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Abstract

Although visual  representations are  generally  beneficial  for 
learners, past research also suggests that often only a subset of 
learners benefits from visual representations. In this work, we 
designed  and  evaluated  anticipatory  diagrammatic  self-
explanation,  a  novel  form  of  instructional  scaffolding  in 
which  visual  representations  are  used  to  guide  learners’ 
inference  generation  as  they  solve  algebra  problems  in  an 
Intelligent  Tutoring  System.  We  conducted  a  classroom 
experiment  with  84  students  in  grades  5-8  in  the  US  to 
investigate  the  effectiveness  of  anticipatory  diagrammatic 
self-explanation  on  algebra  performance  and  learning.  The 
results show that anticipatory diagrammatic self-explanation 
benefits  learners  on  problem-solving  performance  and  the 
acquisition  of  formal  problem-solving  strategies.  These 
effects mostly did not depend on students’ prior knowledge. 
We  analyze  and  discuss  how  performance  with  the  visual 
representation  may have  influenced  the  enhanced  problem-
solving performance. 

Keywords: visual  representations;  diagrams;  self-
explanation; learning; tape diagrams; middle-school algebra

Introduction

Visual Representations as Instructional Scaffolding
Instructional scaffolding is any form of external assistance 
that helps learners achieve their learning goals (Delen et al., 
2014). Instructional scaffolding can take a variety of forms, 
including  chunking,  explanation,  instructional  cues,  and 
worked examples, to help learners engage in the target task 
in a less cognitively-demanding way (e.g.,  Barbieri  et  al., 
2019).  One  form  of  instructional  scaffolding  is  visual 

representations, such as diagrams. Visual representations are 
frequently  used  across  domains  and  have  generally  been 
shown to enhance performance and learning (Rau, 2017).

Despite  the  widespread  use  and  effectiveness  of  visual 
representations,  many  studies  also  report  that  visual 
representations are not universally beneficial. In particular, 
learners with low prior knowledge and younger learners do 
not  consistently  benefit  from  learning  with  visual 
representations  (e.g.,  Booth  &  Koedinger,  2012),  and  in 
some cases, visual representations are actually detrimental 
(e.g., Magner et al., 2014). Therefore, research is needed to 
understand  variations  in  the  benefits  of  visual 
representations and the mechanisms through which visuals 
help or fail to help learning and performance. 

Middle-school  algebra  is  one  domain  in  which  visual 
representations  are  regularly  used  (Murata,  2008). 
Researchers have investigated the effectiveness of a specific 
type  of  visual  representation,  called  “tape  diagrams” 
alongside  algebra  problems  as  an  instructional  aid  for 
problem solving (Bartel  et al.,  2021; Booth & Koedinger, 
2012;  Chu  et  al.,  2017).  Tape  diagrams  depict  relations 
between different quantities in an equation or mathematical 
situation (Figure 1; Murata, 2008). Prior studies have shown 
that  adding tape diagrams to symbolic equations or word 
problems  can  enhance  middle-school  students’  problem-
solving  performance  and  help  avoid  conceptual  errors 
(Booth & Koedinger, 2012; Chu et al., 2017). However, as 
previously  discussed  in  regard  to  using  visual 
representations as scaffolding, the effects of tape diagrams 
are  not  consistent  across  students  with  varying  levels  of 
prior knowledge in the target domain. Specifically, students 



with lower prior knowledge or in lower grade levels do not 
tend  to  benefit  from tape  diagrams (Booth  & Koedinger, 
2012)  and  they  have  difficulty  understanding  the 
information  conveyed  through  the  diagram  (Chu  et  al., 
2017).

Figure 1: An example of tape diagrams. The tapes 
together represent the equation, x + 2 = 6.

Learning with Visual Representations through 
Integrated Scaffolding Support
When using visual representations as a form of instructional 
scaffold,  one  must  design the  scaffolding  support  so that 
learners  can  engage  with  the  visual  representations  in  a 
pedagogically  meaningful  way  (Davenport  et  al.,  2008; 
Nagashima, Yang et al., 2020). Merely adding visuals to the 
target  content  as  an  additional  representation  does  not 
necessarily  encourage  student  engagement.  This  is 
particularly true among learners with low prior knowledge, 
who  may  need  extra  instructional  support  to  connect 
multiple  representations  (Booth  &  Koedinger,  2012; 
Davenport  et  al.,  2008).  Therefore,  in  order  to  support 
learners with varied levels of prior knowledge, it is essential 
to  design  additional  instruction  or  activities  that 
appropriately  scaffold  learning  through  interactive  and 
integrative use of  visual  representations (e.g.,  Nagashima, 
Bartel et al., 2020). 

