermal vent fluids: Microbial genomics at axial seamount. *Environ. Microbiol.* **20**,
662 769–784 (2018).

- 663 55. J. G. Caporaso, *et al.*, Ultra-high-throughput microbial community analysis on the Illumina
664 HiSeq and MiSeq platforms. *ISME J.* **6**, 1621–1624 (2012).
- 665 56. A. Apprill, S. McNally, R. Parsons, L. Weber, Minor revision to V4 region SSU rRNA
666 806R gene primer greatly increases detection of SAR11 bacterioplankton. *Aquat. Microb.
667 Ecol.* **75**, 129–137 (2015).
- 668 57. A. E. Parada, D. M. Needham, J. A. Fuhrman, Every base matters: assessing small subunit
669 rRNA primers for marine microbiomes with mock communities, time series and global field
670 samples: Primers for marine microbiome studies. *Environ. Microbiol.* **18**, 1403–1414
671 (2016).
- 672 58. J. G. Caporaso, *et al.*, Global patterns of 16S rRNA diversity at a depth of millions of
673 sequences per sample. *Proc. Natl. Acad. Sci. U. S. A.* **108**, 4516–4522 (2011).
- 674 59. E. Bolyen, *et al.*, Reproducible, interactive, scalable and extensible microbiome data
675 science using QIIME 2. *Nat. Biotechnol.* **37**, 1091 (2019).
- 676 60. B. J. Callahan, *et al.*, DADA2: High-resolution sample inference from Illumina amplicon
677 data. *Nat. Methods* **13**, 581–583 (2016).
- 678 61. L. Guillou, *et al.*, The Protist Ribosomal Reference database (PR2): a catalog of unicellular
679 eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. *Nucleic Acids Res.* **41**,
680 D597–D604 (2012).
- 681 62. Q. Wang, G. M. Garrity, J. M. Tiedje, J. R. Cole, Naive Bayesian Classifier for Rapid
682 Assignment of rRNA Sequences into the New Bacterial Taxonomy. *Appl. Environ.
683 Microbiol.* **73**, 5261–5267 (2007).
- 684 63. C. Quast, *et al.*, The SILVA ribosomal RNA gene database project: improved data
685 processing and web-based tools. *Nucleic Acids Res.* **41**, D590–D596 (2012).
- 686 64. A. R. Coenen, S. K. Hu, E. Luo, D. Muratore, J. S. Weitz, A Primer for Microbiome Time-
687 Series Analysis. *Front. Genet.* **11**, 310 (2020).
- 688 65. G. B. Gloor, J. M. Macklaim, V. Pawlowsky-Glahn, J. J. Egozcue, Microbiome Datasets
689 Are Compositional: And This Is Not Optional. *Front. Microbiol.* **8** (2017).
- 690 66. L. Tipton, *et al.*, Fungi stabilize connectivity in the lung and skin microbial ecosystems.
691 *Microbiome* **6** (2018).
- 692
- 693
- 694
- 695
- 696
- 697
- 698

699 **Table 1.** Chemical characteristics of the samples used in this study, as well as nearby high-
 700 temperature end members. For vents sampled with both the SUPR and IGT, data in [brackets]
 701 are from SUPR bag samples used in grazing experiments, whereas all other data is from paired
 702 IGT samples at the same site. Sir Ventsalot was only sampled via SUPR. For plume and seawater
 703 samples, data are from Niskin bottles.

