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The discovery of the coalescence of binary neutron star GW 170817 was a watershed moment in the field of
gravitational wave astronomy. Among the rich variety of information that we were able to uncover from this
discovery was the first non-electromagnetic measurement of the neutron star radius, and the cold nuclear
equation of state. It also led to a large equation of state model selection study from gravitational-wave data. In
those studies Bayesian nested sampling runs were conducted for each candidate equation of state model to
compute their evidence in the gravitational-wave data. Such studies, though invaluable, are computationally
expensive and require repeated, redundant, computation for any new models. We present a novel technique to
conduct model selection of equation of state in an extremely rapid fashion (~ minutes) on any arbitrary model.
We test this technique against the results of a nested-sampling model selection technique published earlier by
the LIGO/Virgo collaboration, and show that the results are in good agreement with a median fractional error
in Bayes factor of about 10%, where we assume that the true Bayes factor is calculated in the aforementioned
nested sampling runs. We found that the highest fractional error occurs for equation of state models that have
very little support in the posterior distribution, thus resulting in large statistical uncertainty. We then used this
method to combine multiple binary neutron star mergers to compute a joint-Bayes factor between equation of
state models. This is achieved by stacking the evidence of the individual events and computing the Bayes

factor from these stacked evidences for each pairs of equation of state.
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I. INTRODUCTION

Neutron stars (NS) are the densest objects that are known
to exist in the universe. The structure of isolated non-
rotating NS is completely determined by the Tolman-
Oppenheimer-Volkoff (TOV) equations [1]. To solve the
TOV equations, however, one needs to know the barotropic
equation of state which connects the pressure (p) of nuclear
matter at energy density (€):

p = p(e). (1)
The equation of state of cold matter at extreme density is

expected to be universal, i.e., all NS are expected to share
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the same equation of state. Thus, the equation of state is a
fundamental relation of great importance for understanding
NS, and more generally, matter at extreme densities. In a
typical NS, the central density can, however, reach values
as high as ten times the nuclear saturation density [2]. Such
extreme environments cannot be emulated in laboratories.
Moreover, limitations in our knowledge of the strong
nuclear force, which is partially responsible for the pressure
resisting the collapse of a NS due to its gravity,' results in
inadequate theoretical models of matter at such densities.
Thus, the lack of experimental data at high densities and

"The degeneracy pressure being the other component respon-
sible for the hydrostatic equilibrium of the star.
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incomplete theoretical understanding of NS models both
contribute to the uncertainty in the modeling of the nuclear
equation of state. These uncertainties have led to the
development of numerous of NS equation of state models.

Solving the TOV equation for these equation of state
models allows us to compute the radius of stable non-
rotating NS as function of mass. Moreover, it can be shown
that there exists one-to-one map between the p(e) relations
of a NS and its mass-radius relations, i.e., there is a one-
parameter family of NS based on central pressure [3].
Observations of pulsars and measurements of their mass
and radius provide us with valuable information about the
NS equation of state. Traditionally, this had been the
primary avenue of investigation in this field. However,
the vast majority of known galactic pulsars (~3000) are
isolated and only around 10% of systems exist in binaries
[4,5], for which precise mass measurements are possible.
The measurement of a NS’s radius using electromagnetic
observation is quite challenging. Most radius measurement
techniques for NSs are either based on detecting surface
thermal emission, using spectroscopic data to infer the
effective temperature assuming isotropic emission models.
Alternatively, this could involve the measurement of the
general relativistic effects of the NS’s gravity on the
thermal emission, for example by projects like Neutron
Star Interior Composition Explorer (NICER) [6-8].
However, all these techniques are model-dependent and
have multiple sources of systematics [2].

Detection of gravitational waves from binary neutron
stars (BNS) using ground-based gravitational wave detec-
tors like LIGO [9] and Virgo [10] presents us with a
completely new way of measuring the NS equation of state.
It allows us to measure the masses of the NSs directly, and
electromagnetic emission model independent measurement
of the star’s structure via the tidal deformability. In a
coalescing BNS system the spin [11] and tidal interactions
between the two stars will lead to a change in their shape,
and hence changes the quadrupole moment of the binary
system. The time-changing induced quadrupole moment
results in a faster inspiral as more orbital energy goes into
radiation and stellar distortion and this results in observable
effects in the gravitational waveform. If the star is subject to
a quadrupolar field given by &j; then the resulting quadru-
pole moment due to tidal interactions is given by

Qij = —A&, (2)

where 4 is called the tidal deformability of the NS, which is
related to the equation of state dependent tidal Love
number k, [12] as follows

2
A= ——kR 3
—k (3)
where R is the radius of the NS (which, for a given mass,
also depends on the equation of state). For a given equation

of state and mass of the NS, the tidal deformability, A can be
computed by solving the TOV equations along with a
differential equation obtained from combining metric
perturbation due to external quadrupolar tidal field
[12,13]. Therefore, any measurement of the tidal deform-
ability will also lead to constraints on the NS equation of
state. This is where gravitational-wave data for coalescing
binaries of NSs provide us with an excellent observational
window for nuclear matter measurements. By modeling the
gravitational waveform while taking into account the tidal
deformabilities as extra model parameters [14-16], it is
possible to obtain the posterior distribution of the NS
masses and tidal deformabilities from Bayesian parameter
estimation [17-21] to get posterior distribution on the NS
masses and tidal deformabilities. This was conducted for
the case of GW170817 by the LIGO/Virgo Collaboration
[22]. Additionally, the constraints on the radii of the NSs
were also estimated [23,24] after imposing an equation of
state insensitive relation between the mass, radius, and tidal
deformability. Furthermore, it is possible to parametrize the
equation of state using piecewise polytropes or a spectral
representation [25,26] to infer the equation of state param-
eters for a given representation [23]. Finally, nonparametric
inference of the cold NS equation of state [27,28] can help
in relaxing the choice of parametrization in describing the
equation of state.

All of these aforementioned studies, which are either
equation of state agnostic, or which are attempting to reveal
the NS equation of state with minimal (albeit varying
degrees of) assumptions, are extremely important. One can,
however, also make a good argument of studying various
equation of state models in the literature that are based on
nuclear theory. Analysis of these equation of state models
can give us insight into these various theories. There are a
few studies in constraining of equation of state models that
are motivated from nuclear physics theory [29,30], and a
large-scale equation of state model selection study has also
been conducted by the LIGO/Virgo Collaboration [31]
which has investigated 24 equation of state models using
Bayesian model-selection techniques. Bayesian model
selection of NS equation of state requires conducting
Bayesian parameter estimation on gravitational-wave data
using each model as a prior. Conducting such studies for
multiple equation of state is computationally expensive.
There is much redundancy in such studies which we want
to avoid so that any new equation of state model can be
rapidly tested against any other (new or existing) models.
We present in this paper a novel technique that allows for
reliable and rapid computation of Bayes factors between
equation of state models estimated from a single equation
of state agnostic Bayesian parameter estimation run on the
gravitational-wave data.

