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Highlights
e Extract critical defect features from fractography of L-PBF parts by computer vision
e Develop a machine learning framework to correlate defect features and fatigue life

e Generate interpretable insights about defect-fatigue life correlations in L-PBF

Abstract

Defects innate in additively manufactured components may lead to inferior and more scatter in fatigue
lives, thus challenging the qualification of these components in fatigue-critical applications. This work
seeks to correlate geometrical features of critical defects measured from fracture surfaces to the fatigue
performance of laser beam powder bed fusion (L-PBF) components with machine learning and to
develop an integrated data-driven analytical framework for defect criticality (IDADC). IDADC has the
potential to enhance the understanding of defect-fatigue relationships in a data-driven fashion. The
results show that the obtained relationships between the extracted size-related and morphology-related
defect features and the fatigue life of L-PBF specimens align with the known fatigue mechanisms and
influencing factors. Furthermore, the proposed IDADC framework can model the relationships between
defect features and fatigue life with a low mean absolute percentage error of 0.101 using a kernel
support vector regression (SVR). This work could establish the algorithmic foundation for
nondestructive fatigue evaluation of additive manufacturing products from various facets of critical

defects in the future.
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Abbreviations (in the order of appearance):

Acronym Name
AM Additive manufacturing
L-PBF Laser beam powder bed fusion
LOFs Lack of fusions
CT Computed tomography
ML Machine learning
IDADC Integrated data-driven analytical framework for defect criticality
SEM Scanning electron microscopy
Sa Strain amplitude
YS Yield strength
UTS Ultimate tensile strength
CBIR Content-based image retrieval
PCC Pearson correlation coefficient
MIC Maximal information coefficient
SSE Sum of square error
MSE Mean square error
MAPE Mean absolute percentage error
RMSE Root mean square error
NSL Normalized stress level
DTS The distance to the surface
ED Equivalent diameter
MaxFD Max Feret diameter
MinFD Min Feret diameter
MajorAL Major axis length
MinorAL Minor axis length
SVR Kernel support vector regression
LASSO Least absolute shrinkage and selection operator
PFI Permutation feature importance
ALE

Accumulated local effects

1. Introduction

Additive manufacturing (AM), which creates intricate geometrical 3D objects using layer-wise

strategy directly from digital solid models, has transformed from rapid prototyping to a revolutionary

digital manufacturing technology for functional and structural applications [1-5]. With its superiority

in design flexibility, product customization, and low-volume timely production, AM constitutes a viable

alternative to traditional methods of manufacturing [3, 4, 6, 7]. As a metal AM process, laser powder

bed fusion (L-PBF) melts metallic powders with a heat source in a layer-wise manner during fabrication

2



and enables nearly limitless flexibility in manufacturing. It dominates the current metal AM market
with 86.5% of globally installed AM units being L-PBF [8].

One of the key challenges in adopting AM technologies for functional and structural
applications lies in the uncertainty of their fatigue performance [9]. Degraded fatigue strength and a
pronounced scatter in the fatigue life of L-PBF components can be attributed to the abundance and
variability of L-PBF process-induced defects [10]. In L-PBF, process characteristics, such as a highly
dynamic melt pool, ultra-high solidification/cooling rates, and a large thermal gradient, inevitably affect
the microstructural traits and result in varying levels of process-induced defects, including entrapped
gas-entrapped pores, lack of fusions (LOFs), and keyholes [11]. These defects are one of the major life-
limiting factors under cyclic loadings and the dominant mechanisms for fatigue crack initiation in L-
PBF components. Fatigue performance of L-PBF components, specifically after surface treatments
ridding any significant surface roughness, is potentially influenced by the presence of defects that act
as a source of stress concentrations [12, 13]. Locations with a large population of more severe defects
such as the LOFs defects may initiate fatigue cracks earlier due to high-stress concentrations in those
regions.

Research on the impact of defects on the fatigue performance of L-PBF specimens has gained
great traction [14-22]. Defect features, such as type, size, aspect ratio, and distance to the surface, are
extracted from fractography and X-ray computed tomography (CT) images, and incorporated into
existing fatigue theories (e.g., fracture mechanics-based fatigue life prediction) for analysis. With the
advancement of measurements and data analytics, there is a burgeoning need to leverage computer
vision and machine learning (ML) [23] to extract defect features and evaluate the critical roles of defects
in the fatigue performance of L-PBF specimens.

This study attempts to advance the understanding of defect criticality on fatigue performance
by incorporating computer vision and ML in an integrated data-driven analytical framework for defect
criticality (IDADC). The rest of the paper is structured as follows: Background information on defect
characterization and defect sensitive fatigue modeling are presented in Section 2; the proposed IDADC
is detailed in Section 3 with the integration of computer vision, ML, and model-agnostic interpretation

for analyzing defect features and understanding defect-fatigue relationships; the experiments and
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datasets for fatigue tests and microscopy are introduced in Section 4; IDADC is further corroborated

with the case studies in Section 5; finally, conclusions and future work are presented in Section 6.
2. Background

This section provides background information on (1) the available AM defect characterization
and analysis studies and (2) the common practices in modeling fatigue performance of AM specimens.

Based on this review, research gaps are identified for this study.

2.1. Defect characterization and analysis in AM studies

Both destructive and nondestructive inspections can be used to characterize defects in the AM
fabricated specimens. Destructive defect inspections typically consist of fractography analysis
conducted using microscopy on failed fatigue specimens to determine the defects responsible for the
crack initiation and failure of the specimen. Nondestructive defect inspections such as X-ray CT
techniques can acquire 3D descriptions of defects within the scanned regions. Currently, defect types
(e.g., LOFs, gas-entrapped pores, or keyholes) and a few conventional defect characteristics (e.g.,
size/area, circularity/sphericity, aspect ratio, and distance to the surface) from the fractography and X-
ray CT have been evaluated to understand their impacts on the fatigue performance of metal AM
components [14-18]. For example, studies using X-ray CT to examine defects on L-PBF fabricated
specimens and investigate the effects of defects on mechanical properties were reviewed in [14]. It
showed that fatigue properties are more critical to total porosity extent and proximity of defects to the
surface, and the use of X-ray CT and the advances in the quality of L-PBF materials has led to the
identification of near-surface pores as critical for fatigue applications.

These studies specifically obtain the defect features, such as size, shape, distance to the surface,
from 2D microscopy or 3D X-ray CT images to investigate their relationships with fatigue performance.
For instance, Tang and Pistorius [15] examined defects measured on 2D sections of L-PBF AlSil10Mg
parts by scanning electron microscope (SEM) and estimated the distribution of defect size by extreme-
value statistics. The defect size distribution was used to infer the size of the feasible largest defect and
establish the relationships between the size of the largest defect and the fatigue life for prediction.

Sanaei et al. [16] studied defects of L-PBF Ti-6A1-4V and 17-4 PH stainless steel (SS) specimens and



the relationships between the defect characteristics (e.g., size, sphericity/circularity, aspect ratio) and
fatigue life. Based on the defect description with both 2D microscope and 3D X-ray CT, it was noted
that the aspect ratio and circularity/sphericity of the defects typically decreased as the defect size
increased; the largest defects had low circularity/sphericity and aspect ratio and created high stress-
concentrations which made them critical to the fatigue performance of specimens. The variability of
defect characteristics based on their location in these specimens was also studied.

