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ABSTRACT

Voice assistants raise serious security and privacy concerns because
they use always-on microphones in sensitive locations (e.g., inside
a home) and send audio recordings to the cloud for processing. The
cloud transcribes these recordings and interprets them as user re-
quests, and sometimes even shares these requests with third-party
services. These steps may result in unintended or malicious voice
data leaks and in unauthorized actions, such as a purchase. This pa-
per presents MegaMind, a novel extensible platform that lets a user
deploy security and privacy extensions locally on their voice assis-
tant. MegaMind’s extensions interpose on requests before sending
them to the cloud and on responses before delivering them to the
user. MegaMind’s programming model enables writing powerful ex-
tensions with ease, such as one for secure conversations. Addition-
ally, MegaMind protects against malicious extensions by providing
two important guarantees, namely permission enforcement and
non-interference. We implement MegaMind and integrate it with
Amazon Alexa Service SDK. Our evaluation shows that MegaMind
achieves a small conversation latency on platforms with adequate
compute power, such as a Raspberry Pi 4 and an x86-based laptop.
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1 INTRODUCTION

Voice assistants, such as Amazon Alexa [20], Google Assistant [26],
Apple Siri [37], and Microsoft Cortana [35], are becoming ingrained
in our personal lives. Beyond their prevalent integration into smart-
phones and tablets, they are now increasingly found in home speak-
ers [21, 28-30, 32], cars [3, 11, 12], children’s toys [9], light bulbs [6],
TV sets [4, 10], and other appliances. Several companies have even
released device SDKs to simplify adding voice assistance to any
hardware device [22, 23, 27].

Voice assistants provide a convenient user interface: natural lan-
guage. However, this convenience comes with serious security and
privacy risks. A voice assistant uses an always-on microphone and
operates by capturing audio and sending it to the manufacturer’s
cloud service for processing. The cloud service transcribes the au-
dio and interprets it as user requests. Audio recordings can have
private and sensitive content, such as medical or sexual informa-
tion [57]. Moreover, interpreted requests may result in unintended
or unapproved actions, such as a purchase or a phone call. These
unintended actions can be either due to “mistakes” by the assistant,
or attacks [7, 8]. Moreover, the assistants’ responses might contain
inappropriate content, such as content not suitable for children [1].

To make matters worse, voice assistants incorporate many third-
party applications, i.e., skills', which enhance the assistant func-
tionality [39]. Unlike mobile apps, skills do not run on the voice
assistant hardware. Instead, they are cloud services invoked by the
manufacturer’s cloud service. Researchers have shown a plethora of
additional security and privacy concerns surrounding third-party
skills [49, 53, 63, 69], including malicious skills [60] and unintended
voice data leaks [5, 54].

This paper presents MegaMind, a security and privacy extensi-
bility platform for voice assistants. MegaMind extensions execute
locally on the assistant itself. They intercept the recorded audio
before sending it to the manufacturer’s cloud service, and the re-
sponse audio before delivering it to the user. Extensions can thus
inspect, modify, or discard unwanted content to meet a user’s secu-
rity and privacy goals. For example, a redaction extension removes
any mentions of a user’s personal information from the recorded
audio.

MegaMind’s design enables novel extensions that bring a level of
unprecedented security to users. For example, we implement secure
conversation, an extension that provides end-to-end encryption,
integrity, and rollback protection to let a user conduct a secure
conversation with a trusted skill such as a bank, without the voice
assistant manufacturer having unrestricted access to the conver-
sation. As another example, we implement anonymous query, an
extension that employs a mixer cloud service to enable a user to

1Skill is Amazon’s Alexa service terminology for voice assistant apps, but we use it
broadly for all assistants.


https://doi.org/10.1145/3458864.3467962
https://doi.org/10.1145/3458864.3467962
https://doi.org/10.1145/3458864.3467962
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current

MobiSys *21, June 24-July 2, 2021, Virtual, WI, USA

remain anonymous (to the voice assistant manufacturer and to
third-party skills) when issuing sensitive queries such as medical
queries.

MegaMind does not blindly trust extensions and assumes they
can be malicious. To protect users from such extensions, MegaMind
provides two security guarantees, permission enforcement, and non-
interference. Permission enforcement limits the conversations each
extension can access (i.e., access permissions) and modifications it
can perform on them (i.e., modification permissions). Moreover, non-
interference guarantees that a malicious extension cannot modify
the conversation in a way that disrupts the execution of other
extensions.

Given the richness of natural language, providing such guar-
antees is challenging and requires a careful design and a compre-
hensive security analysis. To do so, MegaMind provides a novel
programming model for extensions. Each extension consists of a
manifest and an action function. In the manifest, an extension de-
clares its needed permissions using MegaMind’s easy-to-review and
straightforward permission description language. Action functions
are generic Python scripts that process the phrases. We enforce sev-
eral limitations on what an extension can do, and we demonstrate,
with a careful analysis, that our design provides the aforementioned
security guarantees.

Any third-party can develop MegaMind extensions. In addition,
MegaMind can provide an extension market (similar to the appli-
cation market for smartphones) in which developers publish their
extensions. Similar to application markets, a MegaMind extension
market can audit all extensions prior to publication, and reject those
with malicious manifests. In addition, the extension market can
authenticate the extension developers. For example, if a companion
extension for a third-party skill implements secure conversation,
then MegaMind can easily check that this skill and its companion
extension are published by the same entity.

We build MegaMind and integrate it with the Amazon Alexa
Service SDK. Thus, it is potentially deployable on many commercial
devices that use the Alexa SDK, such as the Acer Spin 5 Convertible
Notebook [18] and the Fitbit Versa 2 smart-watch [41]. MegaMind
is also compatible with all Alexa skills. To minimize conversation
latency, we optimize MegaMind’s implementation in several ways,
such as using a sandbox pool to reduce startup latency. Our pro-
totype is mature, allowing users to have multi-turn conversations
with Alexa Voice Service (AVS) or third-party skills. We open source
the prototype for the benefit of users and researchers and provide
a video demo showing MegaMind’s performance and novel exten-
sions.?

We evaluate MegaMind’s implementation on three hardware
platforms: two ARM SoC platforms, Raspberry Pi 4 (RPi 4) and
Raspberry Pi 3 (RPi 3), and an x86-based laptop. Our ARM pro-
totypes represent lower-end mobile devices such as smartphones,
modestly-powered standalone assistants, and embedded ones. Our
x86 prototype, on the other hand, represents higher-end and more
powerful assistants. MegaMind achieves good performance on the
RPi 4 and on the laptop, but suffers from high performance overhead
on the weaker RPi 3. This performance discrepancy is expected;
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MegaMind has moderate local processing needs, including speech-
to-text conversion and NLP processing, and the RPi 3 processor
is not powerful enough to meet these needs [16]. Nevertheless,
our evaluation shows that MegaMind’s processing requirements
can still be met by an inexpensive platform such as the RPi 4. We
also perform extensive testing to evaluate MegaMind’s ability to
deliver on its security and privacy goals using a large corpus of
sample conversations. Our results show that MegaMind achieves
high accuracy (less than 10% false positive and false negative rates)
in many cases, although it can sometimes experience lower accu-
racy. Our investigation shows that local speech-to-text conversion
is an important contributor to MegaMind’s inaccuracy. We expect
that future conversion engines will further improve MegaMind’s
effectiveness.
We make the following contributions.

e We present the first extensible platform for enhancing the
security and privacy of voice assistants.

e We design a programming model for extensions that enables
ease of development and high expressibility.

e We design an extension execution framework that provides
permission enforcement and non-interference guarantees
for the extensions.

o We demonstrate novel extensions for voice assistants, in-
cluding extensions for secure conversation and anonymous
query. These extensions provide security guarantees not
possible in today’s voice assistants.

e We perform several optimizations in our prototype to achieve
alow conversation latency overhead, critical for the adoption
of MegaMind in practice.

e We perform an extensive evaluation of MegaMind and show
that it incurs a small conversation latency overhead, has mod-
est CPU utilization, and is effective in achieving its security
and privacy goals.