The paper is organized as follows: in Sec. II, we briefly
review the technique of Bayesian model selection for NS
equation of state using gravitational-wave data. In Sec. III
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we introduce the approximate method for Bayes factor
estimation that we use to perform rapid model selection. In
Sec. IV we give the details of the parameter estimation runs
that are necessary for the application of the approximation
method. Then in Sec. V we discuss the results of this
technique, where we first show how the method performs
compared to the full Bayesian analysis in [31], and then in
Sec. V B we use this technique to demonstrate its ability to
stack Bayes factors from multiple BNS mergers in order to
make a joint model-selection statement. Finally, in Sec. V C
we apply the method of stacking to obtain a joint Bayes
factor between models of NS equation of state as informed
by the two observed BNS coalescences, GW170817 and
GW190425 [32].

II. MODEL SELECTION OF EQUATION
OF STATE

The time-varying strain at an interferometer due to
gravitational wave from a coalescing compact binary
|

system is given by h(t;my,my, A1, A,, 5), where 0 is
comprised of the spins of the binary, and extrinsic
parameters of the source such as its sky-position, the
angle of inclination of the binary, the gravitational wave
polarization angle, distance to the source, and its phase at
coalescence. For this work we have ignored spin contri-
butions to the tidal deformabilities and maximum masses
of the binary components. The quantities m; and 4;, where
i = 1,2, are the masses and tidal deformabilities of the
two compact objects. The NS equation of state gives us
a map between the masses and the tidal deformability
parameters: 1 = f(m). The interferometer data d in pres-
ence of the gravitational wave signal can be expressed as
d(t) = h(t) + n(t), where n(t) is the noise in the detector.
We can define a likelihood function in the parameter space

-

defined by (m,m,,A;,%,,0) for the observed data as

-

L = L(d|my,my, A, 2,,6), which can be used to con-
struct the evidence for the equation of state model defined

by f,

2y = [ cldm 2,28 )plo 3 251) p(@ it 4)

where the prior for the specific equation of state model is
encoded in the probability p(m, i, m,, 4| f). Computing
the value of Z; and Z, for two equation of state models f
and ¢ and then taking their ratio will give us the Bayes
factor BF‘g = Z;/Z, between the two models. This tech-
nique was employed in [31] and was used to investigate
Bayes factors between a multitude of equations of state
using the information available from the interferometer data
around the time of GW170817 [33]. For each of these
equations of state the evidence in Eq. (4) was evaluated by
conducting a multi-dimensional Bayesian parameter esti-
mation using nested sampling [34]. This method, however,
is computationally expensive. In the study conducted in
[31], the computation of evidence for each equation of state
took =1 week to finish. Furthermore, if one intends to
compare any new equation of state against the existing
models, a fresh Bayesian analysis will need to be con-
ducted. This renders the method impractical in the long run
(particularly when it must be repeated over a number of

|

|

gravitational wave events to obtain a joint Bayes factor
as we describe in Sec. V B). Whenever a new equation
of state models needs to be included in the study, not only
new parameter estimation runs need to be conducted for
the new events, but for all events in the past. To address
this issue we have developed a method of an evidence-
approximation scheme that allows the use of a single
Bayesian parameter estimation result to compute the Bayes
factor between any two arbitrary equation of state models in
a very rapid fashion (typically within minutes®). This
method allows the user to define any new equation of
state model and compare that with any existing model or
another new model without having to repeat the full
parameter estimation runs. Instead of using the aforemen-
tioned parametrization of (m,, m,, 1, A,) we re-parametrize
the likelihood to (M, g, A, 5A), where M = (mym,)>3)
(my + my)'/3 is the chirp mass of the binary, ¢ = m,/m, is
the mass ratio, assuming the convention n; > m,. A and §A
are tidal parameters defined as

-8
A= (1T =317)(A) + Ag) + /1= 4n(1 490 = 117) (A = As)] (5)

o 13272 8944 15910 32850 , 3380

A= [ VI—dp( 1=+ 202 ) (A + As) + (1= 2 ) (A - A

o 2[ ”( 1319’7+1319’7>( 1t 2)+( 1319 171319 7 1319’7)(1 2)}’ (6)

2About an hour if uncertainties need to be calculated.
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where, n = m;m,/(m, + m,)? is the symmetric mass ratio,
and A; = GA,[c*/(Gm,)]’ and Ay = GAy[c?/(Gm,))? are
dimensionless tidal deformabilities of the two stars, as
described in [13,35,36]. This allows us to neatly isolate the
dominant tidal contribution to the gravitational waveform,
A, from the subdominant contribution of SA. We describe
the details of the evidence approximation scheme in the
next section.

III. EVIDENCE APPROXIMATION SCHEME

Bayesian model selection among a number of equation
of state models requires the computation of the evidence Z
for each model under consideration. The evidence can be
computed by methods such as nested sampling [34], but
this multidimensional integral must be recomputed for each
equation of state model. Here we describe an approxima-
tion scheme by which the evidence for each model can be
obtained from a low-dimensional integral over a margin-
alized likelihood function that is constructed from a set of
samples drawn from a distribution with a single MCMC
sampling.

The approximation method exploits the fact that the
chirp mass of a BNS system is extremely well measured
from the gravitational wave signal, whereas a second mass
parameter, e.g., the mass ratio ¢, will be significantly less
constrained. Additionally, the tidal parameter A, first enters
the post-Newtonian expansion of the waveform at the 5th
post-Newtonian order, while SA first enters the expansion
at the 6th post-Newtonian order. The impact of SA is much
weaker than the one of A and can often be neglected.

If we ignore spin contributions, a given equation of state,
E, defines how the tidal deformabilities are related to the
NS mass, Ag(m), as well as a maximum mass 7, g of a
nonrotating NS. We assume that a compact object with m >
Muyax. g 18 @ black hole (ignoring the possibility of rapidly
rotating supramassive NSs) and define Ag(m) =0 for
m > My, g- The function Ay then allows us to obtain
the functions Az (M, g) and SAg(M, ¢) using Egs. (5) and
(6), which determine the parameters A and SA for a BNS
with mass parameters (M,q) [36]. The evidence for
equation of state E is then

2= / LM ¢80 Ap(M'.q'). R (M. ') p(M'. ¢ ) p(@ \dM dq 4§ (7)

and if we marginalize over the parameters 6 and express the equation of state constraints as delta-functions, we have

Zp = / L(AM', ¢ N 6NN = Ag(M',¢"))6(6N = 5Ax(M', ¢'))p(M',q")dM'dg dN dSA' . (8)

The prior distribution over masses p(M, ¢) is taken to
be the same for any equation of state in our approximation,
which would neglect astrophysically motivated priors
involving mass gaps between the most massive NSs and
the least massive black holes.

To obtain the marginal likelihood £(d|M’, ¢’ LN SN )
we use well-tested and well-maintained parameter estima-
tion code to compute a posterior distribution: Application
of Bayes’s theorem reduces the marginal likelihood to a
posterior distribution

P(M.q.A,3A|d) & p(M. q)L(d| M. q.A.6R) (9)

where a uniform prior over A and 6A is imposed. This prior
in the tidal deformabilities is not physically meaningful: its
seemingly unphysical form is needed only to form the
correct relation between the posterior distribution and the
marginalized likelihood. (The prior over the mass param-
eters, however, is physically relevant.) However, it must be
noted that the prior over deformabilities needs to have
support over all possible deformabilities allowed by the
equation of state under consideration. As the equation of

|
state dependence appears only in the delta-functions in
Eq. (8), the constant of proportionality in Eq. (9) is not
equation of state dependent and so is irrelevant for our
purposes.

