
1.  Introduction
The October 2017 fires near Santa Rosa in northern California (N. CA) were the second most destructive fires 
to date in California (CalFire, 2021), killing 44 people (Nauslar et al., 2018), destroying nearly 9,000 structures 
(Mass & Ovens, 2019; Nauslar et al., 2018), with reported losses of over $10 billion (Mass & Ovens, 2019), and 
resulting in the highest PM2.5 levels recorded by regulatory monitors in the Bay Area Air District since 1999 (Al-
rick, 2019). The Tubbs fire, the largest of the October 2017 N. CA fires, which devastated the city of Santa Rosa, 
was started by a private electrical system (CalFire, 2021), and was associated with an intense terrain-induced 
downslope windstorm. Such windstorms, commonly known as North or Diablo winds, can be very destructive 
when driving fires (McClung & Mass, 2020), and are projected to extend the fire season later into the fall and 
winter as a result of climate change (Guzman-Morales & Gershunov, 2019).

Abstract  The University of Colorado Airborne Solar Occultation Flux (CU AirSOF) instrument conducted 
the first suborbital carbon monoxide (CO) mass flux measurements on the scale of large wildfires, showing that 
the destructive fires in northern California in October 2017 emitted 2,040 ± 316 tonnes CO hr−1. Pyrogenic 
estimates from seven satellite-based emission inventories bracket the observed flux, but their range spans a 
factor of 83. The simulated air quality impacts in the form of ozone and fine particulate matter scale primarily 
with these uncertain emission amounts, and range from insignificant to very severe. This uncertainty in 
predicting emissions is reduced to a factor of ∼2 by the CU AirSOF flux measurements, with potential for 
future improvements. The uncertainty is primarily the result of uncertain vegetation types and sources of 
radiative power measurements, and to a lesser extent uncertain emission factors and fire diurnal cycles.

Plain Language Summary  Wildfire smoke is a major source of air pollution that affects public 
health and natural areas, but the amounts of vegetation that go up in smoke and the emitted amounts of smoke 
are not well known, due to a lack of direct measurements. The accuracy of models used to predict smoke 
impacts on public health in affected communities is significantly impacted by their reliance on uncertain 
emissions estimates. In this study, a new instrument, the University of Colorado Airborne Solar Occultation 
Flux (CU AirSOF), measured the amount of carbon monoxide (CO) produced by the destructive fires in 
northern California during October 2017. These are the first airborne emission measurements on the scale of 
a large wildfire. The measured CO emissions from the fires fall within the large range among satellite-based 
emission estimates, reducing the uncertainty in fire emissions. Air quality impacts in the form of ozone (O3) 
and fine particulate matter (PM2.5) range from insignificant to very severe, in direct relationship to the uncertain 
satellite-based emission estimates.
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The 2018 Camp Fire, the deadliest and most destructive fire in CA history to date, was sparked by power lines 
(CalFire, 2021). The October 2017 N. CA fires and the Camp Fire are examples of fires with anthropogenic 
ignition sources and their subsequent air quality impacts that have broadened the spatial and seasonal reach of 
fire (Balch et al., 2017) and are likely to increase due to a warmer and drier climate in the Western U.S. during 
the 21st century (Flannigan et al., 2013; Mann et al., 2016; Moritz et al., 2012; Yue et al., 2013). These trends, 
combined with rising numbers of humans living in the urban-wildland interface, are likely to result in increases 
in population exposure to fire activity (Hammer et al., 2009; Huff et al., 2015) and poor air quality episodes (Liu 
et al., 2016). Long term exposure to elevated PM2.5 may also increase human susceptibility to respiratory diseases 
such as coronavirus (COVID-19; Bourdrel et al., 2021; Henderson, 2020; Wu et al., 2020).

Pyrogenic emissions used as input for smoke and air quality forecasting models are often estimated from sat-
ellite data based on burned-area (EPA, 2020; Larkin et al., 2009; Longo et al., 2010; Wiedinmyer et al., 2011). 
An alternative approach exploits the empirically derived linear relation between the energy released as thermal 
radiation and the amount of fuel consumed during combustion (Ahmadov et al., 2017; Koster et al., 2015; Zhang 
et al., 2012). This approach relates Fire Radiative Energy (FRE, MJ), the time integral of Fire Radiative Power 
(FRP, J  s−1) observed from satellites, with the amount of biomass burned via a combustion factor β (kg dry 
matter MJ−1; Freeborn et al., 2008; Kaiser et al., 2012; Wooster, 2002; Wooster et al., 2005), or with the amount 
of trace gas released into the atmosphere via a coefficient of emission Ce (g MJ−1; Freeborn et al., 2008; Icho-
ku et al., 2008; Ichoku & Kaufman, 2005; Kremens et al., 2012; Li et al., 2018, 2020; Lu et al., 2019; Mota & 
Wooster, 2018).