2 MOTIVATING EXTENSIONS

MegaMind enables many security and privacy extensions. In this
section, we describe extensions we have developed and tested.
Secure conversation. A user may want to converse in a secure
manner with a trusted third-party skill, such as a bank or a health
provider skill. The user may want to protect the conversation detail
both from other third-party skills and from the voice assistant cloud
service, e.g., AVS. In §7.1, we discuss how an extension can provide
end-to-end encryption, integrity, and rollback protection for such
conversations. MegaMind lets a user send and receive ciphertext
over AVS, a novel functionality not demonstrated before.
Anonymous queries. A user may want to issue a sensitive query
without revealing their identity. The user does not want the assis-
tant cloud service or any third-party skills to associate the query
with them. For example, a user may want to issue a medical query
anonymously to protect the user’s underlying medical conditions.
In §7.2, we show how a MegaMind extension along with a mixer
skill can realize this novel security feature.

Redaction. This extension’s goal is to protect sensitive user infor-
mation, such as family members’ names, phone numbers, or credit
card numbers, from being revealed to AVS or third-party skills.
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Figure 1: Amazon Alexa
voice assistant architecture.

Night mode. A user may want to disable an assistant placed in a
certain location (e.g., bedroom) during a certain time period (e.g.,
10 PM to 7 AM).

Parental control. A user may want to enforce access control
policies when a voice assistant is used by their children. For example,
they might want to limit access to certain skills or limit usage time
periods. Moreover, they may want to block any form of purchases
and prevent assistant’s responses from including adult content,
violent content, or profanity.

Phone call control. A user might want to block the assistant
from making calls to phone numbers outside a contact list. This
can prevent unintended and malicious calls triggered by the voice
assistant [8, 13, 14].

Third-party skill limiter. A user might want to limit the set of
third-party skills their assistant can communicate with. Such an
extension would help mitigate voice squatting attacks [60].

Please note that these are only a few examples of extensions that
MegaMind enables. MegaMind’s programming model and permis-
sion system allow the development of various extensions capable
of performing edge computing in a controlled and secure manner.

3 ARCHITECTURAL OVERVIEW

This section presents an overview of MegaMind’s architecture.
For simplicity and without loss of generality, our description of
MegaMind is based on Amazon Alexa voice assistants.

Figure 1 illustrates the interactions among users, their voice
assistant, AVS, and third-party skills in existing commodity voice
assistants. A wake word, such as “Alexa”, invokes the assistant
to start recording a user’s utterances and send them to AVS. AVS
parses the audio and interprets it as a user request. Note that some
captured utterances could be the result of accidental [7, 8, 14] or
malicious [49, 65, 74] wakings of the assistant rather than intended
user requests. AVS handles the request internally (i.e., using built-in
skills) or sends it to a third-party skill for processing.

In addition to one-shot queries (i.e., a question and an answer),
the voice assistant may enter a dialog mode that consists of multiple
questions and answers, forming a multi-turn conversation [46]. Dia-
log mode’s goal is to gather and confirm all the information needed

111

Voice
capture
Audio
playback

Figure 2: Adding the MegaMind extensibility platform to Amazon Alexa.
MegaMind’s functionality is shown in green.
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for servicing a user request. For example, when ordering an Uber,
AVS may ask about the type of the ride, the number of passengers,
and the departure time. Hereafter, we refer to all requests and re-
sponses in a conversation as one session. In each session, the user
interacts with either a built-in AVS skill or with a third-party one.

Figure 2 shows the voice assistant architecture when incorpo-
rating MegaMind. MegaMind interposes on communications from
the voice assistant device to the voice assistant cloud service. It
converts the user’s utterance to text, evaluates it against the trigger
rules of deployed extensions, and invokes the extensions’ action
functions on a trigger rule match. To protect against malicious
extensions, MegaMind provides permission enforcement (§5) and
non-interference (§6) to limit what an extension can do. Once pro-
cessed, the text-based utterance is sent to AVS.

On receiving a response, MegaMind’s deployed extensions pro-
cess it before sending the possibly modified response for audio
playback. The response from AVS can be in audio or text formats. If
in text format, the communication agent directly sends it to be eval-
uated by the extensions. If not, the audio is first converted to text.
Finally, the response needs to be converted back to audio for play-
back for the user. MegaMind achieves this using a text-to-speech
converter.

The figure also shows that MegaMind executes the action func-
tions of extensions in sandboxes (§8.1).

4 TRUST & THREAT MODEL

There are seven participants in MegaMind’s ecosystem: 1) the owner
of the device, 2) the user of the voice assistant (which might be the
owner or someone else in owner’s household such as their children)
3) voice assistant cloud service provider and its vendor (AVS/Ama-
zon in case of Alexa), 4) the vendor of the voice assistant hardware,
5) third-party skills, 6) MegaMind, including all its software com-
ponents, and 7) extensions, including (7A) extensions’ manifest
and (7B) extensions’ action function. We note that (4) can be dif-
ferent from (3). For example, Amazon allows third-party hardware
developers such as Sonos to build voice assistant devices that use
its voice assistant cloud service. Even users can deploy Amazon’s
open-source Alexa SDK on their personal computers. Therefore, (4)
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provides the voice assistance hardware and the system software
(OS and firmware) running on it.

We develop MegaMind’s threat model from the perspective of
the device owner (1). We assume that the owner always trusts the
voice assistant hardware vendor (4) and MegaMind (6). The owner
does not trust the MegaMind third-party extensions’ action func-
tions (7B). Moreover, we assume the owner reviews the installed
extensions’ manifest (7A) and ensures it does not ask for malicious
permissions. Hence, we suggest that extension developers make
the manifests publicly auditable. We also suggest that extensions
developers sign extensions’ manifest and action functions. This sig-
nature can be checked before installing the extension to verify its
authenticity. Unless otherwise specified, the owner does not trust
users (2). Users may accidentally share their private information or
intentionally perform actions that the owner does not authorize.

In addition to the mentioned trust model, which applies to all
the extensions, we discuss the trust model specific to different goals
each extension tries to achieve.

1. Privacy protection. These extensions prevent users from ac-
cidentally sharing their private information with AVS and/or skills.
For these extensions, the owner does not trust AVS (3) and third-
party skills (5).