As mentioned earlier it is observed that the posterior
distribution is sharply-peaked about some well-measured
chirp mass M., and is largely independent of the sub-

dominant tidal parameter SA, so, to a very good approxi-
mation

p(M. q. A, 8Ald) « p(q, A|ld)5(M — M)~ (10)
where p(g. A|d) is the posterior distribution marginalized

over all parameters apart from ¢ and A. Performing the
integrals in the evidence, we find

2 o / p(d Re(My. q)|d)dq’ (11)

i.e., proportional to the line integral over the two-
dimensional posterior distribution p(g, A|d) along the
curve y:q — AE(q,MO) determined by the measured
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chirp mass M, and the equation of state E. Again, the
constant of proportionality is not equation of state depen-
dent and so is irrelevant when computing Bayes factors
between different equations of state. The curve y contains
the full support of the prior on ¢ which may include values
where one or both of the components exceed m,,,« g, Which
correspond to neutron-star black-hole binaries and binary
black holes.

In our work, we used MCMC stochastic sampling to
draw samples from the posterior distribution. We then used

a kernel density estimator (KDE) of samples (g, A) drawn
from the posterior to obtain a KDE estimate K (g, A) of the
function p(g, A|d). The line integral is then written in terms

of this estimate as

Zp o / K(¢' Ae(Mo. ¢))dd'. (12)

Within this approximation scheme, samples from the pos-
terior distribution p(q,A|d) only needs to obtained once
(per event) using an equation of state agnostic prior that is
uniform over A and SA. Once this has been computed, the
evidence for any equation of state model can be efficiently
obtained by a one-dimensional line integral of Eq. (12).
Because we approximate the posterior distribution with a
KDE based on a finite number of samples, this estimation
method is subject to sampling uncertainty. We estimate the
uncertainty via a bootstrapping approach. From the kernel
density we resample the same number of points as the
original samples and recompute the evidence using this new
set of points. This should give us another instance of the
evidence for the same event. Continuing this multiple times
we are able to create a distribution of the evidence, which in
turn will give us an estimate in the uncertainty of our Bayes
factors between two equation of state models. While we
believe any biases associated with the point estimate of the
evidence ratio to be small, the bootstrapping procedure
introduces a bias due to over-smoothing of the posterior. We
therefore include a factor of two based on simulation studies
(see Appendix) in the error estimates shown in Sec. V in
order to render conservative error estimates.

For the results in this work we use a prior that is uniform
in 0 <A <3000 and —500 < 5A < 500. Note that this
formally includes (unphysical) negative values of the
individual tidal deformabilities A; and A,. These negative
values can lead to issues with waveform generators that fail
upon encountering these unphysical points. In this study we
used the TaylorF2 waveform [37] truncated at Sth post-
Newtonian order which is a post-Newtonian nonprecessing
frequency domain waveform that includes tidal effects.
TaylorF2 does not depend on SA and so was largely
immune to this issue. The equation of state will affect
the gravitational waveform at high frequencies near the
point at which the NSs come into contact that are not
modeled by the TaylorF2 waveforms. In this work we chose

to terminate the waveform at the innermost stable circular
orbit (ISCO) [36]. As the detectors are not sensitive at such
high frequencies, this arbitrary termination condition is
unimportant. A more general approach would be to use an
arbitrary prior p(A;, A,) with support only for A; > 0 and
A, >0 and to divide the posterior distribution by the
marginalized prior p([\) (which can be done by reweight-
ing samples drawn from the posterior distribution).

IV. EQUATION OF STATE AGNOSTIC
PARAMETER ESTIMATION RUNS

The evidence approximation post-processes the
Bayesian posterior samples. The current implementation
of the method uses an equation of state agnostic
MCMC exploration of the 11 dimensional parameter space
spanned by (./\/l,q,f\, Ay, )2 dr Oy W, L, 5.). For
GW170817 we fix the sky-position at the location of
NGC4993. We wuse LALInference MCMC from
LALsuite library [38] to obtain posterior samples for A
and g as well as the other aforementioned parameters. It
implements MetropolisHastings algorithm [39,40] with
parallel tempering [18,21], which modifies the likelihood
function p(d|6) to p(d|@)"/T for different ‘temperature’ (T)
chains. In all the examples that follow we choose to use 8
different temperatures from 7 =1 to 7 = 50 for each
MCMC run. Parallel tempering allows, at higher temper-
atures efficient ‘global’ exploration of the prior-space,
while at the lower temperatures, finer detailed exploration
of local space around regions of higher likelihood. During
the sampling, each chain swaps samples periodically based
on the criteria presented in Ref. [21]. Samples at the
beginning of MCMC known as burn-in period need to
be discarded, because they have not explored the entire
parameter space and thus they are not guaranteed to be
sampled from the posterior. The termination condition can
be set to the desired number of samples, however, adjacent
samples are usually correlated. We compute autocorrelation
time 7z [21], and only select effective samples: every z-th
samples after burn-in, which can better sample the posterior
as they are independently chosen.

The priors for mass and spin (y) that we used for
GW170817 are consistent with the priors presented in
Ref. [31], specifically, we consider narrow and broad priors
on masses and spins. Our choice of the narrow prior is
based on BNS observed in our Galaxy. We assume
component masses of BNS follow uncorrelated Gaussian
distribution with mean 1.33 M and standard deviation
0.09 Mg, [2], and employ the sorting convention m, < m.
The choice of the upper limit of spin in this case is
x <0.05, which is identical to Ref. [31] and motivated
from observational data of spin of NS in binary systems that
will merge in Hubble time. For the broad prior, the masses
are uniformly distributed between 0.7 My and 3.0 M.
Again, following Ref. [31], we choose the prior on y in this
case is uniformly distributed between O and 0.7. For
GW190425, a high-mass BNS with total mass ~3.4 M
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and chirp mass ~1.44 M [41,42], we only employ the
broad prior, identical to what was used for the broad prior
runs for GW170817. Finally, the choice of low frequency
cutoff usually depends on the sensitivity of the detectors.
For GW170817 the low frequency cutoff is 23 Hz [31], and
we reduce the low frequency cutoff of GW190425 to
19.4 Hz [41], due to the improvement of the sensitivity.
In the injection study discussed in Sec. V B, we inject
GW170817-like BNS with (1.4, 1.4)M, at different distan-
ces 40 Mpc, 70 Mpc, 100 Mpc, 130 Mpc, and 160 Mpc to test
how the results vary with respect to signal-to-noise ratio. The
A and A for injections are computed using the APR4_EPP
equation of the state, and we use TaylorF2 both for the
injected waveform and the waveform used for recovery.

V. RESULTS

In the following we will test the accuracy of our new
Bayes factor approximation technique by applying it to
GW170817 data and then comparing the results to those
obtained in Ref. [31] using the standard method. We will
then carry forward this method to demonstrate the effect of
combining the results from multiple events.