Prior studies have integrated various types of interactive 
support for the use of visual representations. In particular, 
studies have tested the effect of using self-explanation with 
visual representations (Ainsworth & Loizou, 2003; Aleven 
& Koedinger,  2002; Butcher & Aleven, 2013; Rau et  al., 
2015)  and,  specifically,  with  tape  diagrams  (Nagashima, 
Bartel  et  al.,  2020).  Self-explanation  is  an  established 
learning  strategy  in  which  learners  make  sense  of  new 
information by generating an explanation that connects the 
new  information  to  their  existing  knowledge  (Chi  et  al., 
1989). Self-explaining target content with the help of visual 
representations  provides  an  opportunity  for  learners  to 
explicitly  make  connections  between  the  target 
representation (e.g.,  mathematical  symbols) and the visual 
representation. Indeed, a prior study found that integrating 
tape  diagrams  into  self-explanation  enhances  learning 
(Nagashima,  Bartel  et  al.,  2020).  However,  studies  rarely 
explore  whether  self-explanation  can  promote  efficient 
learning  (e.g.,  “do  learners  spend  less  time  if  they  self-
explain?”) (Bisra et al., 2018; but see Aleven & Koedinger, 
2002) and studies  rarely  seek to  identify the mechanisms 
through which self-explanation with visual  representations 
helps efficient  performance and learning. As designing an 
appropriately-scaffolded self-explanation activity is key for 
its benefits (Nagashima, Yang et al., 2020), it is important to 

design and examine whether  and how self-explanation  as 
scaffolding support contributes to instructional effectiveness 
and efficiency when learning with visual representations.

Anticipatory Diagrammatic Self-Explanation
We designed a novel form of self-explanation support for 
learning  with  visual  representations  called  anticipatory 
diagrammatic  self-explanation  (Nagashima  et  al.,  2021). 
Anticipatory diagrammatic self-explanation integrates visual 
representations,  contrasting  cases  (Schwartz  et  al.,  2011), 
and anticipatory self-explanation (Renkl,  1997) to support 
both learning and performance in a highly scaffolded way. 
In anticipatory diagrammatic self-explanation, learners infer 
future  problem-solving  steps,  in  contrast  to  the  more 
common form of self-explanation during problem solving, 
in which learners provide an explanation for the step that 
they have already completed or seen (e.g., Rau et al., 2015). 

We  implemented  anticipatory  diagrammatic  self-
explanation using tape diagrams in the context of algebra 
equation  solving  in  an  Intelligent  Tutoring  System (ITS). 
Figures 2 and 3 show the step-by-step interaction that takes 
place  in  anticipatory  diagrammatic  self-explanation. 
Learners first engage in a diagram selection task in which 
they  infer,  or explain,  the  next  strategic  problem-solving 
step.  Then,  they  enter  the  corresponding  problem-solving 
step expressed in symbols on the right side of the screen. 
The diagrammatic and symbolic representations are tightly 
linked; the ITS asks learners to try again if they type in a 
symbolic  step  that  does  not  follow the  diagram selected, 
even  if  it  is  algebraically  correct.  The  ITS also  provides 
hints and feedback messages to support individual practices 
(Figure 3).

Anticipatory  diagrammatic  self-explanation  could  be 
effective  as  instructional  scaffolding  and potentially  bring 
benefits  to  learners  with different  levels  of knowledge.  It 
may  support  the  acquisition  of  knowledge  of  strategic 
problem  solving  (i.e.,  “which  next  step  is  correct  and 
strategic?”)  by  having  learners  engage  with  the 
representations for the next step  before actually doing that 
step  with  the  target  representation.  In  anticipatory 
diagrammatic self-explanation, learners are asked to select a 
correct-and-strategic next step in the form of a tape diagram 
(Figure 2). For learners with low prior knowledge who may 
not know how to solve the equation, this scaffolding may 
guide their understanding of what is correct and strategic to 
do, before being asked to solve the equation in mathematical 
symbols. For those with high prior knowledge, the diagram 
steps  would  introduce  a  new  way  of  thinking  about 
processes  they  already  know—how  to  solve  equations—
which may further strengthen their knowledge about correct 
and strategic problem solving. These processes could lead to 
efficient problem solving (i.e., solving problems with a low 
error rate, little use of hints, and within less time).