2. Content control. These extensions prevent AVS and skills to
send sensitive responses to users. For these extensions, the owner
does not trust AVS (3) and third-party skills (5).

3. Action limiting. These extensions prevent users from con-
ducting some actions. For example, the owner might deploy one
extension to block all purchases for the device installed in their
child’s room. For these extensions, the owner needs to trust AVS
(3) or third-party skills (5) as they can conduct such action without
the device sending them the request anyway.

4. Skill allow-listing and deny-listing. The owner uses these
extensions to selectively trust a subset of skills. Using these exten-
sions, the owner can either block the usage of a subset of skills or
selectively apply privacy preserving or content control on them.
For these extensions, the owner trusts AVS (3), and trusts/distrusts
a subset of third party skills (5). Please note the owner needs to trust
AVS since it is in charge of routing the commands to the third-party
skills.

5. Skill security enhancement.
sions to provide a security feature for one specific third party skill.
These extensions use secure channels to protect the content of the
conversation from AVS. Using this extension, the owner trusts only
one third party skill and its companion extension on its assistant.

Adversarial model. We assume that the adversary has full control
over untrusted participants other than the user. For example, when
we assume that AVS is untrusted, we assume that it is controlled
by the adversary. When the user is untrusted, we assume they
can make mistakes, but they do not act maliciously. Side-channels
attacks, physical attacks, and any other attacks that allows the
adversary to compromise a trusted participant are out of our scope.
Defense against attacks. Several important attacks have been
demonstrated on voice assistants. In §10, we describe these attacks
and mention how MegaMind extensions help protect against them.

The owner uses these exten-

Seyed Mohammadjavad Seyed Talebi, Ardalan Amiri Sani, Stefan Saroiu, and Alec Wolman

112

5 PERMISSION ENFORCEMENT

Since MegaMind extensions are developed by untrusted third par-
ties, we need to enforce limitations on these extensions. MegaMind
provides a permission system similar to the Android permission sys-
tem for applications. The owner reviews permissions an extension
asks for and installs it only if she approves the permissions.

Despite similarities, MegaMind’s permission model is fundamen-
tally different from Android’s. Android’s permissions help limit the
application in accessing different systems resources such as I/O
peripherals. In contrast, MegaMind’s permission system divides the
permissions of each extension in two categories, access permissions
and modification permissions. Access permissions limit the conver-
sations an extension can mediate, and modification permissions
limit how they can modify them.

Limiting the extensions’ permissions is not trivial and requires
special care. Some extensions, such as security enhancement ex-
tensions require to arbitrary change the phrases. However, it is
not secure to give all extensions this permission. Also, it is not
secure to allow a security extension to access and modify all the
communications. As a result, we devise a permission model that
strikes a balance between access and modification permissions. In
our permission model, extensions that have more access permis-
sions have more restricted modification permissions. Based on this
model, we divide extensions in three different types: discarders,
sanitizers, and companions. We define each of these types and their
permission model in the §5.2.

In the rest of the section, we first describe how an extension
expresses its access permissions through trigger rules. We then
discuss how extension types bring a balance between access and
modification permissions.

5.1 Access Permissions

Every extension declares its required permissions in its manifest,
a JSON formatted file consisting of an extension type and a rule-
set (i.e., an array of trigger rules) (Figure 3). Trigger rules indicate
an extension’s access permission by specifying the utterances or
responses (i.e., jointly referred to phrases hereafter) the extension
needs to process. MegaMind provides a description language that
makes it easier to declare trigger rules in a generic and transpar-
ent fashion. It facilitates reviewing the manifest to find malicious
permissions. Besides, in §5.2, we show how MegaMind helps in
preventing malicious access permissions by limiting the trigger
rules an extension can use based on the extension’s type.
Trigger Rules Description Language Each extension expresses
its access permissions in a rule-set. MegaMind evaluates the rules
of the rule-set against each phrase and, if any of the rules evaluates
to true, MegaMind executes the action function on all subsequent
phrases of the current session. A rule itself is a set of conditions on
keywords, time, or third-party skill ID. These conditions are grouped
in two sets: (1) an inclusive disjunction (shown with the predicate
include_or in Figure 3), and (2) an exclusive conjunction (shown
with the predicate exclude_and). A rule evaluates to true if all of its
conditions are true.

Our trigger rules description language is expressive because it
allows arbitrary trigger logic using its language constructs. Us-
ing this language, an extension can request access permissions to
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{

"type": "Extension Type", // discarder, sanitizer, or companion
"rule_set": [
// rulel
"keywords": {

"include_or": [
"contain(word 1)",
"adult_word()", ... // can add more included words

1,

"exclude_and": [
"synonym(word 2)", ...

]

// can add more excluded words

3,
"time": {
"include_or": [
{ // time range 1
"start": "start time 1",
"end": "end time 1"
}, ... // can add more included time ranges

1

"Skill_ID": {
"exclude_and": [
"skill ID 1", ...
]
1
}, ... // can add more rules
]
}

// can add more excluded skill IDs

Figure 3: Trigger rules description language.

phrases containing or not containing certain words, occurring in
certain time periods, and belonging to conversations with certain
skills. A MegaMind rule-set is the sum of products (SoP) of the
conditions on keywords, time and skill ID, and any arbitrary logic
can be expressed as an SoP.

NLP Helper Functions Although MegaMind’s trigger rule de-
scription language is expressive, when using a natural language,
constructing a set of conditions using keywords alone is challeng-
ing. Consider an extension that blocks adult content from responses
returned by third-party skills. It is difficult to construct a compre-
hensive corpus of adult content using keywords alone. To improve
MegaMind’s expressiveness and ease of use, we provide Natural
Language Processing Helper (NLP Helper) functions. Examples of
functions provided in our prototype look for synonyms, antonyms,
first and last names, phone numbers, addresses, violent content,
adult content, and profanity. Third party extensions can only use
the NLP helper functions and cannot modify or train them. Thus,
they cannot use them as an attack surface to increase their access
permissions.

Secure Skill ID Detection Skill ID is a crucial factor in determin-
ing access permissions of an extension. Hence, MegaMind needs
to associate each phrase to a target skill in a secure manner. Mega-
Mind uses two methods for skill ID detection: an AVS-dependent
method and a local method. We use the former when AVS is trusted
and the latter when it is not (e.g., for extensions that provide skill
security enhancement, i.e. companions; see §4).

For the AVS-dependent method, we leverage the fact that AVS
tags each response with the ID of the skill that provided it. Therefore,
we this AVS’s metadata to associate a skill ID to a phrase.

For the local method, we try to detect skill invocations locally
by analyzing the user’s utterances. AVS establishes a conversation
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session between a user and a third-party skill in two ways: explicit
invocation and implicit invocation. An explicit invocation is when
the user deliberately invokes a skill using a specific grammar, e.g.,
“Open Uber”. This grammar is deterministic and known by users
and AVS [40]. An implicit invocation occurs when AVS delegates
handling a request to a skill without the user asking. The implicit
invocation only occurs with skills that implement the name-free
skill invocation feature [40]. Our local method can only detect ex-
plicit invocations. This is because the grammar of an explicit skill
invocation is known but there is no specific grammar for implicit
ones. As a result, third-party skills with companion extensions (that
need to rely on MegaMind’s local method for their security) cannot
(and should not) implement the name-free invocation feature.