A. Model-selection for GW170817

We first demonstrate the consistency of the values of
the Bayes factor computed using this approximation
method with respect to the same quantities computed by
exploring the full parameter space. We conducted two
Bayesian Markov chain Monte Carlo simulations on the
data surrounding the trigger time of GW170817. These
two analyses involved the two aforementioned prior dis-
tribution of the source parameters, a narrow prior and a
broad prior of mass of spin distribution. Finally, as
explained in Sec. III, we employ the TaylorF2 waveform
for convenience. We chose to conduct our analysis on the
set of equation of state models used in [31] to facilitate
direct comparison. The result of this analysis is presented
in Tables I for the narrow prior case, and II for the broad
prior case. The Bayes factors in columns 3 and 4 are
computed with respect to the SLY model for each of the
target equation of state models named in the first column.
We estimate the uncertainty in the approximation method
by the method of resampling (ten thousand times) delin-
eated in the preceding section. This is also shown in Fig. 1,
where the Bayes factors are plotted as vertical bars. The
blue colored bars show the results for the approximation
method, and the orange bars show the corresponding Bayes
factors for the nested sampling runs as presented in [31].
The top panel shows the results for the narrow prior case
and the bottom panel shows the same for the broad prior.
The uncertainties, shown as error-bars, are multiplied by a
factor of 2 as discussed above to accommodate biases in the
uncertainty estimation from KDE smoothing. Note that the
uncertainties of the SLY2 and SLY230A models are
extremely small because of their covariance with SLY,
the reference model for these studies.

TABLE 1. Comparison of Bayes factors with respect to SLY
equation of state for the narrow prior. The results of the third
column is calculated from [31].

Bayes factor Approx Bayes

EOS Mpax (Mg) from Nest factor
BHF_BBB2 1.922 0.867 0.994
KDEOV 1.96 1.062 1.075
KDEOV1 1.969 0.962 1.079
SKOP 1.973 0.811 0.78
H4 2.031 0.094 0.074
HQC18 2.045 1.05 1.074
SLY2 2.054 0.908 1.01
SLY230A 2.099 0.972 0.947
SKMP 2.107 0.368 0.356
RS 2.117 0.198 0.218
SK255 2.144 0.203 0.22
SLY9 2.156 0.483 0.448
APR4_EPP 2.159 1.037 1.06
SKI2 2.163 0.112 0.14
SKI4 2.17 0.398 0.392
SKI6 2.19 0.345 0.337
SK272 2.232 0.174 0.202
SKI3 2.24 0.11 0.135
SKI5 2.24 0.062 0.035
MPA1 2.469 0.301 0.309
MS1B_PP 2.747 0.019 0.014
MS1_PP 2.753 0.005 0.002
TABLE II. Comparison of Bayes factors with respect to SLY

equation of state for the broad prior. The results of the third
column is calculated from [31].

Bayes factor Approx Bayes

EOS Mpax (M) from Nest factor
BHF_BBB2 1.922 1.47 1.555
KDEOV 1.96 1.342 1.177
KDEOV1 1.969 1.239 1.283
SKOP 1.973 0.634 0.618
H4 2.031 0.081 0.056
HQC18 2.045 1.278 1.422
SLY?2 2.054 0.945 1.028
SLY230A 2.099 0.945 0.932
SKMP 2.107 0.284 0.29

RS 2.117 0.167 0.176
SK255 2.144 0.172 0.179
SLY9 2.156 0.329 0.37

APR4_EPP 2.159 1.382 1.526
SKI2 2.163 0.088 0.108
SKI4 2.17 0.352 0.33

SKI6 2.19 0.259 0.288
SK272 2.232 0.148 0.159
SKI3 2.24 0.09 0.107
SKI5 2.24 0.041 0.025
MPAL1 2.469 0.265 0.276
MS1B_PP 2.747 0.016 0.009
MS1_PP 2.753 0.004 0.001
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FIG. 1. Comparison of Bayes factors obtained with our approximate Bayes factor calculation scheme and the LALInferen-
ce_nest nested sampling results [31], shown here for the narrow prior in the top panel and the broad prior in the bottom panel. The
Bayes factors are computed with respect to the SLY equation of state model in both cases. We show here results for the TaylorF2
waveform. The error-bars for the approximate Bayes factors are an estimate based on standard deviation (see main text). The error-bars
in the nested sampling method is obtained from [31].

The results produced from the evidence approximation  scheme have large fractional errors for equations of state
scheme are generally in good agreement with those pro-  predicting low evidences. This is due to the intrinsically
duced using the nested sampling method. Note, however,  poor sampling in the regions of parameter space
that the Bayes factors obtained within the approximation  that are least likely a posteriori. The number of samples
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produced at very large tidal deformabilities is dwarfed by
the number of samples produced at more modest tidal
deformabilities, because softer equations of state are more
preferred by the GW170817 data. This is why we provide
the Bayes factors with respect to the SLY equation of state
as reference model for which the standard deviation of the
evidence computation using the approximation method was
relatively small, thus reducing the reference model con-
tribution to the Bayes factor residuals. In Fig. 2 we also
show the deviation of the approximation method result with
respect to the nested sampling method runs. The deviation
is quantified as the absolute value of the difference between
the mean value of the Bayes factor calculated by the two
methods, divided by the mean value of the Bayes factor
calculated by the nested sampling method. In the vertical
axis of Fig. 2 we show this deviation as percentage, and
find that the deviation is highest for the stiffest equation
of state models for both the priors. This is the direct
consequence of the sparseness of posterior samples in the
region of the parameter space consistent with these equa-
tion of state models. The kernel density estimation of the
probability density is less reliable at these parts of the
parameter space. This is further illustrated in Fig. 3 where
we plot the (A, g) posterior distribution for both the priors
(narrow and broad) as a scatter plot, along with their
KDE as the heat-map. The (A,gq) values for some of
equation of state models are overlaid on top of the plots. It
is immediately evident that the equation of state models
which had the highest deviation in Fig. 2 are the ones that
are most distant from the peak of the posterior distribution,
confirming the aforementioned argument that the KDE is
less reliable when number of underlying posteriors samples
is very low.

An interesting observation can be made from the
comparison plot in Fig. 1 top panel. The two equation
of state models KDEOV and KDEOV1 are shown to have
Bayes factors of 1.075 and 1.079 respectively based on the
computation using the approximation method. However,
the same two equation of state models have Bayes factors
of 1.062 and 0.962 according to the nested sampling based
analysis. As a result of that the Bayes factors computed for
KDEOV1 using the two methods seem to be in disagree-
ment. What is surprising is that these two models are very
similar as shown in Fig. 3, so one might expect that their
Bayes factors as informed by the posterior sample distri-
bution should also be similar. This seems to be the case with
the approximation method, while the nested-sampling
results are less similar. We think this is happening due
to the following reason. For the approximation method, we
compute the posterior samples just once. Thus, the KDE
obtained for the posterior samples is determined once and
for all for each equation of state model. The Bayes factors
for KDEOV and KDEOV1 are computed using the same
KDE, and since the two models are very similar the Bayes
factor values are also similar.

The resampling technique used to compute the uncer-
tainty captures the fluctuation in the estimation of the KDE

due to the finite number of samples. This is what is reported
by the error bars in Fig. 1. However, this technique does not
allow us to compute the uncertainty in the Bayes factor
from the posterior samples. In the nested sampling method,
however, the Bayes factor is computed for KDEOV and
KDEOV1 separately with different nested sampling param-
eter estimation runs. Thus, the underlying posterior dis-
tributions used for computation of the Bayes factor for
these two models are themselves different. The resulting
Bayes factor is therefore affected by the inherent variance
of the nested sampling runs. The error-bars of the Bayes
factors computed from the nested sampling run for the two
equation of state overlaps, suggesting that the true Bayes
factors of these two models are indeed very close to
each other.

