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Abstract 

Defects innate in additively manufactured components may lead to inferior and more scatter in fatigue 

lives, thus challenging the qualification of these components in fatigue-critical applications. This work 

seeks to correlate geometrical features of critical defects measured from fracture surfaces to the fatigue 

performance of laser beam powder bed fusion (L-PBF) components with machine learning and to 

develop an integrated data-driven analytical framework for defect criticality (IDADC). IDADC has the 

potential to enhance the understanding of defect-fatigue relationships in a data-driven fashion. The 

results show that the obtained relationships between the extracted size-related and morphology-related 

defect features and the fatigue life of L-PBF specimens align with the known fatigue mechanisms and 

influencing factors. Furthermore, the proposed IDADC framework can model the relationships between 

defect features and fatigue life with a low mean absolute percentage error of 0.101 using a kernel 

support vector regression (SVR). This work could establish the algorithmic foundation for 

nondestructive fatigue evaluation of additive manufacturing products from various facets of critical 

defects in the future. 
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Abbreviations (in the order of appearance):  

Acronym Name 

AM Additive manufacturing 

L-PBF Laser beam powder bed fusion 

LOFs Lack of fusions 

CT Computed tomography 

ML Machine learning 

IDADC Integrated data-driven analytical framework for defect criticality 

SEM Scanning electron microscopy 

Sa Strain amplitude 

YS Yield strength 

UTS Ultimate tensile strength 

CBIR Content-based image retrieval 

PCC Pearson correlation coefficient 

MIC Maximal information coefficient 

SSE Sum of square error 

MSE Mean square error 

MAPE Mean absolute percentage error 

RMSE Root mean square error 

NSL  Normalized stress level 

DTS  The distance to the surface 

ED  Equivalent diameter 

MaxFD  Max Feret diameter 

MinFD  Min Feret diameter 

MajorAL  Major axis length 

MinorAL  Minor axis length 

SVR Kernel support vector regression 

LASSO Least absolute shrinkage and selection operator 

PFI Permutation feature importance 

ALE Accumulated local effects 

 

1. Introduction  

 Additive manufacturing (AM), which creates intricate geometrical 3D objects using layer-wise 

strategy directly from digital solid models, has transformed from rapid prototyping to a revolutionary 

digital manufacturing technology for functional and structural applications [1-5]. With its superiority 

in design flexibility, product customization, and low-volume timely production, AM constitutes a viable 

alternative to traditional methods of manufacturing [3, 4, 6, 7]. As a metal AM process, laser powder 

bed fusion (L-PBF) melts metallic powders with a heat source in a layer-wise manner during fabrication 
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and enables nearly limitless flexibility in manufacturing. It dominates the current metal AM market 

with 86.5% of globally installed AM units being L-PBF [8].  

 One of the key challenges in adopting AM technologies for functional and structural 

applications lies in the uncertainty of their fatigue performance [9]. Degraded fatigue strength and a 

pronounced scatter in the fatigue life of L-PBF components can be attributed to the abundance and 

variability of L-PBF process-induced defects [10]. In L-PBF, process characteristics, such as a highly 

dynamic melt pool, ultra-high solidification/cooling rates, and a large thermal gradient, inevitably affect 

the microstructural traits and result in varying levels of process-induced defects, including entrapped 

gas-entrapped pores, lack of fusions (LOFs), and keyholes [11]. These defects are one of the major life-

limiting factors under cyclic loadings and the dominant mechanisms for fatigue crack initiation in L-

PBF components. Fatigue performance of L-PBF components, specifically after surface treatments 

ridding any significant surface roughness, is potentially influenced by the presence of defects that act 

as a source of stress concentrations  [12, 13]. Locations with a large population of more severe defects 

such as the LOFs defects may initiate fatigue cracks earlier due to high-stress concentrations in those 

regions.  

  Research on the impact of defects on the fatigue performance of L-PBF specimens has gained 

great traction [14-22]. Defect features, such as type, size, aspect ratio, and distance to the surface, are 

extracted from fractography and X-ray computed tomography (CT) images, and incorporated into 

existing fatigue theories (e.g., fracture mechanics-based fatigue life prediction) for analysis. With the 

advancement of measurements and data analytics, there is a burgeoning need to leverage computer 

vision and machine learning (ML) [23] to extract defect features and evaluate the critical roles of defects 

in the fatigue performance of L-PBF specimens.       

This study attempts to advance the understanding of defect criticality on fatigue performance 

by incorporating computer vision and ML in an integrated data-driven analytical framework for defect 

criticality (IDADC). The rest of the paper is structured as follows: Background information on defect 

characterization and defect sensitive fatigue modeling are presented in Section 2; the proposed IDADC 

is detailed in Section 3 with the integration of computer vision, ML, and model-agnostic interpretation 

for analyzing defect features and understanding defect-fatigue relationships; the experiments and 
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datasets for fatigue tests and microscopy are introduced in Section 4; IDADC is further corroborated 

with the case studies in Section 5; finally, conclusions and future work are presented in Section 6.   

2. Background 

 This section provides background information on (1) the available AM defect characterization 

and analysis studies and (2) the common practices in modeling fatigue performance of AM specimens. 

Based on this review, research gaps are identified for this study. 

2.1. Defect characterization and analysis in AM studies 

 Both destructive and nondestructive inspections can be used to characterize defects in the AM 

fabricated specimens. Destructive defect inspections typically consist of fractography analysis 

conducted using microscopy on failed fatigue specimens to determine the defects responsible for the 

crack initiation and failure of the specimen. Nondestructive defect inspections such as X-ray CT 

techniques can acquire 3D descriptions of defects within the scanned regions. Currently, defect types 

(e.g., LOFs, gas-entrapped pores, or keyholes) and a few conventional defect characteristics (e.g., 

size/area, circularity/sphericity, aspect ratio, and distance to the surface) from the fractography and X-

ray CT have been evaluated to understand their impacts on the fatigue performance of metal AM 

components [14-18]. For example, studies using X-ray CT to examine defects on L-PBF fabricated 

specimens and investigate the effects of defects on mechanical properties were reviewed in [14]. It 

showed that fatigue properties are more critical to total porosity extent and proximity of defects to the 

surface, and the use of X-ray CT and the advances in the quality of L-PBF materials has led to the 

identification of near-surface pores as critical for fatigue applications. 

These studies specifically obtain the defect features, such as size, shape, distance to the surface, 

from 2D microscopy or 3D X-ray CT images to investigate their relationships with fatigue performance. 

For instance, Tang and Pistorius [15] examined defects measured on 2D sections of L-PBF AlSi10Mg 

parts by scanning electron microscope (SEM) and estimated the distribution of defect size by extreme-

value statistics. The defect size distribution was used to infer the size of the feasible largest defect and 

establish the relationships between the size of the largest defect and the fatigue life for prediction. 

Sanaei et al. [16] studied defects of L-PBF Ti-6Al-4V and 17-4 PH stainless steel (SS) specimens and 
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the relationships between the defect characteristics (e.g., size, sphericity/circularity, aspect ratio) and 

fatigue life. Based on the defect description with both 2D microscope and 3D X-ray CT, it was noted 

that the aspect ratio and circularity/sphericity of the defects typically decreased as the defect size 

increased; the largest defects had low circularity/sphericity and aspect ratio and created high stress-

concentrations which made them critical to the fatigue performance of specimens. The variability of 

defect characteristics based on their location in these specimens was also studied.  

Tammas-Williams et al. [17] identified critical defects by ranking porosity defects in electron 

beam-powder bed fusion (EB-PBF) fabricated Ti-6Al-4V specimens according to four defect features: 

size, aspect ratio, distance to the surface, and distance to other pores from X-ray CT scans. According 

to authors-defined ranking rules, the defects with high ranks (i.e., large pore size, small aspect ratio, 

small distance to the surface, and/or small distance to other pores) were considered detrimental to 

fatigue life. The experiments verified that the actual crack-initiating defects were among the top 3% 

defects in their rankings. Maskery et al. [18] used X-ray CT to quantify and characterize defects in L-

PBF AlSi10Mg parts in terms of size, aspect ratio, and circularity. The data showed that the largest 

defects in the L-PBF material were strongly anisotropic, flat, and disc-like parallel to the layers of the 

manufacturing process. Moreover, the defect size, aspect ratio, and circularity were unaffected by the 

heat treatments, despite the changes in microstructure and hardness. 