5.2 Modification Permissions

When a phrase triggers a rule, MegaMind invokes the extension’s
action function to process the phrase. It is not secure to permit ex-
tensions to modify the phrases arbitrarily. The set of modifications
MegaMind allows an extension to make depends on the extension
type, as described next.

Discarder. A discarder’s action function can drop a phrase from
the conversation but cannot modify it. Whenever a discarder exten-
sion drops a phrase, MegaMind notifies the user by saying: “The
last phrase is dropped by [discarder’s name] extension.” This no-
tification prevents a malicious discarder extension from stealthily
dropping a sensitive phrase.

Given the limited modification permissions the discarders have,

we give them broad access permission by setting no limitation on
their trigger rules. Discarders are useful for action limiting and skill
deny-listing goals.
Sanitizer. A sanitizer’s action function is allowed to modify
the phrase, however, not arbitrarily. MegaMind enforces two con-
straints on sanitizers’ modification permissions: (1) it can change
only the words within a phrase that its triggered rule specifies under
the keywords label (including those detected by NLP helpers), and
(2) its replacement words cannot be arbitrary but must be drawn
randomly by MegaMind from a specific category, such as a first or
last name, a phone number, a city name, a country name, a random
N-digit number, or a bleep censor (i.e., the word bleep). In §6, we
discuss how this second limitation is also critical to MegaMind’s
guarantee of non-interference.

As sanitizers have more modification permissions, we limit their

access permissions. Sanitizers cannot use exclude_and in the key-
word section of their rule-set. This prevents sanitizers from exclud-
ing a rare category of words and getting triggered on many generic
phrases. Sanitizers are useful for privacy protection and content
control goals.
Companion. A companion extension is paired with a specific
third-party skill. Therefore, its rules must list only one third-party
skill ID that the extension accompanies. A companion’s action
function is allowed to make arbitrary changes to phrases. A third-
party skill can have a single companion extension only. Companion
extensions have strong modification permission, but their access
permission is heavily limited. They are suitable for implementing
extensions for the skill security enhancement goal.
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User’s requests Assistant’s responses
E1 k2 Discarder Sanitizer Companion Discarder Sanitizer Companion
UP OP UP OP UP OP UP OP UP OP UP OP
Discarder | /(B) | /®) | 7B [ 7® | 7O | 7O L /® 7B |70 | 7® |76 | /®
Sanitizer © | /@) [ /E) | /E) | /O | /E) © | /@) | /(E | /E) | /O] /(E)
Companion | /(T) | /(0) | /(T) | /(O) | /(E) | /(E) § /(©O) | /(T) | /(O) | /(T) | /(E) | /(E)

Table 1: This table summarizes all possible types of interference extension E1 can cause on extension E2’s execution. “/ " means
MegaMind can prevent interference. In each case, interference is avoided by: Extensions’ definition (E), Order of execution (O),

Limitations on extensions (L), and Trust model (T).

6 NON-INTERFERENCE

In some cases, the same phrase needs to be processed by more
than one extension. For example, consider two extensions, one
that redacts the names of people living in a household in all con-
versations, and one that implements secure conversation with a
third-party skill. Both extensions require processing the conversa-
tions between the user and that third-party skill.

In MegaMind, the extensions operate on phrases sequentially.
This is because parallel processing would undoubtedly result in
conflicts in the output that cannot be trivially resolved. For example,
merging the encrypted output of one extension with the redacted
output of another is impossible.

Since the extensions process phrases one by one, their execu-
tion’s order can affect the final output. We develop a specific or-
dering for extension execution, which prevents interference. Our
proposed extension execution orderings (which we justify next)
are:

User’s requests: sanitizers execute first, followed by discarders,
and then followed by companions.

Assistant responses: companions execute first, followed by sani-
tizers, and then followed by discarders.

6.1 Non-interference definition

We show that our proposed orderings guarantee non-interference
defined by the following two criteria: 1) No under-protection (UP)
and 2) No over-protection (OP). Below, we define UP and OP based
on the notion of protection actions. Protection actions are: discard-
ing the whole phrase, sanitizing words in the phrase, or securing
the phrase (which might involve any arbitrary changes by the com-
panion.)

UP occurs when an extension: 1) undoes the effect of a previ-
ously executed protection action, or 2) prevents the later extensions
from performing their protection actions. As an example for (1),
consider two extensions, a companion and a sanitizer that redacts
the adult content from the assistant responses. If the companion
executes after the sanitizer, it can add the adult content back to the
phrase. As an example of (2), consider a companion that encrypts
the user requests. If the companion executes prior to a privacy pro-
tecting extension, which redacts the user’s personal information,
the encryption hides the private information and makes the privacy
protecting extension useless.

No OP means if an extension performs any protection action on
a phrase, it would have performed the same action to the original

phrase. As an example of an OP, assume a scenario that a sanitizer
extension runs before a discarder extension. If the sanitizer modi-
fies a word in a phrase to a word forbidden by the discarder, the
discarder will block that phrase. However, the discarder would not
have blocked the original phrase.

Please note that the term “non-interference” might have been
used with other meanings in other contexts and research fields.
Any reference to non-interference in this paper refers to the above
definition.

6.2 Non-interference guarantee

We list all possible interference types between extensions in Table 1.
This section discusses how MegaMind provides a non-interference
guarantee by preventing all these types. MegaMind prevents inter-
ference in four different ways: (1) access/modification permission
limitations each Extension has by definition, (2) Order of execu-
tion, (3) extra Limitations MegaMind enforces on extensions to
guarantee non-interference, and (4) the MegaMind’s Trust model.
Below we discuss how MegaMind successfully prevents
interference for every entry in Table 1 using one of the
four ways mentioned above. In following paragraphs, we use
E1-E2-{req, resp}-{UP,OP} naming convention to point to each
entry in Table 1. We use ‘*’, and ‘{}’ to point to more than one
entry. For example, {dis, san}-*-*-UP means UP interference a
discarder or a sanitizer can cause on all extensions while processing
user’s requests or assistant’s responses.
Extension Definition (1) Discarder extensions do not modify
the phrases. As a result, they cannot cause any interference to
other extensions (i.e. no dis-*-*-x%). Please note that MegaMind’s
guarantee of non-interference does not protect against denial-of-
service. A malicious discarder can drop all the messages. However,
MegaMind will notify the user every time the discarder drops a
message, and the user will uninstall the malicious discarder. (2)
MegaMind only allows one companion extension per skill. As a
result, the comp-comp-*-* interference never happens. (3) No other
extension can modify the skill ID of a session. Hence, they cannot
cause the companion to process a message with wrong skill ID
(i.e., no *-comp-*-0P). (4) As discussed in 5.2, sanitizers cannot
use the exclusion of keywords in their trigger rules. It means a
specific word (or word category) should be present in the phrase
to trigger a sanitizer. Also, they can only change those words to a
random word drawn by MegaMind. Together, these two limitations
prevent a sanitizer from re-changing a word previously changed
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by another sanitizer (i.e., no san-san-*-UP). The same limitations
prevent a sanitizer from changing a word to cause triggering of
another sanitizer (i.e., no san-san-*-0P).