The first deployment of the CU AirSOF instrument (Kille et al., 2022) quantified the emission fluxes of the N. 
CA wildfires on 10 October 2017. These are the first CO emission flux quantifications using airborne CO col-
umn measurements on the scale of actual wildfires. CU AirSOF is an appropriate tool to gather data on multiple 
wildfires (e.g., during the 2018 Biomass Burning Fluxes of Trace Gases and Aerosols (BB-FLUX) campaign; 
Volkamer et al., 2020) to generate regional and ecosystem specific averages for Ce and β.

In this study, we compare the CU AirSOF CO flux measurements for the October 2017 N. CA fires with estimates 
from seven satellite-based emission inventories. We combine the flux estimates with satellite FRP to calculate Ce 
and β, and compare with literature values. Finally, we use a regional chemical model to assess the sensitivity of 
predicted surface air quality impacts to emission amounts and diurnal cycle.

2.  Methods
2.1.  CU AirSOF Instrument

The CU AirSOF instrument (Kille et al., 2022) consists of a Fourier Transform Spectrometer installed on a re-
search aircraft, and uses a custom-built digital fast solar tracker (Baidar et al., 2016) to point directly at the sun to 
measure trace gas vertical column densities (VCDs) above the aircraft at mid-infrared wavelengths. CU AirSOF 
is a further development of the ground-based CU mobile SOF instrument, which has been used to quantify emis-
sions from area sources (Ibrahim et al., 2010; Kille et al., 2017, 2019; Mellqvist et al., 2010). Emission fluxes 
are calculated using the mass balance approach (Ibrahim et al., 2010; Kille et al., 2017; Mellqvist et al., 2010), in 
which VCD measurements and winds normal to the flight direction are integrated for each transect:

𝐹𝐹𝑥𝑥 =
𝑀𝑀𝑥𝑥

𝑁𝑁𝐴𝐴 ∫ Δ𝑉𝑉 𝑉𝑉𝑉𝑉(𝑠𝑠) 𝑢𝑢 ⋅ 𝑛𝑛(𝑠𝑠) 𝑑𝑑𝑑𝑑� (1)

where Fx is the emission flux (g s−1) of species X (in this case, X is CO), MCO is the CO molar mass (28 g mol−1), 
NA is Avogadro’s number (molec mol−1), ΔVCD is the enhanced CO column observation in the plume over 
background air (molec cm−2), s is the aircraft path below the plume (cm), 𝐴𝐴 𝐴𝐴𝐴 is the average wind vector (cm s−1) 
measured within the plume aboard the aircraft, and 𝐴𝐴 𝐴𝐴𝐴(𝑠𝑠) is the normal vector orthogonal to the aircraft direction.

The CU AirSOF instrument is a unique prototype (Kille et al., 2022) and is optimized to quantify wildfire emis-
sions due to its ability to capture VCDs of trace gases above the aircraft through thick smoke plumes. CU AirSOF 
is conceptually similar to ground-based solar Fourier-transform infrared spectroscopy (FTIR) instruments, which 
provide long-term stationary column measurements at much higher spectral resolution relying on plume portions 
to pass over the instrument location (Lutsch et al., 2020; Paton-Walsh et al., 2004), but is optimized for mobile 
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aircraft deployment downwind of fires. On the other hand, flux estimation methods based on in-situ trace gas or 
aerosol sampling do not characterize the entire spatial extent of the plume, and are thus more affected by plume 
heterogeneity (Hodshire et al., 2019; Riggan et al., 2004). Satellite-based emission estimate methods, although 
providing global coverage multiple times a day or regional coverage throughout the day, may be limited by the 
coarse spatial resolution of observations.