Tammas-Williams et al. [17] identified critical defects by ranking porosity defects in electron
beam-powder bed fusion (EB-PBF) fabricated Ti-6Al-4V specimens according to four defect features:
size, aspect ratio, distance to the surface, and distance to other pores from X-ray CT scans. According
to authors-defined ranking rules, the defects with high ranks (i.e., large pore size, small aspect ratio,
small distance to the surface, and/or small distance to other pores) were considered detrimental to
fatigue life. The experiments verified that the actual crack-initiating defects were among the top 3%
defects in their rankings. Maskery et al. [18] used X-ray CT to quantify and characterize defects in L-
PBF AlSil10Mg parts in terms of size, aspect ratio, and circularity. The data showed that the largest
defects in the L-PBF material were strongly anisotropic, flat, and disc-like parallel to the layers of the
manufacturing process. Moreover, the defect size, aspect ratio, and circularity were unaffected by the
heat treatments, despite the changes in microstructure and hardness.

The abundance and variability of L-PBF process-induced defects can cause degraded fatigue
strength and a pronounced scatter in the fatigue life of the fabricated components [10]. Moreover, a
systematic investigation and analysis of the defects on fatigue performance remain unexplored, and
therefore, defect features (such as morphological features) have not yet been widely used in
conventional fracture-mechanics-based fatigue modeling for L-PBF parts.

2.2. Fatigue behavior modeling of metallic materials

The fatigue modeling of metallic materials can be classified into three main categories, namely:
empirical, analytical, and computational methods. Empirical models, such as the ones proposed by
Coffin-Manson and Basquin, analyze the material’s fatigue parameters from experimental data through

curve fitting [24, 25]. These methods are very commonly used due to their simplicity and high accuracy.



However, one of their limitations is that they do not explicitly consider the effect of surface roughness
and defects inherent in AM materials; therefore, a new set of data needs to be generated with any change
in defects.

As an alternative, analytical methods such as fracture-mechanics-based fatigue models allow
the fatigue strength to be evaluated with the assumption that cracks and flaws exist, and the fatigue life
is governed by the propagation of these cracks [26]. Fracture-mechanics-based defect-sensitive fatigue
models have been applied to correlate limited defect features with the fatigue performance of additively
manufactured parts [27-29]. Commonly adopted hypotheses in such fatigue analysis are that defects
behave as “short cracks” and that the fatigue limit is inversely related to the crack size [30, 31]. Stern
et al. [32] examined the correlation between 3D information of process-induced defects gained by
microfocus CT and fatigue behavior. Their results depict that fatigue life is significantly affected by the
size and orientation of defects. Therefore, the current popular fatigue performance assessment
framework of AM metallic materials includes estimating the size of the largest defects by the statistics
of extremes with a Gumbel distribution based on Murakami’s v/area parameter, relating the defect size
to the fatigue limit by El-Haddad’s model, and determining the infinite life regime by the Kitagawa-
Takahashi diagram. In the finite life regime, one can calculate the fatigue life by assuming the defect
as the initial crack and integrating the fatigue crack growth rate from Paris’ law and using a crack
growth model such as NASGRO [33-36]. Kotzem et al. [37] currently adopt v/area parameter model
to investigate the dependency of defect size and resulting stress amplitude-number of cycles to failure
(S-N) curve based on artificial defects with defined geometry and size. Nevertheless, to accurately
predict the fatigue performance of AM materials, it is also important to consider the crack initiation
stage as well as the effect of the resultant AM microstructure. Due to the nature of AM processes, where
any changes in the process parameters and post-process procedures may result in a unique micro-defect
structure, it is not always practical to use empirical or analytical tools.

To this end, physics-based computational models such as crystal plasticity models, with their
ability to explicitly model the deformation mechanisms involving defects and constituent phase, are

uniquely appealing. In fact, crystal plasticity simulations have been used to model the crack initiation



and early growth behaviors in various materials under cyclic loading [38-42]. In these simulations, a
fatigue indicator parameter, such as the Fatemi and Socie parameter based on shear strain amplitude
and maximum normal stress [43] as well as ones based on cumulative plastic strain or plastic strain
energy [42], is typically needed to monitor the evolution of local fatigue damage in the microstructure
and crack initiation. However, these computations are limited in length scale, and it is generally
challenging for them to assess the stable growth behavior of long fatigue cracks.

Recently, data-driven approaches have been promising in understanding the relationships
between various AM parameters on the structure and fatigue behavior of AM materials [44]. The
proliferation of AM technologies has allowed large databases of AM mechanical data to be generated.
Such databases can be used in data-driven models such as ML to identify trends and relationships
amongst various AM parameters, micro-/defect-structure and part performance. To utilize the
increasingly abundant data on defects in L-PBF parts with the advancement of sensing and microscopy,
this study attempts to advance the conventional practice in understanding the defect criticality on fatigue
performance by adopting computer vision and ML for defect feature extraction and analysis. The
proposed IDADC can efficiently explore a large amount of data, extract multi-facet data features, and
discover subtle feature patterns to substantially improve the understandings of defect-fatigue
relationships. Moreover, it can pave the way for data-driven prediction for fatigue life with physical-

based interpretation by integrating domain knowledge and model-agnostic methods.

3. Methodology

In this study, an IDADC is developed to explore and understand the relationships between
various defect features captured from fractography images and the fatigue life of L-PBF specimens.
The fractography images are captured by SEM on the fracture surface of failed fatigue specimens to
determine the defect responsible for the crack initiation and failure of the specimens. Only those defects
which were identified as being responsible for initiating fatigue cracks were considered in the IDADC.

The IDADC consists of three primary elements as follows and is summarized in Figure 1:



1) Defect feature extraction: content-based image retrieval (CBIR) [45], a computer vision
technique, describes defect characteristics on fractography images with various numerical
descriptors.

2) Correlation analysis: Pearson correlation coefficient (PCC) and maximal information
coefficient (MIC) are integrated to analyze the linear and nonlinear relationships between the
defect features and fatigue life of L-PBF specimens.

3) Defect-fatigue modeling: a novel machine learning model, kernel support vector regression
(SVR) with model-agnostic interpretation, is developed to identify the critical defect features

and quantify their marginal impacts on the fatigue life of the L-PBF specimens.
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Figure 1. The proposed IDADC for understanding defect-fatigue relationships in L-PBF specimens via data-
driven analytics.

This IDADC provides a novel data-driven perspective to investigate the effect of defects on
fatigue performance and identify the critical defects that may initiate cracks in the specimen under
fatigue loading. It can bridge the current research gaps by examining the defect characteristics
systematically and their relationships with the fatigue life of L-PBF specimens. The outcomes and
insights from the framework can be used to enhance the understandings from experimental studies and

improve fatigue life evaluation for L-PBF materials.