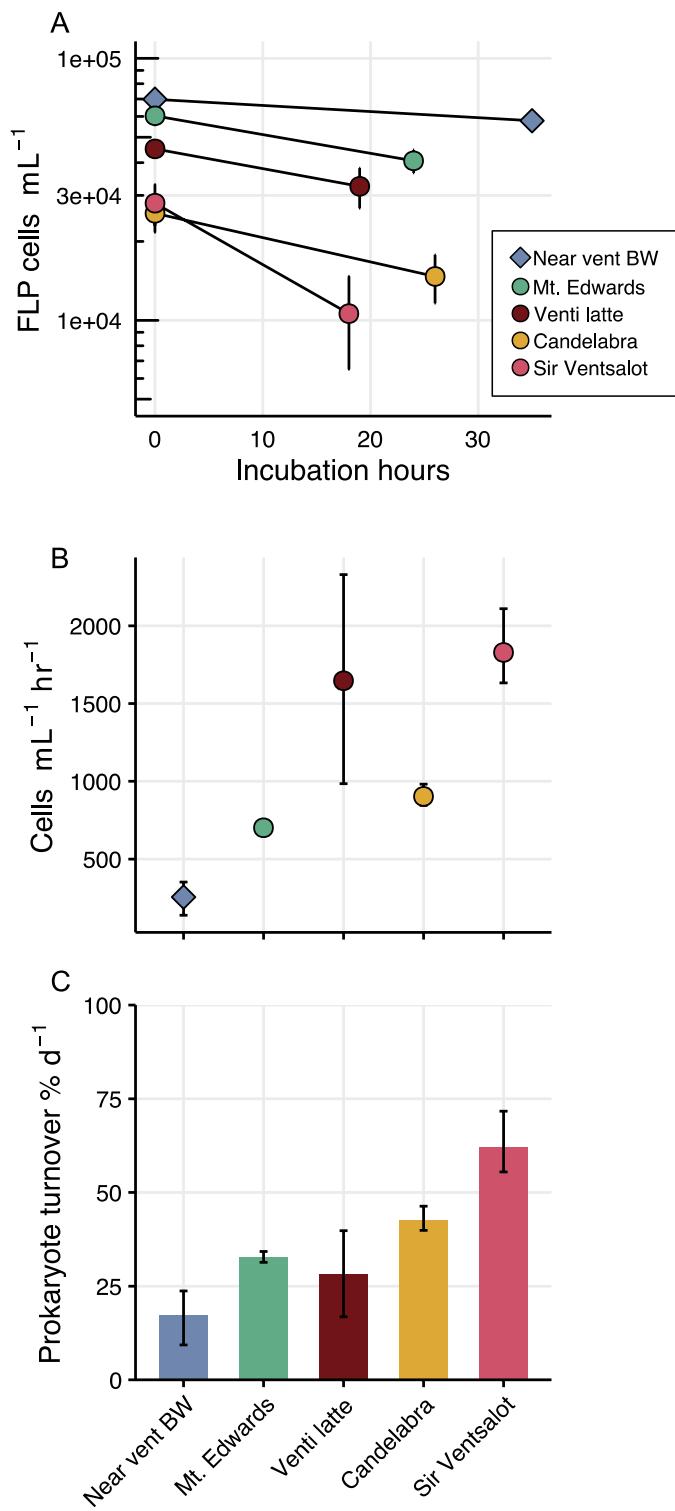
704

Vent Site	Depth (m)	Tmax [range] (°C)	pH	Mg (mM)	% Seawate ¹ bag sample	H2S (mM)	H2 (μM)	CH ₄ (μM)	Microbial (cell mL ⁻¹)
Candelabra High Temperature Vent, Gorda Vent Field	2730	298	4.5	2.1	---	3	62.0	68.4	---
Candelabra Diffuse Vent	2730	79 [9-68]	5.5 [5.8]	35.7 [45.8]	88.4%	n.d.	21.9	23.7	5.51E+04
Candelabra Plume	2725	1.7	---	---	---	---	---	---	7.69E+04
Venti Latte Vent	2708	11 [10-23]	6.4 [5.5]	50.9 [50.4]	97.3%	n.d.	b.d.	0.9	1.11E+05
Mt Edwards Vent	2707	40 [15-30]	6.0 [5.8]	42.6 [42.8]	82.5%	1.01	127.0	10.1	5.14E+04
Mt Edwards Plume	2702	1.8	---	---	---	---	---	---	---
Sir Ventsalot High Temperature Vent, Apollo Vent Field	2732	292	2.8	2.5	---	2.53	71.4	66.7	---
Sir Ventsalot Diffuse Vent	2732	[3-72]	n.d.	50.8	98.0%	---	---	---	5.30E+04
Near vent bottom water	2745	1.7	7.8	51.8	100%	---	---	---	5.20E+04
Seawater: Shallow	150	8.6	n.d.	51.8	100%	---	---	---	---
Seawater: Deep	2010-2090	1.8	7.8	51.8	100%	---	---	---	3.91E+04