These  expected  benefits  may be  accompanied  by  other 
potential benefits  introduced by visual representations and 
contrasting  cases.  For  example,  engaging  with  a  visual 
representation  in  the  form of  contrasting  cases  may  help 



students understand algebra concepts, such as isolating the 
variable  (Nagashima,  Bartel  et  al.,  2020;  Schwartz  et  al., 
2011).  Also,  problem  solving  within  an  ITS  may  help 
students  acquire  problem-solving  skills,  as  shown in past 
work with ITSs (e.g., Long & Aleven, 2013).

Figure 2: Learners first select a correct-and-strategic 
diagram option for the next problem-solving step. They 

receive feedback on the correctness of the selected option.

Figure 3: After selecting a correct diagrammatic step, 
learners are asked to solve the step with mathematical 
symbols. The ITS gives feedback and hints. Here the 

feedback says, “The diagram you picked shows subtracting 
3 from each side. Type that step in.”

In  the  present  study,  we  investigate  whether  and  how 
anticipatory  diagrammatic  self-explanation  enhances 
students’  performance,  learning,  and  understanding of  the 
formal problem-solving strategy. We also consider whether 
anticipatory diagrammatic self-explanation is differentially 
effective  for  learners  with  different  levels  of  prior 
knowledge.

Method

Participants
We  conducted  a  randomized  controlled  classroom 
experiment at a single private school in the US. Participants 
included 30 5th graders, 17 6th graders, 23 7th graders, and 
21 8th graders (total n = 91).1 These students were taught by 
two teachers across seven class sections. We conducted the 
experiment in October 2020 when the school was operating 
under  a  hybrid  teaching  mode  due  to  the  COVID-19 
pandemic. In this hybrid mode, the majority of students (n = 
89) attended the study in-person while two students attended 
remotely.  Both  participating  teachers  noted  that  students’ 

1Data  from  the  6th and  7th graders  were  also  included  in 
Nagashima et al. (2021), which reports a few overlapping results 
but with different research questions and types of analyses. 

prior exposure to tape diagrams was minimal; some students 
had  seen  tape  diagrams  in  learning  materials,  but  the 
instruction had never focused specifically on tape diagrams.

Materials
Intelligent  Tutoring  System  for  Equation  Solving We 
developed  two  versions  of  the  ITS  with  anticipatory 
diagrammatic  self-explanation  (described  above)  and 
another with no anticipatory diagrammatic self-explanation 
support,  based  on  a  prior  ITS built  by  Long and Aleven 
(2014).  The  only  difference  between  the  versions  in  the 
study  was  whether  or  not  the  ITS  provided  the 
diagrammatic  self-explanation  support.  Other  features, 
including  step-level  hints,  correctness  feedback,  and 
feedback messages, were consistent across the two versions. 
We  implemented  41  equation  problems  that  varied  in 
difficulty  level  in  both  ITS  versions,  including  one-step 
equations (x + a = b), two-step equations (ax + b = c), and 
equations with variables on both sides (ax + b = cx and ax + 
b  =  cx +  d),  Per  teachers’  reports,  participating  students 
included  those  who  had  experienced  solving  all  of  these 
equation types and those who had only been exposed to one-
step equations. The same problem set was assigned for all 
participants.

Pretest and Posttest We developed a web-based pretest and 
posttest  to  assess  students’  conceptual  knowledge  (or 
knowledge  of  underlying  concepts  in  a  domain)  and 
procedural  knowledge (or problem-solving skills) of basic 
algebra (Crooks & Alibali, 2014), drawn from our previous 
work  (Nagashima,  Bartel  et  al.,  2020).  The  conceptual 
knowledge  items  consisted  of  eight  multiple-choice 
questions  and  one  open-ended  question.  They  assessed  a 
range of conceptual knowledge constructs, including inverse 
operations, isolating variables, and keeping both sides of an 
equation  equal.  We  also  included  four  problem-solving 
items (e.g., “solve for  x: 3x + 2 = 8”), including two items 
that were similar to those in the ITS and two transfer items 
involving negative numbers. (The problems in the ITS used 
positive numbers only.) None of these items included tape 
diagrams. We developed two isomorphic versions of the test 
that varied only with respect to the specific numbers used in 
the items; participants received one form as pretest and the 
other  as  posttest,  with  versions  counterbalanced  across 
subjects.