3.1. Defect feature extraction
For crack-initiating defects (referred to as just defects from hereon) in L-PBF specimens on the

2D fractography images, as shown in Figure 2 (a), a variety of defect features can be extracted from the



defect contours (some of which are shown in Figure 2 (b)) by CBIR to characterize distinctive aspects
of defects. In addition to the conventional features, like area, perimeter, circularity, aspect ratio, other
“unconventional” features can also shed light on various defect characteristics. They include:
eccentricity, which is the ratio of the distance between the foci of the outer ellipse and its circularity,
describes how close the defects are to a circle; solidity, which is the ratio of a defect area filling its
convex hull, indicates whether the defects are convex and compact with an irregular shape; and
angularity, which calculates the error of a defect contour to fit an ellipse, implies the smoothness of
defect boundary and the potential existence of sharp angles. Some of the extracted features are depicted
in Figure 2 (c).
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(a) Defects on fractography images (b) Defect contours (c) Defect features

Figure 2. The procedure and illustrations of defect feature extraction from fractography images using CBIR
techniques.

All the extracted defect features, including by CBIR, are summarized in Table 1 with their
respective definitions. They can be categorized into size-related, morphology-related, and distance-
related features. Moreover, fatigue life is also influenced by subsequent post-processing thermal heat
treatments [46, 47] and stress response levels in the fatigue tests. Thus, strain amplitude and normalized
stress level parameter derived from the stress response and ultimate tensile strength are also included
in the analysis as process-related features. All these features are utilized to quantify various aspects of
defects and to investigate the relationships between defects and fatigue life of L-PBF specimens, as
they are affected by the level of ductility induced by the post-fabrication heat treatment in this study.

Table 1 Defect features from fractography images and process-related features of L-PBF specimens.



Category Descriptors (Features) Definition

Major axis length a
Minor axis length b
Area S
Convex area Se
Size Bounding box area Sg=axb
Equivalent diameter Dy
Perimeter C
Max Feret diameter D}” ax
Min Feret diameter ppin
.. . Distance between the foci of the outer ellipse
Eccentricity Eccentricity =
a
. . . . 4T X S
Circularity Circularity = 7
c
Morphol L S
orphology Solidity Solidity = —
Sc
S
Extent Extent = —
S
Angularity Error of a shape to fit an ellipse
Distance Distance to the surface Distance to the specimen external surface
Strain amplitude Sa
Process Ultimate tensile strength UTS
. S
Normalized stress level 2
[

3.2. Correlation analysis
In the proposed IDADC, Pearson correlation coefficient (PCC) [48] and maximal information
coefficient (MIC) [49] are adapted for correlation analysis to explore and quantify the linear/nonlinear
relationships between the fatigue life of L-PBF specimens and various defect features and the
interdependence among those defect features. PCC is a widely used statistic to measure the linear

correlation between two variables X and Y.

Y = %) 0 = ) )
VI (6 — 22 XL 0 — 9)?

r(X,Y) =

where {(x;,y;),i = 1, ..., n} are the observed data points for the two variables, n is the number of data
points in the dataset. PCC takes values between -1 and 1, with 0 means statistical independence
between two variables X and 7, -1 means a completely negative relationship, and 1 means a completely
positive relationship.

Moreover, MIC is an information-theory-based measure of association that can capture a wide
range of linear or nonlinear relationships between variables. MIC is formulated based on a naive mutual

information estimate I;;-{x, y} via a data-dependent binning scheme:
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where ny, ny denote the number of bins imposed on the x, y axes; p(X,¥) is the fraction of data points
falling into the bin (¥, ¥). The MIC binning scheme is chosen to maximize the ratio in Eq. (2) with the
total number of bins (ny X ny) in the user-specified threshold. MIC takes values between 0 and 1,
with 0 means statistical independence between two variables X and Y, and 1 means a completely
noiseless dependence. However, MIC is computationally expensive and does not indicate the direction

or the sign of the relationships.
Correlation analysis is a straightforward and intuitive data-driven step to understand the
relationships between defect features and fatigue life. The results from correlation analysis can highlight

the critical defect features and the strength/direction they impact the fatigue life.

3.3. Defect-fatigue relationships

The correlation analysis in Section 3.2 explores the relationships between the fatigue life of L-
PBF specimens and individual defect features. The IDADC then utilizes the kernel support vector
regression (SVR) to understand how defect features concurrently impact fatigue life by establishing a
surrogate model with model-agnostic interpretation.

3.3.1. Kernel support vector regression

In IDADC, SVR [50] aims to formulate a nonlinear surrogate model with a kernel function to
model the fatigue life of an L-PBF specimen from various defect features. It can map the nonlinear
relationships between defect features and fatigue life into a high-dimensional space (which can be
linearly segmented) via the kernel function and approximate the fatigue life with linear relationships in
this high-dimensional space.

With the defect features of L-PBF specimens extracted by CBIR in Section 3.1 and the
experimentally obtained fatigue life values, we denote the dataset as D; = (x;,y;),i = 1,2,3,...,n,

where x; = (X1, X2, ..., Xjq)T are d defect features of the specimen i, and y; denotes the fatigue life of
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the specimen i. Radial basis kernel K(xl-, xj) = (D(xy), P(x)))= e_V”"i_"f”2 has strong ability to fit
nonlinear and high-dimensional defects data sets and it overcomes the space complexity problem as it
just need to store the support vectors. Therefore, a nonlinear mapping function ®(x;) is implicitly
represented by a radial basis kernel used for all data sets in this SVR, with y > 0 (it controls the
curvature of decision boundary) selected by grid search. The SVR model can be simply written in a
matrix format
f(@X)) = e(X)w +b 4)

where X = (x1,%,...,x,)T is the matrix for defect features in the training data, w =
(Wq, W5, ..., wy)T are the regression coefficients, and b is the bias in regression. To solve this SVR

problem, its objective function can be formalized as follows
n
rglgl% llwl|* + CZ(&- +&) v
i=1
s.t. d(x)wl +b—y;, <e+¥§,
y; — x)wl —b<e+§,
§>06>0i=12,..,n
where ||w||? is the magnitude of the normal vector to the surface that is being approximated, C denotes
regularization constant, &; and ; are slack variables to guard against outliers, and € is the soft margin
in SVR. This model can be solved by the Lagrange multiplier method with satisfying Karush—Kuhn—
Tucker (KKT) conditions [51, 52]. Consequently, with the SVR in Eq. (4), the relationships between
defect features and fatigue life of L-PBF specimens can be modeled in a data-driven fashion.
3.3.2. Interpretation with model-agnostic methods
In IDADC, model-agnostic interpretation methods are integrated to explain the importance of
defect features to the response of fatigue life in “black-box” SVR via a variety of graphics generated
based on importance analysis [53]. Permutation feature importance (PFI) and accumulated local effects
(ALE) are used in this study. PFI measures the importance of a feature by calculating the increase in
the model error after permuting the feature. A feature is “important” if shuffling its values increases the

model error. Mean absolute error (MAE) is selected as the error function in this study.
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ALE describes the dependence of features on ML outcomes, even when the features are
correlated. It demonstrates the marginal effect of interested features (in set S) on the ML outcomes by
marginalizing the ML model output over the distribution of the other features in set C. Therefore, the
function shows the relationships between the interested features and the model outcomes. It is realized
by averaging the changes in the model outcomes and accumulating them over the grid. To estimate
local effects, we divide the feature into many intervals and compute the differences in the model
outcomes.

kes(x) (6)

fs,,ALE(x) Z ns(k Z st'xc)) f(zk 1s'x£))

ixPeng (i)

where f is the ML surrogate model; x; are the interested features in set S and x,. are the other features
in set C; z’s is a grid of intervals over which we compute the changes in the outcome of the ML model.