2.2.  CU AirSOF Measurements During the Precursor Biomass Burning Fluxes of Trace Gases and 
Aerosol Field Campaign (Pre-BB-FLUX)

Focused testing of CU AirSOF in biomass burning smoke took place on 10 October 2017, during Pre-BB-FLUX 
(http://flights.uwyo.edu/projects/prebbflux17/), targeting the smoke from the N. CA wildfires. The University of 
Wyoming King Air (UWKA) aircraft conducted two plume underpasses (T1 and T2) in the CA Central Valley at 
distances of ∼60–100 km downwind of the fires, 2 hr apart in the early to mid-afternoon local time (Figure 1a). 
The plume was decoupled from the ground, as is indicated by the aerosol vertical profile measured shortly before 
T2 with the Passive Cavity Aerosol Spectrometer Probe (PCASP) aboard the UWKA (Figure 1b). The CO emis-
sion fluxes (Table 1) were calculated using Equation 1 for each plume underpass. Additional methods details, and 
the error budget for the CU AirSOF CO fluxes, are provided in Supporting Information S1.

Figure 1d shows the spectral proof of CO detection by observing the uniquely specific fingerprint absorption 
in the mid infrared region (4,215–4,254 cm−1) in solar spectra (700–5,000 cm−1) measured through the smoke 
plume. The CO column signal varies by a factor of 2.7 at constant altitude (∼300 m above ground level) inside 
and outside of the plume (Figure 1c). The CO fingerprint absorption is well separated from other trace gases 
that are fitted simultaneously in this spectral region (Figure S1 in Supporting Information S1). Furthermore, 
the CO column sensitivity of CU AirSOF above the aircraft is independent of altitude (Figure S2 in Supporting 
Information S1).

2.3.  Satellite FRP and Ce Values

FRP observed by the Geostationary Operational Environmental Satellite (GOES)-16 Advanced Baseline Imager 
(ABI; Schmidt, 2020) and Near Real Time Aqua and Terra Moderate Resolution Imaging Spectroradiometer 
(MODIS; Giglio et al., 2016) sensors was used to calculate Ce and β values, and were compared with that from the 
Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (NPP; 
Csiszar et al., 2014). GOES-16 and MODIS made measurements close to the T1 (GOES-16) and T2 (GOES-16, 
MODIS) emissions times. GOES-16 FRP observations with any quality flag were used.

The CO Ce (g CO MJ−1) was calculated as the ratio of the CU AirSOF fluxes (g CO s−1) and satellite FRP 
(MJ s−1):

𝐶𝐶𝑒𝑒 =
𝐹𝐹𝐶𝐶𝐶𝐶

𝐹𝐹𝐹𝐹𝐹𝐹
� (2)

and β (kg dry matter MJ−1) was calculated as:

𝛽𝛽 =
𝐹𝐹𝐶𝐶𝐶𝐶

𝐸𝐸𝐸𝐸 ⋅ 𝐹𝐹𝐹𝐹𝐹𝐹
� (3)

where EF is the CO emission factor (g CO (kg dry matter)−1). Satellite FRP observations were summed over the 
N. CA fire region (37.86°N to 41.05°N, 123.46°W to 122.23°W).

2.4.  Meteorology-Chemistry Simulations

Online coupled meteorology-chemistry simulations from 5 p.m. Pacific Daylight Time (PDT) on 9 October 2017 
to 11 p.m. PDT on 10 October 2017, with 4 km horizontal grid spacing covering the N. CA fire region, were 
conducted using the Weather Research and Forecasting coupled with Chemistry (WRF-Chem) model (Skama-
rock et al., 2005) v. 3.9.1.1. Additional details (Bahreini et al., 2018; Freitas et al., 2007; Guenther et al., 2006; 
McDonald et al., 2018; Stockwell et al., 1997; Tuccella et al., 2015) are contained in Supporting Information S1.

http://flights.uwyo.edu/projects/prebbflux17/
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In the WRF-Chem simulations, total emissions of CO were set equal to either the CU AirSOF CO constrained dai-
ly mean emission mass flux of 2,884 tonnes hr−1, or values spanning the orders of magnitude of the satellite-based 
emissions (10; 830; or 10,000 tonnes hr−1). The emission time of the plume sampled during T2 was estimated 
using aging tracers in the WRF-Chem simulations. The CU AirSOF CO constrained daily mean mass flux was 
determined by integrating a diurnal cycle derived by fitting daily Gaussian functions to GOES-16 FRP (i.e., as in 
Mu et al. (2011); Figure S3 in Supporting Information S1), for the first 24 hr, with the emissions scaled to 2,040 
tonnes hr−1 at the T2 emissions time, then dividing the scaled integrated emissions by 24 hr. Emissions of other 