Finally, we discuss about the binary black hole model in
our approximation scheme. In Ref. [31] the authors have
used a binary black hole model as the reference model for
the computation of the Bayes factors. One of the short-
comings of the approximation method is that it does not
give reliable results for models around part of the parameter
space that does not have large posterior support. Moreover,
the KDE computation may be less reliable near the
boundaries of the parameter space, where posterior sample
points consistent with a binary black hole system will be
located, leading to large biases in computation of the
evidence integral. With this in mind we avoided using
binary black hole as a reference equation of state in this
work, and have selected the SLY equation of state as the
reference, as it was one of the equation of state that has
small uncertainty in the value of the evidence integral.

A major advantage of the approximation scheme, shown
here to reliably reproduce the evidences calculated in
LALInference nest, is that it allows us to compute
the evidence in a fraction of the time taken compared to a
full nested sampling run using LALInference nest.
The code to calculate this [43], as well as demonstrations of
how to use the package, are released along with this work
in [44].

B. Stacking of multiple events

Assuming that the equation of state of NS matter is
unique, it should be possible to combine information from
multiple gravitational wave detections to produce joint
inference on the equation of state models. Multiple studies
have been conducted to this end to get joint constraints
[15,45]. In this approximation scheme, multiple detection
of gravitational wave events can be incorporated using
stacking to make joint inferences on the Bayes factor
between the various models of equation of state. To do so,
we simply incorporate this by computing the products of
the evidences for the various models.

Zp(dy, ...vdy) = [ [ Ze(dy), (13)
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FIG. 2. Magnitude of deviation of Bayes factors obtained with our approximate evidence calculation scheme from the
LALInference nest nested sampling results, shown here for the narrow prior in the top panel and the broad prior in the bottom
panel. The Bayes factors are again computed with respect to the SLY equation of state model in both cases. We show here results for the
TaylorF2 waveform. The deviation is the highest for the stiffest equation of state which has the least evidence in the data. The method is
more reliable when the model has good support from the data. The median deviation for the narrow (broad) prior is 10%(11%).

where Z(d;) is the evidence of the equation of state model E _— Zp (dy,....dy)
forevent i, and N is the number of detected gravitational wave BF;) (joint) = m .
events. Thus, the joint Bayes factor for NV events is given by E ARl oo ON

(14)
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FIG. 3. Left: narrow prior: posterior distribution in (A, ¢) and its KDE. For comparison we show the equation of state curves for
various models in (A, g). Note that the models that gave the highest deviation with respect to the nested sampling results in Fig. 2 are
also the most distant from the peak of the posterior distribution. Right: broad prior case: we see the identical relationship that for the
equation of state models that gave the largest deviation in the Bayes factor computation with respect to the nested sampling results, the
posterior support is the weakest. Note that the kinks in the various equation of state models in this plot are due to the fact that it extends to
smaller values of ¢, where one of the objects in the binary becomes more massive than the maximum allowed NS mass. At this point we
consider that object a black hole and set the value of A; = 0. This leads to a sudden change in the value of A and hence creates

these kinks.

The uncertainty in the joint Bayes factor can be
estimated using multiple techniques. In this work we
have used the same bootstrapping technique described in
Sec. III. For a given pair of equations of state, we resample
the Bayes factors for all individual events ten thousand
times to obtain a distribution of the joint Bayes factor.
The variance of this quantity gives us the estimate
of the uncertainty. Following the same procedure we
augment the uncertainties of the Bayes factors by a
factor of 2 to take into account the effect of oversmoothing
of the posterior samples and hence render a conservative
estimate.

To test the performance of this stacking method, we
conducted a simulation study. We injected the gravitational
wave signal of a binary NS system with component masses
(1.4,1.4) My in simulated Gaussian noise. The tidal
deformability of the system was chosen to be consistent
with the APR4_EPP equation of state. We injected five
gravitational waveforms at 40 Mpc, 70 Mpc, 100 Mpc,
130 Mpc and 160 Mpc respectively. For each event we
conducted Bayesian MCMC using LALInference
MCMC along with the implementation of the modification
of the waveform termination condition discussed earlier.
We chose the same broad prior for masses and spins that
was described in Sec. III. The result of the study is
presented in Fig. 4. We apply a Bayes factor threshold of
1073 in our analysis to exclude some of the stiffest
equation of state from the result. This is necessary because
for these models the (g, A) posterior samples are poorly
sampled by the parameter estimation run, resulting in
KDE estimation that is not reliable. The choice of this

threshold is motivated by the fact that this was the
smallest value of the Bayes factor for the study using
GW170817 (for MS1_PP). This issue can be alleviated by
increasing the number of MCMC chains, however
for the purpose of demonstration of this method this is
unnecessary.

We expected to find that with increasing distance of the
injected source the Bayes factor to converge toward one.
When we analyzed the APR4_EPP model itself we found
the Bayes factor with respect to the SLY equation of state
to be 1.24, 1.09, 1.07, 1.05, and 1.05 for the above
mentioned injected distances respectively. Using the
stacking method described above, this led us to a joint
Bayes factor of 1.6 between the APR4_EPP and SLY
models. For a disfavored model like SK272 the discrimi-
nation ability of the method deteriorates rapidly with
lowering of the signal strength. While at 40 Mpc the
Bayes factor for SK272 w.r.t SLY is 0.05, at 70 Mpc,
100 Mpc, 130 Mpc, and 160 Mpc the Bayes factors are
0.36, 0.58, 0.69, 0.78 respectively, giving a joint
Bayes factor of 5.69 x 1073, In Fig. 4 we find that, as
expected, the height of the bars are tending toward
the asymptotic value of 1.0 as we increase the distance
of the source. Note that the heights are more uniform
between the different models for the farthest sources. This
is due to the fact that weaker signals leave less of an
imprint of the tidal deformability in the data to help in
discerning between different models. The joint Bayes
factor will be mostly determined by the strongest sources.
However, one should also keep in mind the r* distribution
of sources. In practice we expect to see more sources at
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FIG. 4. Bayes factors computed for the various equation of state models for the injected signals at 40 Mpc, 70 Mpc, 100 Mpc,
130 Mpc, and 160 Mpc. The blue bars shows the joint Bayes factors computed using Eq. (14), which is largely determined by the
strongest source. A Bayes factor threshold of 1073 is applied to exclude cases that have very small posterior support.

larger distances and fewer sources at closer distances. The
combined effect of a large number of weak sources and a

small number of strong sources will collectively improve
our understanding of the NS equation of state.