Procedure The  study  took  place  during  two  regular 
mathematics  class  periods,  in  which  most  of  the  students 
and the teacher were present “live” in the actual classroom, 
and  in  which  experimenters  and  remote  learners  joined 
through a video conferencing system. Students in each class 
were randomly assigned to either the Diagram condition or 
the  No-Diagram  condition.  In  the  Diagram  condition, 
students used the ITS with anticipatory diagrammatic self-
explanation. Students in the No-Diagram condition used the 
ITS without the self-explanation support. 



On the first day, students first worked on the pretest for 
15 minutes. Then the teacher or the experimenter  showed 
students in both conditions a five-minute video describing 
how to use the ITSs and what tape diagrams represent for 
both conditions.  Next,  students practiced equation solving 
using  their  randomly-assigned  ITS  version  for  about  15 
minutes. On the second day, students started the class by 
solving  equation  problems  in  the  assigned  ITS  for 
approximately  15  minutes.  After  working  with  the  ITS, 
students  took  the  web-based  posttest  for  15  minutes. 
Students  were  given  access  to  both ITS versions  a  week 
after the study. Figure 4 illustrates the study procedure.

Figure 4: Study procedure. The difference between the 
conditions (Diagram vs No-Diagram) was whether students 

used the ITS with anticipatory diagrammatic self-
explanation support or the ITS without the support.

Results
Of the 91 participants, we excluded five students who did 
not complete the posttest and two other students who were 
at ceiling at the pretest. Therefore,  the following analyses 
focus on 84 students (26 5th graders, 16 6th graders, 23 7th 
graders,  and  21th  8  graders),  of  whom  41  were  in  the 
Diagram  condition  and  43  were  in  the  No-Diagram 
condition.  Two  researchers  evaluated  all  answers  for  the 
open-ended items on the pretest  and posttest  (840 student 
answers) and achieved high inter-rater reliability (Cohen’s 
kappa = .81).

Effects on Learning
Table 1 shows pretest and posttest scores on the conceptual 
knowledge (CK, max:  9)  and procedural  knowledge (PK, 
max:  4)  items.  One-way  repeated  measures  ANOVAs 
showed a significant pretest-posttest gain across conditions 
on  the  procedural  knowledge  items  (F(1,  83)  =  12.88,  p 
< .01) and positive but non-significant pretest-posttest gain 
for  the  conceptual  knowledge  items  (F(1,  83)  =  2.86,  p 
=  .09).  To  test  the  effect  of  the  intervention  and  its 
interaction  with  learners’  prior  knowledge,  we  conducted 
two  separate  linear  regressions,  one  with  conceptual 
knowledge  posttest  scores  and  one  with  procedural 
knowledge posttest scores as dependent variables.  In both 
models,  condition  (Diagram  or  No-Diagram),  prior 
knowledge pretest score (combined CK and PK scores), and 
the  interaction  between  the  two  served  as  predictors. 
Additionally, the number of problems solved in the ITS and 

grade  level  were  included  as  covariates.  Grade  level  was 
treated as a continuous variable, with 5th, 6th, 7th, and 8th 
grade  coded  as  -1.5,  -.5,  .5,  1.5,  respectively.  In  both 
models,  there  was no significant  main effect  of condition 
(CK: β = -0.20, t(78) = -0.28, p = .78, PK: β = -0.28, t(78) = 
-0.60,  p = .55) and no significant interaction of condition 
and pretest scores (CK: β = .09, t(78) = .76, p = .45, PK: β = 
.03, t(79) = .39, p = .69).