This effect is centered so that the mean effect is zero.

n
3 3 IO, : (7
fs.ae(x) = fs aLe(x) — 1—12 fsaLe ( xgl))
i=1
ALE plots are centered at zero, and the value at each point of the ALE curve is the difference
to the mean outcomes. Thus, they indicate the relative effect of changing the feature on the model

outcomes.

4. Experiments and Data Collection

4.1. Materials, fatigue testing, and fractography

Fracture surface information from L-PBF 17-4 PH SS fatigue test specimens is used for
integrated data-driven analysis and modeling in this study. The samples were fabricated as part of three
previous studies [19, 54, 55] on an EOS M290 L-PBF AM system under an argon-shielded atmosphere
[19]. EOS recommended process parameters for 17-4 PH SS, presented in Table 2, were used to
fabricate 11 mm square bars in studies [55, 56] and three different geometries of dog-bone, small block,
and large block in study [19]. Subsequently, all the printed samples were surface machined to fatigue
specimen geometries following recommendations from ASTM E606, details of which can be found in

[19, 54, 55]. Heat-treatment was performed for the different batches of specimens following ASTM
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A693 [57] using five conditions of H900, H1025, CA-H900, CA-H1025, and CA-H1150). Fatigue tests
were performed in the previous studies according to ASTM E606 under fully-reversed (R = -1), strain-
controlled mode under strain amplitudes of 0.0025 mm/mm, 0.003 mm/mm, and 0.004 mm/mm on an
MTS servo-hydraulic load frame [19, 54, 55]. The stress response of the material was recorded from
the fatigue tests as well as the strain-life data. Tensile tests were also performed as per ASTM ES8 to
determine some of the parameters used in the analysis, such as the yield strength (YS) and the ultimate
tensile strength (UTS). A combination of optical microscopy using a Keyence VHX-6000 capable of
imaging up to a 1000x magnification and scanning electron microscopy using a Zeiss Crossbeam 550
SEM capable of imaging up to a 1,000,000x magnification, were performed to acquire the fractography
images. The resolution for these two imaging techniques depends on the scan settings, and can be up to
1 um for optical microscopy and 4 nm for scanning electron microscopy. More details on the fabrication,
post-processing, tensile, and fatigue testing conditions can be found in references [19, 54, 55]. The final
image data was split into categories based on the testing strain amplitudes and the heat treatments for

training/validating the developed IDADC framework.

Table 2 Default L-PBF core process parameters for 17-4 PH SS as provided by EOS and used to fabricate all the
specimens in this study.

Scanning speed Hatching Layer thickness
L
aser power (W) (mm/s) distance (um) (um)
220 755.5 100 40

4.2. Data acquisition

One hundred and ninety 2D fractography images of critical defects for L-PBF 17-4 PH SS
specimens (in machined surface condition) are captured. Critical defects on the fracture surface are the
defects likely to initiate the cracks. If there are multiple defects on the fracture surface and they are far
away from each other, we identified one critical defect based on experience and extract its features for
the analysis. If defects are connected on the fracture surface, we treated them as one critical defect.
There are six main categories based on the different strain amplitudes in the strain-controlled fatigue
tests (i.e., 0.001 mm/mm, 0.0015 mm/mm, 0.0020 mm/mm, 0.0025 mm/mm, 0.003 mm/mm, 0.004
mm/mm) with 8, 6, 47, 17, 62, and 50 defects, respectively. It is worth noting that the dataset for the L-
PBF specimens under different strain-controlled fatigue tests and heat treatments used in this study is
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limited for the proposed ML methods. In general, the model accuracy of ML relies on both the data size
and the data quality (e.g., the consistent conditions under which the datasets are collected) [23].
Therefore, we selected three disparate datasets for analysis and investigation in this study by making
tradeoffs between the data size and consistency in conditions (i.e., strain-controlled fatigue tests and
heat treatments). Any outliers were removed from the selected datasets based on the key values of
fatigue life, defect size, and the distance proximity to the surface shown in Figure 3. The thresholds for
separating outliers from all data are 330,984 cycles, 143,400 um? and 6.3 um for fatigue life, defect
size, and the distance proximity to the surface, respectively.

(1) Dataset 1 (large data size, but low consistency): 157 defects on all L-PBF 17-4 PH SS fatigue
testing specimens.

(2) Dataset 2 (medium data size, and medium consistency): 51 defects on L-PBF 17-4 PH SS
specimens with different heat treatments in fatigue tests at a strain amplitude of 0.003 mm/mm.

(3) Dataset 3 (small data size, but high consistency): 34 defects on L-PBF 17-4 PH SS specimens

with heat treatment of CA-H1025 and fatigue tests at a strain amplitude of 0.003 mm/mm.
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Figure 3. The selection of outliers for all data. (a) Outliers of fatigue life of L-PBF specimen; (b) Outliers of area
of L-PBF specimen; and (c) Outliers of the distance to the surface of L-PBF specimen. Note: Red points mean
outliers, red dash line is the threshold between outliers and normal points and all data are displayed in a logarithmic
coordinate system)

The experimental datasets used for understanding the relationships between defect features and
fatigue life are shown in Table 3. In addition, we will investigate whether data size or consistency in
conditions is important in understanding the relationships in the proposed IDADC framework.

Table 3 Datasets used in the IDADC for understanding defect-fatigue relationships.

Strain level Heat Total data ~ Outliers ~ Remaining

(mm/mm) treatment points removed  data points
Dataset 1 All All 190 33 157
Dataset 2 0.003 All 62 11 51
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Dataset 3 0.003 CA-H1025 43 9 34

5. Case Study

5.1. Feature extraction

Defect feature extraction from the 2D fractography images is implemented via CBIR on the

three datasets in this study. As shown in Table 1, the extracted defect features describe various aspects

of defect characteristics. These defect features can be summarized statistically to provide an overview

of the defects. For instance, the statistics of defect features extracted from Dataset 3 (strain level of

0.003 mm/mm and heat treatment of CA-H1025) are summarized in Table 4. It is noticeable from Table

4 that:

)]

2

3
“

The distributions of size-related features are skewed to the right, and most defects have smaller
values than their means. It indicates that exceedingly large defects are uncommon in the
specimens.

The morphology-related features are within the range [0, 1], and are not as skewed as size-
related features. These numbers describe whether the defects are close to an ellipse or a circle
(eccentricity, circularity), whether they have a regular and smooth boundary or sharp angles
(solidity, angularity), whether they are convex and compact (solidity, extent).

Around half of the defects are open on the surface (with distance to the surface as 0 pm).

The distributions of the fatigue lives of these specimens are also skewed to the right, with the
majority of specimens having shorter fatigue lives than their mean. The longest fatigue life is
around six times the mean and ten times the median. It indicates that some scatter exists in the

fatigue life data at the strain amplitude of 0.003 mm/mm.