Order of Execution (1) Sanitizers run before discarders; thus,
they cannot undo the protections discarders provide and cause UP
(i.e. no san-dis-*-UP). (2) Companions run immediately before
sending users’ requests to AVS and immediately after receiving AVS
responses. As a result, sanitizers cannot compromise the integrity or
confidentiality of phrases going to/from AVS. (i.e., san-comp-*-UP)
(3) Companions run after discarders and sanitizers for user requests.
Hence, there is no way for them to cause OP on discarders or
sanitizers (i.e. no comp-{san, dis}-req-0P). (4) Companions run
before discarders and sanitizers for assistant responses. Hence,
they cannot undo the protection actions provided by discarders or
sanitizers. (i.e. no comp-{san,dis}-resp-UP)

Extra Limitations (1) Without further considerations, a sanitizer
can cause OP interference with a discarder (i.e. san-dis-*-0P).
Consider a sanitizer that redacts personal phone numbers and a
discarder that blocks all the calls to phone numbers outside of a
contact list. In this case, when the user tries to call a number on
his contact list, first the sanitizer changes it to calling a random
number, then the discarder blocks the call. However, if we passed
the original phrase to the same discarder, it would not block it.
Hence, it is a case of OP.

In the mentioned case, the discarder and the sanitizer have an

inherent conflict, and no order can result in their interference-free
execution. MegaMind resolves this issue by identifying and pre-
venting these conflicts at the time of extension installation. The
rule we enforce is that a sanitizer and a discarder can have overlap-
ping inclusion and exclusion keyword lists only if they work on a
non-overlapping set of skill IDs. In the above example, the conflict
would be resolved if the sanitizer extension makes an exception
for a phone call skill and the discarder blocks phone calls only for
that skill.
Trust Model (1) Companion extensions run after discarders
and sanitizers for user’s request with unlimited modification
permission. Therefore, they can potentially undo the protec-
tion actions of discarders and sanitizers and result in UP (i.e.,
comp-{san,dis}-req-UP). (2) Because companions run before dis-
carders and sanitizers for assistant responses, they can add key-
words to the phrase which provoke discarders and/or sanitizers
and cause OP (i.e., comp-{san,dis}-resp-0P).

However, a companion extension only runs when the user is
conversing with its accompanied skill, and based on our trust model;
it is as trusted as the skill. Companion is the last extension that
processes the user’s request before sending them to the skill, and it
is the first extension that processes the incoming responses. The
companion executes in an isolated sandbox; the only data it can
access is the phrases in the ongoing conversation. Hence, whatever
action the companion extension does could have been done by the
skill itself. Thus, we do not consider these actions as interference
with other extensions.

7 NOVEL SECURITY FEATURES

MegaMind enables novel security features for voice assistants. In
this section, we provide more details on two such features.
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7.1 Secure Conversation

This extension lets a user conduct a secure conversation with
a trusted third-party skill. The whole conversation is encrypted,
integrity- and rollback-protected, ensuring no intermediary includ-
ing AVS have access to the conversation’s plaintext nor can they
tamper with the conversation’s contents.
Workflow. Assume a user intends to converse securely with a
bank skill named Great Bank. The user invokes the skill by a phrase
like “Alexa, Open Great Bank”. At this point, the extension gets
executed on the voice assistant. Its first task is to share a symmetric
session key with the skill. To do so, it generates the key, encrypts
it with the skill’s public key and waits for the response from the
skill. The skill responds to the “Open Great Bank” message with a
welcome message and asks the user if they want to establish secure
communication to this skill. If the user answers “yes”, the extension
replaces the user’s answer with “key is [encrypted key]” and sends
it to the skill. AVS delivers the encrypted key to the companion
skill. Since the key is encrypted with the public key of the skill,
skill decrypts it with its private key. Now both sides have the same
symmetric key. The session key is then used for encryption and
integrity protection (HMAC). The skill sends all the messages back
to the user encrypted using this symmetric key. The extension also,
encrypts all the user’s utterances with the session key and sends a
message as follows for every utterance: “search for [ciphertext]”,
where “search for” is a carrier phrase, described later in the skill
support subsection. In addition, messages include a monotonic
counter value to prevent rollback. The endpoints also check that the
counter value is incremented with no gaps to ensure no messages
are dropped. Finally, session tear-down is done explicitly using
an end-of-session exchange to ensure the endpoints received all
messages. If any of these checks fail, the session terminates with
an error and MegaMind instructs the user to try again.
Encoding. Voice assistants cannot send arbitrary data over AVS to
a skill because AVS restricts messages to include lower-case letters
and numbers only. This creates a challenge for sending ciphertext
to a skill. To address this challenge, we encode the ciphertext using
RFC 4648’s base32 encoding that converts 5-bit data chunks to a
code comprised of upper-case letters and the numbers between 2
and 7. With base32 encoding, each 5-bytes of ciphertext is converted
to 8 characters, padded with ’=’ characters in case the encoded
message’s length is not a multiple of 8. Finally, we convert upper-
case letters in base32 to lower-case and remove all the trailing '=’.
Decoding is done in a similar manner.
Skill support. A third-party skill can offer this functionality by
developing a skill-specific companion extension. This skill and its
companion extension only communicate through AVS. The exten-
sion sends the encryption key and encrypted messages to the skill
in the same way as regular messages (i.e., using AVS). Consequently,
the skill must register specific intents, sample utterances, and slots
with AVS to let the extension achieve this goal. An intent repre-
sents an action that fulfills a user’s request. The sample utterances
indicate the pattern of the words users can say to invoke intents.
And slots are the optional arguments of intents.

Slots are defined with different types. Amazon provides sev-
eral built-in slot types to capture first names, phone numbers, city
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names, etc. In addition to the built-in slot types, users can lever-
age a specific slot type for capturing users’ generic queries. This
slot type is AMAZON. SearchQuery, which is designed to be used
in search engine skills or any skill that needs to capture complete
phrases from users. We use this slot type to receive the key from
the assistant.

In the case of the secure conversation extension, the skill should
register the following intents with AVS:

o Intentl: KeyIntent
Sample utterance: key is {KEY}
Slots: KEY ; Slot type: AMAZON.SearchQuery
o Intent2: SearchIntent
Sample utterance: Search for {PHRASE}
Slots: PHRASE ; Slot type: AMAZON.SearchQuery

This, however, raises a challenge. To protect user’s privacy, AVS
does not allow the first intent that launches the skill to contain
a slot with AMAZON. SearchQuery type. This limitation prevents
us from converting the user’s first request to a phrase such as
Alexa, open secret health with the {KEY}. Therefore, we share the
encrypted symmetric key at the second request to the skill, as
described earlier in the workflow. Besides, Amazon also enforces
another limitation on the usage of a slot type used in this skill (i.e.,
AMAZON.SearchQuery) for privacy purposes. Based on Amazon’s
rules, any AMAZON. SearchQuery slot should be accompanied by
carrier phrases and cannot be used alone in an utterance [38]. This
limitation is why we added the phrase “search for” to the beginning
of the utterances of our SearchIntent intent.