Table 1: Pretest and posttest scores and standard 
deviations (in parentheses)

Condition Pretest Posttest
CK PK CK PK

Diagram
3.63 

(1.93)
1.15 

(1.35)
4.10 

(2.37)
1.56 

(1.52)
No-

Diagram
4.30 

(2.29)
1.63 

(1.57)
4.47 

(2.53)
2.19 

(1.82)

Strategy  Coding To  examine  whether  engaging  with 
anticipatory  diagrammatic  self-explanation  influenced 
students’ use of formal problem-solving strategies, for the 
procedural  items, we coded for whether students used the 
formal algebraic strategy in solving equations, independent 
of the correctness coding, following the coding scheme used 
in  Chu  et  al.  (2017).  If  an  answer  uses  algebraic 
manipulations  to  reach  the  solution,  it  was  coded  as 
“Algebra”  strategy.  Otherwise,  we  coded  it  as  “Non-
Algebra” strategy, which included informal strategies such 
as substituting different values in the equation and providing 
an  answer  without  showing  any  intermediate  steps.  Two 
researchers coded all 672 student answers (Cohen’s kappa = 
.64).

There  was  no difference  between  the conditions  in  the 
number of students who used the Algebra strategy at least 
once on the procedural items at both pretest (Diagram: 12 
out of 41, No-Diagram: 20 out of 43, χ2[1, n = 84]  = 2.65, p 
= .10) and posttest (Diagram: 16 out of 41, No-Diagram: 22 
out of 43, χ2[1,  n = 84] = 1.25, p = .26). However, for the 
two transfer  items, we found a significant  increase  in the 
number of students using the Algebra strategy from pretest 
to posttest for the Diagram condition (from 7 to 16, p = .01), 
but  not  for  the  No-Diagram condition  (from 16 to  18,  p 
= .72: Figure 5).



Figure 5: The change, by condition (left: No-Diagram; 
right: Diagram), from pretest to posttest, in the number of 

students who used the Algebra strategy 

Effects on Performance in the ITS
To  investigate  students’  performance  in  the  ITS,  we 
analyzed  log  data  collected  by  the  ITS.  Specifically,  we 
explored the total number of problems solved, the average 
number of incorrect attempts at each problem-solving step, 
the average number of hints requested at each step, and the 
time  spent  on  each  step  (Table  2),  which  are  process 
measures  typically  used  in  the  literature  (e.g.,  Long  & 
Aleven, 2013). We only compare the process measures on 
the  symbolic  steps,  excluding  the  transactions  for  the 
diagrammatic steps, to make fair comparisons between the 
conditions.

Table 2: The means and standard deviations (in 
parentheses) of the process measures

Condition

Number 
of 

problems 
solved

Average 
number of 
incorrect 
attempts 
per step

Average 
number of 

hints 
requested 
per step

Average 
time 

spent per 
step

Diagram
14.22 
(8.47)

1.07 
(2.03) 

0.31
 (0.52)

18.42 
(13.02)

No-
Diagram

20.14 
(13.94)

1.09 
(1.57)

0.56 
(0.72)

21.30 
(17.15)

To examine whether  learners  in  the  Diagram condition 
showed  efficient  learning,  we  ran  four  separate  linear 
regressions  with  each  of  the  process  measures  as  a 
dependent  variable.  In  all  four  models,  condition,  pretest 
score,  and  their  interaction  were  included  as  independent 
variables.  Additionally,  grade  level  was  included  as  a 
covariate. Also, we added the number of problems solved as 
a covariate to three of the four models (the ones in which it  
was  not  the  dependent  variable)  because  the  number  of 
problems  solved  was  strongly/moderately  correlated  with 
each of the three other dependent variables. 

First,  we  found  a  main  effect  of  pretest  scores  on  the 
number of problems solved, β = 3.04, t(79) = 7.49, p < .01, 
indicating that as prior knowledge increases, students solved 
more  problems in the  ITS.  This  increase  was  steeper  for 
students  in  the  No-Diagram  condition  than  the  Diagram 
condition, β = -1.24,  t(79) = -2.12,  p = .04 (Figure 6). We 
then tested simple main effects of condition at one standard 
deviation below the mean for combined pretest scores and 
one standard deviation above the mean for combined pretest 
scores (see dotted vertical lines in Figure 6). Results showed 
that among those who scored above average on the pretest, 
learners  in  the  No-Diagram condition solved significantly 
more  problems than those  in  the  Diagram condition.  β = 
3.53,  t(79)  =  2.69,  p <  .01.  However,  there  was  no 
difference  in  the  number  of  problems  solved  between 

conditions for  learners  who scored  below average  on the 
pretest, β = -0.40, t(79) = -0.31, p = .76. 