 The abundance and variability of L-PBF process-induced defects can cause degraded fatigue 

strength and a pronounced scatter in the fatigue life of the fabricated components [10]. Moreover, a 

systematic investigation and analysis of the defects on fatigue performance remain unexplored, and 

therefore, defect features (such as morphological features) have not yet been widely used in 

conventional fracture-mechanics-based fatigue modeling for L-PBF parts.   

2.2. Fatigue behavior modeling of metallic materials 

The fatigue modeling of metallic materials can be classified into three main categories, namely: 

empirical, analytical, and computational methods. Empirical models, such as the ones proposed by 

Coffin-Manson and Basquin, analyze the material’s fatigue parameters from experimental data through 

curve fitting [24, 25]. These methods are very commonly used due to their simplicity and high accuracy. 
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However, one of their limitations is that they do not explicitly consider the effect of surface roughness 

and defects inherent in AM materials; therefore, a new set of data needs to be generated with any change 

in defects.  

As an alternative, analytical methods such as fracture-mechanics-based fatigue models allow 

the fatigue strength to be evaluated with the assumption that cracks and flaws exist, and the fatigue life 

is governed by the propagation of these cracks [26]. Fracture-mechanics-based defect-sensitive fatigue 

models have been applied to correlate limited defect features with the fatigue performance of additively 

manufactured parts [27-29]. Commonly adopted hypotheses in such fatigue analysis are that defects 

behave as “short cracks” and that the fatigue limit is inversely related to the crack size [30, 31]. Stern 

et al. [32] examined the correlation between 3D information of process-induced defects gained by 

microfocus CT and fatigue behavior. Their results depict that fatigue life is significantly affected by the 

size and orientation of defects. Therefore, the current popular fatigue performance assessment 

framework of AM metallic materials includes estimating the size of the largest defects by the statistics 

of extremes with a Gumbel distribution based on Murakami’s √𝑎𝑟𝑒𝑎 parameter, relating the defect size 

to the fatigue limit by El-Haddad’s model, and determining the infinite life regime by the Kitagawa-

Takahashi diagram. In the finite life regime, one can calculate the fatigue life by assuming the defect 

as the initial crack and integrating the fatigue crack growth rate from Paris’ law and using a crack 

growth model such as NASGRO [33-36]. Kotzem et al. [37] currently adopt √𝑎𝑟𝑒𝑎 parameter model 

to investigate the dependency of defect size and resulting stress amplitude-number of cycles to failure 

(S-N) curve based on artificial defects with defined geometry and size. Nevertheless, to accurately 

predict the fatigue performance of AM materials, it is also important to consider the crack initiation 

stage as well as the effect of the resultant AM microstructure. Due to the nature of AM processes, where 

any changes in the process parameters and post-process procedures may result in a unique micro-defect 

structure, it is not always practical to use empirical or analytical tools. 

To this end, physics-based computational models such as crystal plasticity models, with their 

ability to explicitly model the deformation mechanisms involving defects and constituent phase, are 

uniquely appealing. In fact, crystal plasticity simulations have been used to model the crack initiation 
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and early growth behaviors in various materials under cyclic loading [38-42]. In these simulations, a 

fatigue indicator parameter, such as the Fatemi and Socie parameter based on shear strain amplitude 

and maximum normal stress [43] as well as ones based on cumulative plastic strain or plastic strain 

energy [42], is typically needed to monitor the evolution of local fatigue damage in the microstructure 

and crack initiation. However, these computations are limited in length scale, and it is generally 

challenging for them to assess the stable growth behavior of long fatigue cracks.  

Recently, data-driven approaches have been promising in understanding the relationships 

between various AM parameters on the structure and fatigue behavior of AM materials [44]. The 

proliferation of AM technologies has allowed large databases of AM mechanical data to be generated. 

Such databases can be used in data-driven models such as ML to identify trends and relationships 

amongst various AM parameters, micro-/defect-structure and part performance. To utilize the 

increasingly abundant data on defects in L-PBF parts with the advancement of sensing and microscopy, 

this study attempts to advance the conventional practice in understanding the defect criticality on fatigue 

performance by adopting computer vision and ML for defect feature extraction and analysis. The 

proposed IDADC can efficiently explore a large amount of data, extract multi-facet data features, and 

discover subtle feature patterns to substantially improve the understandings of defect-fatigue 

relationships. Moreover, it can pave the way for data-driven prediction for fatigue life with physical-

based interpretation by integrating domain knowledge and model-agnostic methods.  

3. Methodology 

 In this study, an IDADC is developed to explore and understand the relationships between 

various defect features captured from fractography images and the fatigue life of L-PBF specimens. 

The fractography images are captured by SEM on the fracture surface of failed fatigue specimens to 

determine the defect responsible for the crack initiation and failure of the specimens. Only those defects 

which were identified as being responsible for initiating fatigue cracks were considered in the IDADC. 

The IDADC consists of three primary elements as follows and is summarized in Figure 1:  
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1) Defect feature extraction: content-based image retrieval (CBIR) [45], a computer vision 

technique, describes defect characteristics on fractography images with various numerical 

descriptors. 

2) Correlation analysis: Pearson correlation coefficient (PCC) and maximal information 

coefficient (MIC) are integrated to analyze the linear and nonlinear relationships between the 

defect features and fatigue life of L-PBF specimens. 

3) Defect-fatigue modeling: a novel machine learning model, kernel support vector regression 

(SVR) with model-agnostic interpretation, is developed to identify the critical defect features 

and quantify their marginal impacts on the fatigue life of the L-PBF specimens.   

  

Figure 1. The proposed IDADC for understanding defect-fatigue relationships in L-PBF specimens via data-

driven analytics. 

 This IDADC provides a novel data-driven perspective to investigate the effect of defects on 

fatigue performance and identify the critical defects that may initiate cracks in the specimen under 

fatigue loading. It can bridge the current research gaps by examining the defect characteristics 

systematically and their relationships with the fatigue life of L-PBF specimens. The outcomes and 

insights from the framework can be used to enhance the understandings from experimental studies and 

improve fatigue life evaluation for L-PBF materials.  

3.1. Defect feature extraction 

For crack-initiating defects (referred to as just defects from hereon) in L-PBF specimens on the 

2D fractography images, as shown in Figure 2 (a), a variety of defect features can be extracted from the 

IDADC

Defect feature 
extraction 

Correlation analysis

Pearson correlation coefficient

Kernel support vector regression

Content-based image retrieval 
Sec. 3.1 

Sec. 3.3 

Model agnostic interpretation

Sec. 3.2

Defect-fatigue 
relationships

Fractography images of fatigue specimens

Maximal information coefficient 

Data-driven insights about defects on fatigue life
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defect contours (some of which are shown in Figure 2 (b)) by CBIR to characterize distinctive aspects 

of defects. In addition to the conventional features, like area, perimeter, circularity, aspect ratio, other 

“unconventional” features can also shed light on various defect characteristics. They include: 

eccentricity, which is the ratio of the distance between the foci of the outer ellipse and its circularity, 

describes how close the defects are to a circle; solidity, which is the ratio of a defect area filling its 

convex hull, indicates whether the defects are convex and compact with an irregular shape; and 

angularity, which calculates the error of a defect contour to fit an ellipse, implies the smoothness of 

defect boundary and the potential existence of sharp angles. Some of the extracted features are depicted 

in Figure 2 (c). 

 

Figure 2. The procedure and illustrations of defect feature extraction from fractography images using CBIR 

techniques. 