Figure 1.  (a) Flight track on 10 October 2017 color coded with CO VCDs measured by CU AirSOF, overlaid on VIIRS 
satellite image (14:11 PDT); cities (white dots), fire locations (red dots), locations of labels shown in (c) (white open circles). 
(b) Aerosol number concentration vertical profile from Passive Cavity Aerosol Spectrometer Probe (PCASP) near Willow, CA. 
(c) CO from CU AirSOF (red) and WRF-Chem simulations: no pyrogenic emissions (gray); emissions constrained by T2 CU 
AirSOF flux with constant emissions (green), or using climatological (blue) or GOES-16 (cyan) diurnal cycles. (d) Spectral 
proof of CO fingerprint absorption outside (A, D) and inside (1–7) the plume, showing scaled CO reference spectrum (red) 
overlaid with residual noise (gray). Location and time period of vertical profile (A to B) and T2 period (C to D).
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gases and aerosols were scaled to the CO emissions via EFs (Andreae & Merlet, 2001; Yokelson et al., 2013). 
All pyrogenic emissions were distributed temporally either (a) at a constant rate, (b) varying over the course of 
the simulation according to a climatological diurnal cycle (Air Sciences, 2018; Figure S3 in Supporting Informa-
tion S1), or (c) varying according to the GOES-16 FRP derived diurnal cycle. The error budget for adjusting the 
CU AirSOF fluxes into the model emissions is given in Supporting Information S1.

3.  Results and Discussion
3.1.  Measured and Satellite-Based Emissions

The N. CA fires depicted in Figure 1 emitted 2,040 ± 316 tonnes hr−1 of CO on 10 October 2017 (Table 1), as 
calculated from the CU AirSOF measurements. Model inventory daily mean values (see Supporting Informa-
tion S1) vary by a factor of 83 among the 9 estimates, which range from 79 to 6,570 tonnes hr−1 of CO (Figure 2 
and Table S1 in Supporting Information S1). The uncertainty in predicting pyrogenic CO emissions is reduced to 
a factor of ∼2 by the CU AirSOF technique (Table 1). A previous comparison of four satellite-based inventories 
found monthly CO emissions for the continental United States (CONUS) for most of 2006 varied up to factor of 
10 (Al-Saadi et al., 2008), and another comparing six satellite-based inventories showed organic carbon emis-
sions in temperate North America for 2008 spanned a factor of 17 (Pan et al., 2020). Another study noted that 
North American biomass burning aerosol emissions for 2004–2016 from four satellite-based inventories varied 
by a factor of 4–7 (Carter et al., 2020).

The CU AirSOF fluxes fall within the range of satellite-based inventories extrapolated to the transect emissions 
times according to the GOES-16 or climatological diurnal cycles (Table S1 in Supporting Information S1). Var-
iations due to the choice of diurnal cycle used to extrapolate satellite-based emissions to CU AirSOF emission 

AirSOF CO emissions (tonnes hr−1) FRP J s−1 Ce (g CO MJ−1) βa (kg dry matter MJ−1)

GOES-16 (15 min mean) MODIS GOES-16 MODIS GOES-16 MODIS

T1 425 ± 137 7.07 × 108 – 167 ± 54 – 2.42 ± 0.78 –

T2 2,040 ± 316 3.80 × 109 7.78 × 109 149 ± 23 73 ± 11 2.16 ± 0.33 1.06 ± 0.16
aCO EF of 69 g kg−1, the mean value for savannah/grassland (Andreae, 2019), was used.

Table 1 
Pyrogenic CO Emissions and Ce and βa Values Based on CU AirSOF Measurements, at T1 and T2 Emissions Times

Figure 2.  Air quality implications (horizontal lines) of uncertainties in fire emissions (vertical lines) quantified as mean PBL 
changes in October 2017 N. CA fires region at 3 p.m. PDT on 10 October 2017 in (a) PM2.5 concentration and (b) O3 mixing 
ratio simulated by WRF-Chem using constant and diurnally varying fire emissions. CU AirSOF T2 CO emission flux (red 
lines with red shading indicating 1 σ uncertainties) and hourly mean pyrogenic CO emissions from satellite inventories (gray 
lines; “H-S” designates HRRR-Smoke).
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times are much smaller (within a factor of 2, Table S1 in Supporting Information S1) than the overall variability 
among the emission inventories.