Table 4 Statistics summary of CBIR-extracted defect features for Dataset 3 (strain level of 0.003 mm/mm and
heat treatment of CA-H1025).

Category Defect features Mean Std. Min.  Median Max.
Area (um?) 3320.2 9271.2 41.1 450.5 46215.8
Convex area (um?) 3334.5 9501.7 43.2 432.6 49642.5
Major axis length (um) 53.1 58.6 7.7 30.3 275.8
Size Minor axis length (um) 32.9 414 6.7 19.2 209.8
Equivalent diameter (pm) 40.0 47.0 6.9 22.7 230.1
Perimeter (um) 179.4 2173 29.9 98.1 1115.2
Max Feret diameter (um) 55.7 62.9 8.4 30.9 304.1
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Min Feret diameter (um) 33.6 42.1 7.3 18.5 216.4

Eccentricity 0.7 0.2 0.2 0.7 1.0
Circularity 0.5 0.1 0.3 0.6 0.8
Morphology g, jigity 0.9 0.0 0.8 1.0 1.0
Extent 0.7 0.1 0.4 0.8 0.8
Angularity 0.2 0.1 0.0 0.2 0.4
Distance The distance to the surface (um) 27.3 93.0 0.0 0.0 562.4
Fatigue life (Cycles) 209015 270613 26735.0 126971.0 1395858.0

These defect features constitute the explanatory variables in the dataset for discovering the
relationships between defect features and fatigue life of specimens, while the fatigue life of these L-
PBF 17-4 PH SS specimens is the target variable in the following analysis and modeling. Furthermore,
since fatigue life is also affected by subsequent post-processing thermal heat treatments [46, 47] and
strain amplitude in the fatigue tests, a normalized stress level parameter (derived from UTS and the
stress level to adjust the effect of heat treatment) and the strain amplitude are also included as
explanatory variables in further analysis.

5.2. Correlation analysis

5.2.1. Correlations between defect features and fatigue life

Correlation analysis between various defect features and fatigue life are implemented with PCC
and MIC for three fatigue testing datasets in Table 5. PCC captures positive/negative linear correlations
between fatigue life and respective defect features, while MIC indicates the magnitudes (without signs)
of (linear and nonlinear) correlations between fatigue life and respective defect features, as shown in

Table 5.

Table 5 PCC and MIC between fatigue life of L-PBF 17-4 PH SS specimens and all the defect features for three
datasets in this study. The bold values indicate relatively high correlations (>0.5).

Dataset 1 Dataset 2 Dataset 3
Defect Features PCC MIC PCC MIC PCC MIC
strain amplitude 0.57 (-) 0.85 N/A N/A N/A N/A
Normalized stress level 0.53(-) 0.84 0.11(-) 0.47 N/A N/A
Major Axis Length 0.24 (-) 0.54 0.59 (-) 0.69 0.57 (-) 0.72
Circularity 0.22 (+) 0.56 0.62 (+) 0.64 0.52 (+) 0.46
Max Feret Diameter 0.22 (-) 0.57 0.60 (-) 0.60 0.58 (-) 0.62
Eccentricity 0.21(-) 0.54 0.52 () 0.74 0.43 (-) 0.56
Perimeter 0.21(-) 0.49 0.61 (-) 0.59 0.58 (-) 0.53
Solidity 0.18 (+) 0.41 0.49 (+) 0.54 0.25 (+) 0.37
Extent 0.18 (+) 0.61 0.54 (+) 0.51 0.38 (+) 0.56
Minor Axis Length 0.15 (+) 0.33 0.07 (-) 0.37 0.35(-) 0.40
Min Feret Diameter 0.13 (+) 0.34 041 (-) 0.37 0.39 (-) 0.34
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Distance to the surface 0.13 (+) 0.36 0.21 (+) 0.45 0.18 (+) 0.43

Equivalent Diameter 0.12 (-) 0.42 0.54 (-) 0.46 0.52 (-) 0.41
Convex Area 0.08 (-) 0.44 0.55(-) 0.54 0.51 (-) 0.49
Area 0.08 (-) 0.42 0.53 (- 0.46 0.50 (-) 0.41
Filled Area 0.08 (-) 0.42 0.53 (-) 0.46 0.50 (-) 0.41
Angularity 0.05 (+) 0.42 0.07 (-) 0.44 0.07 (-) 0.39

* Sorted by descending order of PCC in Dataset 1

Some insights can be inferred from the results in Table 5 for the three datasets:

(1) Dataset 1:

a.

Strain amplitude in strain-controlled fatigue tests and normalized stress level (adjusted
by the heat treatment) of materials have much larger PCC and MIC values than the
defect features.

The defect features manifest relatively small PCC with fatigue life; however, their
impacts on the fatigue life align with known fatigue mechanisms and influencing
factors, e.g., defects with larger values in size-related features lead to shorter fatigue
life, specimens with circular and less elongated defects tend to have longer fatigue lives,
and defects with a smaller value of the distance to the surface lead to shorter fatigue

life.

(2) Dataset 2:

a.

Since these specimens are in the same strain-controlled fatigue tests (strain level of
0.003 mm/mm), the defect features are not dominated by the testing conditions but
exhibit strong relationships with fatigue life. In addition, they have the same
positive/negative impacts on fatigue life as in Dataset 1.

Both PCC and MIC identify similar defect features having strong relationships with
the fatigue life of L-PBF17-4 PH SS specimens. They are the size-related features
(perimeter, max Feret diameter, major axis length, equivalent diameter, convex area,
area, filled area) and morphology-related features (circularity, aspect ratio, extent). The
distance to the surface also shows a positive correlation, i.e., defects with a smaller

value of the distance to the surface lead to shorter fatigue life.

(3) Dataset 3:
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a. All specimens underwent the same heat treatment, CA-H1025, and were tested at the
same strain amplitude, i.e., 0.003 mm/mm,; this dataset could provide the most accurate
results due to the consistent conditions in the test specimens.

b. Despite a small number of test specimens, the PCC and MIC identify similar size-
related and morphology-related defect features as in Dataset 2, which have strong
relationships with the fatigue life of L-PBF specimens.

c. The distance to the surface also shows a similar positive correlation as in Dataset 2, i.e.,
defects with a smaller value of the distance to the surface lead to shorter fatigue life.

Despite the differences in these three datasets, both PCC and MIC identify some shared size-
related and morphology-related defects features with high correlation values with the fatigue lives of
the L-PBF 17-5 PH SS specimens, bolded in Table 5. For instance, these defect features have high PCC
and MIC values in all three datasets: max Feret diameter and major axis length (indicate the size and
the elongation of the defects), perimeter (indicates the size of the defects and the smoothness of the
defect contours), as well as eccentricity and circularity (indicate the elongation and the roundness of
the defects). Therefore, these individual defect features exhibit the relationships with fatigue life, and
together they can characterize different types of defects (e.g., gas-entrapped pores, LOFs) and enhance
the understandings of their impacts on fatigue life. For instance, compared to LOFs, gas-entrapped
pores are usually smaller (with a small perimeter, a small max Feret diameter, and/or a small major axis
length) and rounder (with a large circularity and/or a small eccentricity). If gas-entrapped pores are
critical defects of an L-PBF specimen, the fatigue life of the specimen tends to be longer than a
counterpart L-PBF specimen with LOFs as the critical defects.