All the extracted defect features, including by CBIR, are summarized in Table 1 with their 

respective definitions. They can be categorized into size-related, morphology-related, and distance-

related features. Moreover, fatigue life is also influenced by subsequent post-processing thermal heat 

treatments [46, 47] and stress response levels in the fatigue tests. Thus, strain amplitude and normalized 

stress level parameter derived from the stress response and ultimate tensile strength are also included 

in the analysis as process-related features. All these features are utilized to quantify various aspects of 

defects and to investigate the relationships between defects and fatigue life of L-PBF specimens, as 

they are affected by the level of ductility induced by the post-fabrication heat treatment in this study. 

Table 1 Defect features from fractography images and process-related features of L-PBF specimens. 

1mm

(a) Defects on fractography images

Circularity Solidity

Eccentricity 

Feret diameterAngularity

Extent

20μm

(b) Defect contours (c) Defect features
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Category Descriptors (Features) Definition 

Size 

Major axis length 𝑎 

Minor axis length 𝑏 

Area 𝑆 

Convex area 𝑆𝐶  
 Bounding box area 𝑆𝐵 = 𝑎 × 𝑏 

Equivalent diameter 𝐷𝐸 

Perimeter 𝐶 

Max Feret diameter 𝐷𝑓
𝑀𝑎𝑥 

Min Feret diameter 𝐷𝑓
𝑀𝑖𝑛 

Morphology 

Eccentricity 𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡ℎ𝑒 𝑓𝑜𝑐𝑖 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑢𝑡𝑒𝑟 𝑒𝑙𝑙𝑖𝑝𝑠𝑒

𝑎
 

Circularity 𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =  
4𝜋 × 𝑆

𝑆𝐶
2  

Solidity 𝑆𝑜𝑙𝑖𝑑𝑖𝑡𝑦 =  
𝑆

𝑆𝐶

 

Extent 𝐸𝑥𝑡𝑒𝑛𝑡 =  
𝑆

𝑆𝐵

 

Angularity 𝐸𝑟𝑟𝑜𝑟 𝑜𝑓 𝑎 𝑠ℎ𝑎𝑝𝑒 𝑡𝑜 𝑓𝑖𝑡 𝑎𝑛 𝑒𝑙𝑙𝑖𝑝𝑠𝑒 

Distance Distance to the surface 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 

Process 

Strain amplitude 𝑆a 

Ultimate tensile strength  𝑈𝑇𝑆 

Normalized stress level   
𝑆𝑎

𝑈𝑇𝑆
 

 

3.2. Correlation analysis 

 In the proposed IDADC, Pearson correlation coefficient (PCC) [48] and maximal information 

coefficient (MIC) [49] are adapted for correlation analysis to explore and quantify the linear/nonlinear 

relationships between the fatigue life of L-PBF specimens and various defect features and the 

interdependence among those defect features. PCC is a widely used statistic to measure the linear 

correlation between two variables X and Y.  

𝑟(𝑋, 𝑌) =
∑ (𝑥𝑖 − 𝑥̅)𝑛

𝑖=1 (𝑦𝑖 − 𝑦̅)

√∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1 √∑ (𝑦𝑖 − 𝑦̅)2𝑛

𝑖=1

 
(1) 

where {(𝑥𝑖, 𝑦𝑖), 𝑖 = 1, … , 𝑛} are the observed data points for the two variables, 𝑛 is the number of data 

points in the dataset. PCC takes values between -1 and 1, with 0 means statistical independence 

between two variables X and Y, -1 means a completely negative relationship, and 1 means a completely 

positive relationship.  

Moreover, MIC is an information-theory-based measure of association that can capture a wide 

range of linear or nonlinear relationships between variables. MIC is formulated based on a naive mutual 

information estimate 𝐼𝑀𝐼𝐶{𝑥, 𝑦} via a data-dependent binning scheme:  
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𝑀𝐼𝐶(𝑥, 𝑦) = max
𝐼𝑀𝐼𝐶{𝑥, 𝑦}

log
2

min {𝑛𝑋, 𝑛𝑌}
 

(2) 

𝐼𝑀𝐼𝐶{𝑥, 𝑦} = ∑ 𝑝̂(𝑥̃, 𝑦̃)log
2

𝑝̂(𝑥̃, 𝑦̃)

𝑝̂(𝑥̃) 𝑝̂(𝑦̃)
𝑥̃,𝑦̃

 
(3) 

where 𝑛𝑋, 𝑛𝑌 denote the number of bins imposed on the 𝑥, 𝑦 axes;  𝑝̂(𝑥̃, 𝑦̃) is the fraction of data points 

falling into the bin (𝑥̃, 𝑦̃). The MIC binning scheme is chosen to maximize the ratio in Eq. (2) with the 

total number of bins (𝑛𝑋 × 𝑛𝑌) in the user-specified threshold. MIC takes values between 0 and 1, 

with 0 means statistical independence between two variables X and Y, and 1 means a completely 

noiseless dependence. However, MIC is computationally expensive and does not indicate the direction 

or the sign of the relationships.  

 Correlation analysis is a straightforward and intuitive data-driven step to understand the 

relationships between defect features and fatigue life. The results from correlation analysis can highlight 

the critical defect features and the strength/direction they impact the fatigue life.  

3.3. Defect-fatigue relationships 

 The correlation analysis in Section 3.2 explores the relationships between the fatigue life of L-

PBF specimens and individual defect features. The IDADC then utilizes the kernel support vector 

regression (SVR) to understand how defect features concurrently impact fatigue life by establishing a 

surrogate model with model-agnostic interpretation.  

3.3.1. Kernel support vector regression 

In IDADC, SVR [50] aims to formulate a nonlinear surrogate model with a kernel function to 

model the fatigue life of an L-PBF specimen from various defect features. It can map the nonlinear 

relationships between defect features and fatigue life into a high-dimensional space (which can be 

linearly segmented) via the kernel function and approximate the fatigue life with linear relationships in 

this high-dimensional space.  

With the defect features of L-PBF specimens extracted by CBIR in Section 3.1 and the 

experimentally obtained fatigue life values, we denote the dataset as 𝐷𝑖 = (𝒙𝑖 , 𝑦𝑖), 𝑖 = 1,2,3, … , 𝑛 , 

where 𝒙𝑖 = (𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑑)𝑇 are 𝑑 defect features of the specimen 𝑖, and 𝑦𝑖 denotes the fatigue life of 
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the specimen 𝑖. Radial basis kernel 𝐾(𝒙𝑖, 𝒙𝑗) ∶= 〈Φ(𝒙𝑖), Φ(𝒙𝑗)〉=  𝑒−𝛾‖𝒙𝑖−𝒙𝑗‖
2

 has strong ability to fit 

nonlinear and high-dimensional defects data sets and it overcomes the space complexity problem as it 

just need to store the support vectors. Therefore, a nonlinear mapping function Φ(𝒙𝑖) is implicitly 

represented by a radial basis kernel used for all data sets in this SVR, with 𝛾 > 0 (it controls the 

curvature of decision boundary) selected by grid search. The SVR model can be simply written in a 

matrix format 

𝑓(Φ(𝑿)) = Φ(𝑿)𝒘 + 𝑏 (4) 

where 𝑿 = (𝒙1, 𝒙2, … , 𝒙𝑛)𝑇  is the matrix for defect features in the training data, 𝒘 =

(𝑤1, 𝑤2, … , 𝑤𝑑)𝑇 are the regression coefficients, and 𝑏 is the bias in regression. To solve this SVR 

problem, its objective function can be formalized as follows 

min
𝒘,𝒃

1

2
‖𝒘‖2 + 𝐶 ∑(𝜉𝑖 + 𝜉𝑖)

𝑛

𝑖=1

 

𝑠. 𝑡.   Φ(𝒙𝑖)𝒘𝑇 + 𝑏 − 𝑦𝑖 ≤ 𝜖 + 𝜉𝑖 , 

        𝑦𝑖 −  Φ(𝒙𝑖)𝒘𝑇 − 𝑏 ≤ 𝜖 + 𝜉𝑖 ,      

        𝜉𝑖 > 0, 𝜉𝑖 > 0, 𝑖 = 1,2, … , 𝑛 

(5) 

where ‖𝒘‖2 is the magnitude of the normal vector to the surface that is being approximated, C denotes 

regularization constant, 𝜉𝑖 and 𝜉𝑖 are slack variables to guard against outliers, and 𝜖 is the soft margin 

in SVR. This model can be solved by the Lagrange multiplier method with satisfying Karush–Kuhn–

Tucker (KKT) conditions [51, 52]. Consequently, with the SVR in Eq. (4), the relationships between 

defect features and fatigue life of L-PBF specimens can be modeled in a data-driven fashion.  