705 *n.d.*, no data; *b.d.*, below detection

706 **Figure Legends**

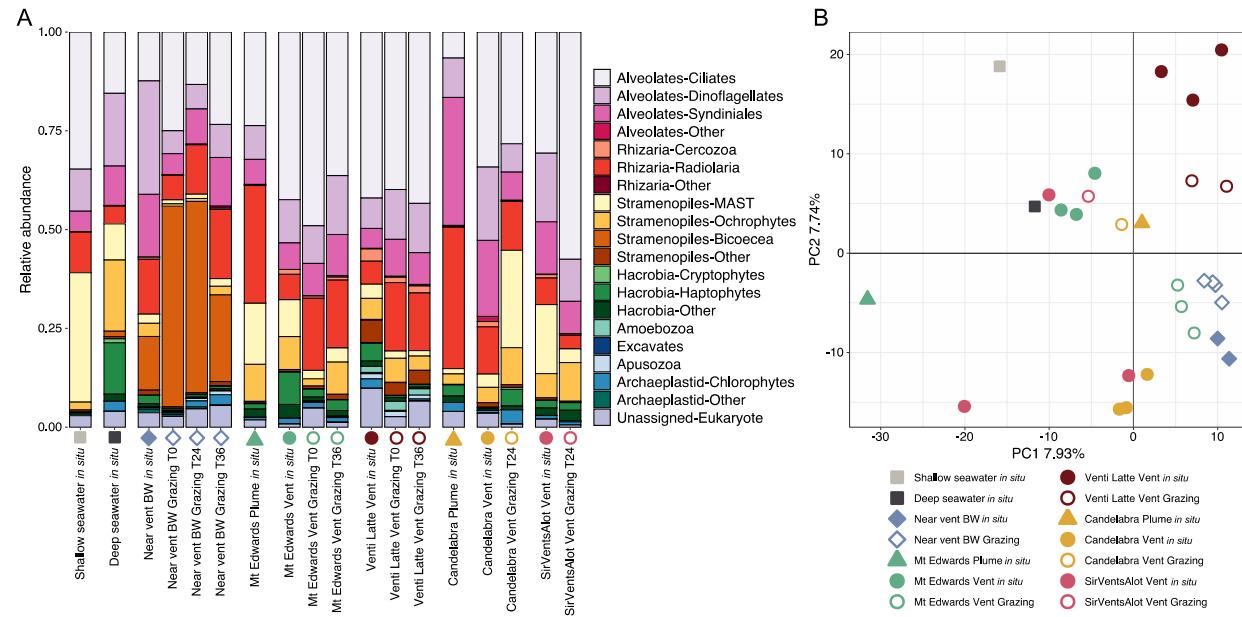
707 **Figure 1.** Results from grazing experiments conducted at Sea Cliff and Apollo hydrothermal
 708 vent fields. **(a)** Loss of Fluorescently-Labelled Prey (log FLP cells mL⁻¹; y-axis) during each
 709 incubation (hours; x-axis). Error bars represent the standard mean error from the average across
 710 replicates. **(b)** Grazing rate for each site expressed as the consumption of cells mL⁻¹ hr⁻¹, derived
 711 from Equation (1). Error bars report the minimum and maximum grazing rate derived from the
 712 standard mean error. **(c)** Estimated daily prokaryote turnover percentage (% d⁻¹), where the
 713 grazing rate for each site was multiplied by the *in situ* prokaryote cell concentration (Table 1).
 714 Error bars represent the minimum and maximum derived from the range of grazing rate for each
 715 incubation. Complete experiment details are reported in Table S1.