3.2.  Ce and β Values

Ce was found to be 167 ± 54 g CO MJ−1 (using GOES-16 FRP) for T1, and 73 ± 11 g CO MJ−1 (using MODIS 
FRP) or 149 ± 23 g CO MJ−1 (using GOES-16 FRP) for T2 (Table 1). We find the overall uncertainty in adjust-
ing the CU AirSOF fluxes into the model emissions to be 65%, higher than the 16%–32% uncertainty in the CU 
AirSOF fluxes (see Supporting Information S1 for uncertainty calculations), but much lower than the factor of 
83 variation in satellite-based emissions. The CU AirSOF CO fluxes increased from T1 to T2 by a factor of ∼5, 
reflecting the intensifying fire activity. However, the Ce value differs by only 12% between the two transect sam-
pling periods when using GOES-16 FRP (Table 1). MODIS FRP yields a different Ce from values estimated using 
GOES-16 for the second transect time by a factor of 2, pointing to the need to evaluate the satellite FRP data, and 
determine how to best combine data from polar-orbiting satellites, which offer higher spatial resolution but are 
snapshots in time, with geostationary observations, which better capture the rapid variations of fire emissions.

Our Ce values for the savannah and forest fuels (identified by the Fuel Characteristic Classification System 
(FCCS; Ottmar et al., 2007); see Table S2 in Supporting Information S1) burned in the October 2017 N. CA fires 
are bracketed by those measured in burn chambers (Table S2 in Supporting Information S1). The broad agree-
ment with literature Ce values is promising, but is based on a single case study flight, and should be viewed as a 
qualitative demonstration of concept.

Measuring Ce directly using the CU AirSOF method combined with high resolution vegetation and fuel datasets, 
such as were gathered during the BB-FLUX campaign (Volkamer et al., 2020), allow the evaluation of burned-
area-based satellite emission methods that depend on vegetation and fuel maps to calculate emissions using EFs 
and fuel consumption, which has been widely measured in the field for different ecosystems (Akagi et al., 2011; 
Campbell et al., 2007; van Leeuwen et al., 2014). In the simplified vegetation classification used in models, the 
October 2017 N. CA fires are categorized as containing both savannah and extratropical forest fuels, for which 
CO EF values range by a factor of 3, and β values vary by a factor of 2 (Table S2 in Supporting Information S1). 
This variability in EF and β values is relevant for modeling because both fuel types must be represented in order 
to accurately characterize emissions. CO EFs are also strongly controlled by the relative proportions of flaming 
and smoldering combustion, commonly reported as the modified combustion efficiency (MCE; Andreae, 2019). 
However, if the vegetation type is unknown, CO EF values vary by a factor of 13, and β values by a factor of 45 
(Table S2 in Supporting Information S1). By contrast, the FRP value from the MODIS instrument is a factor of 
2 higher than those from GOES-16 at the T2 emissions time (Table 1), which is consistent with a previous study 
that demonstrated the ability of MODIS to detect smaller and cooler fires due to its higher spatial resolution than 
GOES (Li et al., 2019).

The variability in emissions among inventories (a factor of 83) is significantly larger than the variations in FRP, β, 
or EF, particularly if the correct ecosystem type is known. Thus, we infer that uncertain satellite-based emissions 
on 10 October 2017 for the N. CA fires are primarily the result of uncertain vegetation types, and to a lesser extent 
uncertain EFs, FRP, and diurnal cycles.

3.3.  Simulated Smoke Transport

While the uncertainty in the CO mass flux as calculated using CU AirSOF is rather low (T1: 32.2%, T2: 15.5%; 
see Supporting Information S1), comparison with the modeled CO columns is affected by the need to correct for 
atmospheric transport and by uncertainties in the satellite-detected fire location, fire intensity (FRP), and diurnal 
cycle used to model the fire emissions (65%; see Supporting Information S1). The results are also impacted by 
the vertical distribution of the emissions, which we did not evaluate in this study.