5.2.2. Correlations among features in defect analysis

We further explore the correlations among the features and visualize their interdependence in
correlation matrices in Figure 4. These features are categorized into the size-related defect features,
morphology-related defect features, the distance to the surface, and process features (normalized stress

level and strain amplitude).
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Figure 4. PCC among extracted features of L-PBF 17-4 PH SS specimens: (a) Dataset 1 with all specimens; (b)
Dataset 2 with fatigue tests at a strain amplitude of 0.003 mm/mm; and (c) Dataset 3 with heat treatment of CA -
H1025 and fatigue tests at a strain amplitude of 0.003 mm/mm. (NSL: Normalized stress level; DTS: The distance

to the surface)

Within each category of defect features, the correlations among the respective features are
relatively high. For example, the size-related features, e.g., area, perimeter, equivalent diameter, major
axis length area, are all highly correlated with each other. Between the categories of defect features, it
is noted that a few size-related defect features (i.e., max Feret diameter, major axis length, perimeter)
have strong correlations with morphology-related defect features (eccentricity, circularity, solid, extent).
In detail, defects with a large max Feret diameter, or major axis length, or perimeter tend to have
noncircular shapes (with large eccentricity but small circularity, solidity, and extent). These defects are
most likely LOFs; therefore, such correlations can help in the classification of defects and determination

of their effects on the fatigue behavior of the materials.
5.3. Defect-fatigue data-driven surrogate modeling

5.3.1. Model accuracy

In the IDADC framework, SVR forms a surrogate model for determining the relationships
between defect features and fatigue life for the three datasets. The modeling accuracy is evaluated by
mean absolute percentage error (MAPE), a percentage error between the actual fatigue lives and the
SVR outcomes, via 5-fold cross-validation.

Three benchmark methods, least absolute shrinkage and selection operator (LASSO), decision
tree, and random forests are adopted to compare with SVR in this study. LASSO fits the linear
relationships between the target variable (i.e., fatigue life) and explanatory variables (i.e., various defect
features) by performing variable selection and regularization simultaneously; decision trees generate

20



rule-based relationships in a tree structure by splitting the dataset on decision nodes according to the
values of the explanatory variables; random forests construct a multitude of decision trees and output a
mean regression value of the individual trees.

The experiment is based on 5-fold cross-validation to train these machine learning models using
data set 1, dataset 2 and dataset 3 to avoid overfitting and improve the generalizability of models shown
in Table 6.

Table 6 Comparisons of modeling error of different ML methods via 5-fold cross-validation in predicting fatigue
life from defect features in terms of MAPE for testing data for three datasets. Note: the MAPE in the table is
composed of average MAPE of 5-fold datasets with its standard deviation.

Dataset LASSO Decision trees Random forest SVR
Dataset 1 0.891 +0.0461 0.948 £0.1292 0.800 +0.0924 0.633 +£0.0477
Dataset 2 0.541 +£0.1802 0.454+0.1192 0.385+0.1201 0.336 £ 0.1049
Dataset 3 0.651 +0.1942 0.575 +0.3515 0.578 £0.2212 0.573 £0.2037

It is noted in Table 6 that SVR outperforms the other three benchmark methods with the
smallest MAPE and less variance for all three datasets. Decision trees have the largest MAPE values
for dataset 1, indicating the rule-based method cannot accurately represent the relationships between
the defect features and the fatigue life in different heat treatments and applied strain amplitudes. LASSO
also underperforms since the relationships between the defect features and fatigue life are unlikely to
be linear. As an ensemble learning method of decision trees, random forests gain modeling accuracy
improvement by approximating sophisticated nonlinear relationships, and have relatively small MAPE
values, especially for Dataset 2. It indicates that SVR is capable of well predicting fatigue life of L-PBF
specimens.

From the data perspective, Dataset 2 and Dataset 3 are generated under consistent conditions
(i.e., Dataset 2 includes L-PBF specimens tested under the same strain amplitude, i.e., 0.003 mm/mm,
Dataset 3 includes L-PBF specimens that underwent the same heat treatment and tested under the same
strain amplitude); therefore, despite the small data sizes, the possible clear patterns in the datasets under
the consistent conditions enable accurate modeling of the relationships between defect features and
fatigue life. On the contrary, due to the different heat treatment and strain values applied, Dataset 1 with
all the specimens has inferior modeling accuracy and is not favorable for analyzing defect criticality

despite its relatively large data size.
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Table 7 SVR modeling error under different hyperparameters of all datasets via 5-fold cross validation. Note: y
controls the curvature of decision boundary in radial basis kernel; C controls error in the objective function Eq.
(5); Bold numbers represent the best MAPE.

Dataset Hyperparameters of SVR Error Measurement
y(>0) C MAPE
Dataset 1 0.5 4 0.224
Dataset 2 0.5 4 0.101
Dataset 3 0.5 4 0.120

Then we select the best SVR hyperparameters from 5-fold cross-validation grid search to train
all datasets and obtain the best prediction error shown in Table 7. These SVR results are used to be
interpreted to explore the impact of defects features on the predicted fatigue life by model-agnostic
methods in next section.

5.3.2. Model interpretability and result discussion

In the IDADC, we leverage the model-agnostic methods (PFI and ALE) to enhance the result
interpretations for SVR. Specifically, we firstly adopt PFI to evaluate the marginal importance of defect
features towards the SVR outcomes of fatigue life. Then, we use ALE to further examine how important
defect features influence the expected outcomes of SVR. Such methods can enhance the interpretability
of SVR and increase the understanding of the relationships between critical defect features and fatigue
life of L-PBF specimens from ML.

PFI measures the importance of a feature by calculating the increase in the model error after
permuting the feature. They are illustrated in Figure 5 for the three datasets in this study. As shown in
Figure 5, strain amplitude and normalized stress level parameter (adjusted for heat treatment) are
dominant features in Dataset 1 since Dataset 1 includes all specimens with different heat treatments and
applied strain amplitudes. The results align with our previous correlation analysis in Section 5.2.1.
Again, it indicates that due to the inconsistent heat treatment and strain amplitudes, Dataset 1 is not
favorable for defect criticality analysis despite its relatively large data size. For Dataset 2 and Dataset
3, while large variations exist in the importance of the defect features, they are not statistically

significant. ALE is used to interpret the importance of defect features in Dataset 2 and Dataset 3.
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Figure 5. PFI of defect features based on SVR for L-PBF 17-4 PH SS specimens in (a) Dataset 1, (b) Dataset 2,
and (c) Dataset 3. (NSL: Normalized stress level; DTS: The distance to the surface; ED: Equivalent diameter;
MaxFD: Max Feret diameter; MinFD: Min Feret diameter; MajorAL: Major axis length; MinorAL: Minor axis
length)

ALE calculates the marginal effects of the interested features on the fatigue life modeled with
SVR by marginalizing other features from its distribution function as in Eq. (6) and Eq. (7) and
describes the effects by using the incremental/decremental differences to the fatigue life, indicating as
upward/downward trend in ALE plots. ALE plots are used to analyze some important size-related,
morphology-related, and location-related defect features identified from PCC, MIC, and PFI above, for
Dataset 2 and Dataset 3. Moreover, we further investigate the defects on fractography for explanations
of abnormal sections in the general trend on the ALE plots by considering the synergistic effect of the
various features on fatigue lives.