716

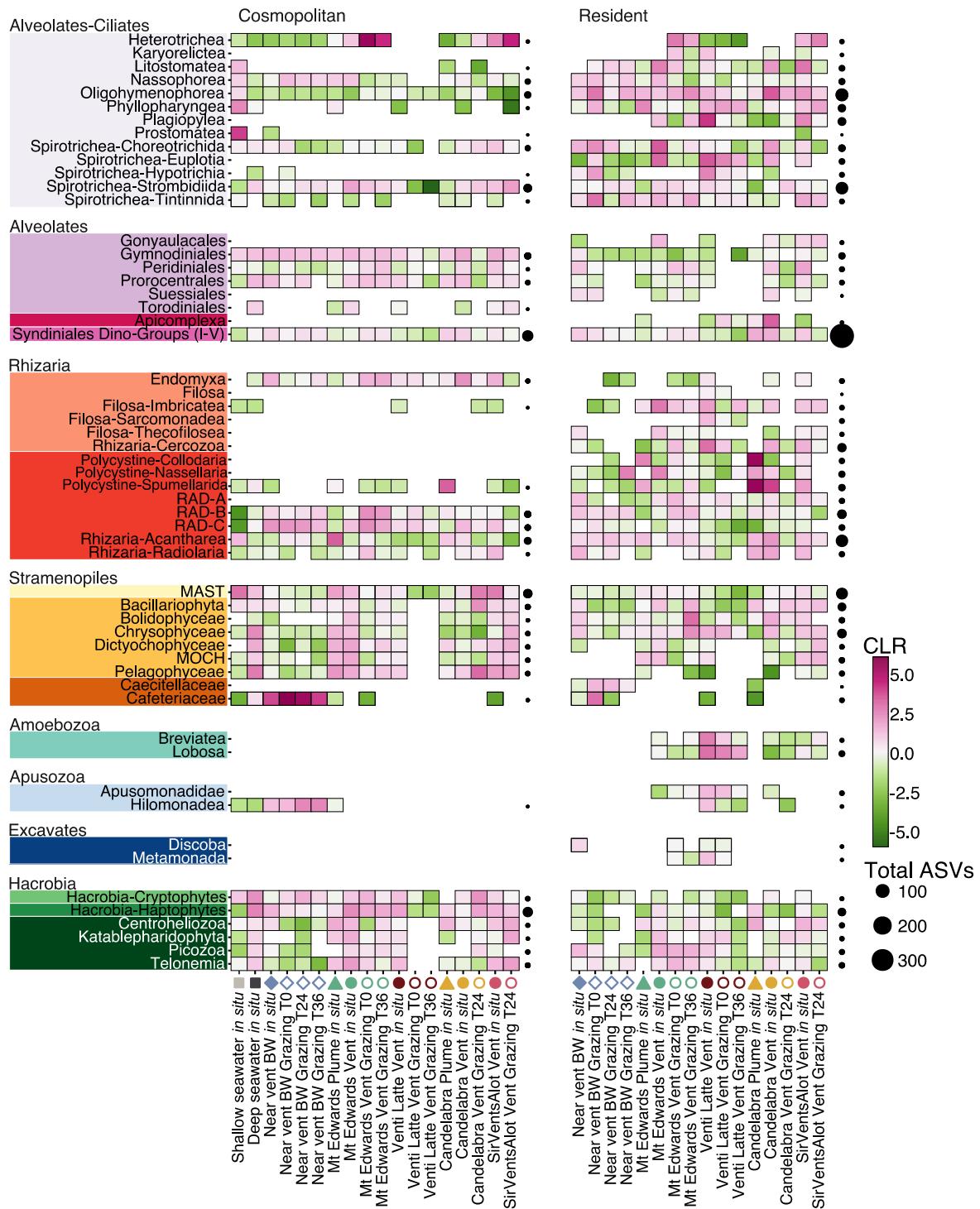
717 **Figure 2.** Summary of protistan diversity for *in situ* and grazing experiment samples. **(a)**
 718 Taxonomic breakdown of samples, including background, plume (5 m above active flow), near
 719 vent bottom water (BW), *in situ* vent sites, and associated grazing incubation bottles (T_x). Bar
 720 plot reports the relative sequence abundances, where colors designate major protistan taxonomic
 721 groups (based on manual curation, see *Materials and Methods*). **(b)** Ordination analysis of all
 722 samples, including replicates, from the 18S rRNA gene-derived sequence data. Data was center
 723 log-ratio transformed ahead of PCA analysis. For both **(a)** and **(b)**, symbols indicate origin of
 724 sample and color denotes vent site. Solid symbols represent *in situ* samples and open symbols
 725 designate samples from grazing experiments. Samples from grazing experiments include
 726 different time points (Table S1).

727

728 **Figure 3.** Prevalence, distribution, and richness of protists at the class or order level across all
729 samples. Centered log-ratio (CLR) transformed sequence abundances (green to pink heat map)
730 for all samples, including background, *in situ*, plume, and grazing incubations (columns; x-axis),
731 by taxonomic group (color schema by row; y-axis), and classification as either cosmopolitan
732 (left) or resident (right). CLR value is a result of transforming the sequence counts so the
733 geometric mean equates to zero. Ahead of sequence transformation, sequences within an ASV
734 were averaged across replicates, then sequences were summed at approximately the class or
735 order level (y-axis). Blank spaces indicate that no sequences were detected. Bubble plots to the
736 right of each panel represent the total number of ASVs (by size) for the distribution
737 (cosmopolitan versus resident) for each row.
738


739 **Figure 4.** Alluvial representation of the interaction between protists (inner circle) and bacteria or
740 archaea (outer circle) derived from the SPIEC-EASI network analysis (see *Materials and*
741 *Methods*). The total number of interactions for the **(a)** cosmopolitan protistan population ($n =$
742 370) was greater than the number of interactions involving the **(b)** resident protistan population
743 ($n = 167$). Color of the inner circle and alluvials that connect the inner to outer circle designate
744 the protistan taxonomic group (derived from 18S rRNA ASVs) and the color of the outer circle
745 represents the bacteria or archaea group (derived from the 16S rRNA ASVs). Significant 18S-
746 16S ASV pairs are listed in Dataset S5, here those ASV pairs were summed together based on
747 membership to the protistan or prokaryotic taxonomic groups.