3.3.2. Interpretation with model-agnostic methods 

 In IDADC, model-agnostic interpretation methods are integrated to explain the importance of 

defect features to the response of fatigue life in “black-box” SVR via a variety of graphics generated 

based on importance analysis [53]. Permutation feature importance (PFI) and accumulated local effects 

(ALE) are used in this study.  PFI measures the importance of a feature by calculating the increase in 

the model error after permuting the feature. A feature is “important” if shuffling its values increases the 

model error. Mean absolute error (MAE) is selected as the error function in this study. 
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ALE describes the dependence of features on ML outcomes, even when the features are 

correlated. It demonstrates the marginal effect of interested features (in set 𝑆) on the ML outcomes by 

marginalizing the ML model output over the distribution of the other features in set 𝐶. Therefore, the 

function shows the relationships between the interested features and the model outcomes. It is realized 

by averaging the changes in the model outcomes and accumulating them over the grid. To estimate 

local effects, we divide the feature into many intervals and compute the differences in the model 

outcomes. 

𝑓𝑠,𝐴𝐿𝐸
′ (𝑥) = ∑

1

𝑛𝑠(𝑘)
∑ 𝑓 (𝑧𝑘,𝑠, 𝒙𝑐

(𝑖)
) − 𝑓 (𝑧𝑘−1,𝑠, 𝒙𝑐

(𝑖)
)

𝑖:𝒙𝑠
(𝑖)

∈𝑛𝑠(𝑘)

𝑘𝑠(𝑥)

𝑘=1

 

(6) 

where 𝑓 is the ML surrogate model;  𝒙𝑠 are the interested features in set 𝑆 and 𝒙𝑐 are the other features 

in set 𝐶; 𝑧’s is a grid of intervals over which we compute the changes in the outcome of the ML model. 

This effect is centered so that the mean effect is zero. 

𝑓𝑠,𝐴𝐿𝐸(𝑥) = 𝑓𝑠,𝐴𝐿𝐸
′ (𝑥) −

1

𝑛
∑ 𝑓𝑠,𝐴𝐿𝐸

′ ( 𝒙𝑠
(𝑖)

)

𝑛

𝑖=1

 
(7) 

 ALE plots are centered at zero, and the value at each point of the ALE curve is the difference 

to the mean outcomes. Thus, they indicate the relative effect of changing the feature on the model 

outcomes. 

4. Experiments and Data Collection 

4.1. Materials, fatigue testing, and fractography 

 Fracture surface information from L-PBF 17-4 PH SS fatigue test specimens is used for 

integrated data-driven analysis and modeling in this study. The samples were fabricated as part of three 

previous studies [19, 54, 55] on an EOS M290 L-PBF AM system under an argon-shielded atmosphere 

[19]. EOS recommended process parameters for 17-4 PH SS, presented in Table 2, were used to 

fabricate 11 mm square bars in studies  [55, 56] and three different geometries of dog-bone, small block, 

and large block in study [19]. Subsequently, all the printed samples were surface machined to fatigue 

specimen geometries following recommendations from ASTM E606, details of which can be found in 

[19, 54, 55]. Heat-treatment was performed for the different batches of specimens following ASTM 
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A693 [57] using five conditions of H900, H1025, CA-H900, CA-H1025, and CA-H1150). Fatigue tests 

were performed in the previous studies according to ASTM E606 under fully-reversed (R = -1), strain-

controlled mode under strain amplitudes of 0.0025 mm/mm, 0.003 mm/mm, and 0.004 mm/mm on an 

MTS servo-hydraulic load frame [19, 54, 55]. The stress response of the material was recorded from 

the fatigue tests as well as the strain-life data. Tensile tests were also performed as per ASTM E8 to 

determine some of the parameters used in the analysis, such as the yield strength (YS) and the ultimate 

tensile strength (UTS). A combination of optical microscopy using a Keyence VHX-6000 capable of 

imaging up to a 1000x magnification and scanning electron microscopy using a Zeiss Crossbeam 550 

SEM capable of imaging up to a 1,000,000x magnification, were performed to acquire the fractography 

images. The resolution for these two imaging techniques depends on the scan settings, and can be up to 

1 µm for optical microscopy and 4 nm for scanning electron microscopy. More details on the fabrication, 

post-processing, tensile, and fatigue testing conditions can be found in references [19, 54, 55]. The final 

image data was split into categories based on the testing strain amplitudes and the heat treatments for 

training/validating the developed IDADC framework. 

Table 2 Default L-PBF core process parameters for 17-4 PH SS as provided by EOS and used to fabricate all the 

specimens in this study. 

Laser power (W) 
Scanning speed 

(mm/s) 

Hatching 

distance (µm) 

Layer thickness 

(µm) 

220 755.5 100 40 

 

4.2.  Data acquisition  

 One hundred and ninety 2D fractography images of critical defects for L-PBF 17-4 PH SS 

specimens (in machined surface condition) are captured. Critical defects on the fracture surface are the 

defects likely to initiate the cracks. If there are multiple defects on the fracture surface and they are far 

away from each other, we identified one critical defect based on experience and extract its features for 

the analysis. If defects are connected on the fracture surface, we treated them as one critical defect. 

There are six main categories based on the different strain amplitudes in the strain-controlled fatigue 

tests (i.e., 0.001 mm/mm, 0.0015 mm/mm, 0.0020 mm/mm, 0.0025 mm/mm, 0.003 mm/mm, 0.004 

mm/mm) with 8, 6, 47, 17, 62, and 50 defects, respectively. It is worth noting that the dataset for the L-

PBF specimens under different strain-controlled fatigue tests and heat treatments used in this study is 
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limited for the proposed ML methods. In general, the model accuracy of ML relies on both the data size 

and the data quality (e.g., the consistent conditions under which the datasets are collected) [23]. 

Therefore, we selected three disparate datasets for analysis and investigation in this study by making 

tradeoffs between the data size and consistency in conditions (i.e., strain-controlled fatigue tests and 

heat treatments). Any outliers were removed from the selected datasets based on the key values of 

fatigue life, defect size, and the distance proximity to the surface shown in Figure 3. The thresholds for 

separating outliers from all data are 330,984 cycles, 143,400 𝜇𝑚2 and 6.3 𝜇𝑚 for fatigue life, defect 

size, and the distance proximity to the surface, respectively. 

(1) Dataset 1 (large data size, but low consistency): 157 defects on all L-PBF 17-4 PH SS fatigue 

testing specimens. 

(2) Dataset 2 (medium data size, and medium consistency): 51 defects on L-PBF 17-4 PH SS 

specimens with different heat treatments in fatigue tests at a strain amplitude of 0.003 mm/mm. 

(3) Dataset 3 (small data size, but high consistency): 34 defects on L-PBF 17-4 PH SS specimens 

with heat treatment of CA-H1025 and fatigue tests at a strain amplitude of 0.003 mm/mm.  

 
Figure 3. The selection of outliers for all data. (a) Outliers of fatigue life of L-PBF specimen; (b) Outliers of area 

of L-PBF specimen; and (c) Outliers of the distance to the surface of L-PBF specimen. Note: Red points mean 

outliers, red dash line is the threshold between outliers and normal points and all data are displayed in a logarithmic 

coordinate system) 

 The experimental datasets used for understanding the relationships between defect features and 

fatigue life are shown in Table 3. In addition, we will investigate whether data size or consistency in 

conditions is important in understanding the relationships in the proposed IDADC framework.  