(1) ALE plot interpretability and discussion for Dataset 2
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Figure 6. The ALE plots of defect features for SVR, exhibiting their impacts on fatigue life of L-PBF 17-4 PH SS
specimens for Dataset 2 (Yellow triangle: abnormal points not on trend; Green rectangle: sampling points on the
right trend).

Generally speaking, ALE plots for the eight defect features in Dataset 2 show clear trends

regarding fatigue lives due to its relatively large data size, as in Figure 6. It is noted that the increase of
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all the size-related features (e.g., Area, Major Axis Length, Max Feret Diameter, and perimeter) lead to
the decrease of fatigue lives of L-PBF specimens as shown in Figure 6 (a)-(d). For instance, an
examination of defects for Area in Figure 6 (a) shows that the defect area only becomes critical after
reaching a certain threshold value (around 700-800 pum?), after which the fatigue lives significantly
deteriorate with an increase in size. The defects above the threshold can be classified as large, irregularly
shaped LOFs shown in Figure 7 below, while the defects below the threshold could be small gas-
entrapped pores. The cracks that grow out of defects larger than 700—-800 wm? may have already become
a long crack, and its growth rate may have been high, which results in shortening the total crack
propagation life. Therefore, there is a stronger correlation between life and larger defect sizes.
Additionally, in Figure 6 (b)-(d), the general trends show that the fatigue lives decrease with an increase

in the values of other size-related features (i.e., major axis length, max Feret diameter, and perimeter).

LB

Figure 7. Fatigue crack initiating defects correspond to the three defects with a large area (>700-800 pm?) and
having a large decrease in fatigue lives in Figure 6 (a) marked in green rectangles. They show large size and
irregular shapes and could be classified as LOFs.

Furthermore, the general trends of morphology-related defect features (e.g., eccentricity,
circularity, solidity) also align with fatigue mechanisms and influencing factors and are verified by PCC
in Table 5 as well. For instance, the fatigue lives of specimens tend to be longer if the critical defects
are more circular (circularity), have a larger radius of curvature (eccentricity), or/and is more convex
with a smoother contour (solidity) if size-related features and distance to the surface are the same. It is
noted in Figure 6 (f) that while most defects with circularity (>0.5) show an upward trend that is
positively correlated with fatigue lives, several others with small circularity (<0.5) (marked as yellow
triangles) have a negative correlation with fatigue lives. We evaluated these defects and found they are
irregular (LOFs) and are open to the surface, as shown in Figure 8 (a)-(c) below. Except for these LOFs,
it can be seen from Figure 8 (d)-(f), the fatigue lives show an upward trend with the increase of

circularity.
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Figure 8. Fatigue crack initiating defects from Dataset 2 for L-PBF 17-4 PH SS specimens with varying circularity
values and fatigue lives. As seen in the Fatigue Life vs. circularity ALE plot in Figure 6 (f), the defects with
circularity (<0.5) and marked as yellow triangles are defects in (a)-(c), and the defects with circularity (>0.5) and
marked as green rectangles are defects in (d)-(f).

Lastly, it is worth noting that the fatigue lives of LB-PBF specimens in Dataset 2 are longer if
the critical defects are far away from the surface (i.e., having a large distance to the surface), as shown
in Figure 6 (h).

(2) ALE plot interpretability and discussion for Dataset 3
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Figure 9. The ALE plots of defect features for SVR, exhibiting their impacts on fatigue life of L-PBF 17-4 PH SS

specimens for Dataset 3 (Yellow triangle: abnormal points not on trend; Green rectangle: sampling points on the
right trend).
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As for Dataset 3, firstly, it is observed that the increase of some size-related features (such as
area, major axis length, max Feret diameter) will generally decrease the fatigue lives of L-PBF
specimens, as shown a patent downward trend in the above Figure 9 (a)-(c). Such observations align
with known fatigue mechanisms and influencing factors and have been reported in Table 5 with

negative correlations by PCC. Interestingly, as seen for some of the size-related features, the defect area
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in Figure 9 (a) only becomes critical after reaching a certain threshold value (around 700-800 pum?),
after which the fatigue lives deteriorate with an increase in size. Inspecting these defects revealed that
below this threshold area value, the gas-entrapped pores, which typically are small and circular, are
responsible for crack initiation; the defects above the threshold can be classified as large, irregularly
shaped LOFs shown in Figure 10 below. The cracks that grow out of defects larger than 700-800 pm?
may have already become a long crack; its growth rate may have been high, shortening the total crack
propagation life. This observation is very similar to Dataset 2 in the previous section. Additionally, in
Figure 9 (b) and (c), the general trends show that the fatigue lives decrease with an increase in the values

of other size-related features (i.e., major axis length, max Feret diameter).

Figure 10. Fatigue crack initiating defects correspond to the three defects with a large area (>700-800 um?) and
having a large decrease in fatigue lives in Figure 9 (a), marked in green rectangles. They show large size and
irregular shapes and could be classified as LOFs.

The relationships between perimeter (also a size-related feature) and fatigue live in Figure 9 (d)
do not show a clear trend. As shown in Figure 9 8 (d), while the defects with a larger perimeter (>100
um) are on the downward trend of fatigue lives with the increase of perimeter, the defects with a smaller
perimeter (<100 um) have an unusual dip in fatigue lives (a huge decrease and then a rebound in fatigue
lives). Three defects at this dip (marked as yellow triangles in Figure 9 (d)) are identified and shown in
Figure 11(a)-(c) below. The sharp drop in the fatigue lives with small perimeters could be attributed to
their locations (open to the surface), as shown in Figure 11 (a) and (b). When the defects with a small
perimeter move away from the surface, as shown in Figure 11 (c), the fatigue lives rebound. Moreover,
three defects after the dip on the downward trend are sampled, marked as green rectangles in Figure 9
(d), and shown in Figure 11 (d)-(f) here. Their increasing perimeters can correlate with the decreasing
trend of fatigue lives. Additionally, as shown in Figure 11 (f), the defect with the largest perimeter

(~300 pm) and open to the surface has a substantial decrease in the fatigue life.
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Figure 11. Fatigue crack initiating defects from Dataset 3 for L-PBF 17-4 PH SS specimens with varying perimeter
values and fatigue lives. As seen in the Fatigue Life vs. Perimeter ALE plot in Figure 9 (d), the defects with a
small perimeter (<100 pm) and marked as yellow triangles are defects in (a)-(c), and the defects with a large
perimeter (>100 um) and marked as green rectangles are defects in (d)-(f).