Regarding hint use and average time spent per step, we 
found a significant main effect of condition (hint use: β = -
0.71, t(78) = -3.08, p < .01; time per step: β = -12.18, t(78) = 
-2.89,  p <  .01)  but  no  significant  interactions  between 
condition and pretest score. There were no significant main 
nor interaction effects on the average number of incorrect 
attempts  made  per  step.  These  results  indicate  that 
anticipatory diagrammatic self-explanation helped learners 
spend less time and request fewer hints on symbolic steps 
than learners with no self-explanation support, but it did not 
help them make fewer errors on symbolic steps.

Figure 6: An interaction between condition and pretest 
score on the number of problems solved. The slope is 

steeper for the No-Diagram condition than the Diagram 
condition. The two dotes lines indicate our two tests of 

simple main effects; one standard deviation below and one 
standard above the mean for combined pretest score.

To  uncover  how the  anticipatory  diagrammatic  self-
explanation scaffolded  student  performance,  we examined 
relations  between performance on the diagrammatic  steps 
and  the  symbolic  steps  using  ITS  log  data  from  the 
participants in the Diagram condition (n = 41). We tested if 
any  of  the  performance  measures  for  diagrammatic  steps 
predicted learners’ performance on symbolic steps. We ran 
three  additional  linear  regressions  with  the  same  set  of 
predictors  of  primary  interest:  pretest  scores,  the  average 
number of  incorrect  attempts for  each  diagrammatic step, 
and the average time spent for each diagrammatic step. We 
did not include the average number of hints requested since 
only  one  student  used  hints  for  diagrammatic  steps.  We 
included grade level and the number of problems solved as 
covariates in order to keep the models consistent with other 
models  presented earlier.  The dependent  variables  for  the 
three models were the average number of incorrect attempts 
for  each  symbolic  step,  the  average  time  spent  for  each 
symbolic step, and the average number of hints requested 
for  each  symbolic  step.  When controlling for  these  other 
variables,  the  average  number  of  incorrect  attempts  on 
diagram  steps  significantly  predicted  more  incorrect 



attempts on symbolic steps (β = 6.17, t(35) = 2.50, p = .02) 
and more time spent on symbolic steps (β = 25.64, t(35) = 
2.34,  p =  .03).  There  was  also  a  significant  association 
between more incorrect attempts on diagrammatic steps and 
lower hint use on symbolic steps (β = -1.46, t(35) = -2.32, p 
= .03).

Discussion
We  investigated  whether  and  how  anticipatory 
diagrammatic self-explanation, a novel scaffolding support 
for learning with visual representations, affects performance 
and  learning  for  learners  with  different  levels  of  prior 
knowledge  when  integrated  into  an  Intelligent  Tutoring 
System. Our findings indicate that, regardless of their prior 
knowledge,  anticipatory  diagrammatic  self-explanation 
helped  learners  solve  symbolic  steps  faster  and  ask  for 
fewer  hints  within  the  ITS,  and  supported  them  in  the 
transition  from  informal  strategies  to  the  formal  algebra 
strategy use for transfer problems with negative numbers on 
the procedural items in the pretest and posttest. Also, despite 
the additional diagrammatic steps, which almost doubled the 
number of steps for each problem, there was no difference, 
for students with lower prior knowledge, in the number of 
problems solved between those who received  anticipatory 
diagrammatic  self-explanation and those who did not.  By 
contrast,  for  learners  with  higher  prior  knowledge, 
diagrammatic  steps  led  to  fewer  problems  solved, 
suggesting  that  the  diagrams  introduced  additional 
workload.  Still,  our  results  suggest  that  learners  can  use 
inferential  activity  with  tape  diagrams  to  guide  their 
symbolic  problem  solving.  Learners  with  lower  prior 
knowledge  may  have  used  the  scaffolding  to  help  with 
selecting  strategic  problem-solving  steps.  For  those  with 
higher  prior  knowledge,  although  the  new  representation 
may have largely captured what they already knew how to 
do  and  may  not  have  scaffolded  them  to  solve  more 
problems, it still helped them process symbolic steps faster 
with fewer hints.