7.2 Anonymous Query

This extension lets a user issue sensitive queries anonymously. The
query is relayed indirectly through a mixer skill that prevents AVS
or any other skill (including the mixer itself) from correlating the
user’s identity with the query’s content.

This extension forms a secure channel with the mixer. Upon

receiving messages from a user, the skill cannot identify the user
because AVS never shares any of the user’s identity information
with third-party skills. Thus, the mixer skill receives the user’s
query but does not know the user’s identity. On the other hand,
AVS knows the user’s identity but does not have access to the
query’s contents. This separation ensures that the sensitive query
remains anonymous. Note that we assume that AVS and the mixer
skill do not collude.
Workflow. First, the user must invoke the mixer skill explicitly
by saying "Alexa, Open Query Mixer". The mixer skill asks the user
to submit the query to be anonymized, and the extension sends
the query to the mixer over the secure channel. The mixer skill
decrypts the query and submits it in plaintext format to AVS. Upon
receiving the response, the skill forwards it back to the user over
the secure channel.

We implement a prototype mixer for demonstration purposes.
Our mixer reorders the requests, adds randomized latency to each
request, and submits them to AVS. Moreover, we assume that the
mixer skill has access to a small network of Alexa-enabled devices
to submit the queries. The mixer fends off several possible attacks
by AVS. We do not further discuss these defenses due to space
constraints.
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8 IMPLEMENTATION

We implement MegaMind on top of Amazon’s Alexa Voice Service
SDK. Therefore, MegaMind is compatible with all built-in and third-
party skills deployed on the Alexa ecosystem.

8.1 Key Implementation Components

MegaMind engine. The MegaMind engine is the conductor or-
chestrating all other components. The Alexa SDK sends an IPC
signal to the MegaMind engine whenever it detects the wake word.
It then waits until it receives the processed user’s command from
the MegaMind engine using another IPC channel. Upon receiving
the wake-word detection signal, the MegaMind engine uses the
speech-to-text engine to obtain the transcribed text of the user’s
command. MegaMind engine similarly processes the response from
AVS. Besides, it forwards the altered response to a text-to-speech
engine to read it for the user.

Runtime sandbox. We use the Firejail sandbox [25], which uses
Linux namespaces and seccomp, to completely isolate the execution
of the action function from the rest of the system.

Using the sandbox, we enforce the following restrictions. First,
we limit file system accesses. We configure Firejail to only allow
access to the random number generator, libraries, and binary pro-
grams that are essential for execution of action functions (which are
written in Python) including Python packages on cryptography and
natural language processing. Moreover, for performance purposes,
we allocate a temporary subfolder in the RAM-based /tmp directory
to be used as a home directory for the sandbox, which is needed for
temporary storage and communication with MegaMind. Second,
we disallow sandboxes to communicate with the outside world by
disabling network access. Third, using seccomp filters, we limit
the syscalls that can be executed. We only allow open, read, and
write syscalls. Finally, we configure Firejail to limit the resources
such as memory, number of files and size of files, and the CPU time
available to a sandbox.

Speech-to-Text conversion. We use Mozilla DeepSpeech as
our speech-to-text engine for the conversion. We choose Deep-
Speech because it outperforms all of the open source speech-to-text
conversion implementations that we have tested, including Kaldi,
CMUSphinx, Julius, and Simon. According to Mozilla, DeepSpeech
achieves a 7.5% word error rate on LibriSpeech clean database, and
can convert speech to text faster than real-time even on a single
core of a RPi 4 board [15]. Moreover, our engine uses the Voice
Activity Detection (VAD) algorithm to detect the end of utterances
and responses based on the silence detection.

Text-to-speech conversion. For our text-to-speech conversion,
we use pico2wave from SVOX [36]. pico2wave is fast; it converts
the text to speech in less than 1 ms on a normal laptop. The output
voice of pico2wave sounds less artificial than its other alternatives
such as eSpeak engine on Linux.

NLP helper functions. We implement MegaMind NLP helper
functions using Python natural language processing toolkit (NLTK).
MegaMind helper functions lie within three main categories.

The first category includes helper functions that search words
in a database. Examples are functions that look for first/last names
and profanity. For the former, we use a database including the top
5000 of all the first/last names registered for a Social Security card
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Figure 4: Latency breakdown for different extensions for three platforms. For each extension, first, second and third bars, respec-
tively, show the average latency for first, middle, and overall commands in a session. The last bar shows the baseline latency for

that extension.

in the United States since 1879 [2]. For the latter, we use a list of
1383 profane words in English from CMU [34]. The second category
includes helper functions that look for a predefined structure in the
sentence. Examples are helper functions that find phone numbers
or US. addresses in sentences. The third category includes helper
functions that use information about a word’s meaning. Examples
are helper functions that find synonyms and similar words in the
sentences, or functions that find a specific type of content such
as violent content or adult content. We implement these helper
functions with the help of NLTK and the WordNet database [42].

8.2 Performance Optimizations

Sandbox pool. One source of overhead in our earlier prototypes
was the sandbox initialization time. To avoid this high latency, we
use a sandbox pool, which MegaMind initializes at boot time. This
optimization reduces the latency by 420 + 50 ms on a laptop, and
295 + 20 ms on a RPi 4 board.

Text submission to AVS. Another source of overhead in our
earlier prototypes was the time needed to covert the modified user
utterance to audio in order to submit to AVS. To eliminate this
overhead, we used another API of AVS that allows submission
of requests in text format. This API is used in Alexa Developer
Console for testing third-party skills. Moreover, the response from
AVS, which is normally in audio format, includes the corresponding
text of the response as well, when we submit the requests in text
format. This eliminates the need for converting the response to text

before passing it to the extensions, further reducing the latency.

This optimization reduces the latency by about 310 + 20 ms on a
laptop and 630 + 90 ms on a RPi 4.

Stream processing. If we wait until the end of the utterance and
then start converting the recorded audio to text, it adds several
seconds of latency. Therefore, we use stream processing for the
conversion. In its recent versions (> 0.6), DeepSpeech provides a full
streaming API. We use webRTC’s VAD to collect 300 ms of audio
from the microphone and pass it to the DeepSpeech streaming
API. This way, regardless of the utterance length, we can have the
converted text after around 300 ms. This optimization reduces the
latency by 2000 + 1500 ms.
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9 EVALUATION

We evaluate the performance and effectiveness of MegaMind. We
deploy MegaMind on three platforms, a laptop, a RPi 4 board, and
a RPi 3 board. On the laptop, we use a VMware virtual machine
with 4 CPU cores and 2 GB of RAM. The laptop uses a 2.6 GHz Intel
Core 17 x86 CPU with 4 cores, 8 GB of RAM, and Intel hardware
virtualization (VT-x). RPi 4 uses a 1.5 GHz ARM Cortex-72 with 4
CPU cores and has 2GB of RAM. Finally, RPi 3 uses a 1.2 GHz ARM
Cortex-53 with 4 CPU cores and has 1 GB of RAM. Our ARM pro-
totypes represent lower-end mobile devices such as smartphones,
modestly-powered standalone assistants, and embedded one. Our
x86 prototype, on the other hand, represents higher-end and more
powerful assistants.