Secondly, it is noticed in Figure 9 (e) that as the eccentricity value increases, the fatigue lives
decrease, since a large eccentricity means the defect has a long major axis length and it is noncircular.
This feature is strongly correlated with major axis length and the maximum Feret diameter (as seen in
Error! Reference source not found.), which is also reflected in the similar trends observed for these
size-related features. Similarly, for defects with high values of circularity and solidity, fatigue lives are
higher. This is due to the defects having smoother contours, a larger radius of curvature, and a smaller
size often, which is accompanied by a reduction in the local stress concentrations, and thus, leading to
better fatigue lives. We further examine the impact of circularity and solidity on fatigue life in the
following two paragraphs since there are some abnormal sections in the general trend on the ALE plots
with Dataset 3 in Figure 9 (f)-(g).

PCC in Table 5 suggests that the fatigue lives of specimens with large circularity values tend
to be long. Defects with high circularity (>0.5) in Figure 9 (f) do show an upward trend with positive
correlations with fatigue lives. However, a few defects with small circularity (<0.5) (marked as yellow
triangles in Figure 9 (f)) indicate abnormal negative correlations. We identify these defects and present
them in Figure 12 (a)-(c) below. These defects are irregular (LOFs) and are open to the surface, which
will have largely decreased fatigue lives; especially for the defect in Figure 12 (c), it has a large area of
1382.667 um?. After the dip, it can be seen from Figure 12 (d)-(f), the fatigue lives are on the upward
trend with the increase of circularity.
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Figure 12. Fatigue crack initiating defects from Dataset 3 for L-PBF 17-4 PH SS specimens with varying
circularity values and fatigue lives. As seen in the Fatigue Life vs. circularity ALE plot in Figure 9 (f), the defects
with circularity (<0.5) and marked as yellow triangles are defects in (a)-(c), and the defects with circularity (>0.5)
and marked as green rectangles are defects in (d)-(f).

PCC in Table 5 also suggests the fatigue lives of specimens with large solidity values tend to
be long because a large solidity indicates the defect is close to a convex shape and might have a smooth
boundary and be gas-entrapped pores. This aligns with the upward trend in Figure 9 (g) except for a
few defects with solidity less than 0.94 having an excessive reduction in fatigue lives. These defects
(marked as yellow triangles in Figure 9 (g)) are shown in Figure 13 (a)-(c), and it is noticed that they

are open to the surface and their areas are large, relative to defects (marked as green rectangles in Figure

9 (g)) in Figure 13 (d)-(f).

Figure 13. Fatigue crack initiating defects from Dataset 3 for L-PBF 17-4 PH SS specimens with varying solidity
values and fatigue lives. As seen in the Fatigue Life vs. solidity ALE plot in Figure 9 (g), the defects with solidity
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(<0.94) and marked as yellow triangles are defects in (a)-(c), and the defects with circularity (>0.94) and marked
as green rectangles are defects in (d)-(f).

Finally, Figure 9 (h) shows that defects with a shorter distance to the surface lead to shorter
fatigue lives of L-PBF specimens. This can be attributed to the presence of higher stress concentrations
when defects are close to the surface, as has also been seen through FE modeling in literature where the
highest stress concentrations were found for defects less than one diameter away from the free surface
[58].

In summary, ALE plots provide a promising analytical way to explore and interpret the
correlations between defect features and fatigue lives of L-PBF specimens. In practice, especially when
data are limited, combining both size and morphology-related features and considering the synergistic

effect of the various features on fatigue lives can give better interpretations.

6. Conclusions and Future Work

In this study, we developed an IDADC for L-PBF fatigue performance assessment from critical
defect features. It is a novel integration of domain expertise and data-driven methods for potential
qualification of L-PBF components. The proposed IDADC incorporates defect feature extraction from
fractography images of L-PBF fatigue test specimens, correlation analysis, and defect-fatigue
relationships modeling with ML to achieve an accurate and interpretable data-driven fatigue analysis.
Specifically, based on SEM images acquired from the fracture surfaces of L-PBF 17-4 PH SS specimens
tested under strain-controlled, fully reversed fatigue loading, CBIR is applied to extract various size-
related and morphology-related defect features from the critical defects. Then, correlation analysis and
SVR are employed to understand the relationships between these defect features and the fatigue life of
the specimens. The analysis reveals the correlations between critical defect features and the fatigue life,
which align with the known fatigue mechanisms and influencing factors. To summarize the findings of
this study:

e Defect size, distance to the surface, circularity, and smooth contours were found to have strong
relationships with the fatigue life of L-PBF specimens. SVR achieved relatively accurate

fatigue life modeling based on defect features, especially with the specimens which had
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undergone the same heat treatment and were tested under the same strain amplitude (MAPE =
0.101).

PFI and ALE were incorporated to interpret the relationships from SVR outcomes, revealing
morphology-related features (such as eccentricity, circularity, and solidity) and size-related
features (such as maximum ferret diameter, perimeter, and area) have a significant impact on
the fatigue life of L-PBF specimens. They provided useful interpretable insights from “black-
box” ML models.

The IDADC has the potential practical benefits to nondestructive inspections with 3D X-ray

CT scans in the future, which become the mainstream in describing defects in L-PBF specimens [14,

16-18, 59] and studying L-PBF fatigue properties:

)]

2

3)

To identify the critical defects in L-PBF specimens from 3D X-ray CT scans: X-ray CT scans
can capture the size-related, morphology-related, and distance-related defect features for all the
defects in the scanned areas. The IDADC and the insights from this study can be easily extended
to the nondestructive defect inspection and identify the critical defects that may initiate cracks
in the parts during cyclic service loading. Such an understanding will potentially enable a
nondestructive qualification of additively manufactured parts for fatigue-critical applications
by utilizing an X-ray CT and scanning the critical locations of the parts that experience higher
stress.

To understand the most critical defect features of the different types of defects (i.e., LOFs and
keyholes) in AM materials in 3D, correlate them to the L-PBF process parameters, and study
their impacts on the fatigue behavior of AM materials. The insights obtained can be used to
optimize process parameters to avoid such defect types and/or reduce the intensity of such
features, therefore improving the fatigue lives of the AM materials.

To reinforce the fidelity of defect features with strong correlations: Some features are more
sensitive to X-ray CT inspection resolutions (e.g., circularity) than others (e.g., volume, major
axis length). The strong correlations among these features can be used to adjust the
measurements to a reasonable accuracy. For instance, circularity and major axis length have a

strong correlation (~0.7), as shown in PCC analysis in Section 5.2.2. Since circularity is

30



difficult to capture with low-resolution X-ray CT, we can leverage its strong correlation with
major axis length, which is still accurately measured with low inspection resolution, to adjust
the measurement to a statistically more accurate circularity value. This benefit is particularly

useful for 3D scanning for a large part with a limited resolution.

The authors’ forthcoming research will focus on the three future aspects of this work: (1)
develop a comprehensive defect characterization framework for L-PBF parts on 2D fractography
images by leveraging particle morphological analysis techniques in geology and biology, and advanced
techniques in statistics and image/signal processing; (2) extend defect characterization to 3D X-ray CT
scans to identify critical defect features and enable nondestructive fatigue performance analysis from
3D X-ray CT scans; and (3) leverage deep learning to ensure high model accuracy to examine the effects
of defects and microstructure, as well as their interactions, on fatigue performance of L-PBF parts.
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