Table 3 Datasets used in the IDADC for understanding defect-fatigue relationships. 

 
Strain level 
(mm/mm) 

Heat 
treatment 

Total data 
points 

Outliers 
removed 

Remaining 
data points 

Dataset 1 All All 190 33 157 

Dataset 2 0.003 All  62 11 51 

(b) (c)(a)

Number of defects Number of defects Number of defects
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Dataset 3 0.003 CA-H1025 43 9 34 

 

5. Case Study  

5.1. Feature extraction 

Defect feature extraction from the 2D fractography images is implemented via CBIR on the 

three datasets in this study. As shown in Table 1, the extracted defect features describe various aspects 

of defect characteristics. These defect features can be summarized statistically to provide an overview 

of the defects. For instance, the statistics of defect features extracted from Dataset 3 (strain level of 

0.003 mm/mm and heat treatment of CA-H1025) are summarized in Table 4. It is noticeable from Table 

4 that: 

(1) The distributions of size-related features are skewed to the right, and most defects have smaller 

values than their means. It indicates that exceedingly large defects are uncommon in the 

specimens.  

(2) The morphology-related features are within the range [0, 1], and are not as skewed as size-

related features. These numbers describe whether the defects are close to an ellipse or a circle 

(eccentricity, circularity), whether they have a regular and smooth boundary or sharp angles 

(solidity, angularity), whether they are convex and compact (solidity, extent).   

(3) Around half of the defects are open on the surface (with distance to the surface as 0 μm). 

(4) The distributions of the fatigue lives of these specimens are also skewed to the right, with the 

majority of specimens having shorter fatigue lives than their mean. The longest fatigue life is 

around six times the mean and ten times the median. It indicates that some scatter exists in the 

fatigue life data at the strain amplitude of 0.003 mm/mm. 

Table 4 Statistics summary of CBIR-extracted defect features for Dataset 3 (strain level of 0.003 mm/mm and 

heat treatment of CA-H1025). 

Category Defect features Mean Std. Min. Median Max. 

Size  

Area (μm2) 3320.2 9271.2 41.1 450.5 46215.8 

Convex area (μm2) 3334.5 9501.7 43.2 432.6 49642.5 

Major axis length (μm) 53.1 58.6 7.7 30.3 275.8 

Minor axis length (μm) 32.9 41.4 6.7 19.2 209.8 

Equivalent diameter (μm) 40.0 47.0 6.9 22.7 230.1 

Perimeter (μm) 179.4 217.3 29.9 98.1 1115.2 

Max Feret diameter (μm) 55.7 62.9 8.4 30.9 304.1 
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Min Feret diameter (μm) 33.6 42.1 7.3 18.5 216.4 

Morphology 

Eccentricity 0.7 0.2 0.2 0.7 1.0 

Circularity 0.5 0.1 0.3 0.6 0.8 

Solidity 0.9 0.0 0.8 1.0 1.0 

Extent 0.7 0.1 0.4 0.8 0.8 

Angularity 0.2 0.1 0.0 0.2 0.4 

Distance The distance to the surface (μm) 
 

27.3 93.0 0.0 0.0 562.4 

 Fatigue life (Cycles) 
 

209015 270613 26735.0 126971.0 1395858.0 

 

These defect features constitute the explanatory variables in the dataset for discovering the 

relationships between defect features and fatigue life of specimens, while the fatigue life of these L-

PBF 17-4 PH SS specimens is the target variable in the following analysis and modeling. Furthermore, 

since fatigue life is also affected by subsequent post-processing thermal heat treatments [46, 47] and 

strain amplitude in the fatigue tests, a normalized stress level parameter (derived from UTS and the 

stress level to adjust the effect of heat treatment) and the strain amplitude are also included as 

explanatory variables in further analysis.  

5.2. Correlation analysis 

5.2.1. Correlations between defect features and fatigue life 

 Correlation analysis between various defect features and fatigue life are implemented with PCC 

and MIC for three fatigue testing datasets in Table 5. PCC captures positive/negative linear correlations 

between fatigue life and respective defect features, while MIC indicates the magnitudes (without signs) 

of (linear and nonlinear) correlations between fatigue life and respective defect features, as shown in 

Table 5.  

Table 5 PCC and MIC between fatigue life of L-PBF 17-4 PH SS specimens and all the defect features for three 

datasets in this study. The bold values indicate relatively high correlations (≥0.5).   

 

 Dataset 1 Dataset 2 Dataset 3 

Defect Features PCC MIC PCC MIC PCC MIC 

strain amplitude  0.57 (-) 0.85 N/A N/A N/A N/A 

Normalized stress level 0.53(-) 0.84 0.11(-) 0.47 N/A N/A 

Major Axis Length 0.24 (-) 0.54 0.59 (-) 0.69 0.57 (-) 0.72 

Circularity 0.22 (+) 0.56 0.62 (+) 0.64 0.52 (+) 0.46 

Max Feret Diameter 0.22 (-) 0.57 0.60 (-) 0.60 0.58 (-) 0.62 

Eccentricity 0.21 (-) 0.54 0.52 (-) 0.74 0.43 (-) 0.56 

Perimeter 0.21 (-) 0.49 0.61 (-) 0.59 0.58 (-) 0.53 

Solidity 0.18 (+) 0.41 0.49 (+) 0.54 0.25 (+) 0.37 

Extent 0.18 (+) 0.61 0.54 (+) 0.51 0.38 (+) 0.56 

Minor Axis Length 0.15 (+) 0.33 0.07 (-) 0.37 0.35 (-) 0.40 

Min Feret Diameter 0.13 (+) 0.34 0.41 (-) 0.37 0.39 (-) 0.34 
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Distance to the surface  0.13 (+) 0.36 0.21 (+) 0.45 0.18 (+) 0.43 

Equivalent Diameter 0.12 (-) 0.42 0.54 (-) 0.46 0.52 (-) 0.41 

Convex Area 0.08 (-) 0.44 0.55 (-) 0.54 0.51 (-) 0.49 

Area 0.08 (-) 0.42 0.53 (-) 0.46 0.50 (-) 0.41 

Filled Area 0.08 (-) 0.42 0.53 (-) 0.46 0.50 (-) 0.41 

Angularity  0.05 (+) 0.42 0.07 (-) 0.44 0.07 (-) 0.39 

* Sorted by descending order of PCC in Dataset 1 

   

Some insights can be inferred from the results in Table 5 for the three datasets: 

(1) Dataset 1:  

a. Strain amplitude in strain-controlled fatigue tests and normalized stress level (adjusted 

by the heat treatment) of materials have much larger PCC and MIC values than the 

defect features.  

b. The defect features manifest relatively small PCC with fatigue life; however, their 

impacts on the fatigue life align with known fatigue mechanisms and influencing 

factors, e.g., defects with larger values in size-related features lead to shorter fatigue 

life, specimens with circular and less elongated defects tend to have longer fatigue lives, 

and defects with a smaller value of the distance to the surface lead to shorter fatigue 

life. 

(2) Dataset 2: 

a. Since these specimens are in the same strain-controlled fatigue tests (strain level of 

0.003 mm/mm), the defect features are not dominated by the testing conditions but 

exhibit strong relationships with fatigue life. In addition, they have the same 

positive/negative impacts on fatigue life as in Dataset 1.   

b. Both PCC and MIC identify similar defect features having strong relationships with 

the fatigue life of L-PBF17-4 PH SS specimens. They are the size-related features 

(perimeter, max Feret diameter, major axis length, equivalent diameter, convex area, 

area, filled area) and morphology-related features (circularity, aspect ratio, extent). The 

distance to the surface also shows a positive correlation, i.e., defects with a smaller 

value of the distance to the surface lead to shorter fatigue life. 