C. Joint Bayes factor from GW170817
and GW190425 using stacking

In Sec. V B we introduced the method of stacking in the
evidence approximation technique to combine data from
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FIG. 5. Bayes factor of various equation of state models with respect to SLY model for GW170817, GW190425, and their

combination by evidence stacking. Note that the blue bars (joint Bayes factor) and the orange bars (Bayes factor from GW170817 data)
are very similar to each other indicating that most of the information in discerning between the different models comes from the data of
GW170817. The green bars for GW190425 are adding very little information as can also be seen from the fact that their variation in

height across the various models is very small.
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multiple BNS coalescence events to get a joint Bayes factor
between pairs of equation of state models. In this section
we use this method to combine the gravitational-wave data
from GW170817 and GW190425, the two BNS coales-
cences that the LIGO-Virgo interferometers have detected.
What makes GW190425 especially interesting is that the
heavier object in the binary is estimated to be around
1.60 M to 2.52 M (if we apply a broad prior of the
object as mentioned in this work) [41]. The upper-limit of
the mass of this object is at the edge of maximum NS mass
of some equation of state models. Unfortunately, the
luminosity distance of this event is ~4 times greater than
the luminosity distance of GW170817. Thus, the strength
of the gravitational wave from this event is much weaker
across the entire frequency band. This reduction in signal
strength, especially in the high frequency regime, severely
affects our ability to infer on the tidal deformability and
hence the NS equation of state. Thus, we do not expect a
very large effect of including the data from GW190425 in
the computation of the Bayes factor between the various
equation of state models. We conducted Bayesian MCMC
parameter estimation run on the data from the interferom-
eters using the specifications detailed in Sec. IV. The
posterior samples from this run were then used to compute
the Bayes factors against the SLY equation of state using

TABLE III.

the approximation method. We then combine the Bayes
factors for the various models with respect to SLY with the
same computed for GW170817 using the method of
evidence-stacking discussed in Sec. VB. We show in
Fig. 5 the result of this analysis.

In Table III we present the result of the stacking for all the
equation of state models. In this table we show the result of
the broad prior only, which is consistently employed for both
events. The third column shows the Bayes factor computed
using the GW 170817 data only, in the fourth column we
show the same for GW190425. In the fifth column we show
the stacked result. The last column shows the fractional
change in the Bayes factor due to the inclusion of the second
event, GW190425. This is defined as:

BF (joint) — BF(GW170817)
BF(GW170817)

(15)

We find that models which have large Bayes factor in
GW170817 data slightly gain in their Bayes factor value
upon inclusion of the data from GW190425. The gain is
around a percent or less. Models that have low Bayes factors
with respect to the SLY equation of state as evidenced from
GW170817 data, further diminishes in value upon inclusion

Bayes factors for various equation of state models computed for GW170817, GW190425 and their

combined result. The last column shows the fractional change in the Bayes factor for model when evidence
GW 190425 is stacked with that of GW170817: [BF(joint) — BF(GW170817)]/BF(GW170817). We note a trend
that this fractional change in the value of the Bayes factor increases with increasing stiffness of the equation of state
model. However, we also notice that there is a direct correlation between the increase in this fractional change with

value of the joint Bayes factor.

EOS M nax BF(GW170817) BF(GW190425) BF(joint) Fractional change
BHF_BBB2 1.922 1.555 1.006 1.564 0.006
KDEOV 1.96 1.177 0.997 1.174 —0.003
KDEOV1 1.969 1.283 1.001 1.285 0.001
SKOP 1.973 0.618 0.983 0.607 -0.017
H4 2.031 0.056 0.872 0.049 —-0.128
HQC18 2.045 1.422 1.009 1.436 0.009
SLY2 2.054 1.028 1.001 1.029 0.001
SLY230A 2.099 0.932 1.003 0.935 0.003
SKMP 2.107 0.29 0.97 0.281 —-0.03
RS 2.117 0.176 0.938 0.166 —-0.062
SK255 2.144 0.179 0.939 0.168 —-0.061
SLY9 2.156 0.37 0.984 0.364 —-0.016
APR4_EPP 2.159 1.526 1.012 1.544 0.012
SKI2 2.163 0.108 0.889 0.096 —0.111
SKI4 2.17 0.33 0.983 0.325 -0.017
SKI6 2.19 0.288 0.979 0.282 —0.021
SK272 2232 0.159 0.933 0.148 —-0.067
SKI13 2.24 0.107 0.895 0.096 —0.105
SKI5 2.24 0.025 0.8 0.02 -0.2
MPA1 2.469 0.276 0.987 0.273 -0.013
MS1B_PP 2.747 0.009 0.694 0.006 —0.306
MSI1_PP 2.753 0.001 0.611 0.001 —0.389
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of GW190425. This lowering of the Bayes factor can be
substantial for some of the stiffest models like MS1. We
notice a slight trend of higher impact of using the second
event for stiffer equation of state models (Fig. 6). Note
that part of the reason why the Bayes factor changes more for
such models could be because of the greater random
fluctuation in the individual Bayes factors for them.
However, we find that the change is biased toward lower
values of the Bayes factors upon stacking the events (hence
the negative values in the Fig. 6). If the random fluctuation
was the sole reason for this change, this bias should not be
present. This provides us an indication, as far as Bayes factor

is concerned, that the stiffer models are aggregating more
information from GW190425. However, it should also be
mentioned that the models for which the addition of
GW190425 makes a larger impact are also the ones that
have already been found to be highly disfavored by
GW170817. In fact the values of joint Bayes factor are very
consistent with the Bayes factor obtained from GW170817
data, which is in line with the observation made in the
injection study in Sec. V B. Therefore, to gather more
insightful results on the equation of state models we will
need either stronger signals than GW190425, or a larger
number of events.
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FIG. 6. Change in Bayes factor due to inclusion of GW190425 for different equation of state models. The area of the bubbles are
proportional to the respective joint Bayes factor values. We note that the models for which the Bayes factor was higher for GW170817
tend to an increased Bayes factor upon inclusion of the GW190425 data, whereas models which have lower Bayes factor for GW170817
diminish further upon inclusion of the GW 190425 data. However, it should be noted that this effect is very small, given the weakness of
the signal from GW190425, as evidenced by the consistency between the bars of Bayes factors of GW 170817 and the joint Bayes factor

in Fig. 5.
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VI. DISCUSSIONS

The Bayes factor approximation method presented here
is designed to help comparisons between a large number of
equation of state models for NS matter. The crucial element
of this technique is that one only needs a single instance of
an equation of state agnostic parameter estimation run
conducted with the appropriate priors described above.
The approximate Bayes factor between any two arbitrary
models can then be computed very rapidly thereafter. The
accuracy of the method is reasonably good and continues
to perform well even after stacking multiple events as
documented in the studies conducted in Secs. VA and V B.
We make this method available for public use in the
GWXtreme package [43]. Detailed information on using
this package is provided in the documentation of the
package [44]. The results of this study, including the
posterior samples from the parameter estimation analysis
that are required for the approximation method are publicly
released along with this work [46].

The method can be further extended to estimate param-
eters describing equation of state models, such as piecewise
polytrope or spectral models. To do so, the evidence is

interpreted as the marginalized likelihood £(d|I*) where I
are the parameters characterizing the model. One can then
impose a prior on these parameters and then the posterior

distribution p(F|d) can be computed. Evaluating this
involves computing the evidence integral in Eq. (12).
With N events we simply need to compute N such 1D
integrals. This idea is analogous to the method presented in
[45], where the evidence integral is carried out in
(ml,mz,[\) space. Under this approximation scheme we
compute a 1D line integral instead. This will provide a joint
posterior distribution of the piecewise polytrope parameters
or the spectral parameters.