We focus on the T2 aircraft sampling time, since T1 also sampled recirculated air containing emissions from the 
previous night, as determined from the model simulations, when we do not have emissions observations. WRF-
Chem simulations better reproduce the CU AirSOF observations of CO VCDs using emissions with a climatolog-
ical or GOES-16-based diurnal cycle rather than constant emissions (Figure 1c). A constant emission rate results 
in CO accumulation in the model, due to model emissions that were higher than the diurnally varying emissions 
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during a period of stagnation in wind circulation, which results in overestimates of the observed CO VCDs at the 
T2 aircraft sampling time (Figure 2). We conclude that in order to best simulate the atmospheric state observed 
by CU AirSOF, the measured emission flux needs to be constrained in the model, and the fire diurnal cycle must 
be properly represented.

Air quality and smoke forecasting models typically use either a constant or climatological diurnal cycle, but could 
benefit from using diurnal cycles based on high temporal resolution satellite FRP observations (e.g., GOES-16 
for the U.S.). For example, nocturnal emissions from the 2013 CA Rim Fire determined by an inverse modeling 
method constrained by airborne in-situ CO were a factor of 10 times higher than a climatological diurnal cycle 
would predict (Saide et al., 2015). Furthermore, for WRF–Community Multiscale Air Quality Modeling System 
simulations of the October 2017 N. CA fires, it was necessary to use 5-min temporal resolution GOES-R FRP to 
shape the diurnal cycle of hourly emissions in order to reproduce smoke impacts from the rapidly increasing fire 
activity in the first 12 hr after initiation (O’Neill et al., 2021). Nevertheless, forecasting the temporal variability 
of fire emissions remains a significant challenge for current operational atmospheric models.

3.4.  Sensitivity of Air Quality to Emissions

The October 2017 N. CA fires adversely impacted air quality in the Bay Area. Although surface aerosol number 
concentrations were low in the T2 sampling region (Figure 1b), surface PM2.5 reached up to 280 μg m−3 PM2.5 
(very unhealthy levels) in the nearby city of Santa Rosa on this case study day (US EPA), and up to 440 μg m−3 
in the city of Vallejo on 11 October 2017 (Alrick, 2019). Model-predicted air quality impacts from wildfires are 
particularly sensitive to emitted amounts of CO, which are tightly bound here by the CU AirSOF fluxes, since CO 
is used widely to represent emissions of other pollutants via vegetation-dependent EFs, as was done in this study.

The change in mean PM2.5 concentrations and O3 mixing ratios in the planetary boundary layer (PBL) between 
simulations with and without fire emissions at the T2 time in the October 2017 N. CA fire region were calculated 
for WRF-Chem simulations with mean hourly CO emissions spanning the 2 orders of magnitude of the satel-
lite-based inventories (Figure 2 and Figure S4 in Supporting Information S1). Mean boundary layer values are 
shown in order to separate the effects of emissions amounts and diurnal cycle, as model inaccuracies in vertical 
mixing and PBL height, the assessment of which is outside the scope of this work, may result in errors in sur-
face concentrations. Figure 2 shows that the production of O3 and PM2.5 averaged over the fire region exhibits a 
linear relationship with wildfire emissions on the regional scale. The mean PBL PM2.5 and O3 vary by 2 orders 
of magnitude in simulations with CO emissions spanning a similar range, representative of the large spread 
among satellite-based inventories. By comparison, diurnal cycle effects are small. Only a factor of 2 change is 
seen in predicted PM2.5 and O3 between model runs with constant versus diurnally varied emissions. The air 
quality impacts of the N. CA fires predicted by the climatological diurnal cycle simulation range from negligible 
(0.03 μg m−3 PM2.5 and 0.01 ppbv O3) to severe for PM2.5 (345 μg m−3 PM2.5 and 35 ppbv O3), depending primar-
ily on the emission amounts. The WRF-Chem simulations do not include aerosol radiative impacts on photolysis 
rates. O3 production may be increased close to fires, but reduced downwind due to high PM2.5 loadings (Jiang 
et al., 2012; McClure & Jaffe, 2018).

Our results highlight the importance of accurate emissions amounts, which can be experimentally constrained 
from CU AirSOF measurements, for predicting wildfire air quality impacts.