(3) Dataset 3: 
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a. All specimens underwent the same heat treatment, CA-H1025, and were tested at the 

same strain amplitude, i.e., 0.003 mm/mm; this dataset could provide the most accurate 

results due to the consistent conditions in the test specimens.  

b. Despite a small number of test specimens, the PCC and MIC identify similar size-

related and morphology-related defect features as in Dataset 2, which have strong 

relationships with the fatigue life of L-PBF specimens.  

c. The distance to the surface also shows a similar positive correlation as in Dataset 2, i.e., 

defects with a smaller value of the distance to the surface lead to shorter fatigue life. 

 Despite the differences in these three datasets, both PCC and MIC identify some shared size-

related and morphology-related defects features with high correlation values with the fatigue lives of 

the L-PBF 17-5 PH SS specimens, bolded in Table 5. For instance, these defect features have high PCC 

and MIC values in all three datasets: max Feret diameter and major axis length (indicate the size and 

the elongation of the defects), perimeter (indicates the size of the defects and the smoothness of the 

defect contours), as well as eccentricity and circularity (indicate the elongation and the roundness of 

the defects). Therefore, these individual defect features exhibit the relationships with fatigue life, and 

together they can characterize different types of defects (e.g., gas-entrapped pores, LOFs) and enhance 

the understandings of their impacts on fatigue life. For instance, compared to LOFs, gas-entrapped 

pores are usually smaller (with a small perimeter, a small max Feret diameter, and/or a small major axis 

length) and rounder (with a large circularity and/or a small eccentricity). If gas-entrapped pores are 

critical defects of an L-PBF specimen, the fatigue life of the specimen tends to be longer than a 

counterpart L-PBF specimen with LOFs as the critical defects. 

5.2.2. Correlations among features in defect analysis 

 We further explore the correlations among the features and visualize their interdependence in 

correlation matrices in Figure 4. These features are categorized into the size-related defect features, 

morphology-related defect features, the distance to the surface, and process features (normalized stress 

level and strain amplitude).  
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Figure 4. PCC among extracted features of L-PBF 17-4 PH SS specimens: (a) Dataset 1 with all specimens; (b) 

Dataset 2 with fatigue tests at a strain amplitude of 0.003 mm/mm; and (c) Dataset 3 with heat treatment of CA-

H1025 and fatigue tests at a strain amplitude of 0.003 mm/mm. (NSL: Normalized stress level; DTS: The distance 

to the surface) 

 Within each category of defect features, the correlations among the respective features are 

relatively high. For example, the size-related features, e.g., area, perimeter, equivalent diameter, major 

axis length area, are all highly correlated with each other. Between the categories of defect features, it 

is noted that a few size-related defect features (i.e., max Feret diameter, major axis length, perimeter) 

have strong correlations with morphology-related defect features (eccentricity, circularity, solid, extent). 

In detail, defects with a large max Feret diameter, or major axis length, or perimeter tend to have 

noncircular shapes (with large eccentricity but small circularity, solidity, and extent). These defects are 

most likely LOFs; therefore, such correlations can help in the classification of defects and determination 

of their effects on the fatigue behavior of the materials. 

5.3. Defect-fatigue data-driven surrogate modeling  

5.3.1. Model accuracy  

 In the IDADC framework, SVR forms a surrogate model for determining the relationships 

between defect features and fatigue life for the three datasets. The modeling accuracy is evaluated by 

mean absolute percentage error (MAPE), a percentage error between the actual fatigue lives and the 

SVR outcomes, via 5-fold cross-validation.  

 Three benchmark methods, least absolute shrinkage and selection operator (LASSO), decision 

tree, and random forests are adopted to compare with SVR in this study. LASSO fits the linear 

relationships between the target variable (i.e., fatigue life) and explanatory variables (i.e., various defect 

features) by performing variable selection and regularization simultaneously; decision trees generate 

Other Size Morphology Size Morphology Size Morphology

(b)(a) (c)

Other Size Morphology Size Morphology Size Morphology

(b)(a) (c)
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rule-based relationships in a tree structure by splitting the dataset on decision nodes according to the 

values of the explanatory variables; random forests construct a multitude of decision trees and output a 

mean regression value of the individual trees.  

The experiment is based on 5-fold cross-validation to train these machine learning models using 

data set 1, dataset 2 and dataset 3 to avoid overfitting and improve the generalizability of models shown 

in Table 6.  

Table 6 Comparisons of modeling error of different ML methods via 5-fold cross-validation in predicting fatigue 

life from defect features in terms of MAPE for testing data for three datasets. Note: the MAPE in the table is 

composed of average MAPE of 5-fold datasets with its standard deviation. 

Dataset LASSO Decision trees Random forest SVR 

Dataset 1 0.891 ± 0.0461 0.948 ± 0.1292 0.800 ± 0.0924 0.633 ± 0.0477 

Dataset 2 0.541 ± 0.1802 0.454 ± 0.1192 0.385 ± 0.1201 0.336 ± 0.1049 

Dataset 3 0.651 ± 0.1942 0.575 ± 0.3515 0.578 ± 0.2212 0.573 ± 0.2037 

 

 It is noted in Table 6 that SVR outperforms the other three benchmark methods with the 

smallest MAPE and less variance for all three datasets. Decision trees have the largest MAPE values 

for dataset 1, indicating the rule-based method cannot accurately represent the relationships between 

the defect features and the fatigue life in different heat treatments and applied strain amplitudes. LASSO 

also underperforms since the relationships between the defect features and fatigue life are unlikely to 

be linear. As an ensemble learning method of decision trees, random forests gain modeling accuracy 

improvement by approximating sophisticated nonlinear relationships, and have relatively small MAPE 

values, especially for Dataset 2. It indicates that SVR is capable of well predicting fatigue life of L-PBF 

specimens.  

 From the data perspective, Dataset 2 and Dataset 3 are generated under consistent conditions 

(i.e., Dataset 2 includes L-PBF specimens tested under the same strain amplitude, i.e., 0.003 mm/mm, 

Dataset 3 includes L-PBF specimens that underwent the same heat treatment and tested under the same 

strain amplitude); therefore, despite the small data sizes, the possible clear patterns in the datasets under 

the consistent conditions enable accurate modeling of the relationships between defect features and 

fatigue life. On the contrary, due to the different heat treatment and strain values applied, Dataset 1 with 

all the specimens has inferior modeling accuracy and is not favorable for analyzing defect criticality 

despite its relatively large data size.  
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Table 7 SVR modeling error under different hyperparameters of all datasets via 5-fold cross validation. Note: 𝛾 

controls the curvature of decision boundary in radial basis kernel; 𝐶 controls error in the objective function Eq. 

(5); Bold numbers represent the best MAPE. 

Dataset 
Hyperparameters of SVR Error Measurement 

𝛾 (> 0)  𝐶 MAPE 

Dataset 1 0.5 4 0.224 

Dataset 2 0.5 4 0.101 

Dataset 3 0.5 4 0.120 

Then we select the best SVR hyperparameters from 5-fold cross-validation grid search to train 

all datasets and obtain the best prediction error shown in Table 7. These SVR results are used to be 

interpreted to explore the impact of defects features on the predicted fatigue life by model-agnostic 

methods in next section. 

5.3.2. Model interpretability and result discussion 

 In the IDADC, we leverage the model-agnostic methods (PFI and ALE) to enhance the result 

interpretations for SVR. Specifically, we firstly adopt PFI to evaluate the marginal importance of defect 

features towards the SVR outcomes of fatigue life. Then, we use ALE to further examine how important 

defect features influence the expected outcomes of SVR. Such methods can enhance the interpretability 

of SVR and increase the understanding of the relationships between critical defect features and fatigue 

life of L-PBF specimens from ML. 

PFI measures the importance of a feature by calculating the increase in the model error after 

permuting the feature. They are illustrated in Figure 5 for the three datasets in this study. As shown in 

Figure 5, strain amplitude and normalized stress level parameter (adjusted for heat treatment) are 

dominant features in Dataset 1 since Dataset 1 includes all specimens with different heat treatments and 

applied strain amplitudes. The results align with our previous correlation analysis in Section 5.2.1. 