9.1 Performance

Conversation latency. The latency of responses is one of the crit-
ical factors in user’s satisfaction with a voice assistant. We measure
the latency for several extensions and report them in Figure 4. The
figure shows the breakdown of the latency, showing contributions
from local speech-to-text conversion, NLP helper function evalua-
tion, and execution of computationally-heavy action functions. In
addition, the figure shows the latency for the first utterance in a
session, all utterances after the first one, and all utterances including
the first one. We show the results as such since the first utterance in
a session suffers from higher latency than the other utterances in
the same session, for several reasons. First, the action function exe-
cution initializes at this utterance. Second, extensions, specifically
companion extensions, perform heavy computations at the first
utterance. The latency also depends on the length of an utterance.
As a result, we test each extension with a session consisting of five
utterances with different lengths. To further reduce the measure-
ments’ noise, we repeat each session five times. The final latency for
each extension is the average latency of twenty-five measurements
in five different sessions.

As the figure shows, different types of extensions have different
latency profiles. First, secure conversation (SC) and Anonymous
query (AQ), have heavy initialization and impose higher latency
on the first utterance. As we can see in the figure, most of this
latency comes from the execution of the action function. Second,
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Figure 5: Impact of number of extensions on latency.

for redaction (RE) and parental control (PC) extensions, evaluating
the trigger functions imposes the highest latency. This is because
of the usage of NLP helper functions in the trigger rules of these
two extensions. Finally, night mode (NM) and skill limiter (SL)
experience a small latency since neither their action functions nor
their rule evaluations are computationally intensive. Please note
since these two extensions discard the utterances before submission
to the SDK, there is no reported SDK latency for them in the figure.

Speech-to-text conversion, on average, imposes similar latency

to each extension in each platform. On the laptop and RPi 4, speech-
to-text performs near real-time and imposes less than 400 ms of
latency on average. However, for the weaker platform, RPi 3, speech-
to-text conversion imposes notable latency. This explains poor
performance results on this board. As MegaMind relies heavily
on local computation, it requires adequate compute power on the
voice assistant. However, RPi 3 has much less computation power
compared to RPi 4 [17]. Fortunately, our results show that a device
as inexpensive as RPi 4 can provide adequate compute power. Most
of the latency on weaker devices is for speech-to-text conversion.
Hence, such devices (e.g., smartwatches) can offload the speech-to-
text conversion to another edge device like a smartphone and still
be able to deploy MegaMind.
Impact of the number of extensions. We next evaluate the
effect of the number of extensions on latency, in two steps. First,
we evaluate the impact of the number of active yet not triggered
extensions. In this experiment, we measure the average latency for
a sequence of utterances that do not trigger any of extensions. This
way, we measure the overhead of evaluation of the trigger rules
for these extensions, but not their action functions. To increase the
number of extensions, we add the following in order: (1) secure
conversation, (2) redaction, (3) night mode, and (4) skill limiter.
Figure 5a shows the results. It shows that increasing the number of
enabled extensions does not have a notable impact on the overall
latency. Only adding the redactor, which uses NLP helper functions
slightly increases the overall latency of MegaMind.

Second, we evaluate the effect of the number of triggered exten-
sions. This experiment captures not only the impact of evaluation of
trigger rules, but also execution of actions functions. For this exper-
iment, we use utterances that trigger all of the extensions. Please
note that we modify the discarder’s action function for this experi-
ment to avoid discarding the utterances when they get triggered.
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Figure 5b shows the results. It shows that even if an utterance trig-
gers four MegaMind extensions, the overall latency is only slightly
higher than the latency of only one extension. This is because most
of MegaMind latency comes from speech-to-text conversion (which
executes once per command).

CPU utilization. We also measure the CPU utilization of each
extension using the same experimental setup. Figure 6 shows the
results. Since the unmodified SDK delegates almost all the compu-
tation to AVS, it is not surprising that running MegaMind increases
the CPU utilization. For all platforms and all extensions, CPU re-
mains idle most of the time. Thus, this increase in CPU utilization
does not disrupt the normal execution of the assistant.

9.2 Effectiveness

MegaMind extensions can effectively provide security and privacy
features for voice assistants. As mentioned in the introduction,
we developed a few extensions and demonstrated their usage in
a video demo. We have developed a simple banking skill that sup-
ports MegaMind’s secure communication alongside its MegaMind
companion extension. In our experiments, the user securely com-
municates with this banking skill, logs in to his account, queries
for his balance, and issues a transaction. We recorded the usage of
this skill-extension pair and published it in our demo. In another
instance, we showed the usage of an anonymous query extension.
We showed how a user uses this extension to anonymously query
for a medical condition.

Besides, we evaluate the impact of inaccuracies in speech-to-text
conversion and NLP helper function components on the effective-
ness of MegaMind. We note that these inaccuracies mainly impact
sanitizers and discarders in MegaMind. They have, otherwise, min-
imal impact on companion extensions, such as secure conversation
and anonymous query, for two reasons. First, companion extensions
do not use NLP helpers in their trigger rules. Second, inaccuracies
in the transcription can be easily mitigated by additional authenti-
cation methods employed by the companion skill.

We evaluate the effectiveness of MegaMind in four tasks: (1)
detecting sessions, (2) redacting profanity, (3) redacting private
information, and (4) preventing purchases. Table 2 summarizes
the results. For each of the above tasks, we report results from
two sets of experiment, one where we submit the test utterances
in audio format hence requiring speech-to-text conversion, and
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Text Voice
Detection FN FP FN FP
New session 0% 8% 20% 8%
Profanity 0% 5% 10% 6%
Private info 0% 5% 15% 8%
Purchase 13% 1% 20% 2%

Table 2: MegaMind’s detection errors. EN stands for false neg-
atives, and FP for false positives.

one where we bypass the speech-to-text conversation and feed the
accurate text of the utterances to MegaMind. These results help
us understand the effectiveness of MegaMind in the presence of
a highly accurate speech-to-text converter. Below, we discuss the
effectiveness experiment results.

Effectiveness of skill ID detection.

To measure the accuracy of MegaMind in detecting explicit in-
vocation of a skill, we test MegaMind with a combination of 100
standard built-in commands randomly chosen out of 190 Alexa
built-in commands reported in [24] and twenty commands that we
generate to ask Alexa to start a new session with a third-party skill.
In generating these commands, we randomly chose the grammar
to open the skill, and we chose skill names randomly from Alexa
skill market.

Table 2 shows that MegaMind could find all of the commands
aiming to start new session accurately. However, in a few cases
MegaMind detects a false session start for a normal command. This
is because the AVS grammar for starting a new skill has overlap
with some of the Alexa’s built-in commands. For example, a user
can launch a third-party skill using the following grammar: “[a
request] from [skill invocation name]” (e.g. “Order pizza from great
pizza shop”) A built-in command such as “Disconnect bedroom’s
echo device from John’s phone” follows the exact same grammar.
MegaMind can potentially filter out all of these false new session
detections by having a database of Alexa’s published skills names.
Effectiveness of profanity redaction. For this experiment, we
develop a custom skill, which tells jokes. We combine ten jokes
containing profanity with one hundred clean jokes in a database,
all randomly chosen from Laugh Factory [31]. Our result shows
that MegaMind redacts all the profane words. However, since the
database we used for bad words is conservative and contain dual-
used words as well, MegaMind filters a few words in clean jokes as
well.