There are however three caveats that we would like the
users of the package to be aware of. First, this method
employs kernel density estimation to conduct the integra-
tion for the computation of the Bayes factor. The KDE
over-smooths the underlying distribution of the sample, and
as a result biases the estimation of the uncertainty. The
uncertainty measurement technique used in this work is not
capable of quantitatively taking into consideration of this
effect, and as a result we only provide an approximate
error estimate. In future work we will provide a more
quantitative handle on the uncertainty. Second, in the case
of GW170817 the lack of samples at low tidal deform-
ability results in Bayes factor computation with large
statistical fluctuations when extremely soft models are
used as the reference equation of state. It is generally safe
to use a reference equation of state that has good overlap
with the posterior distribution (hence the choice of SLY in
this work). We encourage the use of SLY (or similar)
equation of state as the reference model for the computation
of Bayes factor for any equation of state that has not been

covered in this analysis. Finally, the choice of the uniform
priors in A and SA results in some negative values in tidal
deformabilities of the individual stars. This will be a
problem for any waveform generator that requires the
individual tidal deformabilities to be positive. In this work
we chose to use the TaylorF2 waveform since only A is
required to generate the waveform. For other waveforms we
will have to switch back to a uniform prior in individual
tidal deformabilities. However, at that point samples would
need to be reweighted such that the approximation in
Eq. (11) works. This will be included in a future release of
the GWXtreme.
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APPENDIX: ESTIMATION OF UNCERTAINTY
SCALING-FACTOR

The KDE resampling method for estimating the uncer-
tainty discussed in Sec. III cannot account for potential
systematic bias inherent in the KDE approximation. We
account for this by applying a correction factor of 2 to the
estimated standard deviation. In the following we explain
how this factor is chosen.

First, we set up a probability density function (PDF)
Pex (4, 1~\) that is intended to be an example of the PDF used
in Eq. (11), representative for events our method might be
applied to. One option would be to use the KDE obtained
from our GW170817 posterior sample distribution as PDF.
However, the sharpness of features would be limited by the
KDE bandwidth. In our approximation method we employ
Scott’s bandwidth given by N~'/6, where N is the number
of posterior samples. To obtain an example PDF with
somewhat sharper features, we duplicate each posterior
sample and then create the KDE.

Since the example posterior is provided as a PDF instead
of a sample distribution, the corresponding evidence for a
given equation of state can be computed exactly. We
compute the exact Bayes factors with respect to the SLY

model, B,, for a representative subset of equations of
state, consisting of APR4_EPP, H4, KDEOV, SKI2, SKIS5,
MSI1B_PP, and MS1_PP, covering a wide range of stiffness.

To simulate a posterior sample distribution as obtained
from a parameter estimation run, we draw the same number
of samples from p., as contained in our real posterior
sample distribution for GW170817. We do this repeatedly,
creating 500 example posterior sample distributions. To
each of those sample distributions, we apply the evidence
approximation method. We thus obtain 500 samples for the
estimated Bayes factor, BY, and for the estimated standard
deviation, ¢3 (not including the correction factor).

For each equation of state, we compute the distribution
for C, = (B — B,)/&,, i.e., the true error of the approxi-
mated Bayes factor normalized to the mean &, of the error
estimate o). We further combine the sample distributions
C, for the different equations of state into a single
distribution C, using equal weights. This distribution is
roughly Gaussian and centered around zero. The one-sigma
interval is |C| < 1.24, and in 89.3% of the cases |C| < 2.
Hence, our chosen correction factor of 2 is larger than
required for the example tested here. This is an added
precaution owed to the ad hoc choice of the test case.

[1] J.R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374
(1939).

[2] F. Ozel and P. Freire, Annu. Rev. Astron. Astrophys. 54, 401
(2016).

[3] L. Lindblom, Astrophys. J. 398, 569 (1992).

[4] R.N. Manchester, G. B. Hobbs, A. Teoh, and M. Hobbs,
Astron. J. 129, 1993 (2005).

[5] ATNF-CSIRO, ATNF Pulsar Catalog, https://www.atnf
.csiro.au/research/pulsar/psrcat/ (2019), [Online; accessed
19-Nov-2019].

[6] NASA, NICER, https://www.nasa.gov/nicer (2019), [On-
line; accessed 26-Nov-2019].

[71 M. C. Miller et al., Astrophys. J. Lett. 887, L24 (2019).

[8] T.E. Riley, A.L. Watts, S. Bogdanov, P.S. Ray, R. M.
Ludlam, S. Guillot, Z. Arzoumanian, C.L. Baker, A. V.
Bilous, D. Chakrabarty, K.C. Gendreau, A.K. Harding,
W.C.G. Ho, J.M. Lattimer, S.M. Morsink, and T.E.
Strohmayer, Astrophys. J. 887, L21 (2019).

[9] J. Aasi et al. (LIGO Scientific Collaboration), Classical
Quant. Grav. 32, 074001 (2015).

[10] E. Acernese et al. (VIRGO Collaboration), Classical Quant.
Grav. 32, 024001 (2015).

[11] E. Poisson, Phys. Rev. D 57, 5287 (1998).

[12] T. Hinderer, Astrophys. J. 677, 1216 (2008).

[13] E.E. Flanagan and T. Hinderer, Phys. Rev. D 77, 021502
(2008).

[14] J.S. Read, C. Markakis, M. Shibata, K. Uryu, J.D.E.
Creighton, and J. L. Friedman, Phys. Rev. D 79, 124033
(2009).

[15] W. Del Pozzo, T. G. F. Li, M. Agathos, C. Van Den Broeck,
and S. Vitale, Phys. Rev. Lett. 111, 071101 (2013).

[16] M. Agathos, J. Meidam, W. Del Pozzo, T.G.F. Li, M.
Tompitak, J. Veitch, S. Vitale, and C. Van Den Broeck,
Phys. Rev. D 92, 023012 (2015).

[17] M. van der Sluys, I. Mandel, V. Raymond, V. Kalogera, C.
Rover, and N. Christensen, Classical Quant. Grav. 26,
204010 (2009).

[18] J. Veitch and A. Vecchio, Phys. Rev. D 81, 062003
(2010).

[19] V. Raymond, M. V. van der Sluys, I. Mandel, V. Kalogera,
C. Rver, and N. Christensen, Classical Quant. Grav. 27,
114009 (2010).

[20] C.L. Rodriguez, B. Farr, V. Raymond, W. M. Farr, T. B.
Littenberg, D. Fazi, and V. Kalogera, Astrophys. J. 784, 119
(2014).

[21] J. Veitch et al., Phys. Rev. D 91, 042003 (2015).

[22] B.P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Phys. Rev. X 9, 011001 (2019).

[23] B.P. Abbott et al. (The LIGO Scientific and the Virgo
Collaborations), Phys. Rev. Lett. 121, 161101 (2018).

[24] S. De, D. Finstad, J. M. Lattimer, D. A. Brown, E. Berger,
and C. M. Biwer, Phys. Rev. Lett. 121, 091102 (2018).