How  did  anticipatory  diagrammatic  self-explanation 
support  learning  and  performance?  Our  analysis  revealed 
that  making  more  incorrect  attempts  during  anticipatory 
diagrammatic  self-explanation  was  associated  with  more 
time  spent  and  more  incorrect  attempts  made  on  the 
symbolic steps, even after controlling for prior knowledge. 
However,  making  incorrect  diagram  selections  was  also 
associated with fewer hint requests on the symbolic steps. 
These  results  suggest  that,  although  students  who  make 
errors on the diagrammatic steps tend to make more errors 
and  spend  more  time  on  symbolic  steps,  anticipatory 
diagrammatic self-explanation also serves as a guiding step 
that  learners  could  use  when  entering  the  next  symbolic 
step. Making incorrect diagrammatic self-explanations and 
receiving  feedback  on  their  incorrect  attempts  may allow 
learners  to  reflect  on  their  selection  deeply,  rather  than 
processing the multiple-choice diagrammatic step shallowly, 
leading to fewer hint requests made on the symbolic steps. 
However,  we also acknowledge that  the observed relation 

between diagrammatic steps and symbolic steps might be a 
manifestation of a behavior known as “gaming the system” 
(Baker et al., 2008). That is, the multiple-choice diagrams 
with  feedback  may  have  invited  quick  guessing  and 
therefore  students  may  not  have  fully  engaged  with 
diagrams and the ITS.

We did not find any predictors for decreased time spent 
on the symbolic steps in our model, except the number of 
problems solved, which was included as a covariate. Further 
research is necessary, with a larger sample, to explore other 
potential  variables,  such  as  learners’  problem-solving 
performance  on  the  diagrammatic  steps  for  different 
problem types.  Finally,  although we had  expected  to  see 
fewer  symbolic problem-solving errors  for  learners  in the 
Diagram condition, the results did not show a difference in 
the average number of incorrect attempts made on symbolic 
steps between the conditions. It may have been that, during 
symbolic  problem-solving,  the  diagrammatic  scaffolding 
was used as a reference for quicker recovery from errors, 
but not as a guide for informing how to correctly write the 
next  symbolic  step,  which  has  been  reported  as  a 
challenging translation task for middle-school students (Chu 
et al., 2017).

We acknowledge several  limitations of the study. First, 
the study focuses  on one specific  visual  representation in 
one  specific  domain:  tape  diagrams  for  middle-school 
algebra.  The  results  may  or  may  not  generalize  to  other 
types  of  visualizations  or  other  ways  of  implementing 
anticipatory diagrammatic self-explanation. Also, a sample 
size of 84 participants is not large. The additional analysis 
for the participants in the Diagram condition was performed 
with  an  even  smaller  subset  of  the  data.  Therefore,  the 
findings from this study might not correctly reveal  causal 
and  predictive  relationships.  Furthermore,  the  experiment 
was conducted remotely during the COVID-19 pandemic, in 
which  the  school  operated  under  a  special  guidance  and 
rules  (e.g.,  socially-distanced  layout  in  the  classroom). 
Given  the  unique  context  of  the  study,  it  is  uncertain 
whether and to what extent our results generalize to more 
typical  classroom  conditions.  Lastly,  the  study  was 
conducted in a private school in the United States. Future 
studies  are  necessary  to  investigate  the  impact  of  the 
intervention with students at other types of schools and in 
other locations. 

Conclusion
Designing  appropriate  instructional  scaffolding  is  key  to 
supporting  effective  and  efficient  learning  with  visual 
representations.  Our  study  demonstrated  that  anticipatory 
diagrammatic  self-explanation  helps  learners  spend  less 
time and request fewer hints during problem solving. This 
effect appeared not to vary with learners’ prior knowledge. 
We  also  found  suggestive  evidence  that  anticipatory 
diagrammatic  self-explanation  supports  the  acquisition  of 
the formal algebraic problem-solving strategy. Further, the 
findings suggested that learners used the diagrams to guide 
their  problem  solving  with  mathematical  symbols.  Our 



findings  contribute  to  understanding  of  effective  and 
efficient  instructional  scaffolding  for  learning  with  visual 
representations. While prior work had found that diagrams 
often do not benefit learners with low prior knowledge, the 
current study suggests that appropriate scaffolding can make 
benefits of visual representations available to learners who 
start with lower prior knowledge.
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