Again, it indicates that due to the inconsistent heat treatment and strain amplitudes, Dataset 1 is not 

favorable for defect criticality analysis despite its relatively large data size. For Dataset 2 and Dataset 

3, while large variations exist in the importance of the defect features, they are not statistically 

significant. ALE is used to interpret the importance of defect features in Dataset 2 and Dataset 3. 
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Figure 5. PFI of defect features based on SVR for L-PBF 17-4 PH SS specimens in (a) Dataset 1, (b) Dataset 2, 

and (c) Dataset 3. (NSL: Normalized stress level; DTS: The distance to the surface; ED: Equivalent diameter; 

MaxFD: Max Feret diameter; MinFD: Min Feret diameter; MajorAL: Major axis length; MinorAL: Minor axis 

length) 

ALE calculates the marginal effects of the interested features on the fatigue life modeled with 

SVR by marginalizing other features from its distribution function as in Eq. (6) and Eq. (7) and 

describes the effects by using the incremental/decremental differences to the fatigue life, indicating as 

upward/downward trend in ALE plots. ALE plots are used to analyze some important size-related, 

morphology-related, and location-related defect features identified from PCC, MIC, and PFI above, for 

Dataset 2 and Dataset 3. Moreover, we further investigate the defects on fractography for explanations 

of abnormal sections in the general trend on the ALE plots by considering the synergistic effect of the 

various features on fatigue lives.  

(1) ALE plot interpretability and discussion for Dataset 2 

 

Figure 6. The ALE plots of defect features for SVR, exhibiting their impacts on fatigue life of L-PBF 17-4 PH SS 

specimens for Dataset 2 (Yellow triangle: abnormal points not on trend; Green rectangle: sampling points on the 

right trend). 

Generally speaking, ALE plots for the eight defect features in Dataset 2 show clear trends 

regarding fatigue lives due to its relatively large data size, as in Figure 6. It is noted that the increase of 
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all the size-related features (e.g., Area, Major Axis Length, Max Feret Diameter, and perimeter) lead to 

the decrease of fatigue lives of L-PBF specimens as shown in Figure 6 (a)-(d). For instance, an 

examination of defects for Area in Figure 6 (a) shows that the defect area only becomes critical after 

reaching a certain threshold value (around 700–800 µm2), after which the fatigue lives significantly 

deteriorate with an increase in size. The defects above the threshold can be classified as large, irregularly 

shaped LOFs shown in Figure 7 below, while the defects below the threshold could be small gas-

entrapped pores. The cracks that grow out of defects larger than 700–800 µm2 may have already become 

a long crack, and its growth rate may have been high, which results in shortening the total crack 

propagation life. Therefore, there is a stronger correlation between life and larger defect sizes. 

Additionally, in Figure 6 (b)-(d), the general trends show that the fatigue lives decrease with an increase 

in the values of other size-related features (i.e., major axis length, max Feret diameter, and perimeter). 

 
Figure 7. Fatigue crack initiating defects correspond to the three defects with a large area (>700–800 µm2) and 

having a large decrease in fatigue lives in Figure 6 (a) marked in green rectangles. They show large size and 

irregular shapes and could be classified as LOFs.  

Furthermore, the general trends of morphology-related defect features (e.g., eccentricity, 

circularity, solidity) also align with fatigue mechanisms and influencing factors and are verified by PCC 

in Table 5 as well. For instance, the fatigue lives of specimens tend to be longer if the critical defects 

are more circular (circularity), have a larger radius of curvature (eccentricity), or/and is more convex 

with a smoother contour (solidity) if size-related features and distance to the surface are the same. It is 

noted in Figure 6 (f) that while most defects with circularity (>0.5) show an upward trend that is 

positively correlated with fatigue lives, several others with small circularity (<0.5) (marked as yellow 

triangles) have a negative correlation with fatigue lives. We evaluated these defects and found they are 

irregular (LOFs) and are open to the surface, as shown in Figure 8 (a)-(c) below.  Except for these LOFs, 

it can be seen from Figure 8 (d)-(f), the fatigue lives show an upward trend with the increase of 

circularity. 
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Figure 8. Fatigue crack initiating defects from Dataset 2 for L-PBF 17-4 PH SS specimens with varying circularity 

values and fatigue lives. As seen in the Fatigue Life vs. circularity ALE plot in Figure 6 (f), the defects with 

circularity (<0.5) and marked as yellow triangles are defects in (a)-(c), and the defects with circularity (>0.5) and 

marked as green rectangles are defects in (d)-(f).  

Lastly, it is worth noting that the fatigue lives of LB-PBF specimens in Dataset 2 are longer if 

the critical defects are far away from the surface (i.e., having a large distance to the surface), as shown 

in Figure 6 (h). 

(2) ALE plot interpretability and discussion for Dataset 3 

 
Figure 9. The ALE plots of defect features for SVR, exhibiting their impacts on fatigue life of L-PBF 17-4 PH SS 

specimens for Dataset 3 (Yellow triangle: abnormal points not on trend; Green rectangle: sampling points on the 

right trend).  

As for Dataset 3, firstly, it is observed that the increase of some size-related features (such as 

area, major axis length, max Feret diameter) will generally decrease the fatigue lives of L-PBF 

specimens, as shown a patent downward trend in the above Figure 9 (a)-(c). Such observations align 

with known fatigue mechanisms and influencing factors and have been reported in Table 5 with 

negative correlations by PCC. Interestingly, as seen for some of the size-related features, the defect area 
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in Figure 9 (a) only becomes critical after reaching a certain threshold value (around 700–800 µm2), 

after which the fatigue lives deteriorate with an increase in size. Inspecting these defects revealed that 

below this threshold area value, the gas-entrapped pores, which typically are small and circular, are 

responsible for crack initiation; the defects above the threshold can be classified as large, irregularly 

shaped LOFs shown in Figure 10 below. The cracks that grow out of defects larger than 700–800 µm2 

may have already become a long crack; its growth rate may have been high, shortening the total crack 

propagation life. This observation is very similar to Dataset 2 in the previous section. Additionally, in 

Figure 9 (b) and (c), the general trends show that the fatigue lives decrease with an increase in the values 

of other size-related features (i.e., major axis length, max Feret diameter). 

 

Figure 10. Fatigue crack initiating defects correspond to the three defects with a large area (>700–800 µm2) and 

having a large decrease in fatigue lives in Figure 9 (a), marked in green rectangles. They show large size and 

irregular shapes and could be classified as LOFs.  

The relationships between perimeter (also a size-related feature) and fatigue live in Figure 9 (d) 

do not show a clear trend. As shown in Figure 9 8 (d), while the defects with a larger perimeter (>100 

µm) are on the downward trend of fatigue lives with the increase of perimeter, the defects with a smaller 

perimeter (<100 µm) have an unusual dip in fatigue lives (a huge decrease and then a rebound in fatigue 

lives). Three defects at this dip (marked as yellow triangles in Figure 9 (d)) are identified and shown in 

Figure 11(a)-(c) below. The sharp drop in the fatigue lives with small perimeters could be attributed to 

their locations (open to the surface), as shown in Figure 11 (a) and (b). When the defects with a small 

perimeter move away from the surface, as shown in Figure 11 (c), the fatigue lives rebound. Moreover, 

three defects after the dip on the downward trend are sampled, marked as green rectangles in Figure 9 

(d), and shown in Figure 11 (d)-(f) here. Their increasing perimeters can correlate with the decreasing 

trend of fatigue lives. Additionally, as shown in Figure 11 (f), the defect with the largest perimeter 

(~300 µm) and open to the surface has a substantial decrease in the fatigue life.  
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Figure 11. Fatigue crack initiating defects from Dataset 3 for L-PBF 17-4 PH SS specimens with varying perimeter 

values and fatigue lives. As seen in the Fatigue Life vs. Perimeter ALE plot in Figure 9 (d), the defects with a 

small perimeter (<100 µm) and marked as yellow triangles are defects in (a)-(c), and the defects with a large 

perimeter (>100 µm) and marked as green rectangles are defects in (d)-(f).  