4.  Summary and Conclusions
Our case study of the N. CA wildfires on 10 October 2017 illustrates the large impact of these fires on air quality. 
CU AirSOF provides a promising new tool that has begun to be utilized to investigate ecosystem-atmosphere 
linkages (BB-FLUX campaign; Volkamer et al., 2020). Quantifying emission mass fluxes by CU AirSOF is not 
limited to CO, but has been extended to measurements of other trace gases that absorb light at mid-infrared wave-
lengths (Kille et al., 2022). The CU AirSOF measurements enable the calculation of the emission coefficient Ce 
from satellite FRP, now provided at high frequency by geostationary measurements. Ce values determined from 
MODIS and GOES-16 FRP for the 10 October 2017 N. CA wildfires differ by a factor of 2. Differences in FRP 
from polar-orbiting and geostationary satellites need to be reconciled in order to accurately constrain emissions. 
For a case study day of the October 2017 N. CA fires, emissions amounts, rather than their temporal distribution, 
are the primary drivers of model uncertainty in simulated O3 production from wildfire emissions. Uncertain mass 
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fluxes from satellite-based emissions inventories in this study are primarily the result of uncertain ecosystem 
types, but are also affected by fire regimes and behavior, and by uncertainties in the satellite FRP data. More 
direct flux measurements are needed to establish a robust relationship between CO emissions and satellite FRP, 
and to assess the variability of Ce for different fuel types and burn conditions. Fuel and vegetation maps with 
high spatial and temporal resolution and global coverage are needed for any satellite-based emissions approach 
to work broadly.

This study also indicates that estimating emissions from polar-orbiting instrument observations alone (Figure S3 
in Supporting Information S1) would lead to large errors in fire intensity, but by using the climatological diurnal 
cycle the error is reduced acceptably.

The amounts of O3, PM2.5, and other pollutants that are produced from wildfire emissions remain highly un-
certain. North American wildfires have been observed to both efficiently generate and suppress O3 (Jaffe & 
Wigder, 2012). Current research and operational air quality forecasting models tend to overestimate O3 produc-
tion from wildfires (Baker et al., 2018). In addition to affecting air quality directly, aerosols from fires absorb and 
scatter solar radiation and provide condensation nuclei for clouds, impacting weather forecast parameters (e.g., 
surface temperature, precipitation), public health, life, property, and climate (Grell et al., 2011; Grell & Freit-
as, 2014; Jiang et al., 2012). Better constraints on Ce may lead to improved operational air quality and weather 
model predictions.

Data Availability Statement
The Pre-BB-FLUX data set is available from https://data.eol.ucar.edu/project/Pre-BB-FLUX, via https://doi.
org/10.26023/VC8N-ZJ4H-HQ0A (CU AirSOF data), and https://doi.org/10.26023/KR9Z-2JQG-DB12 (Sup-
plementary Sensor Data). VIIRS NPP FRP data are available at https://dx.doi.org/10.5067/VIIRS/VNP14.001, 
Fire INventory from NCAR (National Center for Atmospheric Research; FINN) v1.5 emissions at https://www.
acom.ucar.edu/Data/fire/, National Fire Emissions Inventory (NFEI) at https://www.epa.gov/air-emissions-in-
ventories/2017-national-emissions-inventory-nei-data, Quick Fire Emissions Data set v2.5r1 (QFED) at http://
ftp.as.harvard.edu/gcgrid/data/ExtData/HEMCO/QFED/v2018-07/2017/10/, the first USFS estimate at https://
haze.airfire.org/webaccess/susan/HAQAST/Wildfires_TT/FireEmissionInventory/OLD_preliminary/fire_lo-
cations_20171010-NapaFires.csv, and the second USFS estimate at https://haze.airfire.org/webaccess/susan/
HAQAST/Wildfires_TT/FireEmissionInventory/Baseline/fire_locations_20171008_step1out.csv. The WRF-
Chem v.3.9.1.1 source code is available via https://doi.org/10.5065/D6MK6B4K. The model meteorological in-
put data are available at https://www.ncdc.noaa.gov/has/HAS.FileAppRouter?datasetname=NAMANL218&sub-
queryby=STATION&applname=&outdest=FILE for North American Mesoscale Analysis, https://www.ecmwf.
int/en/forecasts/datasets/reanalysis-datasets/era-interim for European Centre for Medium-Range Weather Fore-
casts Re-Analysis Interim, https://doi.org/10.5065/D65D8PWK for Global Forecast System, and https://www.
ncei.noaa.gov/products/weather-climate-models/rapid-refresh-update for Rapid Refresh. All other data are avail-
able at https://csl.noaa.gov/groups/csl4/modeldata/data/Bela2021/.
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