Effectiveness of private information redaction. In this exper-
iment, we mix twenty utterances containing private information
such as first and last names, phone numbers, Social Security Num-
bers, with 100 Alexa’s standard commands randomly chosen out of
190 Alexa built-in commands reported in [24]. Our result shows that
MegaMind could successfully redact all the private information in
the utterances. However, in a few cases, MegaMind falsely redacts
standard Alexa commands. These false alarms mostly happen in
commands related to playing music, in which the redactor redacts
the name of the artist. This problem only occurs when the redactor
aims to redact all the matching first and last names. However, in
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real cases, a redactor can be configured only to redact the name of
people using the device.

Effectiveness of purchase prevention. Out of 190 built-in Alexa
commands reported in [24], 15 commands are listed as purchase-
related commands. We measure how accurately MegaMind parental
control extension can block these purchase-related commands.
MegaMind parental control extension could find 13 of purchase-
related commands using MegaMind NLP helper functions. However,
two commands related to getting a taxi from ride-share skills were
missed by MegaMind because there were no words associated with
purchasing a product in these utterances. However, the parental
control extension of MegaMind can easily block these utterances
by disabling ride share skills.

Speech-to-text conversion accuracy. The word error rate for
DeepSpeech speech-to-text engine is reported to be 7.5% [15]. How-
ever, this word error rate is for generic conversations. Voice com-
mands may contain some words and phrases that were not present
in DeepSpeech’s training data-set. As a result, we use a database
of Alexa built-in commands [24] consisting of 190 commands for
Alexa to measure DeepSpeech’s accuracy. We convert these com-
mands to Speech using a human-like neural network-based cloud
text-to-speech converter. We then convert back the spoken com-
mands to text using DeepSpeech and measure the accuracy. Our
experiments shows that DeepSpeech word error rate for this data
set is 12.28%.

One other important aspect of speech-to-text conversion accu-
racy is in finding skill names. We measure the accuracy of Mega-
Mind using DeepSpeech in accurately detecting the skill names for
100 commands aiming to open 100 randomly selected skills from
the top skills of Alexa skill market [19]. MegaMind could find the
Skill names correctly in 82% of cases.

Speech-to-text conversion is a hot research topic and it is ex-
pected that the accuracy of local speech-to-text engines improves
in the future. Our prototype uses a pre-trained English model for
DeepSpeech, which has been trained with generic English speeches.
However, we envision that in the near future, it will be possible
to train a voice assistant-specific language model for DeepSpeech
using voice assistant commands and skill names in order to fur-
ther improve the accuracy. In addition, the DeepSpeech pre-trained
models are only trained with noise-free pre-recorded standard and
formal English speeches and do not support different accents and
ambient noise. Training a robust language model requires a huge
amount of labeled audio recording from users. Previously, only big
companies had access to this kind of database. This task is getting
feasible given the recent efforts from the open source community
to build large transcribed databases of users’ speeches by asking
people to donate their voice to the database, and donate their time
to validate the transcriptions [33]. For instance, Mozilla Common
Voice project, at the time of writing this paper has reached 12000
hours of audio recording in 40 different languages, which 9500
hours of that is validated [33].

10 RELATED WORK

Our work on MegaMind is inspired by systems that provide security
extensions for mobile operating systems, such as ASM [58] and
ASF [47].
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Almond [48] is an open source virtual assistant system. It uses a
natural language interface and protects user’s privacy by keeping
their data locally. PrIA [59] is an intelligent assistant that provides
personalized services, such as a news recommendation service,
for the user without providing user’s private information to cloud
services. MegaMind shares Almond’s and PrIA’s visions of enhanc-
ing user’s privacy when using assistants. Yet, we have designed
MegaMind as a security and privacy extension to existing voice
assistant systems, in contrast to these systems, which provide a
new ecosystem or new services.

Use of assistants in a smart home setup creates security and
privacy challenges when used by multiple people [73]. These chal-
lenges are different from those addressed by MegaMind, which
focuses on security and privacy of using cloud services via voice
assistants.

LipFuzzer [76] uses a linguistic-model-guided fuzzer to find se-
mantic inconsistencies between the user and the voice assistant,
resulting in the user talking to an unintended skill. While Mega-
Mind’s goal is orthogonal to LipFuzzer’s, its extensions can alleviate
some of these unintended results.

There is a line of work on enhancing the privacy of voice-based
systems by eliminating personal features from audio recordings via
local preprocessing [44, 45]. MegaMind’s local speech-to-text con-
version also eliminates all voice-based features. Although speech-
to-text conversion requires more processing power, having the
transcribed commands enables more sophisticated language pro-
cessing.

Other previous research has also identified the need for voice
assistants to provide strong security defenses including authoriza-
tion, access control, and privilege separation [52, 55, 56, 67, 68, 72].
Besides, there are previous empirical studies that highlight the
importance of security and privacy of smart speaker applica-
tions [51, 61, 66].

There is a large body of work showing different classes of secu-
rity attacks on voice assistants. Inaudible voice attacks (IVA) and
concealed voice attacks (CVA) stealthily deliver voice commands to
a voice assistant without the user knowing. BackDoor [64], Dol-
phin [74] and LipRead [65] use inaudible sounds transmitted over
ultrasound frequencies to issue inaudible voice commands to vir-
tual assistants. Similarly, research projects on concealed voice com-
mands showed that devices continue to respond to wake words
and utterances even when “mangled” to such a degree that they
are unintelligible to users [49, 69]. Recently, CommanderSong [71],
Lyexa [62], SurfingAttack [70], MetaMorph [50], and Abdullah et
al. [43] proposed more elaborate and practical inaudible/concealed
voice attacks.

Another important attack is the voice squatting attack (VSA),
where a malicious skill developer creates an invocation phrase
similar to a legitimate skill, in the hope that sometimes the wrong
skill may be invoked and data may leak [60, 75].

Another important attack is the fake skill termination attack
(FSTA), [75], where a malicious skill developer creates a long silent
audio response in order to trick the user into thinking that no skill
is running anymore, at which point the user may say something
private. Table 3 shows how MegaMind extensions help in protecting
against attacks.
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Attack category | Examples How?
Phishing VSA Skill deny-listing
Eavsdropping FSTA, CVA | Privacy protction
Unautorized cmd IVA, CVA Action limiting

Table 3: MegaMind protection for attacks.

11 CONCLUSIONS

We presented MegaMind, an extensibility system for enhancing
the security and privacy of voice assistants. MegaMind enables
development of powerful extensions with ease. We demonstrated
several such extensions, including one for secure communication
with a third-party skill and one for issuing queries anonymously,
both of which bring a level of unprecedented security for voice
assistants. We presented a prototype that works with the existing
Alexa Voice Service ecosystem and showed that it achieves a low
conversation latency even on inexpensive hardware, such as a
Raspberry Pi 4 board. We also showed that MegaMind is effective
in achieving various security and privacy goals.
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