 
Secondly, it is noticed in Figure 9 (e) that as the eccentricity value increases, the fatigue lives 

decrease, since a large eccentricity means the defect has a long major axis length and it is noncircular. 

This feature is strongly correlated with major axis length and the maximum Feret diameter (as seen in 

Error! Reference source not found.), which is also reflected in the similar trends observed for these 

size-related features. Similarly, for defects with high values of circularity and solidity, fatigue lives are 

higher. This is due to the defects having smoother contours, a larger radius of curvature, and a smaller 

size often, which is accompanied by a reduction in the local stress concentrations, and thus, leading to 

better fatigue lives. We further examine the impact of circularity and solidity on fatigue life in the 

following two paragraphs since there are some abnormal sections in the general trend on the ALE plots 

with Dataset 3 in Figure 9 (f)-(g).   

PCC in Table 5 suggests that the fatigue lives of specimens with large circularity values tend 

to be long. Defects with high circularity (>0.5) in Figure 9 (f) do show an upward trend with positive 

correlations with fatigue lives. However, a few defects with small circularity (<0.5) (marked as yellow 

triangles in Figure 9 (f)) indicate abnormal negative correlations. We identify these defects and present 

them in Figure 12 (a)-(c) below. These defects are irregular (LOFs) and are open to the surface, which 

will have largely decreased fatigue lives; especially for the defect in Figure 12 (c), it has a large area of 

1382.667 µm2. After the dip, it can be seen from Figure 12 (d)-(f), the fatigue lives are on the upward 

trend with the increase of circularity. 
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Figure 12. Fatigue crack initiating defects from Dataset 3 for L-PBF 17-4 PH SS specimens with varying 

circularity values and fatigue lives. As seen in the Fatigue Life vs. circularity ALE plot in Figure 9 (f), the defects 

with circularity (<0.5) and marked as yellow triangles are defects in (a)-(c), and the defects with circularity (>0.5) 

and marked as green rectangles are defects in (d)-(f).  

 
PCC in Table 5 also suggests the fatigue lives of specimens with large solidity values tend to 

be long because a large solidity indicates the defect is close to a convex shape and might have a smooth 

boundary and be gas-entrapped pores. This aligns with the upward trend in Figure 9 (g) except for a 

few defects with solidity less than 0.94 having an excessive reduction in fatigue lives. These defects 

(marked as yellow triangles in Figure 9 (g)) are shown in Figure 13 (a)-(c), and it is noticed that they 

are open to the surface and their areas are large, relative to defects (marked as green rectangles in Figure 

9 (g)) in Figure 13 (d)-(f).  

 
Figure 13. Fatigue crack initiating defects from Dataset 3 for L-PBF 17-4 PH SS specimens with varying solidity 

values and fatigue lives. As seen in the Fatigue Life vs. solidity ALE plot in Figure 9 (g), the defects with solidity 
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(<0.94) and marked as yellow triangles are defects in (a)-(c), and the defects with circularity (>0.94) and marked 

as green rectangles are defects in (d)-(f).  

Finally, Figure 9 (h) shows that defects with a shorter distance to the surface lead to shorter 

fatigue lives of L-PBF specimens. This can be attributed to the presence of higher stress concentrations 

when defects are close to the surface, as has also been seen through FE modeling in literature where the 

highest stress concentrations were found for defects less than one diameter away from the free surface 

[58]. 

In summary, ALE plots provide a promising analytical way to explore and interpret the 

correlations between defect features and fatigue lives of L-PBF specimens.  In practice, especially when 

data are limited, combining both size and morphology-related features and considering the synergistic 

effect of the various features on fatigue lives can give better interpretations.  

6. Conclusions and Future Work 

In this study, we developed an IDADC for L-PBF fatigue performance assessment from critical 

defect features.  It is a novel integration of domain expertise and data-driven methods for potential 

qualification of L-PBF components. The proposed IDADC incorporates defect feature extraction from 

fractography images of L-PBF fatigue test specimens, correlation analysis, and defect-fatigue 

relationships modeling with ML to achieve an accurate and interpretable data-driven fatigue analysis. 

Specifically, based on SEM images acquired from the fracture surfaces of L-PBF 17-4 PH SS specimens 

tested under strain-controlled, fully reversed fatigue loading, CBIR is applied to extract various size-

related and morphology-related defect features from the critical defects. Then, correlation analysis and 

SVR are employed to understand the relationships between these defect features and the fatigue life of 

the specimens. The analysis reveals the correlations between critical defect features and the fatigue life, 

which align with the known fatigue mechanisms and influencing factors. To summarize the findings of 

this study: 

 Defect size, distance to the surface, circularity, and smooth contours were found to have strong 

relationships with the fatigue life of L-PBF specimens. SVR achieved relatively accurate 

fatigue life modeling based on defect features, especially with the specimens which had 
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undergone the same heat treatment and were tested under the same strain amplitude (MAPE = 

0.101).  

 PFI and ALE were incorporated to interpret the relationships from SVR outcomes, revealing 

morphology-related features (such as eccentricity, circularity, and solidity) and size-related 

features (such as maximum ferret diameter, perimeter, and area) have a significant impact on 

the fatigue life of L-PBF specimens. They provided useful interpretable insights from “black-

box” ML models.  

The IDADC has the potential practical benefits to nondestructive inspections with 3D X-ray 

CT scans in the future, which become the mainstream in describing defects in L-PBF specimens [14, 

16-18, 59] and studying L-PBF fatigue properties:  

(1) To identify the critical defects in L-PBF specimens from 3D X-ray CT scans: X-ray CT scans 

can capture the size-related, morphology-related, and distance-related defect features for all the 

defects in the scanned areas. The IDADC and the insights from this study can be easily extended 

to the nondestructive defect inspection and identify the critical defects that may initiate cracks 

in the parts during cyclic service loading. Such an understanding will potentially enable a 

nondestructive qualification of additively manufactured parts for fatigue-critical applications 

by utilizing an X-ray CT and scanning the critical locations of the parts that experience higher 

stress.  

(2) To understand the most critical defect features of the different types of defects (i.e., LOFs and 

keyholes) in AM materials in 3D, correlate them to the L-PBF process parameters, and study 

their impacts on the fatigue behavior of AM materials. The insights obtained can be used to 

optimize process parameters to avoid such defect types and/or reduce the intensity of such 

features, therefore improving the fatigue lives of the AM materials.  

(3) To reinforce the fidelity of defect features with strong correlations: Some features are more 

sensitive to X-ray CT inspection resolutions (e.g., circularity) than others (e.g., volume, major 

axis length). The strong correlations among these features can be used to adjust the 

measurements to a reasonable accuracy. For instance, circularity and major axis length have a 

strong correlation (~0.7), as shown in PCC analysis in Section 5.2.2. Since circularity is 
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difficult to capture with low-resolution X-ray CT, we can leverage its strong correlation with 

major axis length, which is still accurately measured with low inspection resolution, to adjust 

the measurement to a statistically more accurate circularity value. This benefit is particularly 

useful for 3D scanning for a large part with a limited resolution. 

 
  The authors’ forthcoming research will focus on the three future aspects of this work: (1) 

develop a comprehensive defect characterization framework for L-PBF parts on 2D fractography 

images by leveraging particle morphological analysis techniques in geology and biology, and advanced 

techniques in statistics and image/signal processing; (2) extend defect characterization to 3D X-ray CT 

scans to identify critical defect features and enable nondestructive fatigue performance analysis from 

3D X-ray CT scans; and (3) leverage deep learning to ensure high model accuracy to examine the effects 

of defects and microstructure, as well as their interactions, on fatigue performance of L-PBF parts.  
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