748
749
750


Figure 1

751
752
753
754
755

Figure 2

Figure 3

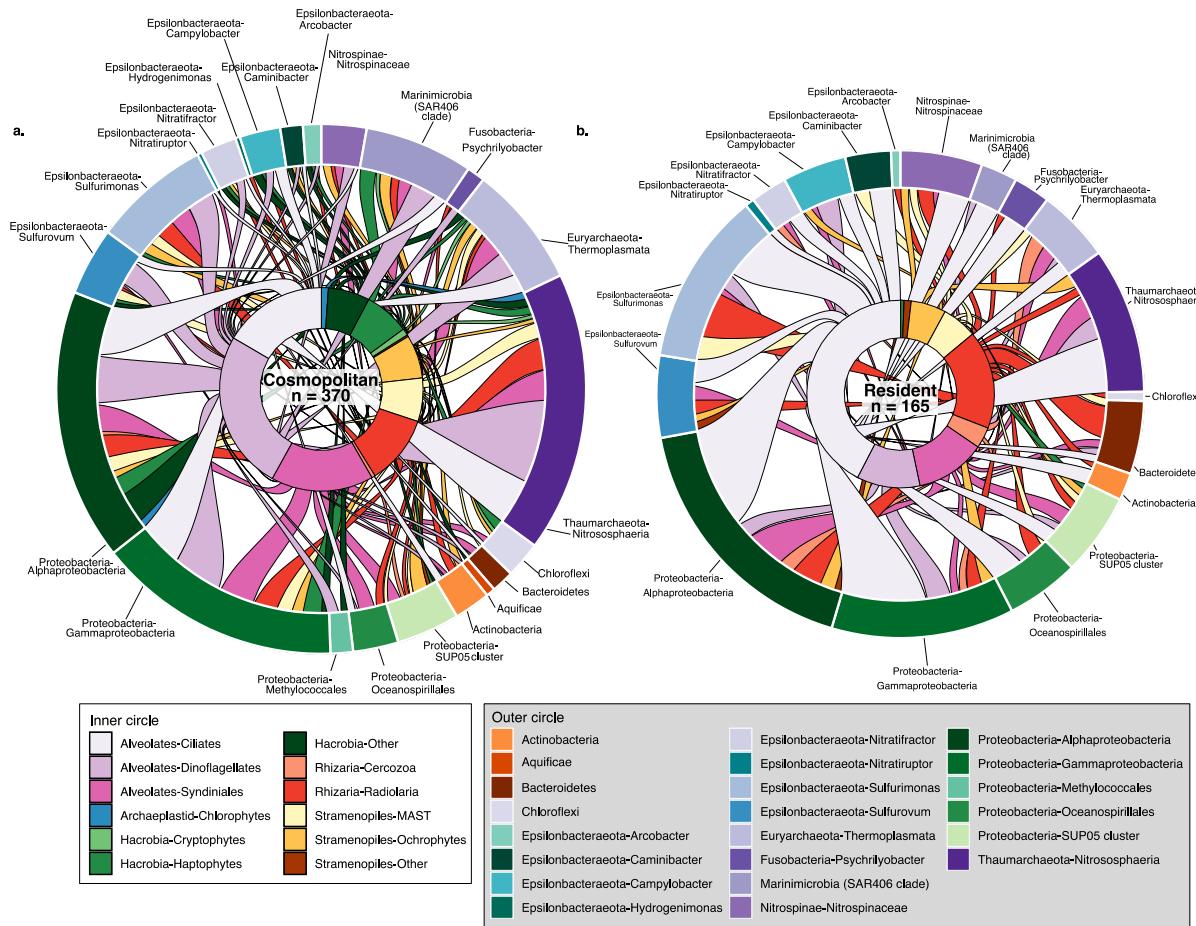


Figure 4