083003-15


https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1103/PhysRev.55.374
https://doi.org/10.1146/annurev-astro-081915-023322
https://doi.org/10.1146/annurev-astro-081915-023322
https://doi.org/10.1086/171882
https://doi.org/10.1086/428488
https://www.atnf.csiro.au/research/pulsar/psrcat/
https://www.atnf.csiro.au/research/pulsar/psrcat/
https://www.atnf.csiro.au/research/pulsar/psrcat/
https://www.atnf.csiro.au/research/pulsar/psrcat/
https://www.nasa.gov/nicer
https://www.nasa.gov/nicer
https://www.nasa.gov/nicer
https://doi.org/10.3847/2041-8213/ab50c5
https://doi.org/10.3847/2041-8213/ab481c
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/7/074001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1088/0264-9381/32/2/024001
https://doi.org/10.1103/PhysRevD.57.5287
https://doi.org/10.1086/533487
https://doi.org/10.1103/PhysRevD.77.021502
https://doi.org/10.1103/PhysRevD.77.021502
https://doi.org/10.1103/PhysRevD.79.124033
https://doi.org/10.1103/PhysRevD.79.124033
https://doi.org/10.1103/PhysRevLett.111.071101
https://doi.org/10.1103/PhysRevD.92.023012
https://doi.org/10.1088/0264-9381/26/20/204010
https://doi.org/10.1088/0264-9381/26/20/204010
https://doi.org/10.1103/PhysRevD.81.062003
https://doi.org/10.1103/PhysRevD.81.062003
https://doi.org/10.1088/0264-9381/27/11/114009
https://doi.org/10.1088/0264-9381/27/11/114009
https://doi.org/10.1088/0004-637X/784/2/119
https://doi.org/10.1088/0004-637X/784/2/119
https://doi.org/10.1103/PhysRevD.91.042003
https://doi.org/10.1103/PhysRevX.9.011001
https://doi.org/10.1103/PhysRevLett.121.161101
https://doi.org/10.1103/PhysRevLett.121.091102

SHAON GHOSH et al.

PHYS. REV. D 104, 083003 (2021)

[25] J.S. Read, B.D. Lackey, B.J. Owen, and J. L. Friedman,
Phys. Rev. D 79, 124032 (2009).

[26] L. Lindblom, Phys. Rev. D 82, 103011 (2010).

[27] P. Landry and R. Essick, Phys. Rev. D 99, 084049
(2019).

[28] P. Landry, R. Essick, and K. Chatziioannou, Phys. Rev. D
101, 123007 (2020).

[29] C.D. Capano, 1. Tews, S. M. Brown, B. Margalit, S. De, S.
Kumar, D. A. Brown, B. Krishnan, and S. Reddy, Nat.
Astron. 4, 625 (2020).

[30] T. Dietrich, M. W. Coughlin, P. T. H. Pang, M. Bulla, J.
Heinzel, L. Issa, I. Tews, and S. Antier, Science 370, 1450
(2020).

[31] B.P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Classical Quant. Grav. 37, 045006 (2020).

[32] B.P. Abbott et al., SoftwareX 13, 100658 (2021).

[33] LIGO Scientific and Virgo Collaborations, GW170817,
https://www.gw-openscience.org/eventapi/html/GWTC-1-
confident/GW170817/v3 (2017).

[34] J. Skilling, Bayesian Anal. 1, 833 (2000)..

[35] M. Favata, Phys. Rev. Lett. 112, 101101 (2014).

[36] L. Wade, J. D. E. Creighton, E. Ochsner, B. D. Lackey, B. F.
Farr, T. B. Littenberg, and V. Raymond, Phys. Rev. D 89,
103012 (2014).

[37] D. Bini, T. Damour, and G. Faye, Phys. Rev. D 85, 124034
(2012).

[38] LIGO Scientific and Virgo Collaborations, LALSuite,
https://git.ligo.org/Iscsoft/lalsuite (2018).

[39] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).

[40] W. Hastings, Biometrika 57, 97 (1970).

[41] B.P. Abbott et al. (LIGO Scientific and Virgo Collabora-
tions), Astrophys. J. Lett. 892, L3 (2020).

[42] LIGO Scientific and Virgo Collaborations, GW190425,
https://www.gw-openscience.org/eventapi/html/O3_
Discovery_Papers/GW190425/v1 (2019).

[43] S. Ghosh, GWXtreme package, https://pypi.org/project/
GWXtreme/ (2020), [Online; accessed 07-Jun-2020].

[44] S. Ghosh, GWXtreme documentation, https:/gwxtreme
.readthedocs.io/en/latest/ (2020), [Online; accessed 07-
Jun-2020].

[45] B.D. Lackey and L. Wade, Phys. Rev. D 91, 043002 (2015).

[46] S. Ghosh, X. Liu, J. Creighton, W. Kastaun, G. Pratten, and
I. Magaia, Dataset for Rapid Model Comparison of
Equations of State from Gravitational Wave Observation
of Binary Neutron Star Coalescences (2021), https:/
doi.org/10.5281/zenodo.4679013.

[47] https://www.gw-openscience.org/.

083003-16


https://doi.org/10.1103/PhysRevD.79.124032
https://doi.org/10.1103/PhysRevD.82.103011
https://doi.org/10.1103/PhysRevD.99.084049
https://doi.org/10.1103/PhysRevD.99.084049
https://doi.org/10.1103/PhysRevD.101.123007
https://doi.org/10.1103/PhysRevD.101.123007
https://doi.org/10.1038/s41550-020-1014-6
https://doi.org/10.1038/s41550-020-1014-6
https://doi.org/10.1126/science.abb4317
https://doi.org/10.1126/science.abb4317
https://doi.org/10.1088/1361-6382/ab5f7c
https://doi.org/10.1016/j.softx.2021.100658
https://www.gw-openscience.org/eventapi/html/GWTC-1-confident/GW170817/v3
https://www.gw-openscience.org/eventapi/html/GWTC-1-confident/GW170817/v3
https://www.gw-openscience.org/eventapi/html/GWTC-1-confident/GW170817/v3
https://www.gw-openscience.org/eventapi/html/GWTC-1-confident/GW170817/v3
https://doi.org/10.1214/06-BA127
https://doi.org/10.1103/PhysRevLett.112.101101
https://doi.org/10.1103/PhysRevD.89.103012
https://doi.org/10.1103/PhysRevD.89.103012
https://doi.org/10.1103/PhysRevD.85.124034
https://doi.org/10.1103/PhysRevD.85.124034
https://git.ligo.org/lscsoft/lalsuite
https://git.ligo.org/lscsoft/lalsuite
https://git.ligo.org/lscsoft/lalsuite
https://doi.org/10.1063/1.1699114
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.3847/2041-8213/ab75f5
https://www.gw-openscience.org/eventapi/html/O3_Discovery_Papers/GW190425/v1
https://www.gw-openscience.org/eventapi/html/O3_Discovery_Papers/GW190425/v1
https://www.gw-openscience.org/eventapi/html/O3_Discovery_Papers/GW190425/v1
https://www.gw-openscience.org/eventapi/html/O3_Discovery_Papers/GW190425/v1
https://pypi.org/project/GWXtreme/
https://pypi.org/project/GWXtreme/
https://pypi.org/project/GWXtreme/
https://gwxtreme.readthedocs.io/en/latest/
https://gwxtreme.readthedocs.io/en/latest/
https://gwxtreme.readthedocs.io/en/latest/
https://doi.org/10.1103/PhysRevD.91.043002
https://doi.org/10.5281/zenodo.4679013
https://doi.org/10.5281/zenodo.4679013
https://www.gw-openscience.org/
https://www.gw-openscience.org/
https://www.gw-openscience.org/

